
Lisbon University Institute

Department of Science and Technologies of Information

Hierarchical Reinforcement
Learning: Learning Sub-goals and

State-Abstraction

David Walter Figueira Jardim

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Computer Science

Supervisor:

Prof. Dr. Luís Miguel Martins Nunes, auxiliary professor,
ISCTE-IUL

September 2010

http://iscte.pt/
http://dcti.iscte.pt/dcti/v0.1/index.html
http://davidjardim.blogspot.com/
http://iscte.pt/~lmmn/

H
ierarchical R

einforcem
ent Learning: Learning Sub-goals and State-A

bstraction

D
avid W

alter Figueira Jardim

September

2010

"As for me, all I know is that I know nothing."

Socrates

Resumo

Os seres humanos possuem a incrível capacidade de criar e utilizar abstracções.
Com essas abstracções somos capazes de resolver tarefas extremamente complexas
que requerem muita antevisão e planeamento. A pesquisa efectuada em Hierarchi-
cal Reinforcement Learning demonstrou a utilidade das abstracções, mas também
introduziu um novo problema. Como encontrar uma maneira de descobrir de forma
autónoma abstracções úteis e criá-las enquanto aprende? Neste trabalho, apresen-
tamos um novo método que permite a um agente descobrir e criar abstracções
temporais de forma autónoma. Essas abstracções são baseadas na framework das
Options. O nosso método é baseado no conceito de que para alcançar o objectivo, o
agente deve passar por determinados estados. Ao longo do tempo estes estados vão
começar a diferenciar-se dos restantes, e serão identificados como sub-objectivos
úteis. Poderão ser utilizados pelo agente para criar novas abstracções temporais,
cujo objectivo é ajudar a atingir esses objectivos secundários. Para detectar sub-
objectivos, o nosso método cria intersecções entre os vários caminhos que levam
ao objectivo principal. Para que uma tarefa seja resolvida com sucesso, o agente
deve passar por certas regiões do espaço de estados, estas regiões correspondem à
nossa definição de sub-objectivos.

A nossa investigação focou-se no problema da navegação em salas, e também no
problema do táxi. Concluímos que um agente pode aprender mais rapidamente em
problemas mais complexos, ao automaticamente descobrir sub-objectivos e criar
abstracções sem precisar de um programador para fornecer informações adicionais
e de criar as abstracções manualmente.

Palavras-chave: Aprendizagem Automática, Aprendizagem Hierárquica por
Reforço, Abstracções, Sub-objectivos.

v

Abstract

Human beings have the incredible capability of creating and using abstractions.
With these abstractions we are able to solve extremely complex tasks that require
a lot of foresight and planning. Research in Hierarchical Reinforcement Learning
has demonstrated the utility of abstractions, but, it also has introduced a new
problem. How can we find a way to autonomously discover and create useful
abstractions while learning? In this dissertation we present a new method that
allows an agent to discover and create temporal abstractions autonomously based
in the options framework. Our method is based on the concept that to reach the
goal, the agent must pass through certain states. Throughout time these states
will begin to differentiate from others, and will be detected as useful subgoals
and be used by the agent to create new temporal abstractions, whose objective
is to help achieve these subgoals. To detect useful subgoals, our method creates
intersections between several paths leading to a goal. In order for a task to be
solved successfully the agent must pass through certain regions of the state space,
these regions will correspond to our definition of subgoals.

Our research focused on domains largely used in the study of the utility of
temporal abstractions, which is the room-to-room navigation problem, and also
the taxi problem. We determined that, in the problems tested, an agent can learn
more rapidly in more complex problems by automatically discovering subgoals
and creating abstractions without needing a programmer to provide additional
information and handcraft the abstractions.

Keywords: Machine Learning, Reinforcement Learning, Abstractions, Sub-
goals.

vi

Acknowledgements

I would like to thank my advisor Prof. Dr. Luís Miguel Martins Nunes for his
efforts, support and guidance all the way through this thesis. Passionately intro-
ducing me to this exciting area of Reinforcement Learning. His encouragement
and advice have been extremely valuable to overcome all the obstacles throughout
this endeavor.

I would like to thank Prof. Dr. Sancho Oliveira for his insightful contributi-
ons to this dissertation, where the ongoing discussions in meetings helped me to
stimulate my research and development.

I gratefully acknowledge the love and support of all my family, specially my
parents, Álvaro and Fátima Figueira, that with much sacrifice granted me the
opportunity to have a better life through education. I would also like to thank my
uncles, that in this last year treated me as their own son.

Last but not least, my wonderful girlfriend Joana, for her love, friendship,
support, and encouragement throughout several phases of my life.

vii

Contents

Resumo v

Abstract vi

Acknowledgements vii

List of Figures xiii

List of Algorithms xv

Abbreviations xvi

1 Introduction 1
1.1 Objectives . 3
1.2 Scientific Contribution . 4
1.3 Structure of the Dissertation . 4

2 Background Theory 7
2.1 Introduction . 7
2.2 Reinforcement Learning . 8

2.2.1 Goals and Rewards . 9
2.2.2 Markov Decision Process . 9
2.2.3 Value Functions . 10
2.2.4 Optimal Value Functions . 11

2.3 RL Algorithms . 11
2.3.1 Q-Learning . 11
2.3.2 Sarsa . 12

2.4 Hierarchical Reinforcement Learning 13
2.4.1 Semi-Markov Decision Process 14

2.5 Approaches to HRL . 15
2.5.1 Reinforcement Learning with Hierarchies of Machines 15
2.5.2 Options . 16
2.5.3 An Overview of MAXQ HRL 19

2.5.3.1 Task Decomposition and Reinforcement Learning . 19

ix

Contents

2.5.3.2 Value Function Decomposition and Reinforcement
Learning . 19

2.5.3.3 State Abstraction and Hierarchical Reinforcement
Learning . 20

2.5.4 Discovering Hierarchy in Reinforcement Learning with HEXQ 21
2.5.4.1 Automatic Hierarchical Decomposition 22
2.5.4.2 Variable Ordering Heuristic 22
2.5.4.3 Discovering Repeatable Regions 23
2.5.4.4 State and Action Abstraction 24
2.5.4.5 Hierarchical Value Function 24

2.5.5 Automatic Discovery of Subgoals in RL using Diverse Den-
sity . 26
2.5.5.1 Multiple-Instance Learning 27
2.5.5.2 Diverse Density (DD) 27
2.5.5.3 Forming New Options 28
2.5.5.4 Results . 28

3 Initial Experiments 31
3.1 Introduction . 31
3.2 Software Framework . 32
3.3 Room-to-Room Navigation . 35
3.4 Taxi Problem . 41

4 Autonomous Subgoal Discovery 45
4.1 Introduction . 45
4.2 State Counting . 46
4.3 Using Relative Novelty to Identify Useful Temporal Abstractions in

RL . 48
4.4 Path Intersection . 50

5 Option Creation 59
5.1 Create Options Dynamically . 59
5.2 Experimental Results . 62

5.2.1 Two-Room Grid-world . 62
5.2.2 Four-Room Grid-world . 64
5.2.3 Six-Room Grid-world . 65
5.2.4 Sixteen-Room Grid-world 66
5.2.5 Task Transfer . 67

6 Conclusions and Future Work 69

Appendices 75

A Simplified Class Diagram 75

x

Contents

Bibliography 77

xi

List of Figures

2.1 The Agent-Environment Interface (Sutton, 1998). 8
2.2 MDP VS SMDP (Sutton et al., 1999). 14
2.3 Task Hierarchy Taxi . 19
2.4 Max QValue Decomposition . 20
2.5 Directed Graph of state transitions for the taxi location (Hengst,

2002) . 23
2.6 State visitation histograms taken from McGovern and Barto (2001) 27
2.7 Average DD values and Subgoals locations (McGovern and Barto,

2001) . 29
2.8 Average steps comparison with and without options (McGovern and

Barto, 2001) . 29
2.9 Performance of the learned options on task-transfer (McGovern and

Barto, 2001) . 30

3.1 Initial Setup Frame . 32
3.2 Surrounding cells comprising the neighborhood 33
3.3 Configuration Frame . 33
3.4 State Browser . 34
3.5 Application Menus . 34
3.6 The 4-room grid-world environment 35
3.7 Two policies underlying two of the eight hallway options 35
3.8 Visual representation of an Option 36
3.9 Policy with Options . 37
3.10 Comparison of the evolution of average number of steps per episode

between Q-Learning and Options 38
3.11 Comparison of the evolution of average quality of the value function

per episode between Q-Learning and Options 39
3.12 Comparison of the evolution of average number of steps per episode

in knowledge transfer . 39
3.13 Comparison between the simulation done by Sutton et al. (1999)

and our implemented simulation . 40
3.14 The taxi grid-world environment . 41
3.15 Q-learning Policies . 42
3.16 Two policies underlying two of the four source options 43
3.17 Comparison of the evolution of average number of steps per episode

between Q-Learning and Options 43

xiii

List of Figures

4.1 Number of times each state was visited 46
4.2 Colored states representing the number of times each state was visited 47
4.3 Average state counting in the four-room navigation task 47
4.4 Relative Novelty value of each state represented at each cell 48
4.5 Relative Novelty Distribution between target and non-target states 49
4.6 Example of a path . 50
4.7 Existing path classes in the four-room navigation task 51
4.8 Excluded regions from the paths . 52
4.9 Expected resulting states from paths intersection 53
4.10 Subgoal discovering histogram . 54
4.11 Target, and non-target, states (two-room) 55
4.12 Target, and non-target, states (four-room) 55
4.13 Subgoal discovering histogram . 56
4.14 Target, and non-target, states (six-room) 56
4.15 Target, and non-target, states (sixteen-room) 57

5.1 Memory Usage when using Flat Q-learning algorithm 61
5.2 Memory Usage when using Subgoal Discovery with Options 61
5.3 Environment used for the two-room experiment 63
5.4 Comparison of the evolution of average number of steps per episode

between Q-Learning and Options in the two-room navigation task . 63
5.5 Environment used for the four-room experiment 64
5.6 Comparison of the evolution of average number of steps per episode

between Q-Learning and Options in the four-room navigation task . 64
5.7 Environment used for the six-room experiment 65
5.8 Comparison of the evolution of average number of steps per episode

between Q-Learning and Options in the six-room navigation task . 66
5.9 Environment used for the sixteen-room experiment 66
5.10 Comparison of the evolution of average number of steps per episode

between Q-Learning and Options in the sixteen-room navigation task 67
5.11 Comparison of the evolution of average number of steps per episode

between flat Q-learning, subgoal detection with options and finally
using knowledge transfer . 68

A.1 Framework Simplified Class Diagram 76

xiv

List of Algorithms

1 Q-learning . 12
2 Sarsa . 13
3 Q-learning with Options . 37
4 Assign Class ID(currentPath) . 51
5 Exclude Initial States(path1, path2) 52
6 Intersect Paths (classID) . 53
7 Sub-Goal Discovery(path) . 54
8 Create Options() . 59
9 Create Initiation Set() . 60

xv

Abbreviations

AI Artificial Intelligence

DD Diverse Density

HAMs Hierarchical Abstract Machines

HRL Hierarchical Reinforcement Learning

HSMQ Hierarchical Semi-Markov Q-Learning

MDP Markov Decision Process

ML Machine Learning

RL Reinforcement Learning

SG Sub Goal

SMDP Semi Markov Decision Process

xvii

Dedicated to my family

xix

Chapter 1

Introduction

"Only education is capable of saving our societies from possible collapse, whether
violent, or gradual."

Jean William Fritz Piaget

Imagine the everyday task of preparing your breakfast. Something as mundane
as this reveals several degrees of complexity usually ignored by humans. If it was
necessary to plan every single action of this process this would reveal to be very
difficult or maybe even impossible. Eating cereals for example, is composed of
several actions: walking to the closet, opening it, selecting the cereal box, grabbing
it and retrieving it. Then it would be necessary to get a bowl, a spoon, the milk,
etc. Each step is guided by goals, like pouring milk, and is in service of other
goals, such as eating the cereals. Human beings have the incredible capability
of creating and using abstractions. With these abstractions we are able to solve
extremely intricate and complex tasks that require a lot of foresight and planning.
Mcgovern (2002) refers that an abstraction can be a compact representation of the
knowledge gained in one task that allows the knowledge to be re-used in related
tasks. This representation allows the agent to plan and learn at multiple levels of
abstraction.

Artificial intelligence (AI) researchers have tried to address the limitations of
Reinforcement Learning in solving large and complex problems. One of these
efforts resulted in the appearance of a new research area: Hierarchical Reinforce-
ment Learning. HRL introduces various forms of abstraction that allow an agent
to ignore irrelevant aspects of the current task, and plan on a more abstract level.

1

Chapter 1. Introduction

Two major forms of abstraction have been studied, namely:

• State abstraction

• Temporal abstraction

State abstraction is employed when some aspects of the state of the environ-
ment are ignored, creating a generalization or aggregation over state variables.
For example, the movements required to rotate a door knob can also be applied
to rotate a water tap, a generalization can be used to create an abstraction of
rotate-object.

Temporal abstraction refers to an encapsulation of primitive actions into a
single and more abstract action with temporally extended courses of action. Rep-
resenting knowledge flexibly at multiple levels of temporal abstraction has the
potential to greatly speed planning and learning on large problems. Using the
previous example, open-the-door represents a temporal abstraction because of the
planning involved, it does not require us to plan all the muscle movements con-
sciously, we have learned these movements in our childhood and aggregated them
in a sequence that usually leads to a good result (the door opens).

Research in HRL is currently focused on demonstrating how to use abstractions
to improve learning, while doing that, it has introduced a new kind of problem:

How can we find a way of autonomously discover and create useful abstractions
while learning?

Usually those abstractions needed to be handcrafted by the programmer, which
turned out to be a daunting task. In this dissertation we present a method that al-
lows an agent to discover and create temporal abstractions autonomously through
learning based in the options framework from Sutton et al. (1999). Our method
is aimed at problems where, the agent must pass through certain states to reach
the goal.

Through time these states will begin to differentiate from other, and will be
detected as useful subgoals , and will be used by the agent to create new temporal
abstractions that achieve these subgoals. To detect useful subgoals, our method
creates intersections between several paths leading to a goal. In order for a task
to be solved successfully the agent must pass through certain regions of the state

2

Chapter 1. Introduction

space, these regions will correspond to our definition of subgoals. The core of our
method is to search in the agent’s experience (paths) for frequent states or regions.
Our approach concurrently uses the experience obtained by a learning agent to
identify useful subgoals and create options to reach them.

Our research focused on domains largely used in the study of the utility of
temporal abstractions, which is the room-to-room navigation problem (Precup
and Sutton, 2000), and also the taxi problem (Dietterich, 2000b). We present
results where our methods are used to create temporal abstractions on the re-
ferred domain. By automatically discovering subgoals and creating abstractions,
an agent can learn more rapidly in more complex problems without the need for
the programmer to provide additional information and handcraft the abstractions.

1.1 Objectives

The purpose of the work developed in this dissertation, was, initially, to survey
the most influential work done in the area of Hierarchical Reinforcement Learning,
thus creating a solid basis of knowledge in the area of HRL. After gathering all the
important information and defining the course of action, efforts were concentrated
in overcoming some of the limitations encountered in Hierarchical Reinforcement
Learning.

Artificial intelligence researchers have addressed the limitations of RL by creat-
ing the Hierarchical Reinforcement Learning, introducing various forms of abstrac-
tion intro problem solving and planning systems. Abstraction allows the agent to
ignore details irrelevant to the task that it is trying to solve, reducing the com-
plexity and the resources required. It also provides the idea of a subroutine that
can call other subroutines which in turn can execute primitive actions providing a
hierarchy dividing the problem in smaller parts, more easily learned and solved.

The hierarchization of the problem has brought several improvements in the
performance of the agent while solving a specific task. But with those, genuine
advances, other problems have risen. For example how to automatically discover
the sub-goals of a problem? How to create an agent that, in a fully automated
way, discovers hierarchies in the problem that it is trying to solve? These questions
and others will be approached in more detail on the following sections of this
dissertation in which we will describe the approaches of several authors that tried

3

Chapter 1. Introduction

to tackle these questions. We will also describe, the main drawbacks of these
approaches, and our original contributions to this study.

Throughout this study, we hope to provide an insight of HRL and add a relevant
contribution to the area.

1.2 Scientific Contribution

This dissertation presents the following contributions:

• Identifies and exposes the current limitations of Reinforcement Learning

• A review to several approaches to temporal abstraction and hierarchical
organization developed recently by machine learning researchers

• Introduces a novel automated technique for discovering useful subgoals in a
well-known problem

• Presents satisfactory results which improve the learning process of the agent

1.3 Structure of the Dissertation

In Chapter 2 we give an overview of reinforcement learning, hierarchical rein-
forcement learning and several existing approaches. We also describe the options
framework created by Sutton et al. (1999), that we use to represent the temporal
abstractions. In Chapter 3, we present our work in developing a software frame-
work of HRL intended to support our investigation and experiments.

Chapter 4 describes some methods from several authors, for automatically dis-
covering subgoals, with attempts of replicating their results. Then we present and
describe our own algorithm of autonomous subgoal discovery using path inter-
sections, with illustrated results and experiments in several grid-worlds tasks. In
Chapter 5 we describe our method of dynamic option creation after discovering
useful subgoals. After presenting the method, several experiments are discussed.
Chapter 6 which is the final chapter, concludes and discusses our plans for future
research in this area.

4

Chapter 1. Introduction

The next chapter discusses related research with several approaches in HRL
and the following chapters present our methods and experimental results.

5

Chapter 2

Background Theory

"Live as if you were to die tomorrow. Learn as if you were to live forever."

M.K. Gandhi

2.1 Introduction

According to Sutton (1998) learning is the acquisition of knowledge, behaviors, and
mental processes due to an interaction with the environment. By experimenting
the world it is possible to derive meaning of the surrounding environment. One
of the first contributors to the learning theory was Ivan Pavlov, which became
widely known for first describing the phenomenon of classical conditioning. This
phenomenon is a form of associative learning that combines a conditioned stimulus
with an unconditioned stimulus, when these are repeatedly paired, eventually the
two stimuli will become associated and the organism begins to produce a behavioral
response to the conditioned stimulus.

The basis of reinforcement learning is the interaction with an environment. If
we give it a thought, it will make perfect sense because throughout our lives, differ-
ent kinds of interactions are the main source of knowledge about our environment
and ourselves. In every single action that we take in order to achieve goals, we are
aware that we will receive a response from our environment for the action taken,
and afterwards we will frequently shape our behavior accordingly.

7

Chapter 2. Background Theory

From an historical point of view we can consider that reinforcement learning
which is an active area of machine learning, evolved mainly from two separated
branches, one referring to trial and error originated in the psychology of animal
learning. The other branch concerns the problem of optimal control using value
function and dynamic programming. The joining of these two branches in the
late 1980s brought us to Reinforcement Learning in the form that is known to the
present days (Sutton, 1998).

2.2 Reinforcement Learning

Summarizing the Reinforcement Learning problem is easy: learning from interac-
tion to achieve a goal or solve a problem. In RL exists an entity called the agent
which is responsible for learning and make the decisions. While learning the agent
interacts with the environment which comprises everything outside of it. Inter-
action occurs continually between these two entities over a sequence of discrete
time steps, where the agent selects actions and the environment responds to those
actions with a numerical reward and by giving new situations to the agent.

Figure 2.1: The Agent-Environment Interface (Sutton, 1998).

One way for the environment to give feedback to the agent is by giving rise to
rewards, numerical values that the agent solely tries to maximize over time. The
specification of the interface between these two entities is important because it
allows us to formally define a task: comprised by the actions resulting from the
choices made by the agent; the states represent all the possible situations in which
the agent can be found.States are also the basis for making choices. Everything
inside the agent is fully known by it and controllable, on the contrary, outside of
it, the environment is usually not completely controllable and may even be only
partially observable.

Other important concept is the policy, usually denoted by πt. A policy is a
mapping from each state, s ∈ S, and action, a ∈ A(s), to the probability π(s, a) of

8

Chapter 2. Background Theory

executing action a when in state s, mapping situations to actions. Reinforcement
Learning methods specify how the agent will change its policy as a result of its
experience over time.

2.2.1 Goals and Rewards

The purpose of the agent or goal is represented by a numerical value that acts
like a reward passing from the environment to the agent. So the agent’s goal is
to maximize the total amount of reward it receives. Not the immediate reward
when performing an action, but the cumulative reward on the long run. This can
be seen in our example from the Rooms Problem, where the agent learns the way
or the path that it must cover in order to reach a state previously defined as the
goal. The reward is often zero until it reaches the goal, when it becomes +1 for
example. When assigning rewards to certain states it is important to prioritize
the main-goal, because if reward is given to certain sub-goals the agent might find
a way of achieve them without achieving the main goal. We are assuming that
the reward source is always placed outside of the agent, more specifically in the
environment, assuring that the agent has no direct control over it.

2.2.2 Markov Decision Process

The Markov property refers to a property of a stochastic process, in which the
conditional probability distribution of future states of the process, rely solely upon
the present state. In reinforcement learning a tasks that satisfies the Markov
property is called a Markov Decision Process (MDP). When the state and action
space are finite it is called a finite Markov Decision Process and it is of extreme
importance to the theory of reinforcement learning.

A finite MDP is a 4-tuple, defined by:

• A finite set of states S

• A finite set of actions A

• Equation 2.1 that represents the probability of each next possible state, s′

to any given state and action

9

Chapter 2. Background Theory

• An expected value of the next reward, right after a transition occurs to the
next state with the probability previously defined in 2.1, represented by the
equation 2.2

P a
ss′ = Pr{st + 1 = s′|st = s, at = a} (2.1)

Ra
ss′ = E{rt + 1|st = s, at = a, st + 1 = s′} (2.2)

These two last tuples are called transition probabilities and they specify the
dynamics of a finite MDP.

2.2.3 Value Functions

Most part of the reinforcement learning algorithms are based on estimating value
functions - functions of states (or state-action pairs) that estimate how good it is
for an agent to perform a given action in a given state. We already know that the
expected reward of the agent depends on what actions it will perform, accordingly
value functions are defined by a particular policy.

The value of a state s under a policy π, denoted by V π(s), is the expected
return when starting in s and following policy π onwards. V π(s) can be defined
by 2.3 and represents the state− value function for policy π.

V π(s) = Eπ{Rt|st = s} = Eπ

{
∞∑
k=0

γkrt+k+1|st = s

}
(2.3)

In the same manner the value of taking action a in state s under a policy π,
denoted as Qs,a, as the expected return value starting from s, taking the action a,
and thereafter the policy π defined by 2.4 called the action− value function for
policy π.

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{
∞∑
k=0

γkrt+k+1|st = s, at = a

}
(2.4)

Both functions previously depicted can be estimated from the agent’s experi-
ence satisfying particular recursive relationships. This means that for any policy π

10

Chapter 2. Background Theory

and any state s exists a relation between the value of s and the value of its possible
next state. The great advantage of this is that when the agent performs update
operations, these operations transfer value information back to a state from its
successor states.

2.2.4 Optimal Value Functions

As previously said, solving a reinforcement learning problem means, in short,
finding a policy that achieves a great amount of reward in a long term. There are
usually multiple policies to solve the same problem, some better than others, but
there is always at least one policy better than all the others. This is called an
optimal policy denoted by π∗, and it will have an optimal state− value function
V ∗ defined by

V ∗(s) = max
π

V π(s), (2.5)

for all s ∈ S. An optimal policy also has an optimal action − value function,
denoted Q∗ and defined as

Q∗(s, a) = max
π

Qπ(s, a), (2.6)

for all s ∈ S and for all a ∈ A. This function gives the expected return for taking
action a in state s and thereafter following the optimal policy π∗.

2.3 RL Algorithms

There are many RL algorithms, but only two of them will be approached. More
specifically Q-learning (Watkins and Dayan, 1992) due to the fact that was im-
plemented in our project and also the well-known SARSA (Sutton, 1996) to get a
different perspective.

2.3.1 Q-Learning

This algorithm remains as one of the most important discoveries in reinforcement
learning and it is the one used in our implementation. With an action − value

function Q defined in 2.7, the agent observes a current state s, executes action a,

11

Chapter 2. Background Theory

receives immediate reward r, and then observes a next state s′. Only one state-
action pair is updated at a time, while all the others remain unchanged in this
update.

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(2.7)

• rt − reward

• Q(st, at)− old value

• γ − discount factor

• maxa Q(st+1, a)−max future value

If eventually all the values from the actions available in the state-action pairs
are updated, and α decaying with the increasing number of episodes, has been
shown that Qt converge with probability 1 to Q∗. As long as these conditions
are satisfied, the policy followed by the agent throughout the learning process is
irrelevant, which is why this is called an off-policy temporal-difference control.The
Q-learning algorithm from Sutton (1998) is shown in procedural form in alg. 1.

Algorithm 1 Q-learning
Initialize Q(s, a)
for (each episode) do
Initialize s
for (each step of the episode) do
Choose a from s using policy derived from Q
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α
[
r + γmaxa′ Q(s

′, a′)−Q(s, a)
]

s← s′

end for
until s is terminal

end for

2.3.2 Sarsa

The Sarsa algorithm is very similar to Q-learning, except that the maximum
action-value for the next state on the right side of function 2.7 is replaced by
the action-value of the actual next state-action pair. In every transition from a

12

Chapter 2. Background Theory

non-terminal state st the value of the state-action pairs is updated. If st + 1 is
the terminal state, then Q(st+1, at+1) is defined as zero. When a transition from
one state-action pair occurs to the next, every element of the quintuple of events
(st, at, rt+1, st+1, at+1) is used. This quintuple is the reason why the algorithm was
called as Sarsa defined as:

Q(st, at)← Q(st, at) + α
[
rt+1 + γ Q(st+1, at+1)−Q(st, at)

]
(2.8)

Unlike Q-learning, Sarsa is an on-policy temporal-difference control algorithm,
meaning that the policy followed during the learning is relevant. This affects the
convergence properties of Sarsa, depending on the nature of the policy’s (ε - greedy
or ε - soft). Sarsa converges with probability 1 to an optimal policy and action-
value function as long as each action is executed infinitely often in every state
equally visited, and the policy converges in the limit to the greedy policy.

Algorithm 2 Sarsa
Initialize Q(s, a)
for (each episode) do
Initialize s
Choose a from s using policy derived from Q
for (each step of the episode) do
Take action a, observe r, s′
Choose a′ from s′ using policy derived from Q

Q(s, a)← Q(s, a) + α
[
r + γ Q(s′, a′)−Q(s, a)

]
s← s′; a← a′;

end for
until s is terminal

end for

2.4 Hierarchical Reinforcement Learning

Until now applications of Reinforcement Learning were limited by a well-known
problem, called the curse of dimensionality. This term was coined by Richard Bell-
man and represents the problem caused by the exponential growth of parameters
to be learned, associated with adding extra variables to a representation of a state.
Applying RL with a very large action and state space turned to be an impossible
task.

13

Chapter 2. Background Theory

To overcome this limitation and increase the performance some researchers
started to develop different methods for Hierarchical Reinforcement Learning (Barto
and Mahadevan, 2003). HRL introduces various forms of abstraction and prob-
lem hierarchization. With abstraction the agent only needs to know the minimum
required to solve a problem, reducing unnecessary overhead, complexity and re-
sources. Hierarchization will divide the main problem in sub-problems that can be
solved using regular RL. Each sub-problem has its own sub-goal. The sequential
resolution of several sub-goals takes us to the solution of the main problem.

Some of the most relevant approaches to HRL will be surveyed in section 2.5,
all of which are based on the underlying framework of SMDPs addressed in the
following sub-section.

2.4.1 Semi-Markov Decision Process

A semi-Markov decision process (SMDP) can be seen as a special kind of MDP,
appropriate for modeling continuous-time discrete-event systems. Where the ac-
tions in SMDPs are allowed to take variable amounts of time to be performed with
the intent of modeling temporally-extended courses of action. According to Barto
and Mahadevan (2003) the system remains in each state for a random interval of
time, at the end of the specified waiting time occurs an instantaneous transition
to the next state.

Figure 2.2: MDP VS SMDP (Sutton et al., 1999).

Let the random variable τ denote the positive waiting time for a state s when
action a is executed. A transition from state s to state s′ occurs after τ time steps
when action a is executed. This can be seen as a joint probability as P (s′, τ |s, s).
Then the expected immediate reward, R(s, a) , give us the amount of discounted
reward expected to accumulate over the waiting time in s given action a. So the
Bellman equations for V ∗ and Q∗ are represented in 2.9 and 2.10 respectively

14

Chapter 2. Background Theory

V ∗(s) = max
a∈As

[R(s, a) +
∑
s′,τ

γτP (s′, τ |s, a)V ∗(s′)], (2.9)

for all s ∈ S; and

Q∗(s, a) = R(s, a) +
∑
s′,τ

γτP (s′, τ |s, a) max
a′∈As′

Q∗(s′, a′) (2.10)

for all s ∈ S; and a ∈ As.

2.5 Approaches to HRL

2.5.1 Reinforcement Learning with Hierarchies of Machines

Optimal decision-making in human activity is unmanageable and difficult due to
the complexity of the environment that we live on. The only way around is to
provide a hierarchical organization for more complex activities.

In Parr and Russell (1998) section 3, the authors introduce the concept of
Hierarchical Abstract Machines (HAMs).

HAMs consist of nondeterministic finite state machines, whose transitions may
invoke lower-level machines. They can be viewed as a constraint on policies. For
example a machine described as "repeatedly choose right or down" eliminates from
consideration all policies that go up or left. This allows one to specify several types
of machines, one that could allow only a single policy, or not constrain the policy
at all. Each machine is defined by a set of states, a transition function, and a start
function that determines the initial state of the machine.

There are 4 HAM state types:

• Action - states execute an action in the environment

• Call - states execute another HAM as a subroutine

• Choice - states non-deterministically select a next machine state

15

Chapter 2. Background Theory

• Stop - states halt execution of the machine and return control to the previous
call state

HAMs can be used in the context of reinforcement learning in order to reduce
the time taken to learn a new environment, by using the constraints implicit on
the machines to focus its exploration of the state space.

A variation of Q-Learning was created, called the HAMQ-Learning that learns
directly in the reduced state space. A HAMQ-Learning agent is defined by t, the
current environment state n, the current machine state Sc and βc, the environment
state and machine state at the previous choice point a, the choice made at the
previous choice point rc and Sc, the total accumulated reward and discount since
the previous choice point. It also has an extended Q-table Q([s,m], a).

From the experiments conducted by the authors Parr and Russell (1998) in
section 5, they have measured the performance between Q-Learning and HAMQ-
Learning, the last one appears to learn much faster, where Q-Learning required
9,000,000 iterations to reach the level achieved by HAMQ-Learning after 270,000
iterations.

With HAMs the constraining of the set of policies considered for a MDP is
achieved efficiently, giving a boost in the speed of decision making and learning
while providing a general method of transferring knowledge to an agent. But the
application of HAMs to a more general partially observable domain remains as a
more complicated and unsolved task.

2.5.2 Options

The options framework is used to define the temporally abstract actions that our
agents automatically discover in this dissertation. The term options is used to
define a generalization of primitive actions to include temporally extended courses
of actions. Formalized by Sutton et al. (1999). An option consists of three com-
ponents:

• a policy π : S × A→ [0, 1]

• a termination condition β : S+ → [0, 1]

16

Chapter 2. Background Theory

• and a initiation set I ⊆ S

The agent has the possibility of executing an option in state s if and only if
s ∈ I, when an option is taken, actions are selected according to the policy π until
the option terminates stochastically according to β. Assuming the agent current
state is s, the next action is with a probability π(s, a), the environment makes
a transition to state s′, where the option could terminate with probability β(s′)
or else continues , determining the next action a′ with probability π(s′, a′) and
so on. When the current option terminates, the agent can select another option
according to it’s inherent quality. The initiation set and termination condition of
an option restrict its range of application in a useful way, limiting the range over
which the option’s policy need to be defined. An example of this from Sutton et al.
(1999) where a handcrafted policy π for a mobile robot to dock with its battery
charger might be defined only for states I in which the battery charger is in sight
or available for use. It is also assumed that for Markov options all states where an
option can continue are also state where the option might be started. With this
the policy π need only to be defined over I rather than over all S.

An option is defined as aMarkov option because its policy is Markov, meaning
its sets action probabilities based only on the current state of the core MDP.
In order to increase flexibility, much needed in hierarchical architectures, semi
- Markov options must be included whose policies will set action probabilities
based on the entire history of states, actions and rewards since the option was
initiated. This is useful for options terminate after some period of time, and most
importantly, when policies over options are considered.

After creating a set of options, their initiation sets implicitly define a set of
available options Os for each state s ∈ S (Sutton et al., 1999). These Os are similar
to the set of available action As, with that similarity making it possible to unify
these two sets by assuming that primitive actions can be considered as a special
case of options. So each action a will correspond to an option that always lasts
exactly one time step. Making the agent’s choice to be entirely among options,
some of them persisting only for a single time step, others being more temporally
extended.

Assuming that policies over options are considered, a policy µ over options
selects option o in state s with probability µ(s, o), o’s policy in turn will select
other options until o terminates. In this way a policy over options, µ, determines

17

Chapter 2. Background Theory

a conventional policy over actions, or a flat policy π = flat(µ). Flat policies
corresponding to policies over options are generally not Markov even if all the
options are Markov. The probability of a primitive action at any time step depends
on the current core state plus the policies of all the options currently involved in
the hierarchical specification.

The authors have defined the value of a state s ∈ S under a semi-Markov flat
policy π as the expected return if the policy started in s:

V π(s) =
{
rt+1 + γrt+2 + γ2rt+3 + ...|ε(π, s, t)

}
, (2.11)

where ε(π, s, t) is the event of π being initiated at time t in s. The value of s
for a general policy µ over options can be defined as the value of the state under
the corresponding flat policy: Qµ(s, o) = V flat()µ(s) for all s ∈ S. Similarly the
option-value function for µ can be defined as:

Qµ(s, o) =
{
rt+1 + γrt+2 + γ2rt+3 + ...|ε(oµ, s, t)

}
, (2.12)

where oµ is the semi-Markov policy that follows o until it terminates at t + 1

with probability β(hatrt+1st+1) and then continues according to µ. In this dis-
sertation we use only Markovian options. When updating primitive actions, the
update rule is the same as that for Q-learning. For updating options the function
2.13 is used where R0 = rt+1+γrt+2+γ

2rrt+3+ ...+γ
n−1rt+n is the number of time

steps that option o was executed, s is the state where the option was initiated,
and st+n is the state where the option terminated.

Q(s, 0) = Q(s, o) + α

[
R0 + γn max

a′∈A(st+n)
Q(st+n, a

′)−Q(s, o)

]
, (2.13)

Usually the learned policies of the options, are policies for efficiently achieving
subgoals, where a subgoal often is a state or a region of the state space, meaning
that when the agent reaches that state or region is assumed to facilitate achieving
of the main goal. In this dissertation the Options framework will be used to create
policies to achieve the subgoals detected by our algorithm.

18

Chapter 2. Background Theory

2.5.3 An Overview of MAXQ HRL

2.5.3.1 Task Decomposition and Reinforcement Learning

Discovering and exploiting hierarchical structure within a Markov Decision Process
(MDP) is the main goal of hierarchical reinforcement learning. Given an MDP,
the programmer will be responsible for designing a task hierarchy (Figure 2.3) for
a specific problem. This is achieved by decomposing the main task into several
subtasks that are, in turn, also decomposed until a subtask is reached that is
composed only by primitive actions as stated by Dietterich (2000a) in section 3.
After obtaining the task hierarchy the goal of the reinforcement learning algorithm
is defined as finding a recursively optimal policy.

Figure 2.3: Representation of a task in the Taxi domain (Dietterich, 2000a).

To learn such policies the authors developed the Hierarchical Semi-Markov Q-
Learning (HSMQ) algorithm to be applied simultaneously to each task contained
in the task hierarchy. Each subtask p will learn its own Q function Q(p, s, a),
which represents the expected total reward of performing subtask p on an initial
state s, executing action a.

2.5.3.2 Value Function Decomposition and Reinforcement Learning

For the HSMQ algorithm a hierarchical reinforcement-learning problem is seen as
a collection of simultaneous, independent Q-Learning problems. This algorithm
does not provide a representational decomposition of the value function, here is
where the MAXQ value function decomposition appears in Dietterich (2000a) in
section 4, by exploiting the regularity of some identical value functions, the authors
have managed to represent the value function only once.

MAXQ decomposes the Q(p, s, a) value into the sum of two components:

19

Chapter 2. Background Theory

• Expected total reward V (a, s) received while executing a

• Expected total reward C(p, s, a) of completing parent task p after a has
returned

Representing Q(p, s, a) = V (a, s) + C(p, s, a). Applied recursively it can de-
compose the Q function of the root task into a sum of all the Q values for its
descendant tasks and represent the value function of any hierarchical policy as
described by the equation 2.14.

V (p, s) = max
a

[V (a, s) + C(p, s, a)] (2.14)

Figure 2.4: Example of MaxQ value function decomposition from Dietterich
(2000a).

2.5.3.3 State Abstraction and Hierarchical Reinforcement Learning

There are some subtasks where the value function does not depend on all of the
state variables in the original MDP. These subtasks can be used to reduce the
amount of memory required to store the value function as the amount of expe-
rience required to learn the value function by using state abstraction referred by
Dietterich (2000a) in section 5.

State abstraction can be divided into three forms:

• Irrelevant variables - Variables that have no effect on the rewards received
by the subtask and on the value function can be ignored

20

Chapter 2. Background Theory

• Funnel abstractions - An action that causes a larger number of initial
states to be mapped into a small number of states

• Structural abstractions - Results from constraints introduced by the
structure of the hierarchy (Ex: There is no need to represent C(root, s, put)
in states where the passenger is not in the taxi)

With state abstraction the amount of memory required in the taxi problem is
dramatically reduced, for example:

• Flat Q-Learning 3000 Q values

• HSMQ requires 14000 distinct Q values

• MAXQ Hierarchy requires 632 values for C and V

This also means that the learning process is faster, because learning experiences
in distinct complete states become multiple learning experiences in the same ab-
stracted state. One of the conclusions of Dietterich (2000a) is that MAXQ without
state abstraction performs much worse than flat Q-Learning, but when state ab-
straction is implemented it is four times more efficient. Hierarchical reinforcement
learning has proven to be much faster that flat reinforcement learning and the
possibility to reuse subtask policies enhance all the learning process. Where the
main disadvantage of the MaxQ approach is the need to hand code the hierarchical
task structure.

2.5.4 Discovering Hierarchy in Reinforcement Learning with

HEXQ

The biggest open problem in reinforcement learning is to discover in an automated
way hierarchical structure. HEXQ is an algorithm, which automatically tries to
decompose and solve a model-free factored MDP (Hengst, 2002). This is achieved
by automatically discovering state and temporal abstraction, finding appropriate
sub-goals in order to construct a hierarchical representation that will solve the
overall MDP. Scalability is one of the biggest limitations in reinforcement learning,
because sub-policies need to be relearnt in every new context. The perfect solution

21

Chapter 2. Background Theory

would be to learn once each sub-task, and then reuse that whenever the skill was
needed.

Decomposition of the state space into nested sub-MDP regions is attempted
by HEXQ when the following conditions hold:

• Some of the variables contained in the state representation change less fre-
quently than all others.

• Variables that change more frequently retain their transition properties in
the context of the more persistent variables.

• The interface between regions can be controlled.

If these conditions are not true HEXQ will try to find abstractions where it
can, in a worst-case scenario it has to solve the "flat" version of the problem.

2.5.4.1 Automatic Hierarchical Decomposition

To construct the hierarchy HEXQ uses the state variables. The number of state
variables dictates the maximum number of levels existing on the hierarchy. The
hierarchy is constructed from a bottom up perspective, where the lower level,
assigned as level 1, contains the variable that changes more frequently. The sub-
tasks that are more often used will appear at the lower levels and need to be learnt
first. In the first level of the hierarchy only primitive actions are stored. The top
level will have one sub-MDP which is solved by executing several recursive calls
to other sub-MDP’s contained in other lower levels of the hierarchy.

2.5.4.2 Variable Ordering Heuristic

The agent performs a random exploration throughout the environment for a given
period of time in which statistics are gathered on the frequency that each state
variable changes. Then all the variables are sorted based on their frequency of
change.

22

Chapter 2. Background Theory

2.5.4.3 Discovering Repeatable Regions

Initially HEXQ tries to model the state transitions and rewards by randomly
exploring the environment. The result obtained is a directed graph (DG) in which
the vertices represent the state values and the edges are the transitions that occur
when the agent executes each primitive action. After a period of time exploring the
agent finds transitions that are unpredictable, these transitions are called exits .
According to the definition, an exit is a state-action pair (se, a) where taking action
a causes an unpredictable transition.

Transitions are unpredictable when:

• The state transition or reward function is not a stationary probability dis-
tribution

• Another variable may change value

• Or the task terminates

The result of the modeling is illustrated by the DG presented in figure 2.5,
where connections represent predictable transitions between values of the first
level state variable (primitive actions).

Figure 2.5: Directed Graph of state transitions for the taxi location (Hengst,
2002)

A procedure has to be made in order to decompose a DG into regions creating
a valid hierarchical state abstraction. In first place the DG is decomposed into
strongly connected components (SCCs). Combining several SCCs a region can be
created where any exit state in a region can be reached from any entry with a

23

Chapter 2. Background Theory

probability of 1. Then the total state space is partitioned by all the instances of
the generic regions created. Each region has a set of states, actions, predictable
transitions and reward functions. This allows the definition of a MDP over the
region with a sub-goal (exit) as a transition to an absorbing state. A policy will
be created as a solution to the sub-MDP that will take the agent to an exit state,
starting from any entry. Multiple sub-MDPs will be constructed, more specifically,
one for each unique hierarchical exit.

2.5.4.4 State and Action Abstraction

To create the second level of the hierarchy a similar process from the first level
has to be executed. A search is conducted in order to find repeatable regions, but
now the states and actions are based on abstractions from the first level.

These abstract states are generated considering the following:

Each abstract state contains abstract actions that represent the policies to
lead the agent to region exits contained in the lower level. When an abstract
action is taken is state se the corresponding sub-MDP from the level e − 1 is
invoked and executed. The first level of the hierarchy was composed by a set
of sub-MDPs, on the next level we have state and action abstraction, abstract
actions take variable amounts of time to be executed, transforming the problem
to a semi-Markov decision problem.

This process is repeated for each variable in the original MDP. When the last
state variable is reached the top level sub-MDP is solved and represented by the
final abstract states and actions, which solve the overall MDP.

2.5.4.5 Hierarchical Value Function

HEXQ performs a hierarchical execution using a decomposed value function, this
allows the algorithm to automatically solve the hierarchical credit assignment prob-
lem, and by relegating non-repeatable sub-tasks rewards to upper levels of the
hierarchy were they become more meaningful and explanatory.

24

Chapter 2. Background Theory

The name HEXQ derives from the equation 2.15.

Q∗em(s
e, a) =

∑
s′

T ases′ [R
a
se + V ∗em(s

′)] (2.15)

Which translates into the following:

• Q-function at level e in sub-MDP m is the expected value of executing ab-
stract action a in abstract state se.

To measure how HEXQ performs, several trials were performed and then com-
pared against a "flat" learner using QLearning and also against the MAXQ algo-
rithm. On the first trials HEXQ is the one that has a worst performance because
it needs to order the variables and find exits at the first level of the hierarchy.
After completing that task, the performance starts to improve and surpasses the
flat learner after 41 trials, as it begins to transfer sub-task skills. Because MAXQ
possesses additional background knowledge, it learns very rapidly in comparison,
but in the end HEXQ converges faster.

In terms of storage requirements for the value function:

• "flat" learner requires 3000 values.

• HEXQ requires 776 values.

• MAXQ requires 632.

From these three approaches MAXQ is the one that requires less storage, but
keep in mind that HEXQ, unlike MAXQ (Dietterich, 2000a), is not told which
sub-tasks exist in the problem, it automatically discovers these sub-tasks. The
main limitation of HEXQ is that in order to find decompositions, it depends on
certain constraints in the problem, for example, the subset of the variables must
form sub-MDPs and policies created can reach their exits with probability 1. If
the problem to be solved is a deterministic shortest path problem, then HEXQ
will find a globally optimal policy and with stochastic actions HEXQ is recursively
optimal.

25

Chapter 2. Background Theory

2.5.5 Automatic Discovery of Subgoals in RL using Diverse

Density

Decomposing a learning problem into a set of simpler learning problems has several
advantages, improving the possibilities of a learning system to learn and solve more
complex problems. In RL one way of decomposing a problem is by introducing
subgoals (McGovern and Barto, 2001, Mcgovern, 2002) with their own reward
function, learn policies for achieving these subgoals, and then use these policies
as temporally-extended actions, or options (Sutton et al., 1999) for solving the
overall problem. This will accelerate the learning process and provide the ability
of skill transfer to other tasks in which the same subgoals are still relevant.

The paper from McGovern and Barto (2001) presents a method for discover-
ing useful subgoals automatically. In order to discover useful subgoals the agent
searches for bottleneck regions in its observable state space. This idea arises from
the study performed in the room-to-room navigation tasks where the agent should
be able to recognize a useful subgoal representing doorway in the environment. If
the agent recognizes that a doorway is a kind of a bottleneck by detecting that the
sensation of being in the doorway always occurs in successful trajectories but not
always on unsuccessful ones, then it can create an option to reach the doorway.
Clearly this approach will not work for every possible problem since bottlenecks
do not always make sense for particular environments.

It is very difficult to automatically find bottleneck regions in the observation
space, particularly if is has to be done online. A first approach was simply look for
the states that are most visited. Different state visitation histograms were created
in order to observe the most visited states.

From figure 2.6 it is possible to infer that first-visit frequencies (Panel C) are
better able to highlight the bottleneck states (states in the doorway) than are
the every-visit frequencies (Panel B). But this alone has several limitations, one
of them is that it is a noisy process, and from the results it is not obvious how
to do this in problems with continuous or very large state spaces. With these
limitations the authors opted in using the multiple-instance learning paradigm
and the concept of diverse density to precisely define and detect bottlenecks.

26

Chapter 2. Background Theory

Figure 2.6: State visitation histograms taken fromMcGovern and Barto (2001)

2.5.5.1 Multiple-Instance Learning

The concept of multiple-instance learning is described by Dietterich et al. (1997)
as being a supervised learning problem in which each object to be classified is
represented by a set of feature vectors, in which only one can be responsible for its
observed classification. One specific example can be seen in Maron and Lozano-
Pérez (1998), where are defined multiple positive and negative bags of instances.
Each positive bag must contain at least one positive instance from the target
concept, but may also contain also negative instances. In turn each negative bag
must contain all negative instances. The goal is to learn the concept from the
evidence presented by all the existing bags.

This can be applied for defining subgoals, where each trajectory can be seen as
bag. Positive bags are the successful trajectories, negative bags are unsuccessful
trajectories. The definition of a successful or unsuccessful trajectory in problem-
dependent. For example in the room-to-room navigation task, a successful tra-
jectory is any where the agent has reached a goal state. With this description
a bottleneck region of observation space corresponds to a target concept in this
multiple-instance learning problem: the agent experiences this region somewhere
on every successful trajectory and not at all unsuccessful trajectories.

2.5.5.2 Diverse Density (DD)

Also devised by Maron and Lozano-Pérez (1998) is the concept of diverse density
to solve multiple-instance learning problems. This concept refers that the most
diversely dense region in feature space, is the region with instances from the most

27

Chapter 2. Background Theory

positive bags and the least negative bags. This region of maximum diverse density
can be detected using exhaustive search or gradient descent. In McGovern and
Barto (2001) exhaustive search is used since it proved feasible due to the nature
of the tasks involved. So the region with maximum diverse density will be a
bottleneck region which the agent passes through on several successful trajectories
and not on unsuccessful ones.

Sometimes it is advantageous to exclude some states from a bag. For example,
if the agent always starts or ends each trajectory in the same place, those states
will have a diverse density since they occur in all the positive bags. So states
surrounding the starting and ending of any bag are excluded.

2.5.5.3 Forming New Options

The bottlenecks of most interest are those who appear in the initial stages of
learning and persist throughout learning. A way to detect this is by using a
running average of how often a state appears as a peak. if a concept is an early
and persistent maximum, then its average will rise quickly and converge. If the
average of a concept arises above a specified threshold then that concept is used
to create new options.

As previously referred an option has several components which need to be
initialized upon an option creation. The initiation set I is the union of all such
states over all of the existing trajectories. The termination condition β is set to 1
when the subgoal is reached or when the agent is no longer in the initiation set,
and is set to 0 otherwise. Finally the option’s policy π, is initialized by creating a
new value function that uses the same state space as the overall problem.

2.5.5.4 Results

Trials were conducted on two simple grid-world problems. The agent has the usual
four primitive actions of up, down, right and left. After identifying the subgoal an
option was created, but the agent was limited to creating only one option per run.

28

Chapter 2. Background Theory

Figure 2.7: Average DD values and Subgoals locations (McGovern and Barto,
2001)

In figure 2.7a it is possible to observe the states with higher DD values are
shaded more lightly. Also in figure 2.7b the states identified as subgoals by the
agent are the ones near the door.

Figure 2.8: Average steps comparison with and without options (McGovern
and Barto, 2001)

If the subgoals found by the agent are useful, the learning should be accelerated.
From figure 2.8 it is clear that learning with automatic subgoal discovery has
considerably accelerated learning compared with to learning with primitive actions
only. The initial trials remain the same until the options are created, from that
point the agent improves it’s learning. In figure 2.9 the goal position has been
changed and here it is also clear that the learned options continue to facilitate
knowledge transfer.

In the environment presented the subgoal achievement has proven to be very
useful, of course that this can not be said for every environment. Also the complex-
ity of the environment may lead to a situation where is very difficult to define what
constitutes the positive and the negative bags. Other limitation to this approach

29

Chapter 2. Background Theory

Figure 2.9: Performance of the learned options on task-transfer (McGovern
and Barto, 2001)

is that the agent must first be able to reach the main goal using only primitive
actions, limiting the problems to which it can be applied.

The next chapter gives a perspective on the software framework developed and
on the different tasks approached.

30

Chapter 3

Initial Experiments

"Throughout the centuries there were men who took first steps down new roads
armed with nothing but their own vision ."

Ayn Rand

3.1 Introduction

One of the main concerns upon developing the software that would be used in this
dissertation, was to create a software framework to test several RL algorithms,
which could supply an abstraction level in which abstract classes could provide
generic functionality that can be selectively overridden or specialized by user code
depending on the problem at study. In our case two different types of problems
were approached using our framework, more specifically the Room-to-Room Nav-
igation and the Taxi Problem. Since our framework has a default behavior, all we
needed to do was to extend the abstract classes and override the behavior of the
agent accordingly to the concerned problem.

In order to formally describe the structure of the system a simplified class dia-
gram (Appendix A) was created with the most relevant entities in our framework.

31

Chapter 3. Initial Experiments

3.2 Software Framework

When the application is executed, an initial frame appears, as in fig. 3.1, where
the user has to define some initial parameters in order to setup the simulation
environment. Such as the number of trials, episodes, the domain, which can be
the Room Problem or the Taxi Problem.

Figure 3.1: Initial Setup Frame

After choosing the domain, a maze can be selected from the existing ones, or
a new one can be created. The set of primitive actions available to the agent
are defined by the neighborhood option which can be Moore or Von Neumann
neighborhood (fig. 3.2). In order to be able to recreate the experiments throughout
development, the initial seed of our random number responsible for the random
decisions taken by the agent, needed to be defined by the user. After all these
parameters have been set, the simulation environment is ready to run.

Some events of the mouse were overridden allowing the user to manipulate
several aspects of the simulation, specifically:

• right-click - By right-clicking the user can create the maze, by adding or
removing grey rectangles.

• left-click - Changes the position of the main goal, and prompts its reward.

• drag-n-drop - Changes the initial position of the agent.

32

Chapter 3. Initial Experiments

(a) Moore (b) Von Neu-
mann

Figure 3.2: Surrounding cells comprising the neighborhood

• scroll - In the Taxi problem allows the user to create thin walls around the
rectangle.

Figure 3.3: Configuration Frame

Another important frame is the Configuration Frame (fig. 3.3). Here the user
can control the exploration rate of the agent, the running speed of the simulation,
whether it should update the quality of the actions, add noise to the actions
choosing, spawn the agent in a random location of the grid-world and enable the
automated subgoal discovery.

When all the trials have terminated, the user has the possibility to save relevant
data from the simulation. By pressing the Save Steps Data button, the user will
create two excel files, one containing the average steps count, and other containing
the average quality of the actions for all the trials with corresponding charts. The

33

Chapter 3. Initial Experiments

Save Path Data button will save all the paths taken by the agent and sort them
by classes in an excel file.

Figure 3.4: State Browser

For debugging purposes a state browser was implemented (fig. 3.4), which
allow us to inspect all the states and the corresponding actions. From the two-
dimensional coordinate of the grid-world, one or more states can exist, like in the
Taxi problem. Each state has its own unique id and a set of actions which can be
primitive or composite actions (Options). Finally a global representation of the
menus of the application is shown in fig. 3.5 where the name of the menu are fairly
self-explanatory.

Figure 3.5: Application Menus

34

Chapter 3. Initial Experiments

3.3 Room-to-Room Navigation

In order to create a solid starting point for our approach, we proposed on imple-
menting the work done by Sutton et al. (1999), by using the same task and trying
to replicate some of the results obtained.

(a) Agent and the main-goal (b) Flat Q-learning policy

Figure 3.6: The 4-room grid-world environment

Figure 3.6a is our representation of the four-room grid-world studied by Precup
and Sutton (2000) where, the red rectangle represents the agent position, and the
green rectangle represents the main goal of the agent. Our first task was to make
the agent learn how to reach the main goal by using only Q-learning (Watkins
and Dayan, 1992), then implement the Options framework from Sutton et al.
(1999) and compare the results. When using only Q-learning a policy is obtained
comprised by four primitive actions of up, down, right and left, like in fig. 3.6b.

Figure 3.7: Two policies underlying two of the eight hallway options

In the Options framework (Sutton et al., 1999) the author refers that each of
the four rooms has two built-in hallway options designed to take the agent from

35

Chapter 3. Initial Experiments

anywhere within the room to one of the two existing doors in that room. The
process of creating those options is not explained thoroughly, only that it can be
handcrafted by the programmer, or in a more interesting way created by the agent.
Our solution was to make the agent explore the environment each room at a time,
creating a policy to reach the door of the respective room. Each time a policy is
learned the programmer has the possibility of saving it to a file, so that it can be
used later on different trials.

Figure 3.8: Visual representation of an Option

An option’s policy π will follow the shortest path within the room to its target
door passage, while minimizing the chance of going into other doorway. A possible
example of this policy is shown in fig. 3.7. On the other hand an example of a
shortest path that will take the agent to a doorway is shown in fig. 3.8 represented
by the blue rectangles. The termination condition β(s) for each doorway option is
zero for states s within the room and 1 for states outside the room. The initiation
set I comprises the states within the room. The values inside of each rectangle
represent the quality of the best action on that state. In our case an option
represents an abstract action with a global quality, that global quality is obtained
by calculating the average quality of all the actions contained in the option. After
some exploration the agent will realize whether it is more advantageous to take
options instead of primitive actions, depending on the quality values.

Since our options represent temporarily extended courses of action composed
by primitive actions, each time the agent takes an option, it will recursively update
all the primitive actions contained in the option, and when terminates it will
update the quality of the option itself, as explained in algorithm 3.

36

Chapter 3. Initial Experiments

Algorithm 3 Q-learning with Options
Initialize Q(s, a)
for (each episode) do
Initialize s
for (each step of the episode) do
Choose a from s using policy derived from Q
if (a is Primitive) then
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α
[
r + γmaxa′ Q(s

′, a′)−Q(s, a)
]

s← s′

else
Take option o
for (all actions a ∈ o) do
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α
[
r + γmaxa′ Q(s

′, a′)−Q(s, a)
]

s← s′

end for
Q(s, o)← 1

|o|
∑|o|

i=1Q(ai, o)
end if

end for
until s is terminal

end for

Remember that the options created are deterministic and Markov, and that an
option’s policy is never defined outside of its initiation set I. We denote the set of
eight doorway options by H. After making the options available for the agent to
take, the next step is to run a new trial with 10000 episodes with an exploration
rate of 100% and with this trial a policy is obtained where the agent realizes that
it is more advantageous to take options instead of primitive actions.

Figure 3.9: Policy with Options

37

Chapter 3. Initial Experiments

From fig. 3.9 it is possible to observe the policy learned by the agent, the
primitive action are represented with arrows and the option is represented by the
C character, which is an abbreviation for Composite Action. Now it is time to
compare results between the flat Q-learning and the Options approach. We expect
that with options the learning process will be accelerated. For our experiments we
had 30 trials, each with 10000 episodes, an exploration rate of 10% and without
noise. In the chart in fig. 3.10 we can confirm that there is a substantial improve-
ment in the learning process, especially in the early stages. This is due the fact,
that our agent, rather than planning step-by-step, used the options to plan at a
more abstract level (room-by-room instead of cell-by-cell) leading to a much faster
planning. It is also interesting to see that it soon learns when not to use options
(the last room).

Figure 3.10: Comparison of the evolution of average number of steps per
episode between Q-Learning and Options

It is also important to compare the average quality of the actions taken by the
agent. So the same experiments of 30 trials, each with 10000 episodes were con-
ducted using only flat Q-learning, and then repeated with options added. Results
in fig. 3.11, show that using options translates in a clear overall gain of quality
from the early stages up until the end of the trials.

Options can be used by the agent to facilitate learning on similar tasks. To
illustrate how options can be useful for task transfer (Lin, 1993, Singh, 1991), the
grid-world task was changed by moving the goal to the center of the upper right-
hand room. We reused the options created for the agent to reach the doorways.
Again, we had 30 separate trials, with the same conditions of the previous experi-
ments. We compare the performance of the agent reusing the options to an agent
learning with primitive actions only (fig. 3.12).

38

Chapter 3. Initial Experiments

Figure 3.11: Comparison of the evolution of average quality of the value func-
tion per episode between Q-Learning and Options

Figure 3.12: Comparison of the evolution of average number of steps per
episode in knowledge transfer

By reusing the options, the agent was able to reach the goal more quickly even
in the beginning of learning and it maintained this advantage throughout. With
this experiment we demonstrated the usefulness of options in similar tasks, that
considerably accelerated learning on the new task.

With our implementation of the Options we have already shown and proven the
benefits of its use, but it is also important to compare our results with the results
obtained by the original authors in Sutton et al. (1999). In order to replicate the
results the conditions of the simulation had to be the same, so noise was added to
our simulation. Noise is inserted as a probability of an action being switched by
another, random, action. With probability 2/3, the actions may cause the agent
to move one cell in the corresponding direction, and with probability 1/3, the
agent moves in one of the other three directions. If the movement would take the
agent into a wall then the agent remains in the same cell. We consider the case
in which rewards are zero on all state transitions. The probability of occurring

39

Chapter 3. Initial Experiments

random actions, ε, is 0.1 and the step size parameter used was α = 1
8
. These are

the parameter reported to be used in Sutton et al. (1999).

(a) Simulation from Sutton et al.
(1999)

(b) Our Simulation using prim-
itive actions and Options

Figure 3.13: Comparison between the simulation done by Sutton et al. (1999)
and our implemented simulation

Figure 3.13 shows two different charts, one represents the results obtained by
Sutton (fig. 3.13a), and the chart from fig. 3.13b represents our simulation. The
relevant distribution here is A∪H, which stands for a policy that contains primitive
actions and options. Apart from a small peak that occurs in our simulation, the
results are very similar. This proves that our implementation of the Options
Framework was successful and faithfully recreated the one presented in Sutton
et al. (1999).

40

Chapter 3. Initial Experiments

3.4 Taxi Problem

In order to gain a more general perspective in the use of Options, we decided
to implement an also well known problem from Dietterich (2000b), which is the
Taxi Problem. But instead of using MaxQ like the authors, we will be using the
Options approach measuring it’s performance in a more complex situation.

Figure 3.14: The taxi grid-world environment

Figure 3.14 shows a 5-by-5 grid where the taxi agent is represented by the red
rectangle. In this world exists four specially-designated locations, marked as R,
B, G, and Y. In each episode, the taxi starts in a randomly-chosen square. There
is a passenger at one of the four locations (chosen randomly), and that passenger
wishes to be transported to one of the four locations (also chosen randomly). The
taxi must go to the passenger’s location represented by the yellow rectangle, pick
up the passenger, go to the destination location represented by the green rectangle,
and put down the passenger there. If the passenger is dropped at the destined
location the episode ends.

In this domain the agent has six primitive actions:

• four navigation actions: Up, Down, Left, or Right

• a Pickup action

• a Putdown action

There is a reward of -1 for each action and an additional reward of +20 for
successfully delivering the passenger. There is a reward of -10 if the taxi attempts

41

Chapter 3. Initial Experiments

to execute the Putdown or Pickup actions illegally. If a navigation action would
cause the agent to hit a wall, the agent remains in the same state, and there is
only the usual reward of -1. In terms of state space there are 500 possible states:
25 squares, 5 locations for the passenger (counting the four starting locations and
the taxi), and 4 destinations, being almost 5 times bigger that the state space of
the room-navigation domain.

(a) Policy for Pick (b) Policy for Drop

Figure 3.15: Q-learning Policies

Figure 3.15a shows a policy composed only by primitive actions for a situation
where the taxi has to pick up the passenger, represented by the yellow rectangle,
the best action in that square is identified by a P which stands for Pick Up. On the
other hand, after the agent has picked up the passenger, it has to navigate to the
passenger’s intended destination and drop him. That purpose is represented by
the policy in fig. 3.15b, where the passenger destinations is at the green rectangle,
and the best action to perform on that state is to drop the passenger (D).

The next step was to create the options for the taxi task. First we needed
to identify which states could represent subgoals for the agent. In the room-
navigation problem the subgoals were easily identified as the doorways that lead
the agent into another room. In the Taxi problem there are no rooms, so sub-
sequently there are no doorways, instead we have the four specially-designated
locations (R, B, G, and Y) that may represent a subgoal for the agent. With
four separate runs we made the agent learn four policies on how to reach those
four locations. An example for those policies is shown in fig.3.16 for location B

and G respectively.

42

Chapter 3. Initial Experiments

Figure 3.16: Two policies underlying two of the four source options

With the policies created the corresponding options were added to the share
of actions of the agent. At this point in any state the taxi agent could choose
between 10 different actions (6 primitive and 4 options). The algorithm used on
this problem is the same that was used on the room-navigation problem(algorithm
3). Again when the agent has the possibility to choose actions more abstract than
the primitive actions, it will make it plan at a higher level, where instead of moving
one cell at a time, it can choose at any state to go directly to one of the four special
locations that allow him to pick or drop the agent, this way reducing the amount
of trial an error and increasing the chances of making a successful pick up or drop.
This is clearly visible in fig. 3.17.

Figure 3.17: Comparison of the evolution of average number of steps per
episode between Q-Learning and Options

The usefulness of Options has been proven, but in order to use them still exists
a troublesome process that has to be made each time a new task is presented.
Firstly the need to identify correctly the states that can be useful as subgoals to
the agent, which sometimes could be difficult. Secondly this process needs to be
done offline, when really, the most interesting would be for the agent to detect
the subgoals while learning to solve the task at hand, and create corresponding
options on the fly.

43

Chapter 3. Initial Experiments

The next chapter introduces our method developed for identifying useful sub-
goals from the agent’s initial interaction with its environment and the results
obtained.

44

Chapter 4

Autonomous Subgoal Discovery

"Imagination is more important than knowledge."

Albert Einstein

4.1 Introduction

After implementing the Options framework (Sutton et al., 1999) in the rooms
example and successfully replicating the results, the next step was to research
methods to identify sub-goals. A sub-goal can be seen as a state that an agent
must pass-through when making a transition to a novel or different region of the
state-space. These states can be seen as sub-goals that lead the agent to the main
goal.

Throughout this research, several articles were found, namely, Parr and Russell
(1998), Dietterich (2000b), McGovern and Barto (2001), Hengst (2002) and Simsek
and Barto (2004), Simsek et al. (2005). We have implemented a selection of the
approaches found in these papers. The implemented approaches are discussed in
the following sections.

45

Chapter 4. Autonomous Subgoal Discovery

4.2 State Counting

Initially we tried a very simple approach and started to count how many times the
agent has been in a certain state, like we saw in Simsek and Barto (2004). Basically
each time the agent reaches a state, we increment a state counter variable. After
performing several trials of 1000 episodes, we obtained the following typical result
as seen in (Figure 4.1).

Figure 4.1: Number of times each state was visited

We expected that this experiment would show some differences in the state
counts between the target and non-target states, but there were no visible dif-
ferences. The states which we consider as sub-goals are designated with a black
circumference around them, with the counting values of 137, 38, 1369 and 1268.
There seems to be no relation between these states considering the values. We
could not find any characteristic that distinguishes these states from all others.
Sometimes there are also other states with the same counting value, that don’t
represent sub-goals.

So, a different view was implemented like the one depicted in (Figure 4.2),
where it is possible to get a flood-like representation of the state counter, easier
to read. The states where the blue color is darker represent the states in which
the agent has been passing more frequently. In the end of the trial it is possible
to distinguish the path chosen by the agent to reach the main goal.

46

Chapter 4. Autonomous Subgoal Discovery

Figure 4.2: Colored states representing the number of times each state was
visited

Figure 4.3: Average state counting in the four-room navigation task

Since in the isolated trials no differences were detected the next attempt was
to consider statistics over multiple trials. We decided to make a 25 trials run, each
with 10000 episodes. Results can be seen in the histogram (Figure 4.3) with the
average counter values for each state.

The states considered as sub-goals were identified with the orange color. From
this distribution we concluded that the state counters did not provide enough in-
formation to distinguish the target states and that another approach was required.

47

Chapter 4. Autonomous Subgoal Discovery

4.3 Using Relative Novelty to Identify Useful Tem-

poral Abstractions in RL

After investigating the work done by Simsek and Barto (2004), the idea of Relative
Novelty seemed promising and an implementation of their work was attempted,
both to gain knowledge of the inner structure and to try to replicate some of the
results obtained.

The main idea is to find differences between target, and non-target, states.
To achieve that purpose the concept of relative novelty was introduced. Relative
Novelty measures how much novelty a state introduces in a short-term perspective.
To define novelty, we measured how frequently a state is visited by the agent since
it has started to perform actions, and that part was already done as we described
it previously. Then every time the agent visits a state, a counter is incremented
and with a simple calculation of 1√

ns
the novelty is done.

Figure 4.4: Relative Novelty value of each state represented at each cell

Novelty will allow us to calculate the relative novelty of a state (Figure 4.4).
Relative novelty is the ratio of the novelty of states that followed the current state,
to the states that preceded it. To calculate the value of the relative novelty we used
a data structure to store the last 15 states the agent passed through.The relative

48

Chapter 4. Autonomous Subgoal Discovery

novelty of the state in the 7th position of the data structure can be calculated
using the 7 preceding states and 7 states that followed it. This number of forward
and backward transitions is a parameter of the algorithm described in Simsek and
Barto (2004), section 2.2, called the novelty lag.

In this experiment the goal state is ignored and the agent is ordered to perform
a 1000-step random walk, 1000 times, where at each time the agent is spawned at a
random location. The objective is to identify differences between the distribution
of the relative novelty in target and non-target states, expecting non-target states
to have a higher score more frequently.

Figure 4.5: Relative Novelty Distribution between target and non-target states

Figure 4.5 explicitly depicts the difference of the relative novelty distribution
between target and non-target states. We managed to obtain approximate dis-
tributions similar to those obtained by the authors, but this alone is only a part
of the work done by them. Although this provides evidence that target and non-
target states are distinguishable in that specific problem, the main question is
whether that knowledge can be used to identify sub-goals in a different problem,
because the parameters generated by the test are yet to prove applicable to other
problems.That’s why we chose to continue with another approach, one where the
agent has no input from the programmer affecting the outcome of the algorithm.

49

Chapter 4. Autonomous Subgoal Discovery

4.4 Path Intersection

This was our final approach to the problem of automated sub-goal discovery. With
the work done so far we gathered information that allowed us to define what is
a sub-goal. We will look for a specific type of sub-goal, a state where the agent
must pass in order to reach it’s main goal.

In our approach we created the path definition, where a path p is the course
taken by the agent to reach it’s goal and it is comprised by two components:
a sequence of states st, st+1, ..., st+n of length n, and by a class identification
id = 0, 1, 2, ... which defines to which class the path belongs. Somewhere in that
path there is one or more sub-goals, our algorithm will be responsible for identify-
ing them. A path is represented in Figure 4.6 by all the states with a cyan color,
each path corresponds to a single episode. This problem has the particularity
of being an episodic task, but for continuing tasks it would be necessary to seg-
ment the experience into finite-length trajectories in order to enable the creation
of paths.

Figure 4.6: Example of a path

The agent has a set P = {pe, pe+1, ..., pe+n} containing all the different paths
taken until the current episode. Each time an episode ends, a new path is created,
a class identification (id) assigned to it, and then added to P . The class id attribute
from a path is very important to our algorithm which relies on intersecting paths
of the same class. In a perfect solution the number of existing classes on an
environment would correspond to how many different ways the agent has to reach
the main goal. In the four-room grid-world environment the agent has two obvious

50

Chapter 4. Autonomous Subgoal Discovery

ways of reaching the goal, meaning that at least, it will have two different classes
(fig. 4.7).

Figure 4.7: Existing path classes in the four-room navigation task

In algorithm 4 is described how the class id is assigned to a recently created
path. Basically we define that a path belongs to a class if the number of states in
common with an existing class is greater or equal than half the size of the path
in question. It was important to create classes in order for us to intersect only
paths that belong to the same class, if we intersected paths from different classes
we might obtain an empty set and lose relevant states that could be potential
sub-goals.

Algorithm 4 Assign Class ID(currentPath)
classId ⇐ −1
commonStates ⇐ 0
for each path in Path-List do
if currentPath ∩ path > commonStates then

commonStates ⇐ currentPath ∩ path
end if
if commonStates > half the size of currentPath then
classId ⇐ path class Id

end if
end for
if classId = −1 then
return new class Id

else
return classId

end if

51

Chapter 4. Autonomous Subgoal Discovery

We are trying to find common regions amongst the paths, that contain states
that could be identified as sub-goals. But not all of those regions have states that
represent positive sub-goals (fig. 4.8). For example in our case the agent always
starts or ends each path in the same set of states, because of that, those states
will have a high probability of being identified as sub-goals reducing the relevance
of the states representing actual sub-goals.

Figure 4.8: Excluded regions from the paths

We need to exclude those states surrounding the starting and ending of the
paths. The procedure to exclude the initial states is described in algorithm 5. For
removing the final states, the procedure is very similar to the one in alg. 5, the
only difference is that the states are removed from the end of the path. After
excluding those states everything is ready to start the intersections.

Algorithm 5 Exclude Initial States(path1, path2)
state1 ⇐ path1 first Element
state2 ⇐ path2 first Element
while state1 equals state2 do
path1 remove first Element
state1 ⇐ path1 first Element
path2 remove first Element
state2 ⇐ path2 first Element

end while

The idea is to create intersections between paths of the same class. From the
example in Figure 4.9 the concept becomes clearer, where a set of paths in blue
color are covering different states leading to the same final state. The result of the
intersection created is a set of states common to all the paths of the same class,

52

Chapter 4. Autonomous Subgoal Discovery

marked in an black circumference, meaning that independently of the path taken
by the agent, it always has to go through some states that could potentially be
used as sub-goals.

Figure 4.9: Expected resulting states from paths intersection

The summarized algorithm 6 describes the process for path intersection.

Algorithm 6 Intersect Paths (classID)
PathsById ⇐ get all the Paths with the same classID
while PathsById List Size > 1 do
LastRemoved Path ⇐ PathsById remove last Element
Last Path ⇐ PathsById get last Element
Exclude initial/final states from Paths
ResultingPath ⇐ LastRemoved Path ∩ Last Path
Add ResultingPath to PathsById

end while
return PathsById

The sooner the agent discovers useful subgoals, the sooner it will create the
corresponding options. We tried to achieve this behavior by trying to discover
subgoals right after the second episode (it is necessary to have more than one
path). Instead of trying to discover subgoals at each episode, every time the agent
takes a shorter path than the previous shortest path to the goal, it will execute
the process of discovering subgoals. This way, the agent reduces the amount of
processing needed, which in long term could influence its performance. The process
for subgoal discovery is described in the summarized algorithm 7.

53

Chapter 4. Autonomous Subgoal Discovery

Algorithm 7 Sub-Goal Discovery(path)
Init Path-List to 0
pathSize ⇐ 1000
for each episode do
Interact with environment (Learning)
Set class ID to observed path
Add observed path to Path-List
if observed path length < pathSize then

pathSize ⇐ observed path length
Intersect Paths of the same class ID
Identify resulting states as sub-goals
Create Options

end if
end for

We illustrate the ability of our intersection algorithm to highlight the doorway
regions using the online experience of an RL agent learning in several grid-world
environments (fig. 4.10). The doorways identified as subgoals appear represented
in strong blue. The stronger the blue color, higher the number of times that the
agent identified that state or region as a useful subgoal.

(a) Two-room navigation task (b) Four-room navigation task

Figure 4.10: Subgoal discovering histogram

The data used to discover the subgoals was collected from the online behavior
of an agent using Q-learning in 30 trials of 10000 episodes, initially in a 11x11
grid-world with two, four and six rooms respectively. Then in a 20x20 grid-world
with sixteen rooms. The goal state was always placed in the lower right-hand
corner, and each episode started from a fixed state in the upper left-hand room.
An episode ended when the agent reached the goal receiving a reward of 100 for

54

Chapter 4. Autonomous Subgoal Discovery

reaching the goal and 0 otherwise. The primitive actions available to the agent
were up, down, right, left, up-left, up-right, down-right and down-left. The discount
factor, γ, was 0.9. The learning rate was α = 1

8
. The exploration used the ε-greedy

method where the greedy action was selected with probability (1−ε) and a random
action was selected instead. We used 0.7 as the value for ε.

Figure 4.11: Target, and non-target, states (two-room)

In figure 4.11 it is possible to observe that during the trials, one state, namely
state 84, representing the doorway between the two-rooms of the environment,
really stands out from the rest of the states being considered a useful subgoal.

Figure 4.12: Target, and non-target, states (four-room)

In the four-room environment we expected the agent to discover 4 subgoals
representing the doorways from one room to another, again, in fig. 4.10b, 4 differ-
ent states are easily distinguishable from the other states. The counting difference

55

Chapter 4. Autonomous Subgoal Discovery

between the states identified as subgoals is related to the path class that they be-
long. For example state 81 and state 123 belong to the same class (similar counting
values) and have higher counting values that state 45 and state 100, meaning that
the agent took more times the path in which state 81 and 100 occurred.

(a) Six-room navigation task (b) Sixteen-room navigation
task

Figure 4.13: Subgoal discovering histogram

From figure 4.13a we notice that for smaller environments all the subgoals
are discovered successfully. Bear in mind that these histograms represent several
runs for the same environment, with only one run the agent might only discover
subgoals relevant to one path (or one class) leading to the main goal.

Figure 4.14: Target, and non-target, states (six-room)

56

Chapter 4. Autonomous Subgoal Discovery

But for a larger and more complex environment like the one in fig. 4.13b, if
we want to discover all the subgoals the exploration rate needs to be increased.
The exploration rate will affect the number of subgoals discovered by the agent.
With a high exploration, a more diverse set of paths will be followed by the agent,
resulting in more different path classes, subsequently more subgoals. But the agent
may not be required to discover all the subgoals of the environment, in fact that
might even be counterproductive by deviating the agent from the real goal.

Figure 4.15: Target, and non-target, states (sixteen-room)

As shown in figure 4.15, even in a more complex environment the agent suc-
cessfully discovers useful subgoals in the doorways, confirming the results that we
anticipated. The sixteen-room grid-world has 24 doorways, our algorithm only
considered 12 as relevant (fig. 4.13b). This is important because the agent only
chose the doorways that will lead to the best way to reach the goal. For example,
if the agent has to go through the upper right-hand rooms, that will represent
a longer path for reaching the goal. The next chapter introduces our method
for creating options online, corresponding to the useful subgoals discovered by
the agent from it’s interaction with its environment and presents results in the
room-navigation domain.

57

Chapter 5

Option Creation

"The main thing is to keep the main thing the main thing."

Stephen Covey

5.1 Create Options Dynamically

Our algorithm of path intersection allows the agent to discover subgoals, but that
alone will not improve the agent’s performance. The usefulness of subgoals is that
they allow the agent to create options to reach the subgoals, thus accelerating the
learning process. Our algorithm for creating options dynamically is summarized
in alg. 8 and it will be described in this section.

Algorithm 8 Create Options()
for each subgoal discovered do
Set order of Appearence
Create Option o = (I, π, β)
Init Option’s Initiation Set (Initial State, Final State)
Init Option’s value function

end for
for each Option created do
for each State from I(o) do

Create Composite Action
State ⇐ Add Composite Action

end for
end for

59

Chapter 5. Option Creation

At the end of each episode, the agent saves the current path that leads to the
goal. Then it will try to identify useful subgoals from the intersections performed
with its saved paths. If new subgoals are discovered, it will dynamically create
options that will lead the agent to the subgoals. If the agent has only a small
number of paths due to the fact that it is still in the initial stages of learning,
the subgoals discovered will be far from perfect. As the agent gains knowledge
of the surrounding environment and additional paths are added to the path list,
the states targeted as subgoals should stabilize. However, as the agent’s policy
continues to improve, the composite actions of the existing options that correspond
to the optimal path, will begin to excel amongst the other composite actions. The
states which truly represent subgoals are those that appear early with the path
intersections and persist throughout learning, since the intersection process was
designed to auto-exclude the false positive subgoals.

We don’t limit the number of options created by the agent at each episode, but
we are aware that too many actions can slow learning by creating a larger search
space for the agent. To avoid this from happening, we only try to discover new
subgoals and create new options, when the last path taken by the agent is shorter
than the previous shortest. This will improve the agent’s learning by making new
composite actions available with a higher quality.

Algorithm 9 Create Initiation Set()
InitialState ⇐ first state of the room
FinalState ⇐ final state of the room
Sub-paths ⇐ sub-paths starting with InitialState / ending with FinalState
Initiation Set ⇐ union of all the different states from Sub-paths

Once a subgoal has been successfully discovered, it is used to create a new
option. The option’s initiation set, I, has to be initialized upon the option’s cre-
ation. As we already have evidenced in chapter 3.3, the initiation set I comprises
the states within the room. At each room exists an initial and a final state. The
initial state represents the state where the agent enters the room, and the final
state represents the state where the agent exits the room. The method that we
used to create the initiation set is described in the algorithm 9. The termination
condition β(s) for each doorway option is zero for states s within the room and
1 for states outside the room. Meaning that the option executes either until the
subgoal is achieved or until the agent exits the initiation set. The option’s policy,

60

Chapter 5. Option Creation

π, is initialized by creating a new value function that uses the same state rep-
resentation as the overall problem. The option’s value function is learned using
Q-learning (Watkins and Dayan, 1992) as the overall problem value function.

In order for our intersection algorithm to work, we need to save all the paths
taken by the agent throughout learning, this introduce questions about the effi-
ciency of our method in terms of space. This has not proven to be a limitation
over a number of different tasks that we had experimented. But we decided to
observe the memory usage of our software by using a profiling tool.

Figure 5.1: Memory Usage when using Flat Q-learning algorithm

The first experiment was comprised of 30 trials, each with 10000 episodes, only
using flat Q-learning and observing the memory usage. From figure 5.1 we can tell
that memory usage was always inferior to 25 megabytes (MB) with some value
fluctuation.

Figure 5.2: Memory Usage when using Subgoal Discovery with Options

In order to compare the memory usage of our algorithm, we made the same
experiment, but this time, with subgoal discovery and option creation enabled. As

61

Chapter 5. Option Creation

shown in figure 5.2 the implications of our algorithm in memory usage are quite
relevant, since the amount of used heap towards the end of the experiment, now
has exceeded 50 MB. With some optimization the amount of memory required
could be lowered, by excluding the paths with the less occurring classes, or only
saving the last n paths.

5.2 Experimental Results

The following results will illustrate the performance gain obtained when using our
subgoal discovery method and options creation. We will show why the newly cre-
ated options prove to be important, and how the options facilitate the knowledge
transfer between tasks. The learning parameters used for these experiments are
the same as described in chapter 3.3, the results obtained will be described for
several grid-world problems. The performance in each of the experiments is mea-
sured by the number of steps that the agent took to reach the goal on each episode
averaged over 30 runs.

5.2.1 Two-Room Grid-world

The first experiment is the two-room environment shown in figure 5.3.The agent’s
purpose is to reach the main goal (represented in green), through the shortest
route from a random state in the left-hand room. In this grid-world exists only
one doorway, so only one sub-goal should be discovered, as shown in figure 5.3a.

In figure 5.3b is possible to observe the policy learned by the agent after dis-
covering the subgoal and creating the subgoals where in the initial states from the
left-hand room the agent has chosen to take composite actions instead of primitive
actions.

Figure 5.10 shows learning curves comparison between conventional Q-learning
and Options. The initial episodes were the same until the agent, using subgoal
discovery starts to use fewer steps to achieve the goal right after the second episode
(fig. 5.4a). Learning with autonomous subgoal discovery and options has consid-
erably accelerated learning compared to learning with primitive actions alone, but
in the end, the agent using conventional Q-learning has obtained a better policy

62

Chapter 5. Option Creation

(a) Subgoals discovered (b) Learned policy

Figure 5.3: Environment used for the two-room experiment

(a) Early SG discovery (b) Later SG discovery

Figure 5.4: Comparison of the evolution of average number of steps per episode
between Q-Learning and Options in the two-room navigation task

than the one using options with a difference of more two steps. This unexpected
behavior is due to the fact that exists a tradeoff between how quickly the agent
starts to discover subgoals/create options and how approximate the options are
in the overall task to an optimal policy. In figure 5.4a the agent tries to detect
subgoals as soon as possible, but when converges fails to obtain an optimal policy.
On the other hand, if we delay the subgoal discovery the agent manages to learn
an optimal policy, like shown in figure 5.4b, where the agent only detects subgoals
from episode 30. Again in this case, the advantage of using options is clear.

63

Chapter 5. Option Creation

5.2.2 Four-Room Grid-world

As the next example, we used the four-room grid-world studied by Precup and
Sutton (2000). This environment is shown in figure 5.5. The agent’s task is to
move from a randomly chosen start state in the left-hand room to the goal location
in the lower right-hand room. The simulation conditions are the same as previously
described. After 30 runs of 10000 episodes, the agent successfully identified four
states located in the doorways as subgoals. An example of a policy containing
primitive actions and options is shown in figure 5.5b.

(a) Subgoals discovered (b) Learned policy

Figure 5.5: Environment used for the four-room experiment

Again, we compare the results of learning with autonomous subgoal discovery
to learning versus learning with primitive actions.

Figure 5.6: Comparison of the evolution of average number of steps per episode
between Q-Learning and Options in the four-room navigation task

64

Chapter 5. Option Creation

The comparison of the average number of steps that the agent needed to reach
the goal state from the start state is illustrated in figure 5.6. Here the agent tried
to detect subgoals as soon as possible, managing to detect some right after the
second episode. From this point on the agent using options was able to learn an
optimal policy faster than the agent using only primitive actions.

5.2.3 Six-Room Grid-world

To increase complexity we add two more rooms to the four-room grid-world, cre-
ating the six-room grid-world. Shown in figure 5.7. The agent has successfully
identified the six existing subgoals in the environment. After 10000 episodes the
agent learned a policy like the one shown in figure 5.7b.

(a) Subgoals discovered (b) Learned policy

Figure 5.7: Environment used for the six-room experiment

The results obtained from the average steps comparison between an agent
with conventional Q-learning and an agent with options are illustrated in figure
5.8. And once more, our algorithm managed to obtain better results, taking less
steps to reach the goal.

65

Chapter 5. Option Creation

Figure 5.8: Comparison of the evolution of average number of steps per episode
between Q-Learning and Options in the six-room navigation task

5.2.4 Sixteen-Room Grid-world

In the previous experiments, the number of rooms was increased, but the size of
the environment remained the same. In this last experiment we intend to prove
the robustness of our algorithm in autonomous subgoal discovery and dynamic
option creation. Now the environment has 16 rooms, 24 doorways and a [20x20]
state space. As we can observe in figure 5.9a, the agent has discovered the most
relevant subgoals that can be found while taking the shortest path to reach the
goal with a certain policy (fig. 5.9b).

(a) Subgoals discovered (b) Learned policy

Figure 5.9: Environment used for the sixteen-room experiment

66

Chapter 5. Option Creation

As we stated previously, there is a tradeoff between the quality of the options
created and the time when the subgoals are discovered. In figure 5.10a we notice
that the agent’s performance initially, is worse when using autonomous subgoal
discovery. Only on the tenth episode does it surpass the agent using conventional
Q-learning which is also the one that learns a better policy for solving the task at
hand. With little exploration and information of the environment, the process of
discovering subgoals through intersection can be noisy. This leads to a creation of
false-positive subgoals affecting negatively the agent’s performance.

We tried to delay the subgoal discovery to a point where the final policy learned
would be as good or even better that the one obtained through flat Q-learning.
This was only possible by delaying the subgoal discovery 80 episodes (fig. 5.10b),
which is a lot more than the previous 30 needed in the two-room grid-world. From
this we assume that the more complex is the environment, more difficult is for the
agent to learn an optimal policy while using options, even when the subgoals are
correctly discovered.

(a) Early SG discovery (b) Later SG discovery

Figure 5.10: Comparison of the evolution of average number of steps per
episode between Q-Learning and Options in the sixteen-room navigation task

Nevertheless, the results obtained corroborate the usefulness of the automated
subgoal discovery, that associated with dynamic option creation, makes the agent
a faster learner, reaching the goal in a more quickly way.

5.2.5 Task Transfer

We have already proven in chapter 3.3 that it is possible to transfer knowledge
using options. In that case the options created were following an optimal policy

67

Chapter 5. Option Creation

Figure 5.11: Comparison of the evolution of average number of steps per
episode between flat Q-learning, subgoal detection with options and finally using

knowledge transfer

and facilitated knowledge transfer in the referred tasks. The same experiment
was made using autonomous subgoal discovery and dynamic option creation. The
goal was moved to the middle of the upper-right room, and the options created
previously to another task were made available to the agent. In figure 5.11 we
compare the performance of the agent with and without the previously learned
options and also with conventional Q-learning.

The agent reusing the options gained a performance boost right in the first
episode, but after the tenth episode sometimes it performed worse. This could
be related to the fact that the options sometimes will take the agent to the lower
rooms, taking unnecessary steps. In the final episodes the agent obtains a better
policy because the path to reach the goal now is shorter than the previous one.
With this demonstration we have proven once again the capability of knowledge
transfer between tasks using options.

The next chapter presents our conclusions and discusses possible future steps
of this research.

68

Chapter 6

Conclusions and Future Work

"What you get by achieving your goals is not as important as what you become by
achieving your goals."

Zig Ziglar

Our dissertation was focused on autonomously finding useful subgoals while
the learning process was occurring. Several authors have approached the problem
of discovering subgoals. We investigated the work done by Simsek and Barto
(2004), Simsek et al. (2005) amongst others, which introduced the concept of
Relative Novelty and Local Graph Partitioning. In our research we tried to develop
a more simple approach that exploits the concept of discovering commonalities
across multiple paths to a solution. This has already been tackled in the work of
McGovern and Barto (2001) by using Diverse Density to identify useful subgoals.
Our method is similar to the method created by McGovern and Barto (2001) in
terms of concept, but different in terms of implementation and algorithm.

With the work developed in this dissertation we managed to introduce a novel
method for automatically identifying useful subgoals called Path Intersection.
From the experience obtained while interacting with an environment, a RL agent
can identify useful subgoals and then create a particular type of temporal abstrac-
tions (Options). In order for our intersection algorithm to work, we need to save
all the paths taken by the agent throughout learning. This allows us to make
intersections between paths belonging to the same class. The resulting regions or
states from those intersections will be identified as useful subgoals.

69

Chapter 6. Conclusions and Future Work

Several room-to-room navigation environments were used to test our subgoal
detection algorithm. In every experiment useful subgoals were successfully de-
tected. Then several simulated tasks where performed where options were dynam-
ically created to achieve subgoals. Our method of subgoal discovery associated
with options has proven that it can accelerate the agent’s learning on the current
task and facilitate transfer to related tasks.

The developed method could not be applied in every situation or task, still
more researching and experimenting must be conducted to verify the scalability of
our approach to different problems and environments. One of the main drawbacks
of our method is that it requires several successful experiences from the agent to
detect subgoals. Meaning that it first needs to reach the goal several times using
only the given primitive actions and then try to detect useful subgoals. This in
a very large and complex environment could reveal to be unfeasible or very time
consuming. Future efforts should concentrate on optimizing this approach so that
it applies to situations where the goal state cannot easily be reached using only
primitive actions.

To increase the robustness of our method, the class path attribution should be
optimized, making the process of subgoal detection less noisier. Other limitation
refers to the option creation algorithm. The policy of our option is immutable,
making the sequence of actions fixed once the option has been created. The
option is created from the existing experience of the agent at that time contained
in the previously saved paths. Adapting options to a changing environment, is
only possible if the agent creates new better options and then forgets the old
ones. An optimal solution would be for the agent to learn the policy option at
the same time that it learns the global policy. This could be achieved with the
use of pseudo-rewards and sub-state regions as the initial states of the options.
Once an option is created, it remains accessible to the agent until the end of the
task. There might be a point where the agent has more than one option referring
a single subgoal. Currently, when that occurs, the agent simply chooses the one
with a higher quality. In the long run one of these options could be negatively
affecting the agent’s performance by keeping the agent from discovering an even
more efficient path to the goal

The concept of finding useful subgoals can be extended to the point that the
agent could create abstractions that identify unwanted regions of the state space,
like holes or cliffs. Focusing in the safest and rewarding areas of the environment.

70

Chapter 6. Conclusions and Future Work

Also some experiments were conducted with a real robot, namely a LEGO Mind-
Storms NXT that learned to solve the taxi problem using conventional Q-learning.
It would be interesting to see how our method could affect the performance of the
robot, but due to time limitations that was not possible.

The results obtained confirms a different successful approach for automatic
subgoal discovery. The next step is to extend our research to real life situations
and see how it works.

71

Appendices

73

Appendix A

Simplified Class Diagram

75

Appendix A. Simplified Class Diagram

Figure A.1: Framework Simplified Class Diagram

76

Bibliography

Andrew G. Barto and Sridhar Mahadevan. Recent Advances in Hierarchical Rein-
forcement Learning. Discrete Event Dynamic Systems, 13(4):341–379, October
2003. doi: 10.1023/A:1025696116075. URL http://www.springerlink.com/

content/tl1n705w7q452066.

TG Dietterich, RH Lathrop, and T Lozano-Pérez. Solving the multiple instance
problem with axis-parallel rectangles. Artificial Intelligence, 1997. URL http:

//linkinghub.elsevier.com/retrieve/pii/S0004370296000343.

Thomas Dietterich. Abstraction, Reformulation, and Approximation, volume 1864
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2000a. ISBN 978-3-540-67839-7. doi: 10.1007/3-540-44914-0. URL
http://www.springerlink.com/content/w11kby3dh4veehdn.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ
value function decomposition. Journal of Artificial Intelligence Research, 13
(1), 2000b. ISSN 1076-9757. URL http://portal.acm.org/citation.cfm?

id=1622262.1622268.

Bernhard Hengst. Discovering Hierarchy in Reinforcement Learning with HEXQ.
Proceedings of the Nineteenth International Conference on Machine Learning,
2002. URL http://portal.acm.org/citation.cfm?id=645531.656017.

LJ Lin. Reinforcement learning for robots using neural networks. 1993. URL
http://en.scientificcommons.org/4909426.

O Maron and T Lozano-Pérez. A framework for multiple-instance learning. Ad-
vances in neural information processing, 1998. URL http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.51.7638&rep=rep1&type=pdf.

A McGovern and AG Barto. Automatic discovery of subgoals in reinforcement
learning using diverse density. MACHINE LEARNING-INTERNATIONAL,

77

http://www.springerlink.com/content/tl1n705w7q452066
http://www.springerlink.com/content/tl1n705w7q452066
http://linkinghub.elsevier.com/retrieve/pii/S0004370296000343
http://linkinghub.elsevier.com/retrieve/pii/S0004370296000343
http://www.springerlink.com/content/w11kby3dh4veehdn
http://portal.acm.org/citation.cfm?id=1622262.1622268
http://portal.acm.org/citation.cfm?id=1622262.1622268
http://portal.acm.org/citation.cfm?id=645531.656017
http://en.scientificcommons.org/4909426
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.7638&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.7638&rep=rep1&type=pdf

Bibliography

2001. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.21.2517&rep=rep1&type=pdf.

EA Mcgovern. Autonomous discovery of temporal abstractions from interaction
with an environment. 2002. URL http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.136.3079&rep=rep1&type=pdf.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of ma-
chines. Proceedings of the 1997 conference on Advances in neural information
processing systems 10, 1998. URL http://portal.acm.org/citation.cfm?

id=302528.302894.

D. Precup and R.S. Sutton. Temporal abstraction in reinforcement learning. Uni-
versity of Massachusetts Amherst, 2000. URL http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.30.849.

Özgür Simsek and Andrew G. Barto. Using relative novelty to identify useful
temporal abstractions in reinforcement learning. ACM International Conference
Proceeding Series; Vol. 69, 2004. URL http://portal.acm.org/citation.

cfm?id=1015353.

Özgür Simsek, Alicia P. Wolfe, and Andrew G. Barto. Identifying useful sub-
goals in reinforcement learning by local graph partitioning. ACM International
Conference Proceeding Series; Vol. 119, 2005. URL http://portal.acm.org/

citation.cfm?id=1102454.

SP Singh. Transfer of learning across compositions of sequential tasks. , Eighth
International Conference on Machine Learning, 1991. URL http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.32.6378&rep=rep1&type=pdf.

R. S. Sutton. Reinforcement Learning: An Introduction. MIT Press, May 1998.
ISBN 0262193981. URL http://www.amazon.co.uk/dp/0262193981.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and Semi-
MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.
Artificial Intelligence, 112:181–211, 1999. doi: 10.1.1.45.5531. URL http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.5531.

RS Sutton. Generalization in reinforcement learning: Successful examples us-
ing sparse coarse coding. Advances in neural information processing systems,

78

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.2517&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.2517&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.3079&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.3079&rep=rep1&type=pdf
http://portal.acm.org/citation.cfm?id=302528.302894
http://portal.acm.org/citation.cfm?id=302528.302894
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.849
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.849
http://portal.acm.org/citation.cfm?id=1015353
http://portal.acm.org/citation.cfm?id=1015353
http://portal.acm.org/citation.cfm?id=1102454
http://portal.acm.org/citation.cfm?id=1102454
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.6378&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.6378&rep=rep1&type=pdf
http://www.amazon.co.uk/dp/0262193981
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.5531
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.5531

Bibliography

1996. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.51.4764&rep=rep1&type=pdf.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3-4):279–292, May 1992. ISSN 0885-6125. doi: 10.1007/BF00992698. URL
http://www.springerlink.com/content/p120815501618373.

79

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.4764&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.4764&rep=rep1&type=pdf
http://www.springerlink.com/content/p120815501618373

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	List of Algorithms
	Abbreviations
	1 Introduction
	1.1 Objectives
	1.2 Scientific Contribution
	1.3 Structure of the Dissertation

	2 Background Theory
	2.1 Introduction
	2.2 Reinforcement Learning
	2.2.1 Goals and Rewards
	2.2.2 Markov Decision Process
	2.2.3 Value Functions
	2.2.4 Optimal Value Functions

	2.3 RL Algorithms
	2.3.1 Q-Learning
	2.3.2 Sarsa

	2.4 Hierarchical Reinforcement Learning
	2.4.1 Semi-Markov Decision Process

	2.5 Approaches to HRL
	2.5.1 Reinforcement Learning with Hierarchies of Machines
	2.5.2 Options
	2.5.3 An Overview of MAXQ HRL
	2.5.3.1 Task Decomposition and Reinforcement Learning
	2.5.3.2 Value Function Decomposition and Reinforcement Learning
	2.5.3.3 State Abstraction and Hierarchical Reinforcement Learning

	2.5.4 Discovering Hierarchy in Reinforcement Learning with HEXQ
	2.5.4.1 Automatic Hierarchical Decomposition
	2.5.4.2 Variable Ordering Heuristic
	2.5.4.3 Discovering Repeatable Regions
	2.5.4.4 State and Action Abstraction
	2.5.4.5 Hierarchical Value Function

	2.5.5 Automatic Discovery of Subgoals in RL using Diverse Density
	2.5.5.1 Multiple-Instance Learning
	2.5.5.2 Diverse Density (DD)
	2.5.5.3 Forming New Options
	2.5.5.4 Results

	3 Initial Experiments
	3.1 Introduction
	3.2 Software Framework
	3.3 Room-to-Room Navigation
	3.4 Taxi Problem

	4 Autonomous Subgoal Discovery
	4.1 Introduction
	4.2 State Counting
	4.3 Using Relative Novelty to Identify Useful Temporal Abstractions in RL
	4.4 Path Intersection

	5 Option Creation
	5.1 Create Options Dynamically
	5.2 Experimental Results
	5.2.1 Two-Room Grid-world
	5.2.2 Four-Room Grid-world
	5.2.3 Six-Room Grid-world
	5.2.4 Sixteen-Room Grid-world
	5.2.5 Task Transfer

	6 Conclusions and Future Work
	Appendices
	A Simplified Class Diagram
	Bibliography

