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Evaluating discriminant analysis results

Ana Sousa Ferreira and Margarida Cardoso

Abstract In Discrete Discriminant Analysis (DDA) different models often exhibit
different classification performances. Therefore, the idea of combining models has
increasingly gained importance. In the present work we focus on the evaluation of
alternative DDA models, including combined models. The proposed approach uses
not only the classic indicators of classification precision, but also indices of agree-
ment that regard the relationship between the actual classes and the ones predicted
by discriminant analysis. The performance of the DDA methods is analyzed based
on simulated binary data, using small and moderate sample sizes. The results ob-
tained illustrate the potential of combining DDA models, offering different evalua-
tion perspectives.

Key words: CART, combining models, hierarchical coupling model

1 Introduction

In Discrete Discriminant Analysis (DDA) different models often exhibit different
classification performances for different individuals or observations. This seems to
be a particularly relevant issue in the small or moderate sample setting and when the
classes are not well separated. Therefore, the idea of combining models currently
appears in an increasing number of DDA papers, in an attempt to obtain more robust
and stable models.

In this paper we compare the performance of the Full Multinomial Model (FMM)
([9]) and the First-order Independence Model (FOIM) ([9]) with a model based on
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the two referred models that produces an intermediate modelbetween them. In order
to deal with the multi-class case we use the Hierarchical Coupling Model (HIERM)
(e.g., [3], [15]) that enables to reduce the problem into several bi-class problems
embedded in a binary tree. The comparison is extended to the results of the CART -
Classification and Regression Trees algorithm ([2]), a classical approach within the
classification domain.
The performance of the alternative models considered is compared based on simu-
lated data. To evaluate this performance we consider several measures of precision
including traditional classification indices and indices of agreement between the ac-
tual classes and the ones predicted by the DDA methods. Results obtained refer to
two-fold cross-validation.

2 Methodological approach

In the present study, a new methodology is proposed for the evaluation of DDA re-
sults. It enables the comparison of DDA classical models with the DDA combining
models approach. The proposed methodology relies on indices of agreement be-
tween the actual and predicted (by DDA) classes and is illustrated using simulated
data according to the Bahadur model.

2.1 Indices for evaluating classification results

When evaluating results from classification we focus on theK×K confusion matrix
M = [ni j ] which is a contingency table of the actual classes (lines refer to partition
∏K

a with K classes) by the ones predicted by discriminant analysis (columns refer
to partition∏K

b with K classes). The row totals areni., (i = 1, ...,K).
Some commonly used indices depend only on the diagonal of thereferred matrix,
which adds up to the number of correctly classified observations (see Table 1). The
percent agreement varies between 0 (null classification precision) and 100% (perfect
classification precision). The Cohen’s Kappa deducts agreement by chance and the
Huberty index deducts the percentage of correctly classified by default (majority
class rule).

Table 1 Indices of agreement based on the diagonal of the confusion matrix

Indices Definition

Percent agreement Perc-agree(∏K
a ,∏K

b ) = (∑K
k=1 nkk)/n

Cohen’s Kappa ([6]) Kappa(∏K
a ,∏K

b ) = (∑K
k=1 nkk−∑K

k=1 nk.n.k/n)/(n−∑K
k=1 nk.n.k/n)

Huberty ([12]) Huberty(∏K
a ,∏

K
b ) = ((∑K

k=1nkk)/n−maxi ni./n)/(1−maxi ni./n),
whereni., (i = 1, ...,K) are the row totals
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In this work we suggest further exploring the confusion matrix to evaluate the
agreement between∏K

a and∏K
b . We thus consider the indices on Table 1 and Table

2 (see [4], for further details). The Cramer’s V statistic quantifies simple agree-
ment and Variation of Information (VI) considers entropy and mutual information.
They vary between 0 and 1 (0 indicating null agreement for Cramer’s V and perfect
agreement for the normalized VI). The Adjusted Rand quantifies paired agreement
deducting agreement by chance.A priori, the advantage of using these indices is to
complement the evaluation of agreement between partitions∏K

a and∏K
b .

Table 2 Indices of agreement based on the complete confusion matrix

Indices Definition

Cramer’s V ([7]) V(∏K
a ,∏K

b ) =
√

Chi−sq(∏K
a ,∏K

b )/(nK−n)

where
Chi−sq(∏K

a ,∏K
b ) = ∑K

k=1 ∑K
q=1(nkq− nk.n.q

n )2/
nk.n.q

n

Adjusted Rand ([11]) Adj-Rand(∏K
a ,∏K

b ) =
∑K

k=1 ∑K
q=1C

nkq
2 −∑K

k=1C
nk.
2 ∑K

q=1C
n.q
2 /Cn

2
1
2 [∑

K
k=1C

nk.
2 +∑K

q=1C
n.q
2 ]−∑K

k=1C
nk.
2 ∑K

q=1C
n.q
2 /Cn

2

Normalized Variation N−V I(∏K
a ,∏K

b ) = [H(∏K
a )+H(∏K

b )−2I(∏K
a ,∏K

b )]/ logn
of Information([14]) where H indicates the entropy

H(∏K) = ∑K
k=1

n.k
n log n.k

n
and I indicates the mutual information
I(∏K

a ,∏K
b ) = ∑K

k=1 ∑K
q=1

nkq
n log

nkq
nk.n.q/n

2.2 Simulated data

The performance of the DDA methods is analyzed based on simulated binary data.
We use the Bahadur model, as proposed in Godstein and Dillon ([5], [9]), to simu-
late the predictive binary variables’ values. This model representation defines class
conditional probabilities for classCk,(k= 1, ...,K) as

P(x|Ck) = ∏
p

θ xp
kp(1−θkp)

(1−xp)[1+ ∑
g 6=p

ρk(p,g)ZkpZkg] (1)

whereXkp is a Bernoulli variable with parameterθkp=E(Xkp), p= 1, ...,P such that

Zkp =
Xkp−θkp

[θkp(1−θkp)]2
and ρk(p,g) = E(ZkpZkg), (2)
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We consider two types of population structures with P=6 variables and for illustra-
tive purposes, let us consider the case of K=2 classes and oneof the most usual
multi-class case, K=4 classes. Location parameters are described on Table 3.

For each structure, data sets generated have small sample sizes (60 observations
for each class) and moderate sample sizes (200 observationsfor each class). The
training and test samples represent 50% of the total of observations.

Table 3 Parameters for simulated Bernoulli variables

K=2 K=4

θ1 = (0.6,0.4,0.6,0.5,0.5,0.6) θ1 = (0.6,0.4,0.6,0.5,0.5,0.6)
θ2 = (0.5,0.3,0.5,0.4,0.4,0.5) θ2 = (0.5,0.3,0.5,0.4,0.4,0.5)

θ3 = (0.6,0.3,0.6,0.4,0.5,0.5)
θ4 = (0.6,0.4,0.6,0.5,0.5,0.6)

The first structure, denoted IND (Independent), is generated according to FOIM,
(ρk(p, p) = 1 andρk(p,g)= 0 , if p 6= g, k= 1, ...,K; p,g= 1, ...,6) for all classes.

The second one, called DIF (Different), is implemented considering the existence
of different relations among the variables, for different classes:

• in the bi-class caseρ1(p, p) = 1 and ρ1(p,g) = 0.2, if p 6= g, p,g= 1, ...,6;
ρ2(p, p) = 1 e ρ2(p,g) = 0.4, if p 6= g, p,g= 1, ...,6;

• in the multi-class caseρk(p, p) = 1 and ρk(p,g) = 0.1, if p 6= g, k= 1,2,3;
p,g= 1, ...,6; and ρ4(p, p) = 1 and ρ4(p,g) = 0.3, if p 6= g, p,g= 1, ...,6.

The prior probabilities are considered equal.

2.3 Discrete discriminant analysis

In discrete classification problems the most natural model is the Full Multinomial
Model (FMM) where the conditional probabilities are estimated by the observed
frequencies ([9]). This model involves 2P− 1 parameters to be estimated in each
class. Hence, even for moderate P (e.g., ten binary variables leads to 1023 parame-
ters to be estimated), generally, not all of the parameters are identifiable.

One way to deal with this problem consists in reducing the number of parameters
to be estimated. The First-order Independence Model (FOIM)assumes that the P bi-
nary variables are independent in each classCk, k= 1, ...,K ([9]). Then, the number
of parameters to be estimated for each class is reduced from 2P−1 to P.

Since we are mainly concerned with small or moderate sample sizes, we may en-
counter a problem of sparseness in which some of the multinomial cells may have no
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data in the training sets. Therefore, we suggest to smooth the observed frequencies
of model FMM as follows:

P(x|λ ) = 1
n

n

∑
i=1

λ P−‖x−xi‖(1−λ )‖x−xi‖,0< λ ≤ 1 (3)

whereλ = 1.00,λ = 0.99,λ = 0.95 orλ = 0.90 according to the training sample
size.
In this work, taking into account the size of our samples, we considerλ = 1.00 (no
smoothing) orλ = 0.95 (moderate smoothing) for all samples.
Note that according to Hand ([10]), we opt for a computationally less demanding
method since the choice of the smoothing method is not particularly important.

FMM and FOIM provide different classifications in many circumstances. There-
fore, we expect a combining model (using a single coefficientβ for the linear com-
bination of FMM and FOIM) to yield better results.
There are several strategies to estimate the coefficientβ (e.g., [3], [15]) that com-
bines the two referred models. A natural way of deriving thiscoefficient is by mini-
mizing the fitting error using a least squares criterion ([15],[16]). For the two classes
case, we use an approach to estimate the coefficientβ using a least squares regres-
sion (LSR) criterion:

β̂LSR=
∑n

i=1(l2(xi)− l1(xi))l2(xi)−∑n
i=1yi(l2(xi)− l1(xi))

∑n
i=1(l2(xi)− l1(xi))2 (4)

whereyi denotes a indicator of class membership for observationi andl1, l2 repre-
sent, respectively, the log ratio of the class conditional probabilities for model FMM
and FOIM (denoted by LSR1) or thea posterioriprobabilities of the first class for
FOIM and FMM models (denoted by LSR2), estimated by cross-validation in a
sample of size n.

In the multi-class case, we use the Hierarchical Coupling Model (HIERM), in-
spired by Friedman’s approach ([8]), for reducing the multi-class problem into sev-
eral bi-class problems embedded in a binary tree. HIERM needs two decisions at
each level:

1. Selecting the hierarchical coupling among the 2K−1−1 possible classes couple;
2. In each node of the tree, selecting the combining model that gives the best clas-

sification rule for the chosen couple.

At the beginning we have K classes that we want to reorganize into two classes.
So, we propose to select the two new classes that are the most separable. The basic
affinity coefficient ([1], [13]) can be used to select the hierarchical coupling at each
level of the tree.
DenotingF1 = q1

j andF2 = q2
j , j = 1, ...,P two discrete distributions defined in the

same space, the affinity coefficient is defined by

ρ(F1,F2) = ∑
j

√
q1

j

√
q2

j , j = 1, ...P (5)
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and is easily computed in our classification problem. The individual vectorx is as-
signed to the class associated with the last node of the tree on whichx falls.
The main aim of this approach is to obtain a better predictionperformance and im-
prove results stability.

3 Experimental results

After running discriminant analysis for the simulated datawe obtain the results pre-
sented in Table 4 and Table 5.
When referring to the combining models we simply present theresults yielded by
the best strategy (LSR1 or LSR2). For the sake of simplicity,we only report the best
FMM results (smoothed or not).

Table 4 Small samples results/ Cross-validation (two-fold results)

Data Methods Perc-Agree Kappa Huberty Cramer’s V Adj-Rand N-VI

CART 52% 5% -7% 0.048 -0.019 0.355
IND FMM 31% 21% -2% 0.226 0.040 0.340
K=2 FOIM 58% 16% 4% 0.198 0.013 0.328

LSR2 60% 21% 11% 0.222 0.025 0.320

CART 77% 54% 48% 0.559 0.291 0.242
DIF FMM 65% 50% 30% 0.520 0.286 0.245
K=2 FOIM 58% 17% 0% 0.165 0.004 0.335

LSR2 76% 52% 46% 0.400 0.097 0.278

CART 28% 5% -1% 0.156 -0.005 0.536
IND FMM 0% ∗ 0% ∗ ∗ ∗
K=4 FOIM 30% 6% 3% 0.173 0.005 0.534

LSR2 50% 34% 30% 0.505 0.208 0.368

CART 23% -1% -6% ∗ -0.010 ∗
DIF FMM 10% -20% -23% 0.347 0.083 0.472
K=4 FOIM 32% 12% 6% 0.241 0.036 0.510

LSR1 48% 31% 29% 0.426 0.135 0.474

∗ Not defined (null observed frequency in denominator)
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Table 5 Moderate samples results/ Cross-validation (two-fold results)

Data Methods Perc-agree Kappa Huberty Cramer’s V Adj-Rand N-VI

CART 54% 8% 6% 0.078 0.004 0.258
IND FMM 55% 14% 10% 0.139 0.014 0.259
K=2 FOIM 59% 17% 15% 0.172 0.025 0.255

LSR2 60% 19% 17% 0.195 0.031 0.253

CART 69% 37% 36% 0.398 0.138 0.219
DIF FMM 61% 32% 23% 0.346 0.120 0.208
K=2 FOIM 50% -1% -3% 0.039 -0.022 0.261

LSR2 63% 30% 24% 0.333 0.100 0.224

CART 33% 11% 9% 0.154 0.016 0.447
IND FMM 0% ∗ 0% ∗ ∗ ∗
K=4 FOIM 35% 13% 12% 0.225 0.043 0.429

LSR2 44% 26% 25% 0.327 0.093 0.407

CART 29% 6% 4% 0.105 0.002 0.425
DIF FMM 11% -18% -20% 0.221 0.039 0.431
K=4 FOIM 35% 13% 12% 0.220 0.038 0.433

LSR1 46% 28% 27% 0.393 0.130 0.362

∗ Not defined (null observed frequency in denominator)

In these results, the DDA methods seem to perform similarly for the small and
moderate sized samples. Except for the case of DIF and K=2 (where the best results
are attained by CART) the combined models evidence the best performances.

4 Discussion and perspectives

In general, the best DDA results are obtained using the combining models approach,
with the LSR2 strategy where thea posterioriprobabilities characterize the class
conditional probabilities.
The various indicators used to evaluate DDA results offer different insights regard-
ing the confusion matrix and the corresponding results do not necessarily agree (see
correlations in Table 6). Note that we consider small and moderate size samples
when computing correlations, since they exhibit similar (correlation) patterns.

Table 6 Pearson correlations (r)

Methods Perc-agree Kappa Huberty Cramer’s V Adj-Rand N-VI

Perc-agree 1
Kappa 0.807 1
Huberty 0.790 0.952 1
Cramer’s V 0.339 0.709 0.699 1
Adj-Rand 0.436 0.739 0.711 0.948 1
N-VI -0.807 -0.516 -0.464 -0.181 -0.307 1
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The Percent Agreement index is strongly related with the Normalized Variation
of Information index which has the advantage of quantifyingnot only the correctly
classified cases, but also the relationship between the incorrectly classified ones.
The Cramer’s V statistic and the Adjusted Rand index are strongly related as well
as the Kappa and the Huberty indices. These indicators offera different perspective,
quantifying simple agreement and paired agreement betweenthe actual classes and
the predicted ones.
In future research, the advantages of using indices of agreement for evaluating DDA
results should be further explored. In addition, real data should be used to further
illustrate the utility of the proposed approach.
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