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1. Introduction 

Team sports performance has been described by means of notational techniques with the 

purpose of inspecting the behaviours of performers during different sub-phases of play in 

team games. The aim of such analysis is to provide accurate, augmented information to 

practitioners to improve future performance (Vilar et al., 2012). The recorded variables 

include scoring indicators such as goals, baskets, winners, errors, the ratios of winners to 

errors and goals to shots; or performance indicators such as turnovers, tackles, and passes 

(see Passos et al, 2016/in press for a recent review). An important criticism of notational 

analysis research is that it has been somewhat reductionist (Glazier, 2010), typically 

omitting reference to the why and how of performance that underlie the structure of 

recorded behaviours, which would define their functional utility (McGarry, 2009). This 



 

points towards the need for a sound theoretical rationale of performance behaviours. In fact, 

there are some theoretical approaches that go beyond analytics, which are relevant per se, 

and present viable hypotheses to test (see Chapter ??? in this book, by Araújo & 

Bourbousson). Ecological dynamics is such a framework for studying behaviours in team 

games. It has the advantage of recognising the ‘degeneracy’ of collective biological systems 

(i.e. teams). Its principles can explain how the same performance outcomes can emerge from 

different movement or tactical patterns. 

 

2. Ecological dynamics approach to team’s behavior  

Ecological dynamics proposes performer-environment relations as the relevant scale of 

analysis for understanding sport performance (see also Chapter ?? of this book, by Araújo & 

Bourbousson; Davids & Araújo, 2010). The functional patterns of coordinated behaviour 

emerge through a process of self-organisation from performers’ interactions with each other 

under specific task and environmental constraints (Araújo, Davids, & Hristovski, 2006). 

Ecological dynamics analyses of team sports have attempted to explain how the interaction 

between players and information from the performance environment constrains the 

emergence of patterns of stability, variability and the transitions in organisational states of 

such systems. The emergent coordination patterns in team sports are channelled by the 

surrounding constraints, as they structure the state space of all possible configurations 

available to the team game as a complex system (Davids, Button, Araújo, Renshaw, & 

Hristovski, 2006). Constraints are boundaries or features, which interact to shape the 

emergence of the states of system organization.  For example, the surrounding patterned 

energy distributions that performers can perceive act as important sources of information 



 

to support their decisions and actions (e.g., reflected light from the ball) (Araújo & Davids, 

2009). 

The interaction between constraints of the performance environment and each individual’s 

characteristics allows opportunities for action to emerge (Araújo, et al., 2006). For example, 

an opportunity to score a goal in football may emerge between the performer’s ability to 

shoot the ball (individual constraints) and the distance to the goal or to the goalkeeper (task 

constraints). Moreover, performers are also able to identify relations between other 

performers and key environmental objects (e.g., the ball and target zone in team games) that 

can constrain their behaviours (Richardson, Marsh, & Baron, 2007). By perceiving 

opportunities for others to act, performers make use of environmental information to 

coordinate their actions with others. 

Due to the complex spatial-temporal relations among performers that characterize team 

sports, performance constraints change on a momentary basis. Opportunities to act (or 

affordances, Gibson, 1979) may appear and disappear over time (Araújo & Davids, 2009). 

The concept of affordances presupposes that the environment is perceived directly in terms 

of what an organism can do with and in the environment (i.e., it is not dependent on a 

perceiver’s expectations, nor mental representations linked to specific performance 

solutions) (Richardson et al., 2008). It has been suggested in team sports (Davids, Araújo & 

Shuttleworth, 2005) that individuals base their movement decisions on locally acquired 

information sources such as the relative positioning, motion direction, or changing motion 

direction, of significant others operating in a system, making a collective response all the 

more remarkable. This hypothesis implies that the actions of individuals functioning in a 

team need to be intimately coordinated. The interactions of agents in sports teams reveal 



 

common underlying principles while exhibiting simultaneously their own ‘signatures’ or 

idiosyncratic behaviours.  

An important understanding of affordances is that, they can be perceived by a group of 

individuals trained to become perceptually attuned to them (Silva et al., 2013). In collective 

sports, both teams in opposition have the same objective (i.e., to overcome the opposition 

and win). Hence, the perception of collective affordances acts as a selection pressure (Reed, 

1996) for overcoming opponents, and achieving successful performance. In this sense, 

collective affordances are sustained by common goals between players of the same team who 

act to achieve success for the group. From this perspective, team coordination depends on 

being collectively attuned to shared affordances founded on joint practice to become attuned 

to specific environmental circumstances (Silva et al., 2013). Through practice, players 

become perceptually attuned to affordances of others and affordances for others during 

competitive performance and undertake more efficient actions (Fajen et al., 2009) by 

adjusting their behaviours to functionally adapt to those of other teammates and opponents. 

This process enables them to act synergistically with respect to specific team task goals 

(Folgado et al., 2012; Travassos et al., 2012). By means of tracked positional data, recent 

studies have started to reveal how players and teams continuously interact during 

competition. For example, teams tend to be tightly synchronised in their lateral and 

longitudinal movements (Vilar et al., 2013) with a counterphase relation regarding their 

expansion and contraction movement patterns (Yue et al., 2008), commonly caused by 

changes in ball possession (Bourbousson et al., 2010).  

Following these types of compound measures, specific training effects found by Sampaio and 

Maçãs (2012) indicate that players adjust constantly their positions on the pitch, according 

to the game ebb-and-flow, a that more effective team coordination was expressed by the fact 



 

that the most powerful variable in distinguishing pre and post-test conditions was the 

distance of players from the team geometric centre (obtained by computing the mean lateral 

and longitudinal positional coordinates of each performer in a team). As it was expected, 

inter-player coordination in pre-test seems to reflect individual affordances, and not shared 

affordances among team players. However, post-test values showed that players became 

more coordinated with increased expertise. The coordination patterns found, showed 

compensatory behavior within the team, an essential characteristic of a synergy (Riley et al., 

2011). Thus, the decisions and actions of the players forming a synergy should not be viewed 

as independent. Therefore, the coupling of players’ degrees of freedom into interpersonal 

synergies is based upon a social perception-action system that is supported by the 

perception of shared affordances.  

Specific constraints like the players’ individual characteristics, a nation’s traditions in a 

sport, strategy, coaches’ instructions, etc., may impact on the functional and goal-directed 

synergies formed by the players to shape a particular performance behaviour. These 

informational constraints shape shared affordances available for players, viewed as crucial 

for the assembly of synergies, that support the reduction of the number of independent 

degrees of freedom (Riley et al., 2011). Under this theoretical rationale, the properties of 

synergies guide the information that could be obtained from the diverse behavioural team 

measures.  

 

3. Synergies organize the meaning of measures of team behaviour in performance 

environments 



 

A synergy is a task-specific organization of elements, such that the degrees of freedom of 

each component are coupled, enabling the degrees of freedom to regulate each other 

(Bernstein, 1967, Gelfand & Tsetlin, 1966).  Latash (2008) identifies the characteristics that 

should be met for a group of components to be considered a synergy: sharing, error 

compensation, and task-dependence. Sharing means that the components should all 

contribute to a particular task. A way to quantify the amount of sharing is the matching of 

the sum of the individual contributions to the task, and the overall measurement of the 

performance on the task. Error compensation is captured when some components show 

changes in their contributions to a task, compensating one component that is not doing its 

contribution. Finally, task-dependence is the ability of a synergy to change its functioning in 

a task-specific way or, in other words, to form a different synergy for a different purpose 

based on the same set of components. Therefore, synergies are “task specific devices” 

(Bingham, 1988). 

On the other hand, Riley and colleagues (Riley, Richardson, Shockley, & Ramenzoni, 2011) 

identify two characteristics of a synergy. One is dimensional compression, which means that 

degrees of freedom that potentially are independent are coupled so that the synergy has 

fewer degrees of freedom (possesses a lower dimensionality) than the set of components 

from which it arises. The behavior of the synergy has even fewer degrees of freedom, a 

second level of dimensional compression as one moves from structural components to the 

behavior that emerged from the interactions among the degrees of freedom. Dimensional 

compression at both stages results from imposing constraints (environmental, task and 

individual constraints), which couple components so they change together, rather than 

independently. The other property of a synergy for Riley et al (2011) is reciprocal 

compensation and it is similar to error compensation, as described by Latash (2008). 



 

Here we address three properties of a synergy 1) dimensional compression (Bingham, 1988; 

Riley et al., 2011), 2) reciprocal compensation (Latash, 2008; Riley et al, 2011); and 3) 

degeneracy (Davids et al., 2006; Latash, 2008), and how these properties organize the 

existing measures of group behavior in sport teams. 

3.1 Dimensional compression 

For dealing with the problem of dimensional reduction, there are some useful approaches to 

data analysis aimed at system identification. For this, experiential knowledge from expert 

coaches may be a good starting point, by capitalizing on educated guesses about which 

collective variables are most relevant. 

3.1.1. Grouping measurements in sports teams  

The joint work of expert coaches and sport scientists arrived at team measures such as team 

centre and team dispersion.  Coaches often mention the importance of the “centre of gravity” 

of a team (Grehaigne et al., 2011). An operational approach to this tactical concept is team’s 

centre (also denominated centroid, or geometrical centre). This variable can be obtained by 

computing the mean lateral and longitudinal positional coordinates of each player in a team. 

It has been used in various ways to evaluate intra- and inter-team coordination in team 

sports like association football (Frencken, Lemmink, Delleman, & Visscher, 2011, and see 

Clemente, Couceiro, Martins, Mendes, & Figueiredo, 201 for a “weighted” centroid), futsal 

(Travassos, Araújo, Duarte, & McGarry, 2012) and basketball (Bourbousson, Sève, & 

McGarry, 2010). The teams’ centres alone can represent the relative positioning of both 

teams in the forward-backward and side-to-side movement displacements, but when 

analysed in respect to other measures, may provide important descriptions of team tactics.  



 

According to the basic principles of attacking and defending in invasion team sports, the 

team in possession must create space by stretching and expanding in the field while the 

defending team must close down space by contracting and reducing distances between 

players. Such collective movements may be captured by specific measures of team 

coordination that quantify the overall spatial dispersion of players. The stretch index (or 

radius), the team spread and the effective playing space (or surface area) are quantities that 

have been used to assess such spatial distributions. The stretch index is calculated by 

computing the average radial distance of all players to their team’s centroid. It also can be 

calculated according to axis expansion, providing distinct measures of dispersion for the 

longitudinal and lateral directions (e.g., Yue, Broich, Seifriz, & Mester 2008; and see Moura, 

Martins, Anido, Barros, & Cunha, 2012 for team spread - the square root of the sums of the 

squares of the distances between all pairs of players, excluding the goalkeeper). The effective 

playing space (or surface area) is defined by the smallest polygonal area delimited by the 

peripheral players containing all players in the game and can also provide information about 

the surface that is being effectively covered by the two teams. It informs how the occupation 

of space unfolds throughout the game and how stretched both teams are in the field. This 

effective playing space may also be computed as a function of attacking and defending, 

discriminating the surface areas of both teams in confrontation while representing the 

overall team positioning (Frencken & Lemmink, 2008). Similarly to the stretch index and 

team spread, the relationship between the offensive and defensive surface areas can 

highlight the balance of the opposition relationship during matches (Gréhaigne & Godbout, 

2013). Moreover, Folgado and colleagues (2012) calculated the team’s length and width in 

small-sided games performed by youth football players of different ages. The team’s length 

and width were calculated by measuring the distance between the players furthest forward 

and backward, and furthest to the left and to the right, respectively. Through these 



 

quantities, the authors computed the ratio between length and width, based on the 

assumption that teams with different tactical approaches would display different length per 

width ratios. Recently, Silva and colleagues (2014a) developed “team separateness” metric. 

It is defined as a measure of the degree of free movement each team has available. In football, 

it was computed based on sum of distances (in meters) between each team player and the 

closest opponent, excluding goalkeepers, and can be interpreted as the overall radius of 

action free of opponents. It is different from previous metrics because it accounts for the 

teams’ dispersion differences which may impact on the players’ radius of free movement. A 

value of TS close to 0 indicates that all players are closely marked, while a high value 

indicates more freedom of movement. Interestingly, team separateness increased 

independently of skill level with the increase in pitch size. 

A key idea of invasion team sports assumed to promote effective performance is to 

outnumber the opposition (creation of numerical overloads) during different performance 

phases (attack and defense) in spatial regions adjacent to the ball, as expresses by inter-team 

coordination.  Inter-team coordination was recently examined through analysis of the 

distances separating the teams’ horizontal and vertical opposing line-forces in football (Silva 

et al., 2014b). This measure captures the existence of possible differences in the players’ 

interactive behaviors at specific team locations (e.g., wings and sectors). Each team’s 

horizontal lines are calculated by averaging the longitudinal coordinate values of the two 

players furthest from, and nearest to their own goal line, which corresponded to the forward 

and back lines, respectively. Similarly, the vertical line-forces of each team are computed by 

averaging the mean lateral coordinates of the players furthest to the left and to the right on 

the pitch, corresponding to the left and right lines, respectively. 

 



 

3.1.2. Sharing patterns within teams 

Sharing pattern, also known as labour division (Duarte et al., 2012; Araújo et al., 2015), is the 

specific contribution of each element to a group task (Latash, 2008). The behaviour of each 

individual in a team is constrained by several factors like his/her position on the field (in 

relation to the other teammates and opponents), strategic and tactical missions, playing 

phases (i.e., attacking and defending), game rules, etc. Collective behaviour is thus, composed 

of many individual labours (Eccles, 2010) performed by two or more players looking to 

cooperate together towards common intended goals and linked together by a 

communication system (Silva, Garganta, Araújo, Davids, & Aguiar, 2013). The joint analysis 

of all these individual behaviours can translate group behaviour as all players constrain and 

are constrained by the entire dynamic system that they compose (Glazier, 2010). This 

property could be captured by measures of heat maps, major ranges, player-to-locus 

distance, and Voronoi cells. 

Heat maps provide a clear picture of the distribution of each player on the field. Heat maps 

highlight with warmer colours the zones where each player has lingered for larger periods 

of time during the match (Araújo et al., 2015). Another approach to assess the division of 

labour in team sports is by measuring the area covered by each player. Major ranges imply 

the calculation of an ellipse centred at each player’s locus and with semi-axes being the 

standard deviations in the x- and y-directions, respectively (Yue et al., 2008). Through the 

simple visualization of major ranges it is possible to identify preferred spatial positions, 

major roles for each player and playing styles (Araújo et al., 2015).   

Contrary to the former two measurements, the distance of each player to a private locus on 

field, over time, capture the time-evolving nature of their movements’ trajectories. The locus 



 

represents the player’s spatial positional reference around which he/she oscillates 

(McGarry, Perl, & Lames, 2014).  Individual playing areas attributed to each player on a team, 

delimited the Voronoi cells of players in team ball sports, and offer a time-evolving analysis 

of the trajectories of these areas (Fonseca, Diniz & Araújo, 2013). A Voronoi cell contains all 

spatial points that are nearer to the player to whom that cell is allocated than to the other 

players. By measuring the total area of all Voronoi cells from each team, it is possible to 

obtain a dominant ratio of one team over the other (Fonseca, Milho, Travassos, & Araújo, 

2012).  

 

3.1.3. Order parameters 

Dimensional reduction is particularly important because advances in data acquisition have 

allowed for simultaneous recordings of multiple signals for considerable time spans, 

resulting in huge data sets. Therefore techniques for a priori data reduction, such as principal 

component analysis (PCA) are very useful (Daffertshofer et al., 2004). Based on the 

covariance matrix between signals, eigenvectors rank the degree to which a principal 

component contributes to the entire variance (see Button et al., 2014 for applications in 

sports). However a even more principled approach to pursue dimensional reduction is to 

focus on phase transitions because theory dictates that very near the critical point the 

dynamics of the complex system under study is reduced to a small set of collective variables 

or order parameters. Phase transitions are accompanied by a huge separation of time scales 

between different system components. In dynamics terms, the transition of a pattern to 

another implies that the first becomes unstable and the second becomes stable. From the 

view point of the order parameters, all the subsystems become arbitrarily quick so that they 



 

can adapt instantaneously to changes in the order parameters. The system dynamics thus 

amount to that of the order parameters, implying the ordered states can always be described 

by a very few variables if in the neighbourhood of behavioral transitions. In other words, the 

state of the originally high-dimensional system can be summarized by a few variables or 

even a single collective variable, the order parameter  (Beek & Daffertshofer, 2014). 

However, before that it is important to identify the system (Daffertshofer & Beek, 2014). The 

identification of the system is nothing more than the characterization of a system’s dynamics, 

in terms of regularity and stability. For this, measures of regularity like sample entropy (see 

Kuznetsov et al., 2014, for a review) are needed in combination with conventional statistics. 

Sample entropy quantifies the regularity or repeatability of a signal (i.e., empirical time 

series). Similarly, Lyapunov exponents are used for estimating the stability properties of 

dynamical systems involving the emergence and disappearance of behavioral patterns 

(Stergiou et al., 2004).  

Dynamical systems approaches to self-organization have emphasized dimensional 

compression, where the order parameter “relative phase” (e.g., the difference in the 

segments’ oscillation phases, see Kelso 1995) captures the low-dimensional behavior that 

arises from the high-dimensional neuromuscular system. Relative phase describes the 

spatiotemporal pattern of rhythmic coordination and the changes in coordination that occur 

in response to manipulations of the control parameters (e.g., movement frequency). The 

dynamics of relative phase are understood to reflect the behavior of a synergy (Kelso, 1995; 

Turvey and Carello, 1996). 

Several coordination variables have been applied in team sports to assess coordination 

between two oscillatory units (e.g., the coupling of two centroids, or the phase relations of 



 

two players’ movements in a dyad). For instance, the phase synchronization of two signals 

has been previously studied through relative phase analysis (e.g., Travassos, Araújo, Vilar, & 

McGarry, 2011), and through running correlations (e.g., Duarte, Araújo, Freire, et al., 2012).  

In an attempt to capture group synchrony tendencies Duarte and colleagues (Duarte, Araújo, 

Correia, et al., 2013) shed light on how the players composing a team influence each other to 

create a collective synergy at the team level. For this, the cluster phase method (Frank & 

Richardson, 2010), based on the Kuramoto order parameter was applied to the movements 

of eleven football players from two teams during a football match to assess whole team and 

player-team synchrony. Synergistic relations from the whole team showed superior mean 

values and high levels of stability in the longitudinal direction when compared with the 

lateral direction of the field, whereas the player-team synchrony revealed a tendency for a 

near in-phase mode of coordination. Also, the coupling of the two teams measures showed 

that synchronization increased between both teams over time. 

Whenever the focus is on phase transitions, mathematical modelling in terms of dynamical 

systems becomes feasible. Importantly, there were formal demonstrations in sport that did 

not adhere to the well know relative phase and related measures, as indicated before. For 

example, Araújo and colleagues (Araújo, Diniz, Passos & Davids, 2014) conceived behavioral 

phase transitions as the operational definition of decision-making in sport.  They modelled 

how the order parameter  “angle between a vector connecting the participants and the try 

line” expressed the state of a dyadic system composed of attacker and defender in rugby 

union. Their model, a potential function with two control parameters (interpersonal 

distance, and relative velocity) and a noise parameter, match empirical evidence that 

revealed that this kind of system has three stable attractors. 



 

 

3.2. Reciprocal compensation 

Reciprocal compensation indicates that if one element produces more or less than its 

expected share, other elements should show changes in their contributions such that the task 

goals are still attained (Latash, 2008).  

Contrary to dimensional compression, reciprocal compensation, being intuitively a very 

important property of a team of players, only recently was operationalized in sport. 

However, it can be found in motor control with the uncontrolled manifold (UCM) approach 

(Scholz and Schöner, 1999; Latash et al., 2002). This approach assumes that coordinated 

movement is achieved by stabilizing the value of a performance variable (such as a value of 

relative phase corresponding to an interlimb coordination pattern). In doing so, a subspace 

(i.e., manifold) is created within a state space of task-relevant elements (the degrees of 

freedom that participate in the task), such that within the subspace – called UCM - the value 

of the performance variable remains constant (Riley et al., 2011).  

In sport, Silva and colleagues (Silva et al., in press) created a new metric, called readjustment 

delay (Rd).  The football players’ co-positioning delay (Rd) to adjust to teammates’ 

movements  (goalkeepers excluded) was computed as a measure of team readiness and 

synchronization speed during attacking and defending patterns of play. Lower delay values 

indicate rapid readjustment of movements and faster spatial temporal synchrony between 

players, whereas a larger readjustment delay might impede spatial-temporal synchrony of 

player movements. To analyse Rd, the time series of distances to goal of each dyad were 

lagged in time, reported through the highest correlation coefficient values. A windowed 

cross-correlation technique was then used for each player with all his nine teammates, 



 

producing a moving estimate of association and lag. The max lags were considered to 

represent the time delay, in seconds, between two players’ co-positioning in relation to their 

own goal. Silva et al. (in press) found that the players Rd decreased over the 15 weeks of the 

study, evidencing faster readjustments of coupled players, a manifestation of how this 

property of the synergy evolved in the team. 

 

3.3. Degeneracy  

Bernstein (1967) emphasized that motor system degrees of freedom are temporarily 

coordinated together according to the performance environment and task requirements 

(aka task dependence, Latash, 2008). It has been well documented that novices typically 

freeze their motor system degrees of freedom, while experts release the degrees of freedom 

not useful in task performance (e.g., Vereijken et al., 1992, and Seifert et al, 2013 for a 

review). Freezing system degrees of freedom corresponds to rigidly fixing the joints to 

reduce the control problem for a performer. The varying role of these motor system degrees 

of freedom in assembling actions is essential, and is exemplified by the degenerate networks 

existing at different levels of human movement systems (Seifert et al., 2013). Degeneracy, 

thus, refers to structurally different components perform a similar, but not necessarily 

identical, function with respect to context (Edelman & Gally, 2001). In this sense, behavioural 

adaptability reflect the modification of one component of the system and/or a whole 

modification of coordination realised by ‘redundant’ elements (i.e. the presence of 

isomorphic and isofunctional components) or by ‘degenerate’ elements (i.e. the presence of 

heteromorphic variants that are isofunctional) (Mason, 2010). A substantial body of 

literature has highlighted the functional role of movement variability in sport performance 



 

environment and exemplifies how degeneracy emerges at an ‘intra-individual’ and ‘inter-

individual’ levels in many sports (Davids et al., 2006; Seifert et al., 2013). 

A team ball game is sustained by continuous adaptive interactions among players (Araújo et 

al., 2015). The behaviour of such complex systems emerges from the orchestrated activity of 

many system components (players) that adaptively interact through pairwise local 

interactions. A common feature of such complex, social networks is that any two nodes or 

system agents can become interconnected for action through a path of a few links only 

(Newman, 2003).  

Recently, studies with complex networks revealed that certain forms of network growth 

produce scale-free networks, that is, the distribution of connections per node in the 

networks is scale invariant (Baraási & Albert, 1999), as it happens with phase transitions 

and critical points. This indicates that, degeneracy, as a property of a synergy, might be 

quantified in the different metrics of social networks  

Passos et al., (2011) showed that social networks could be used to analyse the local structure 

of communication channels among players, during sub-phases of play in team sports. In 

these networks, nodes represent players and links are weighted according to the number of 

passes or positional changes completed between players. Players with major competitive 

roles (importance or centrality) may be easily identified through social network analyses, 

since they display a higher number and, thus, stronger connections. Additionally, different 

match networks can be compared to extract the general tactical and strategic features of a 

team, such as the: i) in-degree that measures the number of players who pass the ball to a 

focal player; ii) out-degree that measures the number of players to which the focal player 



 

passes the ball; and iii) preferential attachments between some team members (Passos et 

al., 2011; Duch et al, 2010; Grund, 2012) .  

It is possible to advance the understanding of team sports performance, by using other 

existing metrics that consider more than the links between the focal node and its neighbours. 

For example, for understanding the playing style of a sports team, Gyarmati et al. (2014) did 

not use any of the metrics that are “focal node” based but other metrics that are founded on 

the identification and quantification of connection patters. In order to include other relevant 

aspects of the game, notably technical actions, some authors have extended the definition of 

the network.  For example in the analysis of basketball Fewell et al. (2012) has included 

rebounds and steals as nodes in the network. But also other metrics such as the flow 

centrality which gives a quantification of individual and team performance regarding a 

specific goal like a goal attempt (shot at the goal); or the clustering coefficient that captures 

the probability of cooperation between players as a function of their mutual interactions do 

beyond the local structure (e.g, Fewell et al., 2012). 

Emergent patterns of interaction have also been studied using different representations of 

the interactions between the different actors. These include, hypernetworks, where 

hyperlinks may connect more than a pair of nodes. This latter approach has been applied to 

robotic soccer (Jonhnson & Iravani, 2007) and has proven particularly powerful. 

 

Networks are a valuable tool to analyse the structure of such communication channels 

during sub-phases of play in team sports, since it allows the identification of players engaged 

in more and less frequent interactions within a team and in particular events.  



 

Conclusions 

Specific constraints impact on team synergies formed by players during performance. These 

constraints shape the perception of shared affordances available for players, which underpin 

the assembly of interpersonal synergies expressed in collective actions. These group 

processes form synergies, where their key properties – dimentional compression, reciprocal 

compensation and degeneracy - guide the meaning of operational variables such as team 

centre, team dispersion, team synchrony, and team communication. Developments in 

methods of analysis of team coordination and performance can benefit from a theoretical 

approach that situates and traces relevant team properties as defined by synergies. Here we 

suggest that shared affordances and synergies embraced by an ecological dynamics 

perspective present the principles to understand the meaning of existing operational metrics 

of performance analysis and to guide the search for more meaningful ones. 
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