
Received November 13, 2021, accepted November 25, 2021, date of publication December 10, 2021,
date of current version December 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3134796

Hybrid Matched Filter Detection Spectrum
Sensing
ANTÓNIO BRITO 1, (Student Member, IEEE), PEDRO SEBASTIÃO1, (Member, IEEE),
AND FERNANDO J. VELEZ 2, (Senior Member, IEEE)
1Escola de Tecnologias e Arquitetura, Instituto de Telecomunicações and Instituto Superior de Ciências do Trabalho e da Empresa, 1649-026 Lisboa, Portugal
2DEM, Faculdade de Engenharia, Instituto de Telecomunicações and Universidade da Beira Interior, 6201-001 Covilhã, Portugal

Corresponding author: António Brito (ajbbo@iscte-iul.pt)

This work was supported by Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior (FCT/MCTES)
through National Funds under Project UIDB/50008/2020, and in part by the CONQUEST under Project CMU/ECE/0030/2017.

ABSTRACT The radio frequency spectrum is getting more congested day by day due to the growth of
wireless devices, applications, and the arrival of fifth generation (5G) mobile communications. This happens
because the radio spectrum is a natural resource that has a restricted existence. Access to all devices can be
granted, but in a more efficient way. To resolve the issue, cognitive radio technology has come out as a way,
because it is possible to sense the radio spectrum in the neighboring. Spectrum sensing has been recognized
as an important technology, in cognitive radio networks, to allow secondary users (SUs) to detect spectrum
holes and opportunistically access primary licensed spectrum band without harmful interference. This paper
considers the Energy Detection (ED) and Matched Filter Detection (MFD) spectrum sensing techniques as
the baseline for a study where the so-called Hybrid Matched Filter Detection (Hybrid MFD) was proposed.
Apart from an analytical approach, Monte Carlo simulations have been performed in MATLAB. These
simulations aimed at understanding how the variation of parameters like the probability of false alarm,
the signal-to-noise ratio (SNR) and the number of samples, can affect the probability of miss-detection.
Simulation results show that i) higher probability of miss-detection is achieved for the ED spectrum sensing
technique when compared to the MFD and Hybrid MFD techniques; ii) More importantly, the proposed
Hybrid MFD technique outperforms MFD in terms of the ability to detect the presence of a primary user in
licensed spectrum, for a probability of false alarm slightly lower than 0.5, low number of samples and low
signal-to-noise ratio.

INDEX TERMS Radio frequency spectrum, 5G, cognitive radio, spectrum sensing, hybrid matched filter
detection.

I. INTRODUCTION
A spectrum survey performed by the U.S. Federal Com-
munication Commission (FCC) has stated that the licensed
spectrum is not utilized correctly for numerous frequencies,
time, and geographical places [1]. The available radio spec-
trum is a natural resource that has a restricted existence and
is getting congested daily due to the increase in wireless
devices and applications [2]. The year 2021 will connect over
35.85 billion wireless devices, all of which are likely going
to demand access to the internet [3]. Allocating frequency
channels to specific users with licenses for particular wireless
technologies, is the policy that has been established regarding
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the allocation of radio spectrum. Licensed users have rights
to send or receive data from those portions of the spectrum,
while other are restricted even though those portions are
unoccupied [4]. The static management of the radio spectrum
is no longer effective enough to grant access to all these
devices [5]. Recent studies reported that the spectrum use
in the US under the fixed spectrum allocations (FSA) policy
ranges anywhere from 15 percent to 85 percent [6]. Measure-
ments made by the FCC also indicate that a wide range of
radio spectrum is rarely used most of the time, while other
frequency bands are heavily utilized, as shown in Figure 1.
The portions of spectrum assigned to primary users (PUs)
but not currently being utilized are termed white spaces or
spectrum holes. In Figure 2, a spectrum hole is a frequency
band allocated to a primary user that is not always used at
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FIGURE 1. Radio spectrum occupancy, adapted from [4] with permission.

FIGURE 2. Dynamic spectrum holes, adapted from [11], with permission.

a predefined area or time. The radio spectrum is then used
wastefully [6], [7].

Restricted spectrum usage, spectrum depletion and inef-
ficient use are the main drawbacks for the underutilized
wireless spectrum [8]. Consequently, urgent action is required
to improve access to the radio spectrum and achieve high
network capacity. A safer way to solve the spectrum short-
age problem is to dynamically handle it without interfering
with the PU signals by sharing unoccupied channels with
unlicensed users, called secondary users (SUs). In order to
resolve the problems of spectrum allocation, opportunistic
spectrum access (OSA), also referred to as dynamic spectrum
access (DSA), has been implemented. Unlike FSA, the DSA
allows spectrum sharing between licensed and non-licensed
users, in an opportunistic way, where the spectrum is split
into several frequency bands assigned to one or more users,
as stated in [9], [10].

In recent years, plenty of research has been done on the
effective use of those spectrum bands which are either empty
or are not used at full capacities. Several solutions have
been suggested to advance the use of the OSA, including
cognitive radio [12], [13]. CR is an adaptive and intelligent
software-based technology that detects unused frequency
bands and adapts the radio working parameters to communi-
cate in these bands [14]. In the neighboring area, a cognitive
radio device can fell the radio spectrum and opt to use the

free channels from the licensed primary spectrum. Finding
a spectrum hole through intelligent means is the primary
goal of cognitive radio [15]. It enables the SUs to use the
licensed radio spectrum of PU if is not being used by the
PU [1] [4]. The spectrum sensing has been recognized as an
important technology, in cognitive radio networks, to facili-
tate the detection of spectrum holes by secondary users (SUs)
and opportunistically access primary licensed spectrum band
without harmful interference. The wireless network will be
vastly interconnected providing high coverage quality and
high data rates.

Authors from [16] presented the performance analysis of
energy detection scheme of spectrum sensing. This work also
illustrates the impact of communication parameters such as
signal-to-noise ratio (SNR), number of samples and noise
uncertainty on the energy detector’s probability of detection
and false alarm. The underlying simulations were performed
in MATLAB.

Authors from [17] considered the detection of the pres-
ence/ absence of signal in environments with uncertain and
low SNR. A simple mathematical model was suggested for
the uncertainty in the noise and fading processes that dis-
tinguishes which aspects contribute to the detection of SNR
walls for different levels of signal information to be detected.

Authors from [18] comprehensively compared the per-
formance of energy and matched filter detection spectrum
sensing techniques. Simulation results plotting the operat-
ing characteristics of the receiver corroborate the theoretical
results and enabled to visually compare the performance.

In [19], the matched filter method is implemented depend-
ing on various parameters. The authors discovered that the
probability of detection increased when the SNR increases.
Also, when the number of samples increases the probability
of detection increases and SNR gets improved.

Authors from [20] propose an approach to increase the effi-
ciency of the sensing detection by considering an estimated
and dynamic sensing threshold. It simulates thematched filter
method with a dynamic threshold and contrasts its perfor-
mance with other existing techniques.

After analyzing the different techniques available in the
literature, it is possible to know the limitations of each tech-
nique. The Energy Detection has a poor performance for
low SNR while the Matched Filter Detection requires prior
information of the primary user. In this paper, we propose
a technique that, contrarily to Energy Detection, has good
performance for low SNR, and that has better or equal per-
formance compared to the Matched Filter Detection.

This paper describes the development, analysis, and eval-
uation through a set of simulations of spectrum sensing
applied to CR by using MATLAB. It aims at understanding
how the variation of some parameters, like the probability
of false alarm, the signal-to-noise ratio, and the number of
samples, can affect the probability of miss-detection. Well-
known spectrum sensing techniques, like Energy Detection
and Matched Filter Detection, are first considered. Then,
a new Hybrid Matched Filter Detection spectrum sensing
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FIGURE 3. Cognitive radio cycle, adapted from [21].

technique is explored through MATLAB simulation, and its
efficiency is compared with Energy Detection and Matched
Filter Detection. The proposed technique is based on the
Matched Filter Detection and is hybrid because it has two
different behaviors: one when the probability of false alarm
is lower than 0.5 and another when it is larger or equal to 0.5.

The remaining of the paper is organized as follows.
Section II discusses the background of the spectrum sensing
techniques addressed in cognitive radio and the state-of-the
art mathematical models for existing spectrum sensing tech-
niques. Section III explores the mathematical model for
the proposed Hybrid Matched Filter Detection. Section IV
presents the simulations and results for the probability of
miss-detection for the three considered techniques. Section V
compares results for the probability of miss-detection
between the proposed spectrum sensing technique and the
previous existing ones. Conclusions are drawn in Section VI,
where topics for further research are discussed as well.

II. BACKGROUND
A. COGNITIVE RADIO
The entire functioning of cognitive radio can be clarified
through the cognitive radio cycle, as shown in Figure 3. In the
cognitive radio cycle, a cognitive radio monitors spectrum
bands collect their information and then detects spectrum
spaces. The three main tasks of the cognitive radio cycle are
the following ones [15]:
• Radio Scene Analysis or Spectrum Sensing, which takes
care of the calculation of the interference temperature
and also detects spectrum holes.

• Channel Identification or Spectrum Analysis, that is
responsible for the estimation channel state information.

• Spectrum Decision has the objective of transmitting the
control of power and managing the dynamic spectrum.

B. ENERGY AND MATCHED FILTER DETECTION
One of the main issues in cognitive radio is the capacity
of unlicensed users (SUs) to sense the licensed users (PUs)
presence in the licensed spectrum, to prevent interference
and to leave the frequency band as soon as possible when
the corresponding primary radio appears [22], the so-called
spectrum sensing.

There are three main spectrum sensing techniques: non-
cooperative sensing, cooperative sensing, and interference-

FIGURE 4. Energy detection model for spectrum sensing, adapted
from [23].

FIGURE 5. Matched filter detection for spectrum sensing, adapted
from [23].

based sensing. When the SU pursues its goals and does not
take into detail the actions of other SUs, the non-cooperative
technique is applied [23]. A cooperative technique is entirely
opposite to non-cooperative because the SUs work together
and collaborate with each other to take account of the
goals of each user to make the final common decision [23].
Interference-based sensing enables a SU to use a licensed
spectrum used by a PU, if the SU interference does
not degrade the primary service quality below a tolerable
limit [24]. In this paper, the focus is on non-cooperative
sensing techniques, like Energy Detection [25] and Matched
Filter Detection. The proposed spectrum sensing technique
will also be a non-cooperative one.

1) ENERGY DETECTION
also known as radiometry or periodogram, is one of the most
common and easiest techniques of spectrum sensing because
of its low computational and simplicity [26]. It does not
require any prior information of the PU’s signal. The energy
of the sensed signal is compared with the threshold to confirm
whether the spectrum can be used by the secondary user [27].
The energy detector decision statistic can be determined from
the squared magnitude of the Fast Fourier Transform (FFT)
averaged over N samples of the SU received signal, as shown
in Figure 4 [28].

2) MATCHED FILTER DETECTION
is based on a linear filter that specializes in reducing the
noise component and maximizing the signal component [29].
However, this technique requires prior knowledge of the PU,
which consumes more power and has high complexity [30].
The SU receives the signal and the pilot stream by assuming
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that the PU transmitters sends a pilot stream simultaneously
with the data. As shown in Figure 5, the decision statistic
of the matched filter detector can be determined from the
multiplication of the PU signal and the SU received sig-
nal averaged over N samples of the received signal by the
SU [31]. The decision statistic is then compared with the
threshold to confirm if it is possible to allow the secondary
user to use the spectrum.

C. MATHEMATICAL MODEL FOR EXISTING SPECTRUM
SENSING TECHNIQUES
Spectrum sensing algorithm efficiency depends on various
parameters such as the signal-to-noise ratio, number of sam-
ples and noise uncertainty. The aim of spectrum sensing is to
make a decision between two hypotheses (choose H0 or H1)
based on the received signal [16]:

H0 : y (n) = w (n) , (1)

H1 : y (n) = x (n)+ w (n) , (2)

where n = 1, . . . ,N is the samples index of the SU received
signal, y(n) is the nth sample of the signal received by the
secondary user that might contain the primary user signal,
w(n) is the additive white Gaussian noise (AWGN) and x(n)
is the transmitted signal. H0 denotes the primary user is
absent in the band, whileH1 denotes the primary user’s signal
presence.

Spectrum sensing determines the presence or absence of
PU based on the hypothesis problem (by choosingH0 orH1).
By comparing the detection statistic (T ) with a predetermined
threshold, the decision on the occupancy of the spectrum
is calculated. To evaluate the performance of the detector,
several metrics, inspired by [32], were used, including the
probability of false alarm, Pfa, and the probability of detec-
tion, Pd .
Pfa is the probability that H1 is determined by the test,

while it is actually H0 given by

Pfa = Pr (T > λ |H0) . (3)

Pd is the probability of H1 being correctly determined by the
test, given by

Pd = Pr (T > λ |H1) . (4)

The probability of false alarm is the probability that the
sensing algorithm decides the presence of PUs when they are
absent. For a greater chance for the SUs to use the sensed
spectrum when it is available, low probability of false alarm
should be aimed. Hence, for the secondary network, the
feasible throughput is greater.

The probability of detection is the time fraction in which
the sensing algorithm decides correctly the presence of the
PU (licensed). The performance of the system depends on
the PU. If the sensing time is increased, and the limit is
determined that SU cannot interfere during most of time, then
the PU will make better use of its spectrum. The PUs will
make best use of their priority, because the more spectrum

sensing is used, the more PUs will be detected and lower the
interference will be.

A good sensing algorithm is one which achieves a high
probability of detection and a low probability of false
alarm [15].

Determining the threshold that will be used to compare
with the probabilities is another difficult task. Therefore, the-
oretical analysis and numerical calculations must be carried
out according to practical conditions.

The dilemma of binary hypothesis testing is the core of
spectrum sensing techniques. The theoretical formulation is
as follows [17]:

y (n) =

{
w (n) under H0,

x (n)+ w (n) under H1,
(5)

where y(n), w(n) and x(n) are the received signals at CR
nodes, white noise samples and transmitted signals at primary
nodes, respectively.

1) ENERGY DETECTION
The detection statistic of energy detector [32] can be defined
as the average energy of N observed samples, y(n), given by

T =
1
N

∑N

n=1
|y (n)|2 . (6)

The average signal-to-noise ratio is defined in [17] as

SNR =
P
σ 2
n
, (7)

where the received signal power, described in [17], is given
by

P = lim
N→∞

1
N

∑N

n=1
|x (n)|2 , (8)

and σ 2
n is the noise variance.

The probability of false alarm [17] is given by

Pfa = Q

 λ− σ 2
n√

2σ 2
n
/
N

 . (9)

The probability of detection [17] is defined as

Pd = Q

 λ−
(
P+ σ 2

n
)√

2
(
P+ σ 2

n
)2/

N

 . (10)

The equations for the thresholds for the probability of false
alarm are obtained by manipulating (9) and (10)

λ = Q−1
(
Pfa
)
·

√
2σ 4

n
/
N + σ

2
n . (11)

λ = Q−1 (Pd ) ·

√
2
(
P+ σ 2

n
)2/

N + P+ σ
2
n . (12)
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From equations (7), (11) and (12), one can obtain the rela-
tionship between N , SNR, Pfa and Pd

Pd = Q

Q−1 (Pfa) ·
√
2/
N − SNR√

2/
N · (SNR+ 1)

 . (13)

Besides, the probability of miss-detection, described in [33],
is given by

Pmd = 1− Pd . (14)

2) MATCHED FILTER DETECTION
Matched filter is the best filter for projecting the received
signal in the direction of the pilot, xp [10]. The detection
statistic [18] are given by

T =
1
N

∑
N
y (n) ∗ xp (n). (15)

According to the Neyman-Pearson criteria [7],Pd andPfa are,
described in [20], expressed as

Pd = Q

(
λ− E√
Eσ 2

n

)
, (16)

Pfa = Q

(
λ√
Eσ 2

n

)
, (17)

where

E =
∑N

n=1
x (n)2. (18)

respectively [18].
By manipulating (16) and (17), one obtains the equations

for the thresholds, as follows

λ = Q−1 (Pd ) ·
√
Eσ 2

n + E . (19)

λ = Q−1
(
Pfa
)
·

√
Eσ 2

n . (20)

From (19), (20) one obtains the relationship between E , Pfa
and Pd

Pd = Q

(
Q−1

(
Pfa
)
−

√
E
σ 2
n

)
. (21)

The equation for the probability of miss-detection for this
technique is also (14).

III. SYSTEM MODEL FOR THE HYBRID MATCHED FILTER
DETECTION TECHNIQUE
The block diagram of the proposed technique, the so-called
Hybrid Matched Filter Detection (Hybrid MFD or HMFD)
technique, is shown in Figure 6. This technique is based on
the existing Matched Filter Detection and is combined with
the doubleMFD. As it is hybrid it has two different behaviors,
one when the probability of false alarm is lower than 0.5 and
another when it is larger or equal to 0.5.

Whenever the probability of false alarm is lower than
0.5, the second part of the detector (from Figure 6), which

FIGURE 6. Proposed model for the hybrid matched filter detection
technique.

corresponds to a double matched filter detector, is used.
This double matched filter detector is a new technique and
basically corresponds on the multiplications of two normal
matched filter detector, where the detection statistic consists
of a multiplication of two detection statistic and the threshold
is the multiplication of two threshold from a normal matched
filter detector. When the probability of false alarm is larger
than or equal to 0.5, the first detector, i.e., a normal matched
filter detector, is used.

The detection statistic of the detector corresponding to
Pfa < 0.5 is given as follows:

T =
1
N

∑
N
y (n) ∗ xp (n) ·

1
N

∑
N
y (n) ∗ xp (n). (22)

The detection statistic of the detector corresponding to
Pfa >= 0.5 is given by (15). The threshold of the detector
for corresponding to Pfa < 0.5, is given by

λ = (Q−1
(
Pfa
)
·

√
Eσ 2

n )
2
. (23)

The threshold of the detector corresponding to Pfa >= 0.5 is
given by (20).

Figure 7 presents curves from the results of the simulations
for the matched filter detector (orange curve) and double
matched filter detector (blue curve) for values of the prob-
ability of the false alarm varying from 0 to 1, using the same
samples and SNR.

In Figure 7, for values of the probability of false alarm
lower than 0.5, the double matched filter detector achieves
better performance compared to a matched filter detector. For
values of the probability of false alarm larger than or equal
to 0.5, the probability of miss-detection starts to increase for
the double matched filter detector, up to a point where the
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FIGURE 7. Probability of miss-detection for the simulated matched filter
and double matched filter detection.

FIGURE 8. Algorithm used to calculate the probability of miss-detection.

matched filter detector has better performance compared to
the double matched filter detector.

The probability of miss-detection is computed by using the
algorithm described in the flowchart of Figure 8, where Nt is
the number of Monte-Carlo simulations, Nd is the number of
iterations used for the calculation of the probability of miss-
detection, andPfa is the probability of false alarm, in the range
from zero to one.

The algorithm to compute the probability of miss-detection
is very similar for the ED and MFD. First, we must set the
number of samples (N ), the signal-to-noise ratio (SNR) and
the number of Monte-Carlo simulations, Nt . Then, there will
be a for cycle that will go through the values of the proba-
bilities of false alarm, from 0 to 1, with steps of 0.01. Inside
this for cycle there will be another for cycle that will start in
zero and go up to the number of Monte-Carlo simulations.
A new variable, i, is going to be used to see know many
simulationsMonte-Carlo have been done and howmany there
are left. For each Monte-Carlo simulation, the additive white
Gaussian noise, w, and transmitted signal, x, are randomly
generated by using the randn function with mean equal to
zero. By considering this approach, signals may have positive
or negative values. The signal received by the secondary user
is y, according to (5).

The detection statistic is calculated as follows:

• for the Energy Detection, equation (6) is used, and the
result for the detection statistic will always be positive,

• for the Matched Filter Detection, equation (15) is used,
and the result can be a positive or a negative number.

The probability of false threshold for the Energy Detection
is calculated by considering (11) while equation (20) is used
for the Matched Filter Detection. On the one hand, accord-
ing to (11), this threshold is always positive for the Energy
Detection because the value in the second portion of the
equation is always larger than for the first one, and they are
summed. On the other hand, the threshold for the Matched
Filter Detection may be a positive or a negative number,
or even also null. This occurrence is justified by the behavior
of the Q−1 function, which varies as follows:
• it is positive for a Pfa < 0.5;
• it is negative for a Pfa > 0.5;
• it is zero for a Pfa = 0.5.

One needs to verify if the detection statistic is larger than the
threshold. If the detection statistic is lower than the threshold,
one checks if the variable i is equal to Nt . This condition
is met when all the Monte-Carlo simulations have already
been concluded for each value of the probability of false
alarm. If the variable i is equal to the Nt, the probability of
miss-detection is given by 1 – Nd/Nt . Then the simulation is
over for this probability of false alarm. If the variable i and
Nt are not the same, the variable i will be incremented and
on will perform another Monte-Carlo simulation by starting
to randomly generate the signals. If the detection statistic
is larger than the threshold, we will increment the variable
Nd . Then, one has to verify if the variable i, is equal to
Nt , like it was described before. Finally, one verifies if all
Monte-Carlo simulations have been concluded for the current
value of the probability of false alarm. If this is true, then
one is able to calculate the probability of miss-detection for
the current value of the probability of false alarm; otherwise,
another simulation must be performed, until all the Monte-
Carlo simulations are performed for all probabilities of false
alarm, and a plot is generated.

In the case of the Double MFD, the procedure to compute
the probability of miss-detection is very similar to the MFD.
The only differences are that the detection statistic and the
threshold are the square of their values for the MFD.

For the Double MFD, the detection statistic and threshold
are calculated as follows:
• equation (22) is used for the detection statistic, and the
result is always positive,

• equation (23) is used to compute the threshold, and the
result is always a positive number, unless for Pfa =
0.5 because it is zero.

This occurs because the square of a Q−1 function is positive
for all the probabilities of false alarm, but not for Pfa = 0.5
(when it is zero). As described before, the Q−1 function is
positive for Pfa < 0.5, it is negative for Pfa > 0.5 and is zero
for a Pfa = 0.5. The Q−1 function is given by Q−1(Pfa) =
−Q−1(1 − Pfa). The square of the Q−1 function is given by
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FIGURE 9. Probability of miss-detection vs probability of false alarm for
the hybrid matched filter detection technique.

(Q−1(Pfa))2 = (−Q−1(1−Pfa))2. Basically, it is like having a
mirror in the view chart for Pfa = 0.5. The rest of the simula-
tion proceeds like for the previous two sensing techniques.
Figure 7 presents just one example of the simulations that
have been performed by changing the number of samples and
the SNR value. The intersection point between the curves for
the two techniques (MFD and Double MFD) would always
change, because the signals are randomly generated.

By applying the HMFD algorithm, results have been
obtained for the probability of miss-detection as a function
of the probability of false alarm, as shown in Figure 9.

In the proposed model, while obtaining results for the
HMFD, it was decided to consider the probability of false
alarm of 0.5 to switch between different techniques (blue part
of the curve for the Double MFD and orange part for the
MFD), since, in the double matched filter detector, the prob-
ability of miss-detection is always zero when the probability
of false alarm is 0.5, as shown in Figure 9.

IV. SIMULATIONS AND RESULTS
In this section, results for the probability of miss-detection
arising from Monte-Carlo simulations results are obtained to
verify the theoretical expressions derived above. To evaluate
the influence of the number of samples, probability of false
alarm and SNR in the probability of miss-detection, one uses
MATLAB to simulate and analyze different techniques whilst
varying the parameters.

Because of the complexity of the expression of the HMFD
technique, it is only possible to obtain results through a
Monte-Carlo simulation approach.

The following three types of analysis are performed:
• The first option corresponds to curves where the proba-
bility of miss-detection (Y-axis) is presented as a func-
tion of the probability of false alarm (X-axis), with the
number of samples and SNR as parameters.

• The second option corresponds to curves where the
probability of miss-detection (Y-axis) is presented as a

FIGURE 10. Probability of miss-detection vs probability of false alarm for
the energy detection technique with the number of samples and SNR as
parameters.

FIGURE 11. Probability of miss-detection vs probability of false alarm for
the matched filter detection technique with the number of samples and
SNR as parameters.

function of the number of samples (X-axis), with the
probability of false alarm and SNR as parameters.

• The third option corresponds to curves where the prob-
ability of miss-detection (Y-axis) is presented as a func-
tion of the SNR (X-axis), with the probability of false
alarm and number of samples as parameters.

A. FIRST OPTION
Figures 10, 11 and 12 present the results for the probability
of miss-detection as a function of the probability of false
alarm, Pfa, with the number of samples, N , and SNR as
parameters, for the Energy Detection (ED), Matched Filter
Detection (MFD) and Hybrid MFD techniques, respectively.
Each figure presents theoretical (dashed lines) and simulation
results (solid lines).

One considers different combinations of the values for
the number of samples and SNR. The Energy Detection
technique has been simulated by considering equations (3),
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FIGURE 12. Probability of miss-detection vs probability of false alarm for
the hybrid matched filter detection technique with the number of
samples and SNR as parameters.

FIGURE 13. Probability of miss-detection vs number of samples for the
energy detection technique, with the probability of false alarm and SNR
as parameters.

(4), (6) and (11) while theoretical results are achieved by
using (13). On the other hand, For the MFD and HMFD
techniques, simulation results are achieved by considering
equations (3), (4), (15) and (20) (and additionally (22) and
(23) for the HMFD only). Besides, theoretical results for the
MFD spectrum sensing technique are achieved by using (21).
One observes that the probability of false alarm always varies
from 1 down to 0. As expected, for the HMFD technique,
there is a discontinuity for Pfa = 0.5.

One may conclude that the probability of miss-detection
decreases when:
• the probability of false alarm increases;
• the SNR increases for a given number of samples;
• the number of samples increase for a given value of SNR.

B. SECOND OPTION
Figures 13, 14 and 15 present the results for the probability
of miss-detection as a function of the number of samples,
with the SNR and Pfa as parameters, for the ED, MFD and

FIGURE 14. Probability of miss-detection vs number of samples for the
matched filter detection technique with the probability of false alarm and
SNR as parameters.

FIGURE 15. Probability of miss-detection vs number of samples for the
hybrid matched filter detection technique with the probability of false
alarm and SNR as parameters.

HMFD spectrum sensing techniques, respectively. Each fig-
ure presents theoretical (dashed lines) and simulation results
(solid lines). While in Figure 14 the number of samples varies
from 100 up to 1400, in Figures 13 and 15 it varies from
100 up to 2000.

One may conclude that the probability of miss-detection
decreases when:

• the number of samples increases;
• the SNR increases for a given probability of false alarm;
• the probability of false alarm increases for a given value
of SNR.

C. THIRD OPTION
Figures 16, 17 and 18 present results for the probability of
miss-detection as a function of the SNR, with the probability
of false alarm and the number of samples as parameters,
for the ED, MFD and HMFD spectrum sensing techniques,
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FIGURE 16. Probability of miss-detection vs SNR for the energy detection
technique with the probability of false alarm and number of samples as
parameters.

FIGURE 17. Probability of miss-detection vs SNR for the matched filter
detection technique with the probability of false alarm and number of
Samples as parameters.

FIGURE 18. Probability of miss-detection vs SNR for the hybrid matched
filter detection technique with the probability of false alarm and number
of samples as parameters.

respectively, where the SNR varies from−40 dB up to 10 dB.
As above, each figure presents theoretical (dashed lines) and
simulation results (solid lines).

FIGURE 19. Probability of miss-detection as a function of the probability
of false alarm for N = 200.

FIGURE 20. Probability of miss-detection as a function of the probability
of false alarm for SNR = −20 dB.

One may conclude that the probability of miss-detection
decreases when:

• the SNR increases;
• the probability of false alarm increases for a given num-
ber of samples;

• the number of samples increases for a given value of the
probability of false alarm.

V. COMPARISON BETWEEN TECHNIQUES
It is worthwhile to analyze the results for the probability
of miss-detection between different spectrum sensing tech-
niques. In Figures 19 and 20 the probability of miss-detection
is represented as a function of the probability of false alarm.
In Figure 19, the number of samples is N = 200 while SNR
takes values of −25, −20 and −15 dB (except for the ED
sensing technique, where only SNR=−15 dBwas accounted
for). In Figure 20, one considers SNR = −20 dB, and the
number of samples takes values of 200, 400 and 600 (except
for the ED sensing technique, where only N = 600 was
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FIGURE 21. Probability of miss-detection as a function of the number of
samples for SNR = −20 dB.

FIGURE 22. Probability of miss-detection as a function of the number of
samples for Pfa = 0.3.

considered). N.B.: in Figures 19 and 20, although the behav-
ior of the Hybrid MFD is similar to the one from the MFD
when the probability of false alarm is equal or larger than
0.5, when the probability of false alarm increases towards
0.5, in the zoom out view charts, one can observe that the
probability of miss-detection is lower for the HMFD.

Table 1 summarizes the lessons learned from the analysis
of the results for the probability of miss-detection as a func-
tion of the probability of false alarm of Figures 19 and 20.

Figures 21 and 22 present results for the probability of
miss-detection as a function of the number of samples while
comparing different spectrum sensing techniques. While in
Figure 21 the probability of false alarm is a varying parameter
(except for the ED sensing technique, where only Pfa =
0.4 was considered) and SNR = −20 dB.
In Figure 22 SNR takes different values (except for the ED

sensing technique, where only SNR = −15 dB was consid-
ered) and Pfa = 0.3. Table 2 presents the lessons learned.

TABLE 1. Comparison of the probability of miss-detection as a function
of the probability of false alarm between different techniques and the
underlying impact of the probability of false alarm, number of samples
and SNR.

FIGURE 23. Comparison between techniques for the probability of
miss-detection vs SNR for Pfa = 0.3.

N.B.: in Figure 21, the HMFD has lower probability of
miss-detection when comparing with MFD, for Pfa = 0.2,
Pfa = 0.3 and Pfa = 0.4, up to a number of samples of 300,
620 and 800, respectively, as it is possible to observe in the
zoom out view charts. Beyond those values ofN , the behavior
of the HMFD and MFD is similar. In Figure 22, the values of
the probability of miss-detection for the HMFD technique is
lower than for theMFD technique for SNR=−15 dB, SNR=
−20 dB and SNR = −25 dB, up to N = 280, 420, and 1700,
respectively. For higher values of the number of samples, the
behavior of the HMFD and MFD SS techniques is similar.

Figures 23 and 24 present results for the probability of
miss-detection as a function of the SNR while comparing
different spectrum sensing techniques. In Figure 23, one con-
siders Pfa = 0.3 while the number of samples takes different
values (except for the ED sensing technique, where only
N = 200 was considered).
In Figure 24, one considers N = 100 while the probability

of false alarm varies (except for the ED sensing technique,
where only Pfa = 0.4 was considered). N.B.: in Figure 23,
the Hybrid MFD (or HMFD) has a lower probability of miss-
detection when comparing with the MFD, for N = 50, N =
100 and N = 200, until the SNR of −10 dB, −12 dB and
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FIGURE 24. Comparison between techniques for the probability of
miss-detection vs SNR for N = 100.

TABLE 2. Comparison of the probability of miss-detection as a function
of N between different techniques and the underlying impact of the N ,
SNR and probability of false alarm.

−16 dB, respectively. After those values of SNR, the behavior
of the Hybrid MFD and MFD is similar.

In Figure 24, for Pfa = 0.2, Pfa = 0.3 and Pfa = 0.4, the
probability of miss-detection is lower when comparing with
the MFD, until the SNR of −14 dB, −12 dB, and −10 dB,
respectively. For higher SNR, the HMFD andMFD behaviors
are similar.

Table 3 summarizes the lessons learned from the analysis
of the results for the probability of miss-detection as a func-
tion of the SNR of Figures 23 and 24.

As a measure of the computational complexity, Fig-
ure 25 compares results for the algorithm simulation running
time (in seconds), for a given N , between different spectrum
sensing techniques. In Figure 25, one considers Pfa = 0.3 and
SNR = −25 dB. The computational complexity is O(N 2) for
all considered spectrum sensing techniques. In Figure 25,
when N increases, the running time also increases. The
higher N is, the larger the difference between the three spec-
trum sensing techniques is. While the ED sensing technique
requires 401s to simulate 5000 samples, MFD and HMFD
require 431s and 515s, respectively, s to accomplish the same
task. When compared to the other existing techniques, like

TABLE 3. Comparison between techniques for the probability of
miss-detection as a function of the SNR and the impact of the SNR,
probability of false alarm and N in the comparison.

FIGURE 25. Comparison between techniques for the time vs number of
samples with Pfa = 0.3 and SNR = −25 dB.

ED and MFD, the proposed HMFD sensing technique will
certainly allow the SUs to better detect the spectrum holes
under various circumstances, while opportunistically access-
ing primary licensed bands without harmful interference.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed the Hybrid Matched Filter
Detection (HMFD), a new non-cooperative spectrum sensing
technique, based on the existing Matched Filter Detection,
that combines different behaviors when the probability of
false alarm is lower than 0.5 or when it is larger or equal to
0.5.

The HMFD technique has been compared to other state-of-
the-art techniques, like Energy Detection (ED) and Matched
Filter Detection (MFD). First, these techniques have been
analyzed separately to understand the impact in the probabil-
ity of miss-detection of changing given parameters, like the
signal-to-noise ratio, probability of false alarm and number of
samples, N. Secondly, these techniques have been compared
by considering the same parameters to try and understand
which of them are more efficient. A high coincidence is
achieved between the simulation and theoretical approaches.
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Results show that the MFD and HMFD techniques out-
perform the ED technique for the same set of parameters.
Besides, by comparing the MFD and the HMFD in terms
of the ability to detect the presence of primary user, one
conclude that the proposed technique outperforms the MFD
in licensed spectrum, as follows:
• for low N and SNR (in the view chart of probability of
miss-detection as a function of the probability of false
alarm);

• for a probability of false alarm slightly lower than
0.5 and low SNR (in the view chart of the probability
of miss-detection as a function of N );

• for a probability of false increasing towards 0.5 and low
N (in the view chart of the probability of miss-detection
as a function of SNR).

Finally, it is worthwhile to note that although the compu-
tational complexity is O(N 2) for all considered spectrum
sensing techniques, to simulate 5000 samples, the simulation
running time slightly increases (from 401-431 s to 515 s) for
the HMFD.

One aspect to be explored in future work may be the pro-
posal of theorical equations for the HMFD technique since,
in this work, these results have only been extracted byMonte-
Carlo simulations. Another aspect to be explored can be the
proposal of a new high-performance non-cooperative spec-
trum sensing based on Cyclostationary Detection. The study
the other performance metrics can also be explored. We may,
in a possible practical cognitive radio scenario, also transmit a
signal using, e.g., a Raspberry Pi 3 card, and detect it by using
the proposed spectrum sensing technique implemented in
MATLAB, connected to, e.g., an RealTek-Software Defined
Radio. The proposed application will be evaluated in terms
of the detector ability to identify the presence of the signal in
the shared spectrum.
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