

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2023-05-17

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Correia, A. & Brito e Abreu, F. (2020). Enhancing the correctness of BPMN models. In Information
Resources Management Association (Ed.), Sustainable business: Concepts, methodologies, tools, and
applications. (pp. 373-394). Hershey: IGI Global.

Further information on publisher's website:
110.4018/978-1-5225-9615-8.ch017

Publisher's copyright statement:
This is the peer reviewed version of the following article: Correia, A. & Brito e Abreu, F. (2020).
Enhancing the correctness of BPMN models. In Information Resources Management Association
(Ed.), Sustainable business: Concepts, methodologies, tools, and applications. (pp. 373-394).
Hershey: IGI Global., which has been published in final form at https://dx.doi.org/110.4018/978-1-
5225-9615-8.ch017. This article may be used for non-commercial purposes in accordance with the
Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/110.4018/978-1-5225-9615-8.ch017

Enhancing the Correctness of BPMN Models

Anacleto Correiaa,b*, Fernando Brito e Abreua,c

aQUASAR, CITI, FCT/UNL, 2829-516 Caparica, Portugal
bIPS/EST, 2910-761 Setúbal, Portugal

cDCTI, ISCTE-IUL, 1649-026 Lisboa, Portugal

Abstract

BPMN is becoming the de facto standard for process description, and analysis, in IT and many other business domains.

BPMN supports different levels of abstraction, from high-level process models, to detailed models capable of being

executed.

Several tools now support, at least partly, OMG’s BPMN metamodel specification. However, while several other OMG’s

metamodels include a formal specification of well-formedness rules, using OCL, the BPMN metamodel specification only

includes those rules in natural language, scattered across several hundred pages of that document. Not surprisingly, we

found that all mainstream BPMN tools do not enforce those well-formedness rules, while checking the correctness of

process models.

Model correctness enforcement is important to mitigate ambiguity. The latter hampers the achievement of a shared

meaning among process stakeholders, is detrimental to process reuse and is unacceptable if we look for executable

processes. To enforce model correctness we propose to supplement the OMG BPMN metamodel with well-formedness

rules expressed as OCL invariants.

The verification of BPMN process models publicly available, against well-formedness rules appended to the BPMN

metamodel showed that a relevant percentage of those BPMN process models fail in complying with all the well-

formedness rules.

Keywords: business process modeling; BPMN; metamodel; model correctness; model checking; OCL

1. Introduction

BPMN (Business Process Modeling and Notation) (BPMN2, 2011) is one of the most recent process

modeling languages, so it is grounded on the experience of earlier ones, which ontologically makes it one of

the most complete process modeling languages available (J.C. Recker, Indulska, Rosemann, & Green, 2005)

(J.C. Recker, Rosemann, Indulska, & Green, 2009). BPMN is also nowadays the business process notation

most used among BPM practitioners (Harmon & Wolf, 2011), and the process modeling language with more

modeling tools available†. BPMN has also transformations to other notations available, such as CSP (Wong &

Gibbons, 2008) and Petri-Nets (Dijkman, Dumas, & Ouyang, 2007), which allow the use of accessible tools

for formal verification.

Version 2 of the BPMN standard, is a step forward in the alignment of process modeling with OMG's

initiative of Model Driven Architecture (MDA) (MDA, 2001). The BPMN language definition is based upon

a metamodel built with the UML (UML, 2007a) (UML, 2007b), the standard de facto for software engineering

modeling. Therefore, the BPMN standard formalization of the process modeling concepts and their

relationships is accomplished by means of a metamodel. The specification defines different types of

conformance that tool implementers can adhere to, namely regarding process modeling (elements that are part

of the orchestration in a single process, as well as elements that participate in the collaboration among

* Corresponding author. Tel.: +351-21-294-8536; fax: +351-21-294-8541.

E-mail address: accorreia@campus.fct.unl.pt.
† See a detailed list in http://www.bpmn.org/

2

processes), BPMN process execution (the operational semantics support and interpretation of activity life-

cycle), BPEL process execution (mapping of a BPMN model to WS-BPEL), and choreography modeling (a

set of elements that puts modeling emphasis in the interaction among participants).

The BPMN standard specification can be referred, for the definition and meaning of each element, as well

as for the rules about how they can be connected and for the connections meaning, but it is a too complex

technical document to be suitable to normal business modelers. Besides, that standard does not provide

guidance on how the modeling notation should be used to attain a comprehensible and expressive BPMN

model. Moreover, a great deal of definitions and rules are only informally presented in plain English. To fulfill

this gap, best modeling practices and complementary well-formedness rules for BPMN models, have been

proposed by academics (Becker, Rosemann, & Von Uthmann, 2000) (Jan Mendling, Reijers, & Cardoso,

2007) (Vanderfeesten, Reijers, Mendling, van der Aalst, & Cardoso, 2008) (J. Mendling, Reijers, & van der

Aalst, 2010) (Correia & Brito e Abreu, 2012) and practitioners (White & Miers, 2008) (Silver, 2009)

(Allweyer, 2010).

BPMN is a semantically rich modeling language. While, for instance, a UML Activity Diagram has around

20 different modeling constructs, a BPMN process model diagram (the more complex of the 3 available ones)

has around 100 different modeling constructs, including 51 event types, 8 gateway types, 7 data types, 4 types

of activities, 6 activity markers, 7 task types, 4 flow types, pools, lanes, etc. If BPMN modelers are given the

freedom to combine such a large plethora of modeling constructs in the absence of a powerful validation /

recommendation facility embedded in the used modeling tool, inconsistent and/or even invalid models are

easily produced.

A metamodel (M2) describes the abstract syntax of a language by means of meta-classes, meta-associations

and cardinality constraints. When UML is adopted for expressing metamodels, Object Constraint Language

(OCL) (OCL, 2006) clauses can be used in a declarative way, similar to 1st order predicate logic, to strengthen

metamodel syntax and semantics, namely by imposing well-formedness rules and best practices that reduce

the sources of modeling malformation.

Adding preciseness to OMG’s BPMN metamodel, by using such OCL clauses, is the first objective of the

work presented herein. The second objective is to validate BPMN models. The USE tool (UML based

Specification Environment) (Gogolla, Buttner, & Richters, 2007) was used to embed OCL clauses on the

BPMN metamodel and to instantiate it with process models.

This work contributes to enhance the correctness of produced business process models, by providing a set

of static semantic rules‡ (Aaby, 1996) and best-practices design rules for business process models. Since the

rules were embedded in the BPMN metamodel, business process models’ correctness became intrinsically

verified by the language and not ensured by rules implemented in other languages, external tools or checkers.

Some of those rules, were withdrawn from the process modeling language specification (BPMN2, 2011),

scattered by the text and tables of a document with more than five hundred pages. They were expressed in the

standard, in natural language yielding sometimes, a dubious interpretation. Other rules came from

disseminated best-practices both from academics and practitioners. The Object Constraint Language (OCL), a

declarative and predicate logic like language that supplements the UML, was used to rigorously specify and

implement the mentioned rules by means of invariants. With OCL we were able to improve the static

semantics of BPMN within the UML metalanguage context, the same that was used by OMG to derive the

BPMN metamodel.

‡
 The static semantics defines restrictions on the structure of valid texts that are hard or impossible to express in standard syntactic

formalisms, i.e., exclusively through the elements and relationships of the metamodel.

 3

The rules’ empirical validation was done with 56 process models from downloaded two sources, and

transformed for data analysis.

This paper is structured as follows. Section 2 provides an overview of the BPMN metamodel. Section 3

describes our metamodel-based approach that allows checking BPMN well-formedness rules upon BPMN

models. Some of those rules are illustrated in section 4. In section 5 we describe the empirical validation.

Results are presented in section 6. Related work is described in section 7 and finally, in section 8, some

conclusions are drawn and future work is outlined.

2. BPMN Metamodel Overview

BPMN has three notations: (i) one for modeling processes’ orchestration and collaboration; (ii) another

called “conversation”, which is a simplified version of collaboration diagrams; and (iii) a last one called

“choreography” for modeling participant interactions. The full metamodel includes 151 meta-classes and 200

meta-associations.

In this paper we will only consider the first notation, the only one already existing in BPMN version 1,

since it is, by far, the most well-known and used by practitioners. Next we will introduce its corresponding

main concepts and connections, as described in OMG’s BPMN metamodel.

The metaclass Process (Figure 1) describes a sequence of Activities carried out in an organization with

some specific objective. If a process interacts with other processes, it must participate in a Collaboration. A

collaboration groups several participants. Each Participant (aka Pool) must address only one process. Since a

participant is an InteractionNode, it can send or receive MessageFlows.

Figure 1- Process meta-class connections

Figure 1 depicts some of most instantiated meta-classes when a BPMN class diagram is drawn. A

FlowElementsContainer (which can be a Process or a SubProcess) is a container of FlowElement. A flow

element can be FlowNode, SequenceFlow or DataObject. A sequence flow link the various kind of flow node.

The metaclass ItemAwareElement is the abstract class of the several kind of meta-classes, representing

transient (DataObject), persistent (DataStore), input data or output data to/from Activity by means of

subclasses of DataAssociation.

4

Figure 2- Main meta-classes in a process orchestration

While analyzing the BPMN metamodel, we found the following issues:

• In the specification it is considered a visual shortcut that uses the non-directional data association

connected to a sequence flow (page 225). However, the metamodel only allows links among instances of

subclasses DataAssociation and Activity (see Figure 2). So, a sequence flow cannot be directly linked to a

DataObject via an instance of type DataAssociation. Tools that implement this visual shortcut, should

instantiate the same meta-classes as the regular solution (a DataOutputAssociation going out an activity to

a DataObject and DataInputAssociation coming from the same DataObject instance to other activity);

• The metamodel does not allow a Subprocess to receive/send a message flow. This constraint introduces a

huge limitation in the modularization of a process in Subprocesses when there are interactions among

participants. The elements that participate in an interaction must appear at top level in the process.

Modelers tend to ignore this constraint, therefore violating the metamodel.

3. BPMN Syntax and Semantics

The OMG BPMN metamodel describes the abstract syntax of the BPMN language by means of meta-

classes, meta-associations and cardinality constraints. We started by checking BPMN model syntax by

instantiating the BPMN metamodel in the USE validation environment (Gogolla et al., 2007). The latter

allows checking if a set of objects and their links match the corresponding model structural constraints,

namely in what regards cardinality and type conformance.

To operationalize the aforementioned objective, our first step was to transform the BPMN metamodel

definition, available in XMI format in the OMG site, in the USE concrete syntax. We did it by developing a

transformation from the BPMN metamodel and BPMN process models to the USE concrete syntax, a human-

readable textual format. The transformation (depicted in Figure 3), was attained by importing the XMI file into

a CASE tool (Enterprise Architect) repository and then using the Java API of the CASE tool, to generate a file

with the BPMN metamodel in the USE concrete syntax. At the same time, another transformation, regarding

BPMN process models, was done using the Eclipse environment. It started by converting the XMI file into an

Ecore BPMN metamodel and also by creating an Ecore USE metamodel. Using the two Ecore metamodels an

ATL (Eclipse, 2011) transformation (BPMN2USE in Figure 4) was generated to convert BPMN process

models into the equivalent USE syntax for process instances. These transformation had to match USE

language conventions, thus requiring some minor changes in meta-association names such as appending as

suffix an underscore plus the alphabetic character ‘a’ to identifiers which are reserved keywords in USE (e.g.,

 5

operations, from), or an underscore plus an alphabetic character (a, b, or c) to the target/source to the role

identifiers of associations between the same meta-classes.

Figure 3- A business process model depicting (1) the transformation of the BPMN metamodel into the

USE concrete syntax, and (2) the generation of BPMN2USE transformation

After the BPMN metamodel transformation to the USE concrete syntax has been accomplished, the file

with the transformed metamodel could be loaded by the USE environment. Figure 6 shows the USE tool

loaded with the 151 meta-classes and 200 meta-associations (see the “Log” window) of BPMN. The “Class

diagram” window shows a cluttered snapshot of the corresponding class diagram.

Figure 4 - The BPMN2USE transformation

Subsequently, BPMN models were built with the mentioned CASE tool. The depicted elements’ definitions

were exported to a file, and the ATL transformation BPMN2USE was used to get the instances definitions

equivalent in the USE concrete syntax (see lanes Enterprise Architect and Eclipse in Figure 5).

6

Figure 5- A business process model depicting the building and verification of actual BPMN process models

We were then able to instantiate the BPMN metamodel with instances corresponding to process models, as

it can be ascertained in the “Object diagram” window in Figure 6 where one can see a cluttered snapshot of

the meta-object diagram corresponding to the BPMN model extract in Figure 7. The “Command list” window

shows the commands issued to create the instances of meta-classes and meta-associations, as well as to set

their state. “Object count” and “Link count” windows display the number of instances of elements and

connections created, by type.

By this time, syntactical errors were already caught by the USE tool. Examples include typeless instances

and connections among elements not allowed in the metamodel, such as a DataInputAssociation linking two

instances of Task, an instance of MessageFlow linking an instance of Gateway to an instance of Task.

The next step to build an environment to validate BPMN process models was to enrich the BPMN

metamodel by adding well-formedness rules as OCL invariants, corresponding to the informally conveyed

rules throughout the OMG specification, complemented with best practices from the field. In Figure 5 we

depicted the business process model with all the activities taken place to enhance the BPMN with the

mentioned rules. The JUSE-JUnit lane refers the role of a Java facade§ and code generator for USE tool used

for rules debugging. After each rule was codified, added to the BPMN metamodel and syntactically validated

and (lanes Researcher and USE in Figure 5), a snipped BPMN model was generated (lanes Enterprise

Architect and Eclipse in Figure 5) to test the correctness of the rule.

We elicited 145 invariants** and implemented 610 operations, resulting in a total of 755 OCL expressions

(see log window in Figure 6), classified as follows:

• Flow Control Well-formedness Rules: rules related with the interaction among modeling elements;

• Data Flow Well-formedness Rules: rules related with sharing of data by activities;

§ Available in http://code.google.com/p/j-use/
** Covering all the rules, claimed by practitioners as essential to be followed in the BPMN process modelling, such as the one at
http://www.brsilver.com/2010/09/28/the-rules-of-bpmn/ (accessed in April, 16th 2012)

http://www.brsilver.com/2010/09/28/the-rules-of-bpmn/

 7

• Best-Practices Recommendations: optional rules related with advised usage of BPMN elements in

diagrams.

Figure 6- The USE environment loaded with BPMN metamodel and the BPMN diagram presented in Figure 7

The “Class invariants” window in Figure 6 shows the results of the model check performed upon the

BPMN model of Figure 7. One can also see that at least one well-formedness rule was broken (denoted by the

Boolean value false). By querying the broken rule we can understand its semantics: a throwing compensate

event is not allowed in a transitional sub-process.

Figure 7- A BPMN simple diagram of a transactional sub-process

8

4. Well-formedness rules

BPMN is intended for modelers with different levels of modeling expertise and technical backgrounds

(business analysts or process implementers) (BPMN2, 2011). However, the available Integrated Modeling

Environments (IME) for BPMN do not provide mechanisms for in depth model verification.

Any modeler would appreciate the chance of syntactically and semantically checking a produced model,

according to different kinds of rules, i.e., enforced by the specification or recommended by best-practices.

This need increased in the case of BPMN, given the large available number and type of constructs in the

language, which allows several complete disparate correct solutions of a specific problem. The need would

even become a requirement, if the process model to check became large or complex.

We present in this section, due to space restrictions, just a subset of the rules that we have defined. Each

rule will be presented: (1) in textual form; (2) with model snippets illustrating its correct usage and

exemplifying its violation; and (3) in a formal form using OCL syntax.

To avoid disruption in the description of these examples, we only included in this section the first order

calls to OCL functions.

None of the five commercial BPMN modeling tools, which we tried for benchmarking purposes, was able

to identify the violation of all these rules. This is a simple indicator that the BPMN tool market is still

immature regarding well-formedness rules implementation.

4.1. A start event has no incoming sequence flows

The Start Event indicates where a particular process will start. In terms of sequence flows, the start event

starts the flow of the process, and thus, should not have any incoming sequence flows (BPMN2, 2011) (page

238). Moreover, it is not allowed to have a start event without an outgoing sequence flow.

Figure 8- Correct: Start event has no incoming sequence flows (top). Wrong: Start event has an incoming sequence flow (bottom).

The well-formedness rule regarding start events can be enforced by attaching the following invariant to the

StartEvent element of the BPMN 2 metamodel.

context StartEvent

inv startEventCannotHaveInputSequenceFlow:

self.inputSequenceFlows()->isEmpty() and

self.outputSequenceFlows()->notEmpty()

4.2. If exists a join gateway after a parallel gateway, it must be a parallel gateway

This invariant states that for merging parallel sequence flows, originated from previous splitting with

parallel gateways, a merging parallel gateway should be used.

The well-formedness rule regarding parallel gateways can be enforced by attaching the following invariant

to the Gateway element of the BPMN 2 metamodel.

 9

context Gateway

inv mergingParalGatewayIsPrecededBySplitWithParalGateway:

(self.isJoin() and self.oclIsTypeOf(ParallelGateway))

implies

precedentSplitElementIsNonExclusive()

Figure 9- Correct: A parallel gateway (Gateway3) must be used to join non-exclusive sequence flows previously split from an event

based parallel gateway (Gateway1) (top). Wrong: A parallel gateway (Gateway1) precedes an exclusive gateway (Gateway3) that cannot

handle non-exclusive sequence flows (bottom).

4.3. Implicit start events require implicit end events, and vice versa

Explicit start and end events can be omitted. Implicit start (end) events require implicit end (start) events.

In this case, all activities, gateways, etc. without outgoing sequence flows have implicit end events which have

the same behavior as none end events.

Figure 10- Correct: Explicit start and end events (top). Wrong: Implicit start event and explicit end event (bottom).

The corresponding well-formedness rule can be enforced by attaching the following invariant to the

FlowElementsContainer element of the BPMN 2 metamodel.

context FlowElementsContainer

10

 inv explicitStartAndEndEventsCanBeOmitted:

 (self.countAllStartEvents()=0 implies self.countAllEndEvents()=0)

 and

 (self.countAllEndEvents()=0 implies self.countAllStartEvents()=0)

4.4. Non-interrupting start events are only allowed in event sub-processes

When using interrupting start events in an event sub-process, the occurrence of the start event results in an

interruption of the containing process. If, despite the start event occurrence, it is desirable to proceed with the

containing process, we should use non-interrupting start events. However non-interrupting start events are

only allowed inside an event sub-processes.

Figure 11- Correct: Non-interrupting start event (top) only allowed inside an event sub-process (middle). Wrong: Non-interrupting start

event (top) not allowed in an embedded sub-process (bottom).

The well-formedness rule can be enforced by attaching the following invariant to the

FlowElementsContainer element of the BPMN 2 metamodel.

context FlowElementsContainer

 inv nonInterruptingStartEventsHostedOnlyByEventSubProcess:

 (self.allStartEvents()

 ->select(isNonInterruptingEvent())->notEmpty())

 implies

 (self.oclIsKindOf(SubProcess)

 and self.oclAsType(SubProcess).isEventSubProcess())

5. Empirical Validation

An empirical study was conducted using available BPMN models stored in public repositories to

determine the conformance of these BPMN models with the BPMN specification. At the same time, we

tried to evaluate the effectiveness of rules for checking the correctness of these BPMN process models. The

convenience sample used was based upon the repositories managed by the two BPMN tool providers:

 11

BizAgi†† - a Business Process Management (BPM) solution provider, positioned in the 2010 Gartner’s

BPMS Magic Quadrant (Hill, Cantara, Kerremans, & Plummer, 2009), which made available online 19

customizable templates of Business process models;

Trisotech‡‡ - a provider of consulting services and BPM solutions, which runs an online resource

repository, the Business Process Incubator, with almost 50 BPMN business process models collected from

several sources.

The models in the sample were submitted to a transformation that allowed to instantiate OMG’s BPMN

metamodel. Then, they load into the USE environment, where the OCL evaluator returned possible rule

violations resulting from the instantiation. Figure 12 depict the activities of the business process that was

took place in this study, for data collection and analysis. They are next succinctly described:

• Each of the business process models was downloaded from the respective site: (1) BizAgi models were

in a proprietary format used by the tool (BizAgi Process Modeler v.2.3) of repository owner; (2)

business process models from Business Process Incubator were in Visio format. These models were

converted to BizAgi format since BizAgi Process Modeler can import Visio files and save them in

BizAgi own format;

• After having all the files in BizAgi format, it was possible to convert them, using a functionality

available in the BizAgi tool, to XPDL 2.2 format §§ , a standard from WfMC, which allows the

serialization of business process models and the exchange of process definitions;

• Having business process models samples serialized into XPDL format, in order to make their

verification for possible standard or best-practices violations, we needed to convert the XPDL concrete

syntax to USE concrete syntax. We made that using a transformation tool. It was derived an ATL

transformation (XPDL2USE) to convert the XPDL concrete syntax to USE concrete syntax (see

Figure 13). The used metamodels were expressed using the semantics of the Ecore metametamodel.

XPDL2USE transformation enables to generate a set of commands to instantiate a process model in the

USE environment, and therefore conforming to the USE metamodel, from a XPDL file exported from

the Bizagi Process Modeler, which serializes a BPMN process model, and conforms to the XPDL

metamodel.

• The business process models now expressed in the USE concrete syntax is verified against syntactic

and semantic static rules and invariants present in the BPMN metamodel read into the USE tool. Any

syntactic or semantic violations, as well as the value of the metrics calculated upon the model, were

outputted to a file. At the end of the models verification, the statistics were consolidated into a file that

was imported by the IBM-SPSS statistical tool for data analysis.

†† http://www.bizagi.com/

‡‡ http://www.businessprocessincubator.com/

§§ http://www.xpdl.org/

12

Figure 12- A business process model depicting the data collection of BPMN process models for empirical validation

Figure 13- The transformation XPDL2USE

 13

6. Empirical Results

Table 1 summarizes the results attained by checking the business process models publicly available. As

can be seen, only 53,6% of the models were in conformance with specification rules that are part of the BPMN

standard. If furthermore, we had more strict requirements, by imposing the conformance with best-practices

modeling rules, the percentage of models that would comply with these rules, would be drastically reduce to

only 3,6%. These results underline the effectiveness and importance of OCL rules embedded in the BPMN

metamodel to attain correctness in business process models.

Table 1- Number of Rule violations, by type, in BPMN Models

We have also noticed a cumulative distribution Pareto’s curve shape, regarding the modeling elements’

usage in the analyzed BPMN models. Hence, most of the BPMN models (80%) only made use of a small

subset (20%) of all the BPMN elements made available by the language. In Figure 14 the shaded shape

denotes the number of times a modeling element was used in the BPMN models, starting with the most used

elements closest to the origin till the scarcely used, on the right side. As can be seen, the dotted vertical line

representing 20% of the modeling elements intersects the cumulative curve of BPMN models in which the

elements appear, near the 80%. One can conclude that even models using a small subset of elements of the

BPMN specification, are highly prone to errors. So, the enforcement of well-formedness rules by BPMN tools,

would probably mitigate the problem.

Figure 14- The Pareto Curve Of Modeling Elements Usage

Furthermore, tools that implement the BPMN metamodel with embedded well-formedness rules, would

contribute to a reduced learning curve of the modeling language for users, since these tools would assist the

14

building of business process models. However, empirical studies should also be done to corroborate this

conjecture.

7. Related work

There is no general standard established for evaluating conceptual modeling (D. L. Moody, 2005), and

particularly the quality characteristics, such as correctness, of business process models. However, due to the

several BPMLs (Business Process Modeling Languages) available, there are some dispersed research works

about modeling guidelines (Becker et al., 2000) (Jan Mendling et al., 2007) (Vanderfeesten et al., 2008) (J.

Mendling et al., 2010) (Correia & Brito e Abreu, 2012), and metrics (J. Cardoso, Mendling, Neumann, &

Reijers, 2006) (Jorge Cardoso, 2007) (Vanderfeesten, Cardoso, Mendling, Reijers, & Aalst, 2007) regarding

the measurement of characteristics of business process models. Practitioners have also produced contributions,

namely by promoting business process models modeling best-practices (White & Miers, 2008) (Silver, 2009)

(Allweyer, 2010).

Meanwhile, a range of quality frameworks for conceptual modeling have been proposed in the literature,

although none of them has reached a wide acceptance, thus becoming a de facto standard. For instance, the

SEQUAL framework (Lindland, Sindre, & Solvberg, 1994) provides a sound theoretical basis for

understanding quality in conceptual modeling. SEQUAL takes the semiotic theory (Morris, 1971) point of

view, and has five components: the model, language, domain, audience participation, and perceived

knowledge. Model quality is defined by relationships between the model and the other four framework

components in terms of the following models’ qualities: syntactic (model conformance to the language),

semantic (model conformance to the domain) and pragmatic (model conformance to the audience

interpretation) (J. C. Recker, 2007). The quality framework was empirically validated regarding process

modeling (D. Moody, Sindre, Brasethvik, & Sølvberg, 2003). The results collected raised questions about

reliability of the framework to be applied in practice in its current form. Based upon the initial approach, an

enhancement regarding process modeling was proposed (Krogstie, Sindre, & Jørgensen, 2006).

Although the framework addresses quality in a systematic and comprehensive way, the drawback pointed

out is to be too abstract to be used by practitioners (Shanks & Darke, 1997).

Model checking concerning business process models correctness has been also a matter of intense research.

Some of the work has been done on the verification using modeling languages with formal semantics (e.g.

Petri-Nets, graph-based). Due to the mathematical ground of those languages, they allow several formal

verification methods, such as the verification of different classes of workflow definitions (W. van Der Aalst,

2000). However, for BPMLs, which do not have a formal semantics and allow only business processes

informal representation, a different approach to verification was required. Since business process models have

to be translated into a specification to be executed by a machine, a general consensus was that business

process models had also to be formalized. Therefore, approaches for checking business process models for

semantic errors came to light, aiming business process models mapping to languages with formal semantics,

such as the checking of EPC diagrams, using transformations to Petri-Nets, proposed in (Langner, Schneider,

& Wehler, 1998) (W. M. P. van der Aalst, 1999) (Dehnert & Van Der Aalst, 2004) (van Dongen, van der

Aalst, & Verbeek, 2005) (J. Mendling, 2007). A modeling tool that applies graph-based rules for identifying

problems in EPC business process models is provided by (Kühne, Kern, Gruhn, & Laue, 2010).

There are other approaches targeting error checking for business process models expressed in BPMN. In

(Wong & Gibbons, 2008) business process models are formally analyzed using Z schemas for expressing the

abstract syntax of a subset of the BPML and the CSP for expressing behavioral semantics. The approach in (E.

Börger & Sörensen, 2011) uses a rule system, the Abstract State Machines (ASM) (Egon Börger & Thalheim,

2008), which can be viewed as a rigorous form of pseudo-code that follows the inheritance steps in the BPML

class hierarchy.

The abstract model of the dynamic semantics of the language is attained, by inserting rules as behavioral

elements at appropriate places in the class hierarchy, defining therefore, the language’s execution semantics.

 15

The enhanced BPML model can be used to check the conformance of business process models. Another

approach is an ontology defined in (Natschläger, 2011) (BPMN 2.0 Ontology) that formally represents the

BPMN specification. The ontology can be used as a knowledge base and as a syntax checker to validate

Business process models. A common property of ontologies and the Web Ontology Language (OWL)

semantics is the so-called open-world assumption (Horrocks, Patel-Schneider, & Van Harmelen, 2003), a form

of partial description or under-specification as a means of abstraction, i.e., from the absence of statements, a

deductive reasoner must not infer that the statement is false.

The USE validation tool has been applied to models from several domains. In (Richters & Gogolla, 2000)

for instance, it was applied to the Core package of the UML 1.3 metamodel and its well-formedness rules.

We highlight the following main limitations of above mentioned proposals regarding business process

models error checking:

1. Most of the verification methods rules are only applicable, after business process models are at valid

state to be mapped from a specific BPML into the language and environment of the model checker.

2. The approaches presented, are technically demanding w.r.t. the formalisms, which are assumed to be

known by business process models modelers (business process analysts or implementers, from whom

one can hardly expect to be acquaint with above mentioned formalisms), otherwise a blended

environment using a BPML tool and a transformation tool must be made available.

3. The ontological approach proposed uses an opposite approach of the closed-world assumption (Reiter,

1978) used in metamodelling through OCL invariants, which advocates that what is not currently known

to be true, is false, and therefore assumes that the model has complete information to restrict arbitrary

extensions of the system that could lead to inconsistencies.

So, our approach to get over the mentioned limitations was to supplement the standard process modeling

language with rules that could enhance business process models. Being an integral part of the BPMN, the rules

could be implemented by the same tools that already support the modeling language. Therefore modelers

would have in the business process models process design, real-time notification, in addition to syntax error

warnings, already available from tools, notices about static semantic violations (e.g. a throw event without a

corresponding catch event; a mismatch between flows from a split parallel gateway and the incomings on the

corresponding joint element, a possible cause of a deadlock situation), or even violations to the organization’s

established best-practices regarding business process models design. The rules appended to the metamodel

could greatly enhance the quality of business process models resulting from the design phase of business

process’s life cycle.

8. Conclusions and future work

This paper provides a brief overview of our approach to add preciseness to OMG’s BPMN metamodel

specification, by formalizing as OCL invariants the well-formedness rules described informally (in natural

language) within that specification. Due to space constraints, only a few rules were presented herein, along

with their (incomplete) specification and some model snippets illustrating correct and incorrect situations. We

have also briefly described how we have operationalized our approach by developing several transformations

to allow checking rules conformance in BPMN models available from public repositories. Our metamodel-

based checking facility is developed in Java and ATL. To make it more robust, we also used a JUnit test-suite

where each test case checks the validity of a model snippet, such as those presented in this paper.

Using the same metamodel-based approach, we formalized a considerable set of best practices for BPMN

modelers, based on published recommendations produced by BPMN experts in tutoring books.

We analyzed a considerable number of BPMN models from public repositories, and conclude for the

existence of a relevant percentage of process models violating the specification rules, and even more, well

accepted best-practices rules.

16

We plan in the future to search empirical evidence to allow corroborate (or refute) the occurrence of

recurrent BPMN model malformations (aka process model anti-patterns). Along with it, we will analyze if

rules violation somehow cluster. In other words, is there a high probability that breaking a modeling rule can

be used as a predictor for other violations? If such is the case, then we could use that information as warnings

in a recommendation system for BPMN modelers that would act by preventing modeling errors, while

speeding up the learning curve.

As future work we also intend to build an open source test-driven tool that allows, for BPMN models,

checking the compliance of well-formedness and best-practices rules, as well as provide the justification for

each non-compliance found.

Acknowledgements

 The authors would like to acknowledge CITI - PEst - OE/EEI/UI0527/2011, Centro de Informática e

Tecnologias da Informação (CITI/FCT/UNL) - 2011-2012) - for the financial support for this work, and the

anonymous reviewers for their valuable feedback.

References

Aaby, A. A. (1996). Introduction to Programming Languages. Retrieved 2012-01-12, from

http://www.emu.edu.tr/aelci/Courses/D-318/D-318-Files/plbook/

Allweyer, T. (2010). BPMN 2.0. Norderstedt: Herstellung and Verlag: Books on Demand GmbH.

Becker, J., Rosemann, M., & Von Uthmann, C. (2000). Guidelines of business process modeling. Business

Process Management, 241-262.

Börger, E., & Sörensen, O. (2011). BPMN core modeling concepts: Inheritance-based execution semantics.

Handbook of Conceptual Modeling, 287-332.

Börger, E., & Thalheim, B. (2008). A Method for Verifiable and Validatable Business Process Modeling

Advances in Software Engineering. In E. Börger & A. Cisternino (Eds.), (Vol. 5316, pp. 59-115): Springer

Berlin / Heidelberg.

BPMN2, OMG. (2011). Business Process Model and Notation (BPMN)

Cardoso, J. (2007). Business process quality metrics: log-based complexity of workflow patterns. Paper

presented at the Proceedings of the 2007 OTM Confederated international conference on On the

move to meaningful internet systems: CoopIS, DOA, ODBASE, GADA, and IS - Volume Part I,

Vilamoura, Portugal.

Cardoso, J., Mendling, J., Neumann, G., & Reijers, H. A. (2006). A Discourse on Complexity of Process

Models. Paper presented at the BPM 2006 Workshops.

Correia, A., & Brito e Abreu, F. (2012, 3-5 October 2012). Adding preciseness to BPMN Models. Paper

presented at the 4th Conference on ENTERprise Information Systems (CENTERIS’2012), Algarve,

Portugal.

Dehnert, J., & Van Der Aalst, W. M. P. (2004). Bridging the gap between business models and workflow

specifications. International Journal of Cooperative Information Systems, 13(03), 289-332.

Dijkman, R. M., Dumas, M., & Ouyang, C. (2007). Formal semantics and analysis of BPMN process models.

Eclipse. (2011, 2011-06-23). Atlas Transformation Language (ATL) v3.2.0. 2012-01-31, from

http://www.eclipse.org/atl/

Gogolla, M., Buttner, F., & Richters, M. (2007). USE: A UML-based specification environment for validating

UML and OCL. Science of Computer Programming, 69:27-34.

Harmon, P., & Wolf, C. (2011). Business Process Modeling Survey Business Process Trends (pp. 36):

BPTrends.

http://www.emu.edu.tr/aelci/Courses/D-318/D-318-Files/plbook/
http://www.eclipse.org/atl/

 17

Hill, J. B., Cantara, M., Kerremans, M., & Plummer, D. C. (2009). Magic quadrant for business process

management suites. Gartner Research, 164485.

Horrocks, I., Patel-Schneider, P. F., & Van Harmelen, F. (2003). From SHIQ and RDF to OWL: The making

of a web ontology language. Web semantics: science, services and agents on the World Wide Web,

1(1), 7-26.

Krogstie, J., Sindre, G., & Jørgensen, H. (2006). Process models representing knowledge for action: a revised

quality framework. European Journal of Information Systems, 15(1), 91-102.

Kühne, S., Kern, H., Gruhn, V., & Laue, R. (2010). Business process modeling with continuous validation.

Journal of Software Maintenance and Evolution: Research and Practice, 22(6‐7), 547-566.

Langner, P., Schneider, C., & Wehler, J. (1998). Petri Net Based Certification of Event-Driven Process

Chains

Application and Theory of Petri Nets 1998. In J. Desel & M. Silva (Eds.), (Vol. 1420, pp. 286-305): Springer

Berlin / Heidelberg.

Lindland, O. I., Sindre, G., & Solvberg, A. (1994). Understanding Quality in Conceptual Modeling. IEEE

Softw., 11(2), 42-49. doi: 10.1109/52.268955

MDA, OMG. (2001). Model Driven Architecture (MDA).

Mendling, J. (2007). Detection and Prediction of Errors in EPC Business Process Models. (PhD), Vienna

University of Economics and Business Administration.

Mendling, J., Reijers, H., & Cardoso, J. (2007). What Makes Process Models Understandable?

Business Process Management. In G. Alonso, P. Dadam & M. Rosemann (Eds.), (Vol. 4714, pp. 48-63):

Springer Berlin / Heidelberg.

Mendling, J., Reijers, H. A., & van der Aalst, W. M. P. (2010). Seven process modeling guidelines (7PMG).

Information and Software Technology, 52(2), 127-136.

Moody, D., Sindre, G., Brasethvik, T., & Sølvberg, A. (2003). Evaluating the quality of process models:

Empirical testing of a quality framework. Conceptual Modeling—ER 2002, 380-396.

Moody, D. L. (2005). Theoretical and practical issues in evaluating the quality of conceptual models: current

state and future directions. Data & Knowledge Engineering, 55(3), 243-276.

Morris, C. W. (1971). Writings on the General Theory of Signs. The Hague, The Netherlands: Mouton de

Gruyter.

Natschläger, C. (2011). Towards a BPMN 2.0 Ontology. Business Process Model and Notation, 1-15.

OCL, OMG- Object Management Group. (2006). OCL - Object Constraint Language Version 2.0.

Recker, J. C. (2007). Understanding Quality in Process Modelling: towards a holistic perspective.

Australasian Journal of Information Systems, 14(2), 43-63.

Recker, J. C., Indulska, M., Rosemann, M., & Green, P. (2005). Do process modelling techniques get better?

A comparative ontological analysis of BPMN.

Recker, J. C., Rosemann, M., Indulska, M., & Green, P. (2009). Business process modeling: a comparative

analysis. Journal of the Association for Information Systems, 10(4), 333-363.

Reiter, R. (1978). On closed world data bases. New York: Plenum Press.

Richters, M., & Gogolla, M. (2000). Validating UML Models and OCL Constraints.

Shanks, G., & Darke, P. (1997). Quality in Conceptual Modelling: Linking Theory and Practice. Paper

presented at the PACIS 1997.

Silver, B. (2009). BPMN Method and Style (1st ed.). Aptos: Cody-Cassidy Press.

UML. (2007a). UML-Unified Modeling Language (OMG UML), Infrastructure, V2.1.2. In O. M. Group (Ed.):

OMG-Object Management Group.

UML. (2007b). UML-Unified Modeling Language (OMG UML), Superstructure, V2.1.2. In O. M. Group

(Ed.): OMG-Object Management Group.

van Der Aalst, W. (2000). Workflow verification: Finding control-flow errors using petri-net-based

techniques. Business Process Management, 19-128.

van der Aalst, W. M. P. (1999). Formalization and verification of event-driven process chains. Information

and Software Technology, 41(10), 639-650. doi: 10.1016/s0950-5849(99)00016-6

18

van Dongen, B., van der Aalst, W., & Verbeek, H. (2005). Verification of EPCs: Using reduction rules and

Petri nets. Paper presented at the Advanced Information Systems Engineering.

Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H. A., & Aalst, W. v. d. (2007). Quality Metrics for

Business Process Models In L. Point (Ed.), Workflow Handbook 2007 (pp. 179-190). FL, USA:

Future Strategies Inc.

Vanderfeesten, I., Reijers, H., Mendling, J., van der Aalst, W., & Cardoso, J. (2008). On a Quest for Good

Process Models: The Cross-Connectivity Metric

Advanced Information Systems Engineering. In Z. Bellahsène & M. Léonard (Eds.), (Vol. 5074, pp. 480-494):

Springer Berlin / Heidelberg.

White, S. A., & Miers, D. (2008). BPMN Modeling and Reference Guide: Understanding and Using BPMN.

Lighthouse Point, Florida, USA: Future Strategies, Inc.

Wong, P., & Gibbons, J. (2008). A process semantics for BPMN. Formal Methods and Software Engineering,

355-374.

