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Abstract—Unmanned aerial vehicle (UAV) systems are vul-
nerable to jamming from self-interested users who utilize radio
devices to disrupt UAV transmissions. The vulnerability occurs
due to the open nature of air-to-ground (A2G) wireless com-
munication networks, which may enable network-wide attacks.
This paper presents two strategies to identify Jammers in UAV
networks. The first strategy is based on a time series approach
for anomaly detection where the available signal in the resource
block is decomposed statistically to find trends, seasonality, and
residues. The second is based on newly designed deep networks.
The combined techniques are suitable for UAVs because the
statistical model does not require heavy computation processing,
but is limited to generalizing possible attacks that might occur.
On the other hand, the designed deep network can classify
attacks accurately, but requires more resources. The simulation
considers the location and power of the jamming attacks and the
UAV position related to the base station. The statistical method
technique made it feasible to identify 84.38% of attacks when the
attacker was at a distance of 30 m from the UAV. Furthermore,
the Deep network’s accuracy was approximately 99.99 % for
jamming powers greater than two and jammer distances less
than 200 meters.

Index Terms—Cybersecurity, Convolutional Neural Networks
(CNNs), Deep Learning, Jamming Detection, Jamming Identifi-
cation, UAV, Unmanned Aerial Vehicles, 4G, 5G;

I. INTRODUCTION

When it comes to the 5G communication system, the
deployment of unmanned aerial vehicles (UAVs) is a game-
changer. They allow faster and more flexible network services
in the sky at higher data rates because they have complete
control over their movement and a high probability of es-
tablishing robust line-of-sight (LoS) communication links[1],
[2] and [3]. Yet, UAV transmission is vulnerable to attacks
and interference because of the open nature of air-to-ground
(A2G) wireless communication links and the A2G channel
connections that may present opportunities for attacks in the
network. As a result, it is critical and vital to identify threats
and protect UAV communications[4]. In wireless communi-
cations, encryption and encoding techniques are commonly
employed to ensure security by preventing unwanted access
and intentional interference. Nevertheless, maintaining en-
cryption systems requires a lot of effort and resources [5].
Consequently, encrypted UAVs’ communication may not be
feasible. Therefore, attack identification mechanisms become
fundamental in UAV networks. Commonly used jamming
detection algorithms such as packet delivery ratio and received
signal strength with a missed detection rate are presented
by [6]. Statistical models have lately been recognised as

feasible methods for monitoring network activity in wireless
communications and detecting suspicious attacks via the use
of wireless channel properties rather than encryption keys. In
[7], the authors propose a jamming detection method using a
Naive Bayes classifier trained on a limited sample of data that
considers only transmission noise effects in wireless scenarios.
Cheng et al. [8] describes a Bayesian method for jamming
detection. In [9], the authors offer a jamming detection strategy
for GNSS-based train localization that makes use of singular
value decomposition (SVD). Lu et al. [10] present a technique
for detecting jamming in power networks that is both efficient
and resilient. Most of the studies’ computations did not take
channel impacts into account. Considering machine learning
and Deep Networks, Youness et al. [11] analyze the signal
properties that may be used to detect jamming signals, and
create a dataset based on these parameters. They utilize the
random forest method, the support vector machine algorithm
(SVM), and a neural network algorithm to classify the features
extracted by the jamming signal. Li et al. [12] also identify
jamming samples using signal-extracted features, but the au-
thor adds another way to detect attacks that utilizes 2D samples
and pretrained networks (i.e. AlexNet, VGG-16, ResNet-50).
Although, with pre-trained networks, we may utilize transfer
learning to adapt the network to a new dataset without having
to design it from scratch. Certain pre-trained networks are
enormous and need significant computational processing in
order to categorize information which may be unsuitable for
UAVs. While embedded statistical models and deep network
techniques in the cloud or at the edge can monitor and analyze
channel degradation caused by jamming attacks, there is a
lack of publicly available research on attack detection in
UAV communications. Rather than identifying attacks, most
research in this field focuses on prevention, namely anti-
jamming measures and non-traditional ways to avoid jamming.

We aim to demonstrate that it is feasible to identify attacks
in the receiver block of the UAV by combining a Seasonal
Trend Decomposition (STL) time series analyzer with a unique
deep network architecture that has much fewer layers than the
well-known pretrained networks and does not rely on transfer
learning techniques.

The remainder of the paper is structured as follows: First,
the detailed system model is presented in Section II. It
describes the dataset used, the statistical approach, and the
suggested deep network architecture. The assessment of both
approaches is summarized in Section III. Finally, section IV



concludes this paper.
Notations: Scalar variables are denoted by lower-case letters

(a, b,...), vectors are denoted by boldface lower-case letters (a,
c,...), and matrices are denoted by boldface capitals (A, B,...).
Lower case letters denote time-domain variables, whereas
upper case letters indicate frequency-domain variables.

A. Contributions and Motivation

With regard to jamming detection and the associated chal-
lenges utilizing deep networks and statistical methods, there
is a lack of public research and accessible data. Taking
this into consideration, the following highlights some of the
contributions made by this paper:

• A general case study model that takes into account the
jamming power and distances between the jamming at-
tacker and the base station in relation to the authenticated
UAV that uses average received signal power in the
resource block, Signal-To-Noise-Ratio (SNR), average-
noise, average-transmitted-power, path-loss, and shadow-
ing.

• A statistical model for jamming detection using data from
the UAV’s reception resource block.

• A simpler Convolutional Neural Network-Long Short
Term Memory (CNN-LSTM) architecture for jamming
detection.

• Simulation results for both of the presented techniques.
• A comparison of two jamming detection technique per-

formances in terms of accuracy over attacker distance and
power.

Additionally, we offer a table representation of the confusion
matrix for both the training and test data sets. We devise a
strategy that increases performance while using the fewest
CNN layers.

II. SYSTEM MODEL

We analyze a UAV jamming scenario in which a commu-
nication link exists between the base station and the UAV,
referred to as an air-to-ground (A2G) connection and there
are jamming attackers in unknown locations on the ground or
in the air that can deliberately jam the signal received by the
authenticated UAV. Although, we use the Single Carrier (SC)
transmission scheme, the jamming detection algorithms are
applicable to any transmission technique. We investigate the
reception power in the authenticated UAV using two distinct
approaches: one of which relies on time series statistical
models and the other on deep networks. Each component is
explained as follows:

A. dataset

The data set simulates the received signal in the UAV
resource block considering slow fading effects in the trans-
mission channel, specifically (pathloss and shadowing). The
frequency domain channel H(k,d) is represented as in 1,

H(k,d) =

∑Nrays

i=1 αi(τ) + exp(−j2fπτ)√
(PLS)

(1)

For H(k,d), f is the frequency band, α is the attenuation of
the multipath ray, and τ is the propagation delay. We adopt
the Rician model to describe the multipath rays. The path loss
is estimated using the UAV and base station locations pid,t =

[xuav,t, yuav,t, zuav,t]
T , [xb, yb, zb]T (in meters) and the 3D

Euclidean distance equation ||pbs − puav||2 respectively. The
reference point is at d = 10m and S the shadowing is a
random variable modeled as S|db ∼ N (0, σ2) . The received
power Y(k,d) is calculated using 2,

Y(k,d) = H(k,d)Xk +N, (2)

Xk is the frequency domain representation of the transmit-
ted signal xR

k , and N ∼ N (µ, σ2
k) is the noise in the channel,

while k is an available frequency in the bandwidth.
The jamming signal takes into account the same properties

of the reliable signal considering path loss. In the experiment,
the jammer focuses on Fk « F frequencies inside the band-
width B available for transmission with the gain (P/PJ)I ,
where I is the percentage of the slot occupied by the jammer.
The jammer is more powerful than the signal in the majority
of the dataset samples (i.e. PJ > PS). The formula in 3 shows
how the total noise is affected by the jamming power received,
where Nk is the noise without interference.

E[|Nk,Tot|2] =
F

FkJ

Pj

PS
E[|Nk|2], (3)

The dataset contains 483,540 transmission blocks or sam-
ples Sa, with N steps each {Sak; k = 0, 1, ..., N − 1}
where N is the FFT size in the frequency domain. The
received signal is then classified according to the following
categories: Good-Normal, Bad-Normal, Good-Jamming, and
Bad-Jamming. "Normal" defines a non-jamming signal while
good and bad channels are distinguished by SNR = 20 and
SNR = 1, respectively. Additionally, we vary the jammer
and base station positions as well as the jammer power in the
experiment. Fig 1 depicts two jamming samples available in
the dataset. The top illustrates a jamming sample in a good
channel. The bottom shows a jamming signal in a bad channel.
The dataset contains only the received power categorized in
the four classes previously mentioned.

Fig. 1: Received signal with jamming in Good and Bad
Channels.

Table I compares the mean received power differences at the
UAV when the signal is jammed and when the signal is not
jammed with the same power as the authenticated signal at
a distance of 30m from the UAV. The base station is about



the same distance from the UAV. According to the table,
the jammer modifies the mean power in the resource block,
depending on the jammer’s power and position relative to the
base station and the authorized UAV.

TABLE I: Mean Difference Between Channels with and
Without Jamming

Mean Power difference (dBm) No Jamming Jamming

Good Channel 0 4.189

Bad Channel 0 0.592

B. Statistical methods

The statistical model chosen was STL [13]. It takes into
account the decomposition of the signal into trends, seasonal,
and residuals. Figs 2 and 3 illustrate a representative sample
of both jammed and unjammed decomposed signals. The top
chart in both figures shows a combination of three samples
from the dataset in a sequence. In fig 2, the jamming power
of the attacker is five times greater than the signal received
from the base station. The jamming location is 30m away
from the UAV, while the UAV placement is 90m away from
the base station. In fig 3, there is no jamming attacker and the
base station location is identical to that in fig 2.

Fig. 2: STL decomposition of a normalized sample in the
present of jamming attacker.

Fig. 3: STL decomposition of a normalized sample without
jamming signal.

STL is an acronym for "Seasonal and Trend decompo-
sition based on locally weighted regression (Loess)". This
is a technique for decomposing time series data into trend,
seasonal, and residual components. After removing the current
trend estimate, the seasonal component of the cyclic sub-series
is calculated using seasonal smoothing. Next, the predicted
seasonal component is smoothed using lowpass smoothing.
Finally, the deseasonalized series is smoothed once more with
trend smoothing in order to provide an estimate of the trend
component. This procedure is repeated numerous times in
order to improve the component estimates’ accuracy[13].

In the experiment, each sample contains elements that
degrade communication, such as noise and slow fading com-
ponents. The channel and the noise effects are independent of
each other. We assume that the jamming effect will manifest
itself in multiple samples in the case of a jamming attacker.
Then, we exploit the jamming attack’s periodicity to identify
it using STL. We assume the jamming attack is applied in a
certain narrow channel bandwidth from 8% to 10% . After the
third resource block reception, first, we combine three samples
in a sequence. Second, we apply the STL decomposition and
then reconstruct the signal again using 4. Finally, we calculate
the sample’s error as in 5. If there is a pattern in the sample,
the number of errors is smaller; consequently, the sample is
classified as a jamming signal. In a normal situation without a
jamming effect, there is no specific repeated pattern, and we
see more errors in the STL decomposition reconstructed signal.
In order to classify the signals correctly, we use root mean
square error (RMSE) for binary classification to determine the
presence or absence of jamming effects in the experiment as in
6. Lastly, we apply Support Vector Machine (SVM), Logistic
Regression, and Random Forest algorithms to split the features
in the classes. The difference between the dataset described
in the previous section and the one used in the STL is the
concatenation of three resource blocks in one sample. While
developing the experiment, we noticed it is fundamental to
accurately define the period in order to get good results from
STL.

Sa = T + S +R (4)

Error = Sa − Sr (5)

RMSE =

√√√√ 1

N

N∑
i

Error2i (6)

In 4, 5 and 6, Sa and Sr are the original and reconstructed
samples, and T , S, and R stand for trend, seasonal, and
residual components, respectively. N is the length of a sample
and we use RMSE as a feature for binary classification.

C. Convolutional Neural Networks

In the experiment using the convolutional neural network
(CNN) joined with Long short-term memory (LSTM), we
developed an architecture capable of achieving 99 % accuracy
with a small number of CNN layers, number of filters, and
kernel sizes in the convolutional layers. Our CNN architecture
uses three convolutional layers: one LSTM, one drop-out, a
fully connected layer, and the output layer for classification
as Fig 4 illustrates. Max-pooling is a common layer used in



CNNs, but it might result in the loss of critical information
in certain topologies. According to Geofrey Hinton "pooling
is a mistake" and for these reasons, we replace the pooling
layer with strides in our convolutional layers. Authors in
[14] and [15] reported that using very small weight decay
(L2 regularization) values such as 5x10−4, and 4x10−5 in
convolutional layers are critical for performance purposes and
they should be precisely chosen. After executing the grid
search algorithm, we found the an optimal L2 regularization
and used it for all CNN layers in the experiment.

Fig. 4: Proposed CNN-LSTM Architecture.

For the deep network, we use a single sample dataset.
Initially, we partition the dataset into 70% for training and 30%
for testing. In the first phase, we divide the training section
into two sub-sections: training and validation. We then apply
the grid search algorithm to determine the deep network’s
hyperparameters. The hyperparameters are as follows: the
number of CNN filters, the kernel sizes, the strides, the batch
size, the learning rate, the number of regularization terms, and
the drop out percentage. In the second phase, we employ a 5-
fold cross validation procedure during the training phase to
ensure accuracy and avoid overfitting.

III. EXPERIMENTAL RESULTS

The results of the suggested algorithms are detailed below.
First, we look at the statistical data for jamming detection.
Then we’ll look into deep networks for classification, loss, and
accuracy in training and testing. The CNN model is trained
and tested in a system with a Nvidia RTX 3090 GPU. The
jamming attacker signal power ratio ranges between one and
twenty. The distances between the UAV and the base station,
and the UAV and jamming attacker varies between 10 and 350
meters. The shadowing variance was adjusted to 4 [16].

A. Statistical model

Fig 5 depicts the RMSE between original signal and re-
constructed one after STL decomposition in the BoxPlot. The
diagram shows that both distributions can be split using binary
classification. We merge three resource block into a sequence
where each of them is the size of N = 1024 in length, and
we use N as a period parameter for the STL decomposition
algorithm. After calculating the reconstructed signal, we use

RMSE as a feature to detect the jamming attack with respect
to distance and power. The overall accuracy of this method for
all scenarios using the three different classifiers is about 70%,
as is shown in Fig 6, and varies according to the jamming
power ratio and distance of the UAV from the base station
and the attacker. In some cases, depending on the jammer and
base station location relative to the UAV, the accuracy can
increase up to 84.38% by employing an SVM classifier that
outperforms the other two classifiers.

Fig. 5: Boxplot of RMSE between original signal and
reconstructed signal for two classes.

Fig. 6: Overall statistical average accuracy for different
attacker powers and distances per fixed UAV distance from
base station.

Fig 7 (a) and (b) illustrate the accuracies of the STL
model at various attacker distances and power ratios using the
SVM classifier. In (a), the accuracy decreases with increasing
jammer distance, i.e. when the jammer is 350m away, the
accuracy in the statistical model is reduced. When the jamming
power Pj decreases as specified in (b), it is difficult for the
algorithm to differentiate low-power jammers and prominent
channel effects such as fading, path loss, and shadowing.
Due to the statistical model’s low computational requirements,
it may readily be implemented in UAVs for user packet
transmission and Command and Control (C2) links.

(a) (b)

Fig. 7: (a) Accuracy for Pj = 5P s. (b) Accuracy for
Bsd = 350m.



Fig. 8: Convergence of deep network during training with 4 steps. a) loss of model 1. b) accuracy of model 1. c) loss of
model 2. d) accuracy of model 2.

B. Convolutional Neural Networks

In the CNN simulation, the slot size is set to N=1024. The
only parameter the experiment uses for jamming detection
is the signal received in the resource block. During the
CNN performance configuration phase, we notice that adding
layers is preferable to increasing the number of filters in
each layer. Additionally, the regularization component of the
CNN and the fully connected layer are crucial for achieving
performance improvements since, in both cases, the parameters
demand appropriate adjustment. The LSTM layer is added
to take advantage of the sequence memory characteristics in
order to increase robustness. Also, the filter numbers and the
kernel sizes are implied in the overall trainable parameters.
We achieve the same performance by employing two fully
connected layers of 50 nodes each rather than a single layer
of 100 nodes. These adjustments result in a decrease in the
total number of trainable parameters from around 100k to 53k.
Table II presents the hyperparameters of our deep network.

TABLE II: Deep Network Configuration Parameters.

Deep network Parameters Value

base learning rate 3.16x10−3

base batch size 32
conv-1 filters, kernel size, strides 4, 8, 4
conv-2 filters, kernel size, strides 4, 4, 2
conv-3 filters, kernel size, strides 4, 3, 1
LSTM 100
drop-out 0.4
dense 100
softmax 4

We use L2 regularization terms equal to 1x10−6 and 1x10−5

in the convolutional layers and in the fully connected layer
for both kernels and biases, respectively. The initial batch size
is 32 for the deep network. Then the grid search algorithm
defines the learning rate as 3.16x10−3. After that, we increase

TABLE III: Confusion matrix of 4 classes classification for
test data by CNN-LSTM network.

Good Bad Good Bad
Normal Normal Jamming Jamming

Good-Normal 36281 0 0 0
Bad-Normal 0 36219 0 62
Good-Jamming 0 0 36281 0
Bad-Jamming 0 385 0 35896

the learning rate and batch size to 0.2, and 2048, respectively.
The new batch size and learning rate increases GPU (RTX
3090 with 24GB Ram) use from 30% to 92% of the limit of
processing capacity. Consequently, the batch size is limited
to 2048. Following that, we train our deep network in the
different steps for validation accuracy. At each training step, if
the performance declines compared with the previous step, the
training process is immediately stopped, the previous model
weights are loaded, and the training process at that step is
repeated with a new lower learning rate and batch size. These
steps are used to achieve 80, 90, 95, and 99.99% validation
accuracy, and as the training process progresses through each
step, we save the model and continue the training process. By
employing this strategy, we minimize the overshooting effect
in the deep network and shorten the overall training time for
five models in 5-fold cross validation. As an example, fig 8
shows the convergence of two models from 5 models in cross
validation. It shows 99.99% accuracy for all the five models
in 5-fold cross validation with a maximum of 40 epochs.

Table III shows the confusion matrix the test set using the
CNN-LSTM algorithm. We obtain the correct classification
for all samples with good channels using the designed deep
network and there is minimal misclassification in the case of
bad channels. Specifically, we have 62 misclassifications in the
absence of jamming and 385 when jamming is present which
represents less than 1% of the total samples analyses. Table



TABLE IV: The result of test set for 4-Classes classification
by proposed deep network.

precision recall f1-score support

Good-Normal 1.00 1.00 1.00 36281
Bad-Normal 0.99 1.00 0.99 36281
Good-Jamming 1.00 1.00 1.00 36281
Bad-Jamming 1.00 0.99 0.99 36281

IV provides more specific details of the precision and f-score
parameters in the experiment.

Fig. 9: CNN Accuracy for base station distance 30m.

One of the following setup techniques may be used to
reduce the total number of trainable parameters. First, three
CNN layers with eight filters each, followed by a LSTM and
two fully connected layers with fifty nodes each. Alternatively,
three CNN layers with four filters, followed by a LSTM and
only one fully connected layer with one hundred nodes can be
used. We discover that the second one converges more quickly
and with fewer epochs.

Fig 9 depicts the CNN model’s performance related to the
accuracy over a range of attacker distances and power ratios.
CNN may struggle to identify low-power jammers depending
on the channel situation, the same as in the STL statistical
model, but in all other circumstances, CNN obtains 99.99%
correct classifications.

IV. CONCLUSION

This article offered a solution composed of two techniques
for identifying jamming attacks in UAV networks. The first
one is based on a time series method for detecting patterns
using the STL decomposition technique. The second is based
on convolutional neural networks. The signal analysed by both
approaches relied on the resource blocks received by the UAV.
Using the time series analysis, it was possible to identify
84.38% of the attacks when the SINR of the jamming signal
was high and the UAV was closer to the attacker than to the
base station. While using the deep networks accuracy was
99.99% in the jamming cases and false alarms occurred in less
than 1% of the cases. The combined method is appropriate for
UAVs since the statistical model is restricted in its ability to
classify all conceivable attacks. However, the deep network
can classify all attacks, but requires additional resources.
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