

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2023-04-14

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Caldeira, J., Brito e Abreu, F., Cardoso, J., Simões, R., Oliveira, T. C. & Reis, J. (2023). Software
development analytics in practice: A systematic literature review. Archives of Computational Methods
in Engineering. 30 (3), 2041-2080

Further information on publisher's website:
10.1007/s11831-022-09864-y

Publisher's copyright statement:
This is the peer reviewed version of the following article: Caldeira, J., Brito e Abreu, F., Cardoso, J.,
Simões, R., Oliveira, T. C. & Reis, J. (2023). Software development analytics in practice: A systematic
literature review. Archives of Computational Methods in Engineering. 30 (3), 2041-2080, which has
been published in final form at https://dx.doi.org/10.1007/s11831-022-09864-y. This article may be
used for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-
archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/s11831-022-09864-y

Noname manuscript No.
(will be inserted by the editor)

Software Development Analytics in Practice
A Systematic Literature Review

João Caldeira · Fernando Brito e Abreu · Jorge Cardoso · Rachel Simões · Toacy
Oliveira · José Pereira dos Reis

Received: date / Accepted: date

Abstract

Context: Software Development Analytics is a research area
concerned with providing insights to improve product deliv-
eries and processes. Many types of studies, data sources and
mining methods have been used for that purpose.
Objective: This systematic literature review aims at provid-
ing an aggregate view of the relevant studies on Software
Development Analytics in the past decade, with an emphasis
on its application in practical settings.
Method: Definition and execution of a search string upon
several digital libraries, followed by a quality assessment
criteria to identify the most relevant papers. On those, we
extracted a set of characteristics (study type, data source,

João Caldeira
Iscte - Instituto Universitário de Lisboa, ISTAR-Iscte, Lisboa, Portugal
E-mail: jcppc@iscte-iul.pt

Fernando Brito e Abreu
Iscte - Instituto Universitário de Lisboa, ISTAR-Iscte, Lisboa, Portugal
E-mail: fba@iscte-iul.pt

Jorge Cardoso
University of Coimbra, Coimbra, Portugal
Huawei Munich Research Center, Munich, Germany
E-mail: jcardoso@dei.uc.pt

Rachel Simões
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
E-mail: rachelvital@cos.ufrj.br

Toacy Oliveira
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
E-mail: toacy@cos.ufrj.br

José Pereira dos Reis
Iscte - Instituto Universitário de Lisboa, ISTAR-Iscte, Lisboa, Portugal
E-mail: jvprs@iscte-iul.pt

study perspective, development life-cycle activities covered,
stakeholders, mining methods, and analytics scope) and clas-
sified their impact against a taxonomy.
Results: Source code repositories, exploratory case studies,
and developers are the most common data sources, study
types, and stakeholders, respectively. Testers also get moder-
ate attention from researchers. Product managers’ concerns
are being addressed frequently and project managers are also
present but with less prevalence. Mining methods are rapidly
evolving, as reflected in their identified long list. Descriptive
statistics are the most usual method followed by correlation
analysis. Being software development an important process
in every organization, it was unexpected to find that process
mining was present in only one study. Most contributions to
the software development life cycle were given in the quality
dimension. Time management and costs control were less
prevalent. The analysis of security aspects is even more re-
duced, however, evidences suggest it is an increasing topic
of concern. Risk management contributions are also scarce.
Conclusions: There is a wide improvement margin for soft-
ware development analytics in practice. For instance, mining
and analyzing the activities performed by software develop-
ers in their actual workbench, i.e., in their IDEs. Together
with mining developers’ behaviors, based on the evidences
and trend, in a short term period we expect an increase in
the volume of studies related with security and risks manage-
ment.

Keywords Software Analytics · Software Development
Analytics · Software Development Process Mining · Software
Development Life Cycle · Systematic Literature Review

1 Introduction

Defining new processes and allocating the right resources,
particularly for large organizations, is a challenging task for

https://orcid.org/0000-0003-0960-0179
https://orcid.org/0000-0002-9086-4122
https://orcid.org/0000-0001-8992-3466
https://orcid.org/0000-0002-6046-8620
https://orcid.org/0000-0001-8184-2442
https://orcid.org/0000-0002-2505-9565

2 João Caldeira et al.

software project managers, primarily because it requires ac-
quaintance on existing processes and tools, the understanding
of different stakeholders, and the coordination of technical
expertise in multiple domains [38]. Failing to properly man-
age these various aspects, namely when decisions are based
on ”gut feeling” (often dubbed ”personal experience from
past projects”) may cause software development projects
to produce hard to maintain technical artifacts, to surpass
budget and schedule, and deliver defective products [43, 19].

The Software Develpment Analytics (SDA) research field
aims at mitigating the aforementioned risks by providing
the stakeholders’ decision-making process with structured
data-driven pieces of evidence, such as insights on software
products and processes.

1.1 Motivation

The term “software analytics” (SA) emerged naturally ex-
pressing the work of several research groups aiming to ex-
pand the traditional scope on analyzing software artifacts by
means of mining software repositories [77]. These groups
conducted cutting-edge research and technology innovation
in an interdisciplinary area that spans across big data, ma-
chine learning, systems, and software engineering. This ap-
proach led software practitioners to perform data exploration
and analysis in order to obtain insightful and actionable infor-
mation for completing various tasks around software systems,
software users, and software development processes [76].

Software Development Analytics (SDA), the adoption
of analytics methods with the focus on the management of
software development projects, was proposed in [7]. It dif-
fers from software cybernetics, which is a subdivision of
“cybernetics” in the domain of software engineering [72]. It
references the description of “cybernetics” by Wiener, if soft-
ware is regarded as part of the machine, and can be defined
simply as communication and control in software. However,
most researchers in the area believe software cybernetics is
more diverse in scope. In fact, it is described as the interplay
between software or software behaviour and control [8]. In
its simplest form, the field of software cybernetics treated
software problems and control problems in an integrated way
[9].

In turn, SDA is broader in its scope and based on a struc-
tured framework to identify adequate resources, ask mean-
ingful questions, collect and analyze information properly,
provide insights to the stakeholders and finally to identify
the benefits for the software development life-cycle, either
by looking at its past, present or future perspectives [7]. Al-
though a few aspects of software cybernetics may seem to
overlap with SDA, for instance, the software development
activities, the mining method or the type of study, many oth-
ers are missing, such as the stakeholders, the analitycs scope
and more importantly, the potential contributions towards the

relevant properties of software projects and where those can
effectively support the decisions taken by managers.

Since the time analytics was proposed for the practice of
developing software, a vast amount of literature was produced
presenting stakeholders with new ways of improving the
efficiency and effectiveness in developing software products,
by providing insights on how to streamline the processes or
to optimize resource allocation [1].

1.2 Contributions

A decade has elapsed since the first discussions on methodolo-
gies, techniques and tools to boost the adoption of analytics
in the software development practice. However, there have
been a small number of reports on the practice impact or
benefits that software development analytics results have cre-
ated on software development [77]. This systematic literature
review (SLR) identifies, analyzes and aggregates the rele-
vant primary studies in this period, following a well defined
protocol, aligned with the best practices [32, 18]. Its main
objectives are to:

– summarize the main types of empirical studies performed,
target software life cycle activities, and corresponding
data sources;

– identify the mining methods and analytics that were ap-
plied;

– evaluate the contributions of the selected primary studies;
– define a taxonomy to classify the impact provided by each

primary study on software development dimensions such
as: quality/technical debt, time, costs, risks and security.

This paper is organized as follows: section 2 provides
background related to the research area and emphasizes the
differences between this and previous systematic reviews in
the domain. We outline the research methodology and sys-
tematic review planning in section 3, present the systematic
review execution, data analysis, results discussion and threats
to validity in section 4, and the concluding comments appear
in section 5.

2 Background

Mining software repositories is currently a widespread method
to gather insights from the software development process
[48, 40, 23]. As these methods evolved, the software en-
gineering practice took advantage of lessons learned and
applied them in real live scenarios [39]. The last decade has
seen the birth of a multitude of analytics related companies,
solutions and methodologies [39, 63, 48], often powered by
machine learning techniques. It was also a period where
process mining saw boundless adoption in several business
domains [65, 64, 22]. Both approaches, machine learning

Software Development Analytics in Practice 3

and process mining, are nowadays being used to reduce the
costs of producing software products, to improve their qual-
ity, reduce time-to-market, and support the decision making-
process.

2.1 Related Work

Many SLRs have been published in the field of software en-
gineering [32]. However, the ones addressing SDA concerns,
from a holistic perspective, are scarce and often insufficiently
detailed, since several aspects we deem relevant to advance
the current state of the art are lacking or did not have exhaus-
tive scrutiny. Notwithstanding, we briefly describe hereinafter
all the systematic reviews whose scope somehow intersects
the usual topics of SDA.

A SLR covering primary studies from 2000 to 2014, aim-
ing to identify gaps in knowledge and open research areas
in SA was presented in [1]. It considered 19 primary studies
out of 135 and the authors concluded that the practitioners
who benefited most from SA studies were developers, testers,
project managers (PM), portfolio managers, and higher man-
agement, with 47% of the considered studies supporting only
developers. Maintainability and reverse engineering, team
collaboration and dashboards, incident management and de-
fect prediction, the SA platform, and software effort estima-
tion were among the domains mostly studied, with 47% of
them analyzing only one artifact. Based on their analysis,
since most of the research addresses only the low-level ana-
lytics of source code, the authors recommended researchers
to use more datasets, to achieve higher confidence level in
the results. They also suggested to target higher-level busi-
ness decision making profiles, like portfolio management,
marketing strategy, and sales directions.

A survey of the publicly available repositories and the
classification of the most common ones is presented in [54].
Authors also discussed the problems faced by researchers
when applying machine learning or statistical techniques to
them. The conclusions highlight the fact that some of the
problems, such as outliers or noise, have been extensively
studied in software engineering, whilst others need further re-
search. They authors pointed out the need of further research
work to deal with the imbalance and data shifting from the
machine learning point of view and replication of primary
studies.

A mapping study on the investigation of frequently ap-
plied empirical methods, targeted research purposes, used
data sources, and applied data processing approaches and
tools in empirical software engineering (ESE) was reported
in [78]. The goal was to identify new trends and obtain inter-
esting observations of ESE across different sub-fields of soft-
ware engineering on 538 selected articles from January 2013
to November 2017. The authors observed that the trend of

applying empirical methods in software engineering is contin-
uously increasing and the most commonly applied methods
are experiments, case studies and surveys, with open source
projects being frequently used as data sources.

A systematic mapping study aiming at identifying the
quantity, topic, and empirical methods used, targeting the
analysis of how software development practices are influ-
enced by the use of a distributed social coding platform like
GitHub, was presented in [13]. The authors assessed 80 pub-
lications from 2009 to 2016, and the results showed that most
works focus on the interaction around coding-related tasks
and project communities. They also identified some concerns
about how reliable were those results based on the fact that,
overall, papers used small data sets and poor sampling tech-
niques, employed a scarce variety of methodologies and/or
were hard to replicate. As a conclusion, they attested the high
activity of research work around the field of open source
collaboration, identified shortcomings and proposed actions
to mitigate them.

A systematic mapping study providing an overview of
the concerns addressed in the different phases of the software
development life cycle (SDLC), was published in [15]. Re-
sults are reported from different viewpoints and conclusions
highlight that there is a considerable variation in the use of
terminologies and addressing concerns in different phases of
the SDLC.

Inspired by the increasing usage of data analytics in all
areas of science and engineering, a systematic mapping study,
aiming to investigate the usage of different types of analytics
for software project management was presented in [47]. The
authors analyzed the accessibility of the data, as well as the
degree of validation reported in the final 115 studies selected
for appraisal. Results provided evidences that the majority of
studies were focusing on predictive and prescriptive analytics,
with almost half of the studies being essentially predictive.
When comparing information versus insight as the direction
of analytics, the authors found that information oriented an-
alytics (descriptive and predictive) had a greater number of
related studies (60% of papers) than analytics searching for
insight (diagnostic or prescriptive). As a final remark, their
systematic mapping findings was compared with the results
obtained by [6].

A systematic mapping study published in [3] aims at pro-
viding an overview of the sub-domains, contribution types,
research types, research methods and identify the role of
software analytics in the field of “green software engineer-
ing”. Findings show, that 163 papers out of the 260 initially
found on digital libraries, used software analytical methods
like statistical analysis and static analysis. Furthermore, only
11 out of the 50 papers kept for final data extraction, used
software analytics techniques to foster green software engi-
neering. Results revealed the need to develop new/improved
automated software analytics tools for software practitioners,

4 João Caldeira et al.

along with metrics explaining the correlation between energy
usage and other quality attributes.

Our SLR aims to expand the existing knowledge about
SDA, by adapting and extending the data perspectives, di-
mensions, and concerns identified and used by the above
works. The target properties we deem as most important for
a primary study to be considered relevant in this SLR are the
following:

– Quality. To assess the delivery of a good product or
project outcome.

– Scope. To evaluate the meeting of requirements and ob-
jectives.

– Time. To track the project delivering on time.
– Cost. To manage the delivery within estimated cost and

effort.
– Reusability. The use of existing assets in some form

within the software product development process.
– Maintainability. To asses the degree to which an appli-

cation is understood, repaired, or enhanced.
– Evolvability. Used to describe a multifaceted quality

attribute to evaluate a software system’s ability to easily
accommodate future changes.

– Performance. To measure how effective a software sys-
tem is with respect to the allocation of resources and
correspondent time constraints.

– Security. A cross-cutting appraise that takes into account
mechanisms, such as access control, and robust design to
prevent software attacks.

– Risk. To address the possibility that one or more of the
above properties are exposed to such levels of uncertainty
that may lead them to produce undesired outcomes.

Based on this set, we propose a taxonomy to classify
primary studies.

3 Research Methodology

In contrast to a non-structured review process, a SLR reduces
bias and follows a precise and rigorous sequence of method-
ological steps to research literature [31, 68]. A SLR relies
on a well-defined and evaluated review protocols to search,
extract, analyze, and document results as stages. This section
describes the methodology applied for those activities.

3.1 Planning the Review

3.1.1 Research Questions

This SLR is driven by the following research questions:
RQ1. What type of empirical studies have been conducted in
SDA?
Justification. The list of the main types of studies reported

in SDA literature can provide a comprehensive view, both
for practitioners and researchers, not only to identify areas
of opportunity, but also to optimize established methods.

RQ2. What are the main data sources used for SDA related
studies?
Justification. Identifying those data sources is helpful, to
provide soundness to the corresponding studies, to facilitate
replication, and to stimulate the appearance of new datasets
to address knowledge gaps in the field.

RQ3. What type of process/project perspective analysis was
conducted?
Justification. It refers to the ability to identify if the studies
are being done before (pre-mortem) or after (post-mortem)
a process/project is finished. While the latter is more frequent,
namely due to the use of existing software repositories, a
pre-mortem perspective can add additional value in the deci-
sion making process, as taking corrective actions on a timely
manner is fundamental to keep projects or processes on track.

RQ4. What are the most studied SDLC activities?
Justification. Understanding what SDLC activities are tar-
geted the most (and those that are not), will help practitioners
identify where most concerns and challenges are within the
software development practice. It can also contribute to open
new research streams to foster a deeper understanding of the
complete SDLC.

RQ5. Who were the target stakeholders of these studies?
Justification. Software projects are risky to conduct and con-
tinue to be difficult to predict [7]. SDA in practice, holds
out the promise to provide decision-makers with data-driven
evidences in order to better manage risk, improve efficiency
and effectiveness on development projects. Studies should
address the needs of different stakeholders. Identifying those
beneficiaries is vital to understand if the right tools, methods
and insights are reaching the ones that most need support on
their daily activities.

RQ6. What are the main mining methods being used?
Justification. Assessing the types of mining methods utilized
helps to comprehend deeper the goals of past and current
research, the limitations of their methods, benefits and con-
clusions and, highlight opportunities for novel approaches in
future research.

RQ7. Which type/form of analytics was applied?
Justification. When exploring large volumes of data and
many types of metrics, one may exploit different levels of
analytics; descriptive/diagnostics, predictive and prescrip-
tive [16]. Providing stakeholders in the development process
with deep insights and potentially prescribing actions to take

Software Development Analytics in Practice 5

under certain circumstances is desirable. Predicting the fu-
ture and prescribing actions are advanced forms of analytics
which researchers and practitioners in the software develop-
ment domain are expected to use.

RQ8. What were the relevant contributions to the SDLC ?
Justification. On every single software development study,
we should have clear benefits identified, either from using a
new tool or by improving a process using a specific method.
Failing to do so, reduces substantially the interest we may
find in that literature and shortens the applicability of those
methods in the field. SDA in practice is expected to contribute
at least (but not limited to) to the following areas of concern
in a software project: technical debt/quality, costs, time,
risk and security.

3.1.2 Search Strategy

Search Terms. Based on the research questions, keywords
were extracted and used to search the primary study sources.
The search string included the main terms from the topics
being researched, including synonyms, related items and
alternative spelling. It is based on the same strategy used by
[12] and is presented as follows:

(”software analytics” OR ”software development an-
alytics”) AND (”process mining” OR ”data mining”
OR ”big data” OR ”data science”) AND (”study”
OR ”empirical” OR ”evidence based” OR ”experi-
mental” OR ”in vivo”)

Digital Libraries Searched. A significant phase in a SLR
is the search for relevant literature within the domain under
study. To search for all the available literature pertinent to
our research questions, in addition to some articles we added
manually, the following digital libraries were queried:

– ACM Digital Library
– IEEE Xplore
– ScienceDirect
– Scopus
– SpringerLink
– Web of Science
– Wiley Online
– Google Scholar

Publications Time Frame. As mentioned earlier, the SDA
research field emerged approximately a decade ago. Since
then, as studies have gained a more structured and formal
approach, it makes sense to only account for publications in
journals, conferences papers, workshops and book chapters,
starting from January, 1st of 2010 till the end of 2021.

3.1.3 Selection Criteria

We selected the above libraries based on the eagerness of
collecting as many articles/papers as possible, not only be-
cause they are recognized as the most representative for Soft-
ware Engineering research. Google Scholar was selected to
account for articles eventually not yet published, but also
relevant to the software development domain.
Search Stages Overview. The outputs of the process fol-
lowed to conduct the search is depicted in Figure 8 in ap-
pendix A. It compounds 4 sequential stages, which are de-
scribed as:

Stage 1 - Retrieve automatically results from the digital
libraries - The referred libraries were searched using the
specific syntax of each database. The search was configured
in each repository to select only papers carried out within the
prescribed period. The automatic search was later comple-
mented by a manual search, according to the guidelines of
Wohlin [68].

Stage 2 - Read titles and abstracts to identify potentially
relevant studies - Identification of potentially relevant studies
based on the analysis of title and abstract. Studies that are
clearly irrelevant to the search and duplicates were discarded
across the digital libraries. If there was any doubt about
whether a study should be included or not, it was included
for consideration in a later stage.

Stage 3 - Apply inclusion and exclusion criteria on read-
ing the introduction, methods and conclusion - Selected
studies in previous stages were reviewed, by reading the in-
troduction, methodology section and conclusion. Afterwards,
exclusion and inclusion criteria were applied as defined in Ta-
ble 1. At this stage, in case of doubt preventing a conclusion,
the study was read in its entirety.

Stage 4 - Obtain primary studies and assess them - A
list of primary studies was obtained and later submitted to
critical examination using the 13 quality assessment criteria
which is set out in Table 2.

3.1.4 Quality Assessment

The strategy to evaluate the quality of the studies is based
on a checklist with thirteen criteria. The criteria were based
on good practices for conducting empirical research [32] and
in the Critical Appraisal Skills Programme (CASP) used in
different types of publications [18].

The criteria developed to assess quality covered four main
quality issues considered necessary when evaluating primary
papers:

– Reporting. Three criteria (QC1-QC3) assess if the ratio-
nale, goals and context have been clearly stated.

– Rigor. Five criteria (QC4-QC8) evaluate if a meticulous
and convenient approach have been applied.

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.sciencedirect.com
https://www.scopus.com
https://link.springer.com
https://www.webofknowledge.com
https://onlinelibrary.wiley.com
https://scholar.google.com

6 João Caldeira et al.

Table 1: Exclusion and Inclusion Criteria applied at Stage 3.

Criterion Description

Exclusion Criteria(EC)
EC1 Studies published before 2010.
EC2 Studies not written in English.
EC3 Studies not related to the software development process.
EC4 Studies not supported by data collected on any well designed experiment or did not use empirical data from a third

party.
EC5 Studies merely theoretical or based on expert opinion without locating a specific experience, such as: editorials,

prefaces, summaries of articles, interviews, news, analysis/reviews, readers’ letters, summaries of tutorials, work-
shops, panels, round tables, keynotes and poster sessions.

EC6 Studies aiming only at describing new development tools or works with the goal of simply assessing and/or
validating new analytical methods without a clear statement to the benefits they may provide for the SDLC.

Inclusion Criteria(IC)
IC1 Publications should be “journal” or “conference” or “workshop” or “book”.
IC2 Works that put validated analytical methods into practice with the goal of understanding and/or improving the

software development process.
IC3 Articles that clearly addressed any of the analytics depth (RQ7) and provided benefits for the SDLC on any

dimension identified in RQ8.

– Credibility. Two criteria (QC9-QC10) check if the find-
ings are well presented and the gathered insights are
plausible and/or credible.

– Relevance. The remain criteria (QC11-QC13) are related
with the relevancy of the study for the SDLC, stakehold-
ers and the research community.

Selection of primary studies. The quality of each publica-
tion should be assessed by the authors after the selection
process in Stage 3. The checklist presented in Table 2 was
used to assess the credibility and thoroughness of the selected
publications. The steps that guided the selection of primary
studies to reach the final results, are presented in Figure 8 in
appendix A.

Each of the 13 questions was marked as ”Yes”, ”Partially”
or ”No”. We considered a question answered as ”Partially”
in cases where we could derive relevant contents from the
text, even if the details were not clearly reported. These an-
swers were scored as follows: ”Yes”=1, ”Partially”=0.5, and
”No”=0. For each selected study, its quality score was com-
puted by summing up the scores of the answers to all the
quality criteria questions, being the minimum value admis-
sible ”0” and the maximum ”13”, in case all the questions
were marked with a ”1”.

To provide validation and credibility in the quality as-
sessment, and due to the ordinal scale for the quality criteria
score, we computed using a random sample of the 173 arti-
cles, the intraclass correlation value between the raters. The
results are presented later in Table 4 in section 3.2.2. When-
ever agreement was not possible, the first author choice was
taken into consideration.

3.1.5 Data Extraction

To gather standard information regarding the papers under
analysis, we created a data collection form as represented in
Table 10 in appendix A. This data collection form helped us
to identify the date, venue and authors of the publications and
also how each of them addressed the topics of our research
questions.

3.1.6 Data Synthesis

The synthesis aimed at grouping findings from the studies in
order to: identify the answers to the RQs presented earlier in
section 3.1 and were organized in a spreadsheet form. This
data extraction process was manually conducted by the main
author. The spreadsheet was loaded and analyzed using the
R statistical engine1 and has now been disclosed2.

Obtained results, plots and findings are presented and
discussed in section 3.2.

3.2 Conducting the Review

This phase is responsible for executing the actions defined in
section 3.1.

3.2.1 Execute Search

We started the review with an automatic search followed by
a manual search and afterwards applied the inclusion/exclu-
sion criteria. The search as detailed in section 3.1.2, was

1 https://www.r-project.org, https://rstudio.com
2 doi:10.17632/d3wdzgz88s.2

https://www.r-project.org
https://rstudio.com
http://dx.doi.org/10.17632/d3wdzgz88s.2

Software Development Analytics in Practice 7

Table 2: Quality Criteria.

Criterion Description

QC1 Is the paper based on research (or merely a “lessons learned” report based on expert opinion)?
QC2 Is there a clear statement of the aims of the research?
QC3 Is there an adequate description of the context in which the research was carried out?
QC4 Was the research design appropriate to address the aims of the research?
QC5 Was the recruitment strategy appropriate to the aims of the research?
QC6 Was there a control group with which to compare treatments?
QC7 Was the data collected in a way that addressed the research issue?
QC8 Was the data analysis sufficiently rigorous?
QC9 Has the relationship between researcher and participants been adequately considered?
QC10 Are the datasets available to the public, thus allowing replication ?
QC11 Is there a clear statement of findings?
QC12 Is the study of value for research or practice?
QC13 Did the study identified any clear benefits for the SDLC according to RQ8?

performed in mid 2019 and updated in the end of the last
quarter of 2021, with the search string syntax being adapted
to support the different search engines. Initially we identified
3154 articles, and upon reading their titles and abstracts, the
dataset was reduced to 681 articles. Following, we filtered
them with the inclusion and exclusion criteria. Table 3 and
Figure 8 in appendix A, present the summary results and
workflow, respectively, for this research.

Table 3: Digital Library Initial Search and Stages.

Digital Library Stages
1 2 3 4

Libraries
(ACM, Scopus, Web of Science, Science Di-

rect, IEEE, Wiley Online, SpringerLink)
1144

|−−> 3154 681 173 42

Google Scholar and Manually Added 2010

Total (Input for Stage 1) 3154

3.2.2 Apply Quality Assessment Criteria

The selection criteria was based on exclusions and inclusions.
Table 1, defined, in section 3.1.3 those criteria used to assess
remaining works in Stage 3. In case of any doubt, the study
was kept for analysis at a later stage. Stage 3 provided as
inputs for Stage 4, 173 articles, which were then assessed in
their quality dimension. At Stage 4, we applied the quality
criteria described in section 3.1.4, resulting in 42 articles to
further extract data and to answer the eight research ques-
tions.

We classified the studies quality level by plotting their de-
scriptive statistics and analyzing the correspondent quartiles:

– Min: 6, 1st Q.: 8.5, Median: 9.0, Mean: 9.007, 3rd Q.:
9.5, Max: 12

Table 4: Intraclass Correlation (ICC) (95% Confidence Inter-
val)

Subjects Raters ICC Model Type

30 2 0.801 OneWay Agreement

As seen above, the third quartile is at score 9.5, therefore,
we selected only the studies scoring above that mark. Based
on the high level of quality, 42 studies were selected for final
data extraction. Figure 1 shows the distribution of all studies
per Year right after the quality assessment scoring task.

6

8

10

12

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Year

S
co
re

Studies
(n=173)

Fig. 1: Studies score per Year at Stage 4

8 João Caldeira et al.

4 Document the Review

All selected studies and the details to support the statistics
we show in section 4.1, are presented in Table 11 in appendix
B. In section 4.2, we present the main findings, comments
and answers to each of the research questions.

4.1 Demographics

Figure 2 shows clearly that the majority of the selected stud-
ies were published in journals. An increasing trend in publi-
cations volume is also present.

1 1 1 1 3

1 4 6 7 9 3 4

1Workshop

Conference

Journal

2014 2015 2016 2017 2018 2019 2020 2021

Year

V
en

ue
 T

yp
e

Fig. 2: Number of studies per Venue Type per Year

The remaining articles were published in conferences
with the exception of one which comes from a workshop.
As it is possible to observe, only studies published after
2014 made the final stage of this SLR, and almost 65% of
them were published in the last 4 years. This provides some
indication that, not only SDA is a relatively new practice,
but also, that it is becoming mature only in the very last few
years of this decade.

Looking in-depth to the publication where the studies
appeared, we easily find that the Empirical Software Engi-
neering Journal has a strong dominance among all the others.
The distribution of studies per Publication over the Years is
presented in Figure 10 in appendix B. Here we can observe
that only the Software Quality Journal and the Journal of
Systems and Software have more than one study published
within our final set of articles.

North America : 23

(54.76%)

Asia : 17

(40.48%)

Europe : 7

(16.67%)

Oceania : 7

(16.67%)

South America : 1

(2.38%)

Fig. 3: Number of studies per Continent

North America and Asia are the most active regions re-
searching on Software Analytics as plotted previously in
Figure 3. The collaboration between institutions from these
two regions is easily detected in the large number of studies
that were published in cooperation as can bee seen in Table
12. Canada, Singapore, USA, Australia and China are the
most effective countries in producing work in this domain.
The most active institutions are also from these countries as
we can observe on Figure 4.

16
9

8
7

6

4
4

2
2

1
1
1
1
1
1
1
1

Belgium
Brazil

Finland
Portugal

Republic of Korea
Russian

Spain
The Netherlands

Mexico
Switzerland

India
Italy

China
Australia

USA
Singapore

Canada

0 5 10 15

11

7

4

4

3

3

3

2

2

2

2

Hong Kong University of Science and Technology

Nanyang Technological University

University of Adelaide

University of Zurich

École Polytechnique de Montréal

Monash University

Rochester Institute of Technology

Concordia University

Zhejiang University

Singapore Management University

Queen's University

0 3 6 9

Fig. 4: Number of studies per Country and Institution(> 1
study only)

Software Development Analytics in Practice 9

Regarding authorship, which we present the details in
Figure 9 in appendix B, we found that only 4 main authors
appear with 2 studies in the selected papers, and one of
them appear with more than one study per year. All the
remaining authors are present with only one publication. This
may resonate the difficulty that is to setup, document and
publish such type of studies. Figure 4 in appendix B, present
the frequency of contributions regarding continents, countries
and institutions involved, either as primary or secondary
authors, on all studies.

4.2 Analysis and Findings

It is widely accepted that we lack experimentation in Soft-
ware Engineering in general. This phenomenon is even more
acute on what concerns experimentation related with analyt-
ics in practice for software development. Even if this work
is scarce, we should look at it collectively to try to draw
some picture of the current state-of-the-art. For that purpose,
a summary table with the complete information extracted
to answer all the RQs, is presented in Table 16 in appendix
C. In this section we present each research question and the
correspondent dimension findings and their frequencies3.

RQ1. What type of empirical studies have been conducted?

According to the type of empirical studies provided by [75],
from the total number of publications, more than half, 53.12%,
are Exploratory Case Studies. Quasi-Experiments and Ex-
ploratory Case Studies combined account for 90.62%. This is
probably not a surprise, since the remaining study types are,
quite often, harder to setup due to technical limitations in the
data collection process or blocked by data privacy concerns
raised by the entities involved.

One publication, [S13], combines three study types: Ex-
ploratory Case Study, Quasi-Experiment and a Survey. Hav-
ing two types of empirical studies presented, we find [S31]
and [S23] which combine a Exploratory Case Study and a
Survey. Having a Quasi-Experiment and a Survey we have
[S6] and [S24]. The remaining publications have only one
empirical study type given. Study Types found and the plot
of their distribution per Year is shown on Figure 5.

3 The sum of frequencies might be bigger than the total number
of selected studies(n=42) because some publications have been clas-
sified with more than one Study Type, Data Source, SDLC Activity,
Stakeholder, Mining Method and/or Analytics Scope.

1

1 3 2 3

1

1 1 3 5 3 4 2

1 2 1 6 2 1

1 1 3

Analyze and Compare Methodologies

Controlled Experiment

Case Study

Survey

Quasi-Experiment

Exploratory Case Study

2014 2015 2016 2017 2018 2019 2020 2021

Year
S

tu
dy

 T
yp

e

Fig. 5: Frequencies of Study Types per Year

No Meta-Analysis, Experience Report or Discussion had
quality to reach the final stage of this SLR. Particularly for the
Controlled Experiment studies reduced presence, its worth
elaborate that a controlled experiment is one in which all
factors are held constant except for one: the independent
variable. It is common to compare a control group against
an experimental group where all factors are identical be-
tween the two groups except for the factor being tested. This
approach has the advantage that is easier to eliminate uncer-
tainty about the significance of the results, however, it also
has a considerable drawback - the effort needed to design
and execute such experiments which may explain partially
why there is only one study present in our final list.

We believe that sufficient conditions needed to conduct
such experiments are not yet being met in software develop-
ment organizations. Experiments where treatments are ap-
plied to some factors in order to later evaluate the outcomes
are almost non-existent in real live scenarios. This may reveal
that, due to revenue generation pressure, costs control and/or
time restrictions, organizations are not willing to spend time
and resources to test and experiment novel approaches on
analytics even when they promise potential benefits.

RQ1. Highlights

i) Controlled Experiment studies look neglected by the community.
ii) 88.09% (37/42) of works pertain to only one study type (Table 16).
iii) Evidences suggest an increasing trend in the publications quality.

10 João Caldeira et al.

Table 5: Study Type Findings

Type Freq. Perc. Ref.

Exploratory Case Study 19 45.24% [S04], [S05], [S09], [S10], [S13], [S16], [S20], [S22], [S23], [S25], [S26],
[S27], [S28], [S29], [S30], [S31], [S32], [S37], [S40]

Quasi-Experiment 13 30.95% [S06], [S07], [S11], [S12], [S13], [S14], [S15], [S17], [S18], [S19], [S21],
[S24], [S34]

Case Study 9 21.43% [S01], [S02], [S03], [S08], [S33], [S36], [S39], [S41], [S42]

Survey 5 11.9% [S06], [S13], [S23], [S24], [S31]

Analyze and Compare Methodologies 1 2.38% [S35]

Controlled Experiment 1 2.38% [S38]

RQ2. What are the main data sources used for software
development related studies?

The top four data sources: Github Repositories, Google Play
Store, Git Repositories and BugZilla combined are the data
sources for more than 80% of the studies. This was somehow
expected as they are generally under the public domain and
contain the code, issue reports and product compilations of
the most used open source projects, which are, very often
used in empirical studies. This provides some evidence that
the community is probably studying the most what is possible
to study, simply because the datasets are under the public
domain.

Interesting to mention is the high number of publications
using datasets from App Stores such as Google Play Store.
This might be a relevant indicator that the researchers’ focus,
the profile of the end-user and the developers’ characteristics
are quickly and fundamentally changing.

Figure 11, presented in appendix B plots the frequencies
of all studies regarding RQ2. It is proper to highlight that,
from all the data sources used in more than one study, 4 are
related with software configuration management systems, 2
with App Stores and each of the remaining 3 with: Bug/Issue
Tracking Systems, a Q&A Service and an Online Survey.

RQ2. Highlights

i) Code management and bug/issue tracking systems are used frequently.
ii) App Stores, Q&A services, Wikis and Forums are promising sources.
iii) Repositories containing developers’ project interactions are scarce.

RQ3. What type of process/project perspective analysis was
conducted?

We found that all the studies were focused on a Post-Mortem
approach, meaning the study was not designed to help the
product/project managers take any corrective measures on
a timely manner to the artifact under study. As such, any
insights gathered could only impact future developments. A
Post-Mortem approach provides benefits for the next product

release or project, but usually, not for the one being studied
as it brings no added value when proactive corrective actions
are desired.

RQ3. Highlights

i) Ineffective approach to improve project under study.
ii) Real-time development operational support is missing.
iii) Worthless approach if project actions recommendation is needed.

RQ4. What are the SDLC activities mostly studied?

According to [27], in Table 6 we summarize which activities
of the SDLC, are being researched the most. Our findings
show that 90.48% and 61.9% of the studies were targeting
the Implementation and Maintenance phases, respectively.
Regarding Testing, we found 13 studies. These results, which
confirm that some phases are under-researched, require the
attention of practitioners and eventually the opening of new
streams of investigation on the SDLC. Software under opera-
tion was the focus of 6 studies and those were mainly related
with software deployed to App Stores. Figure 13 present the
statistics about all the activities studied. Table 6 details the
activities and summarizes their frequencies and identify the
studies on each of them.

RQ4. Highlights

i) More than 90% of articles focus on the analysis of programming activities.
ii) Analytics for software under operation is almost non existing.
iii) Requirements Engineering and Design activities are not being studied.

RQ5. Who were the target stakeholders of these studies?

All the studies targeted the Developers, and 7 were address-
ing Product Managers concerns. Only 5 publications could
bring any value to Testers: [S01], [S24], Educators: [S29],
End-Users: [S20] and Requirements Engineers: [S18]. These
findings are aligned with the results found in previous SLRs
mentioned in section 2.1. We are predisposed to think that
these results are related with the data sources also identified

Software Development Analytics in Practice 11

Table 6: SDLC Activities Findings

Activity Freq. Perc. Ref.

Implementation 38 90.48% [S01], [S02], [S04], [S06], [S07], [S08], [S09], [S10], [S11], [S12], [S13], [S14],
[S15], [S16], [S17], [S18], [S19], [S20], [S21], [S22], [S23], [S24], [S25], [S26],
[S27], [S28], [S29], [S30], [S31], [S32], [S33], [S34], [S35], [S36], [S37], [S40],
[S41], [S42]

Maintenance 26 61.9% [S07], [S08], [S09], [S10], [S11], [S12], [S13], [S14], [S17], [S18], [S20], [S21],
[S22], [S23], [S24], [S25], [S26], [S27], [S28], [S29], [S30], [S34], [S35], [S38],
[S39], [S40]

Testing 13 30.95% [S01], [S24], [S30], [S33], [S34], [S35], [S36], [S37], [S38], [S39], [S40], [S41],
[S42]

Debugging 7 16.67% [S07], [S08], [S09], [S10], [S11], [S12], [S39]

Operations 6 14.29% [S03], [S05], [S18], [S20], [S28], [S35]

previously. When the majority of data sources used are prod-
uct code related, it is somehow plausible that the stakeholder
for that study is a developer. On summarizing the data about
the individuals that could benefit from each study, we argue
that the proper insights are not reaching all those who need
support on their daily activities, namely Project Managers,
Testers and Requirements Engineers. Figure 13 supports our
comments by plotting the frequencies of all stakeholders
targeted.

RQ5. Highlights

i) Developers keep being the main target stakeholder for SDA.
ii) SDA for Testers are less frequent than expected.
iii) High-Level management needs are not being addressed.

RQ6. What are the main mining methods being used?

All articles, as expected, present descriptive statistics about
the domain under study. We know that, very often, research
starts with just exploratory actions. However, understanding
“What happened” is a reduced perspective for what analytics
can do for software development. It is also not surprising that
the following most frequent methods used are approaches
which target the extraction of knowledge, either by correlat-
ing factors or by classifying or grouping subjects. Hypothesis
testing appears less frequently as one would expect. This may
be related with the fact that all studies have, as mentioned
earlier, a post-mortem approach and any results obtained are
not to be used immediately to perform any corrections in
the studied project. If used properly, that is what hypothesis
testing may bring in advanced forms of analtyics.

Being software development a process, one would ex-
pect to find Process Mining methods often in the assessed
studies. Looking deep into the data, we can confirm that it
does not hold true, which may reveal that practitioners are
studying processes without the proper plethora of methods

and tools. Figure 12 provide evidences for the most used
mining methods.

RQ6. Highlights

i) Few studies try to make any predictions.
ii) Hypothesis Testing appear in only 7(21.88%) of the studies.
iii) Only 1 study (3.12%) used Process Mining methods and tools.

RQ7. Which type/form of analytics was applied?

Following the rationale in RQ6, we found all studies used De-
scriptive and Diagnostics Analytics together. It makes sense
that understanding “hat happened” is complemented with
“Why it happened”. However, this observation is not fully
aligned with the results mentioned in previous SLRs, namely
in [47]. Although 28.12% of the studies had some sort of
prediction as a goal, that is not reflected in the prescriptive
domain, where only 1 study, [S30] aims at suggesting stake-
holders actions to improve or correct a development activity.
Figure 13 presented in appendix B complements the analysis
to this RQ.

RQ7. Highlights

i) Descriptive and Diagnostics Analytics seems to be found together.
ii) An increasing trend exists in predictive studies (Tables 11 & 16).
iii) Management actions recommendation is not a common practice.

RQ8. What were the relevant contributions to the SDLC?

Technical Debt. All the studies had some sort of contribu-
tion to the quality dimension of software and no study was
found to be classified with “Absent” under this realm. With
“Moderate” contributions we find [S03], [S22], [S23], [S26],
[S28], [S31], [S35], [S38], [S42]. Having a “Strong” impact
we identify [S01], [S02], [S04], [S05], [S06], [S07], [S08],
[S09], [S10], [S11], [S12], [S13], [S14], [S15], [S16], [S17],

12 João Caldeira et al.

Table 7: Stakeholders Findings

Stakeholder Freq. Perc. Ref.

Developers 42 100% [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], [S10], [S11], [S12],
[S13], [S14], [S15], [S16], [S17], [S18], [S19], [S20], [S21], [S22], [S23], [S24],
[S25], [S26], [S27], [S28], [S29], [S30], [S31], [S32], [S33], [S34], [S35], [S36],
[S37], [S38], [S39], [S40], [S41], [S42]

Product Managers 17 40.48% [S03], [S06], [S12], [S18], [S20], [S27], [S28], [S33], [S34], [S35], [S36], [S37],
[S38], [S39], [S40], [S41], [S42]

Testers 8 19.05% [S01], [S24], [S33], [S34], [S35], [S37], [S40], [S42]

Project Managers 3 7.14% [S26], [S29], [S37]

Researchers 3 7.14% [S17], [S20], [S29]

Educators 1 2.38% [S29]

End-Users 1 2.38% [S20]

Requirements Engineers 1 2.38% [S18]

Table 8: Mining Methods Findings

Stakeholder Freq. Perc. Ref.

Descriptive Statistics 41 97.62% [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], [S10], [S11], [S12],
[S13], [S14], [S15], [S16], [S17], [S18], [S19], [S20], [S21], [S22], [S23], [S24],
[S25], [S26], [S27], [S28], [S29], [S30], [S31], [S32], [S33], [S34], [S36], [S37],
[S38], [S39], [S40], [S41], [S42]

Correlation Analysis 23 54.76% [S01], [S02], [S04], [S05], [S08], [S11], [S14], [S15], [S17], [S18], [S19], [S20],
[S21], [S22], [S24], [S25], [S27], [S28], [S32], [S39], [S40], [S41], [S42]

Classifier Learning 10 23.81% [S06], [S07], [S08], [S11], [S18], [S21], [S25], [S32], [S40], [S41]

Pattern Extraction 9 21.43% [S01], [S02], [S03], [S06], [S07], [S09], [S10], [S13], [S23]

Hyphotesis Testing 8 19.05% [S04], [S05], [S11], [S14], [S15], [S17], [S18], [S39]

Analysis 4 9.52% [S33], [S34], [S35], [S38]

Cluster Analysis 4 9.52% [S20], [S22], [S25], [S32]

Topic Modeling 3 7.14% [S19], [S22], [S29]

Feature Extraction 2 4.76% [S08], [S11]

Redundancy Analysis 2 4.76% [S08], [S11]

Regression Models 2 4.76% [S19], [S20]

Association Rules 1 2.38% [S30]

Generalized Suffix Trees 1 2.38% [S32]

Genetic Algorithms 1 2.38% [S29]

Heuristic Features 1 2.38% [S07]

Mixed-Effect Models 1 2.38% [S20]

Natural Language Processing 1 2.38% [S30]

Process Mining 1 2.38% [S16]

[S18], [S19], [S20], [S24], [S25], [S30], [S32], [S36], [S37],
[S39], [S40], [S41]. Very few studies have “Weak” benefits
identified [S21], [S27], [S29], [S33], [S34].

Time Management. The management of project times is
analyzed in less than half of the studies since 54.76% of the
studies provide no contribution under this dimension. We
identify 11 studies, [S15], [S21], [S26], [S34], [S35], [S36],
[S37], [S38], [S39], [S40], [S41] with “Moderate” contribu-
tions to manage the duration of product/project development.

“Weak” benefits are present in 8 (19.05%) studies [S01],
[S02], [S08], [S11], [S18], [S19], [S23], [S30].

Costs Control. A similar scenario happens with the control
of costs as only 4 [S34], [S35], [S36], [S37] and 9 studies
[S01], [S02], [S04], [S08], [S11], [S21], [S38], [S39], [S40]
have “Moderate” and “Weak” contributions, respectively.

Risk Assessment. Despite the fact that risk is cross-cut to all
other dimensions identified in RQ8, we found only 4 studies,

Software Development Analytics in Practice 13

Table 9: Analytics Scope Findings

Scope Freq. Perc. Ref.

Descriptive 42 100% [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], [S10], [S11], [S12],
[S13], [S14], [S15], [S16], [S17], [S18], [S19], [S20], [S21], [S22], [S23], [S24],
[S25], [S26], [S27], [S28], [S29], [S30], [S31], [S32], [S33], [S34], [S35], [S36],
[S37], [S38], [S39], [S40], [S41], [S42]

Diagnostics 38 90.48% [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], [S10], [S11], [S12],
[S13], [S14], [S15], [S16], [S17], [S18], [S19], [S20], [S21], [S22], [S23], [S24],
[S25], [S26], [S27], [S28], [S29], [S30], [S31], [S32], [S34], [S36], [S38], [S39],
[S40], [S41]

Predictive 11 26.19% [S06], [S08], [S11], [S18], [S19], [S20], [S21], [S25], [S32], [S39], [S40]

Prescriptive 1 2.38% [S30]

[S01], [S35], [S36], [S37], concerned exactly with the risk
associated with the security within the software development
process. The contributions given were “Weak” though. This
means that 90.48% of the studies did not address at all any
concerns involving risk management.

Security Analysis. Regarding software security implementa-
tion and operations, we found very few studies where their
main contributions were related to this domain. We found
5 studies, [S01], [S27], [S29], [S30] and [S36], where only
the first one has a “Strong” classification regarding this con-
tribution. Te remaining studies (88.1%) did not mention or
identified any benefits under this realm.

RQ8. Highlights

i) The software quality dimension consume most research resources.
ii) Time and Costs concerns are not being addressed sufficiently.
iii) Security and Risks matters need extra and aligned effort to evolve.

4.3 Summary

Most of the works focus on the software quality dimension
and other features are barely touched by practitioners. Im-
proving or understanding better a project costs, risks and
security aspects are contributions rare to find. Only two stud-
ies, [S1] and [S36], provide contributions across all the di-
mensions we assessed and they are essentially “Moderate”
or “Weak” contributions. No study was classified as “Com-
plete” on any of the contribution areas identified for the
SDLC.

Based on the evidences provided by this study, we ob-
serve that 80.9% (34 out of 42) of the studies were published
in Journals, being the Empirical Software Engineering the
one with more publications, 24 (57.1%). North America and
Asia are the most active regions researching on Software
Analytics as plotted previously in Figure 3. The collabora-
tion between institutions from these two regions is easily

detected in the large number of studies that were published in
cooperation as can bee seen in Table 12. Canada, Singapore,
USA, Australia and China are the most effective countries in
producing work in this domain. The most active institutions
are also from these countries as we can observe on Figure 4.

Figure 13, which supports our answers to RQ1, RQ4,
RQ5, RQ7, plots the frequencies of studies related with
the analytics depth, study types, stakeholders and SDLC
activities studied.

Figure 6 renders the evaluation off all studies across the
five dimensions used to answer RQ8. As it is clear from the
plots, Technical Debt and Time are the dimensions mostly
studied. A list of all studies with a short summary, their
context, methods and results are presented in B. A holistic
perspective of all the RQs findings is presented in C.

14
João

C
aldeira

etal.

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

S15 S16 S17 S18 S19 S20 S21

S08 S09 S10 S11 S12 S13 S14

S01 S02 S03 S04 S05 S06 S07

Absent

Weak

Moderate

Strong

Absent

Weak

Moderate

Strong

Absent

Weak

Moderate

Strong

Fig. 6: Classification combining all 5 contribution dimensions to SDLC(RQ8)

Softw
are

D
evelopm

entA
nalytics

in
Practice

15

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

S36 S37 S38 S39 S40 S41 S42

S29 S30 S31 S32 S33 S34 S35

S22 S23 S24 S25 S26 S27 S28

Absent

Weak

Moderate

Strong

Absent

Weak

Moderate

Strong

Absent

Weak

Moderate

Strong

Fig. 7: Classification combining all 5 contribution dimensions to SDLC(RQ8)

16 João Caldeira et al.

4.4 Threats to validity

The following types of validity issues were considered when
interpreting the results from this review.

4.4.1 Construct Validity

The studies identified from the systematic review were accu-
mulated from multiple literature databases covering relevant
journals, proceedings and books. One possible threat is bias
in the selection of publications. This is addressed through
specifying a research protocol that defines the objectives
of the study, the research questions, the search strategy and
search strings used. Inclusion, exclusion criteria and blueprint
for data extraction and quality assessment complements the
approach to mitigate such bias.

Although supported by important literature under the
software engineering domain, we followed a self-defined
classification criteria for some RQs, specifically for RQ8.
This method is somehow subjective as someone else might
have chosen any other classification categories.

Our dataset contains studies published until mid July,
2019. There are some evidences pointing to an increasing
trend in the publishing of studies in the SDA domain, how-
ever, articles published in the second-half of 2019 which
might also had good quality, were not included in this review.
We excluded works where their goal was only to propose new
algorithms and/or methods to analyze software development.
Some of these studies had also validation experiments, how-
ever, their conclusions were related with the quality of the
methods and not with any benefits potentially provided by
them for the software development process. Some of those
studies had also interesting approaches to improve analytics
as a practice, however, they are not present in this review.

4.4.2 Internal Validity

One possible threat is the selection bias and we addressed
it during the selection step of the review, i.e. the studies
included in this review were identified through a thorough
selection process which comprises of multiple stages. We
were aiming to find high quality studies, therefore, a quality
assessment was introduced and a final selection for stud-
ies ranking above the third quartile was conducted. This
approach may have excluded studies with very important
contributions on any of the dimensions we assessed in RQ8
or other dimensions not covered by this review. We used an
ordinal/categorical taxonomy to assess the studies regard-
ing RQ8. This classification method is still subjective and
depends on the authors’ contents interpretation.

4.4.3 External Validity

There may exist other valid studies on other digital libraries
which we did not search. However, we tried to reduce this lim-
itation by exploiting the most relevant software engineering
literature repositories. Studies written not in English were ex-
cluded which can also have excluded important work which
otherwise would have been also mentioned.

4.4.4 Conclusion Validity

There may be bias in the data extraction phase, however,
this was addressed through defining a data extraction form
to ensure consistent extraction of proper data to answer the
research questions. We should also refer that, the findings and
further comments are based on this extracted data. Despite
the fact that high levels of validation were applied in the
statistics computation of this study, there is always a small
chance that any figures might be inaccurate. For this reason,
we publish our final dataset to enable replication and thus
allowing for further validation.

5 Conclusions

We conducted a Systematic Literature Review on SDA in
practice, covering a time span between 2010 and 2021. From
an initial population of 3,154 papers, we kept 42 of them for
appraisal.

It targeted eight specific aspects related with the goals,
sources, methods used and contributions provided in certain
areas of the SDLC. Our goal was to extract the most relevant
dimensions associated with software development practices
and highlight where and what were the potential contributions
given by those works to the SDLC. From a quality assessment
perspective, our aim was also to classify the benefits provided
by those studies to significant software development concerns
such as: quality/technical debt, time, costs, risks and security,
therefore, a taxonomy was created to evaluate them.

Source code repositories, such as GitHub and Git, and
App stores like Google Play Store (top 3 > 50%), ex-
ploratory case studies (45.24%), and developers (100%)
are the most common data sources, study types, and stake-
holders, respectively. Testers (19.05%) also get moderate
attention from researchers. Product managers’ (40.48%) con-
cerns are being addressed frequently and project managers
(7.14%) are also present but with less prevalence. Mining
methods are rapidly evolving, as reflected in their identified
long list. Descriptive statistics (97.62%) are the most usual
method followed by correlation analysis (54.76%). Being
software development an important process in every orga-
nization, it was unexpected to find that process mining was
present in only one study (2.38%). Most contributions to the
software development life cycle were given in the quality

Software Development Analytics in Practice 17

dimension (100%). Time management (45.2%) and costs
control (30.9%) were less prevalent. The analysis of security
aspects appear in (11.9%) of the studies. Although with a
small presence in this analysis, evidences suggest it is an
increasing topic of concern. Risk management contributions
are scarce (9.52%).

Our analysis highlighted a number of limitations and
shortcomings on the SDA practice and bring the focus to
open issues that need to be addressed by future research. It is
our understanding, that our work may provide a baseline for
conducting future research and the findings presented here
will lead to higher quality research in this domain.

5.1 Call for Action

As a final remark and to trigger a call for action in the research
community, the following issues should be addressed:

– Repository Diversity. We suggest researchers to explore
different and non trivial software development related
repositories, such as the IDE or other archives containing
development events(eg: decisions, fine grain actions ex-
ecuted, etc). More and distinct datasets are expected to
expand the analytics coverage on software development.

– Keep working on the needs of different stakeholders.
We have evidences that the practitioners who benefit most
from the current SDA studies are the developers and many
other profiles are left behind. We suggest to increase
the focus on the real needs of requirements engineers,
project, product and portfolio managers and higher level
executives.

– Aim at Software Development Operational Support.
No studies were found providing clear evidences that the
outcome of that study could benefit on a timely manner
the ongoing project or product versions. If organizations
want to focus effectively on detecting, predicting and
recommending corrective actions on a timely manner,
meaning, any insights gathered will have impact on cur-
rent project and not solely on the next project or product
version, researchers and practitioners should focus on de-
signing advanced tools and methods to address software
development operational support.

– Software Development Process Mining. Despite the
fact that Process Mining is now a mature topic, almost
no software process related studies uses it. We suggest its
techniques and tools, to study deeper the interaction of
software development stakeholders and to complement
the effectiveness of assessing certain software develop-
ment tasks, such as, project effort prediction, code main-
tenance activities and/or bug detection methods.

– Project Time and Costs. We suggest more and deeper
studies covering the Time and Costs of software projects.
These are dimensions barely addressed by the studies

we evaluated. The aforementioned topics are extremely
relevant to forecast resource allocation for future projects.

– Address Security and Risks holistically. Due to the
unceasing digital transformation present nowadays in the
society, the security of information systems will be even
more critical to any organization. We now have robust
methods to assess security vulnerabilities in software
code. However, very little is known about the developers
behaviour during the Implementation and Maintenance
phases, just to name a few. Even if, in the last years,
security in general became quickly a pertinent topic, the
security around development processes and the involved
resources are still not clearly addressed. This is a topic
with increasing relevance and deserves the rapid and
focused attention from the practitioners.

– Blockchain. One of the most interesting, promising and
relevant technological contributions to the society, was
created roughly ten years ago - the birth of bitcoin [46].
Although bitcoin is an implementation of electronic money,
it is supported by something very powerful, which can
be used for many other use cases, called - blockchain
[60]. The blockchain is a mechanism which is able to
keep a book of data records immutable and distributed
across a multi-node network of servers. It is virtually
indestructible since it has no central authority controlling
it and preserves data integrity by potentially not allow-
ing rollback on any past transactions. Additionally, if
required, it guarantees that only the data owners are able
to view or change their personal records and yet permit
third-parties to be granted view only privileges to a se-
lected dataset. This technology may be used embedded
in SDA to anonymize and grant privacy to organizations
sharing data without spoil the context associated with the
development process under study.

Acknowledgements This work was partially funded by the Portuguese
Foundation for Science and Technology, under ISTAR’s projects
UIDB/04466/2020 and UIDP/04466/2020.

References

1. Abdellatif M, Capretz F, Ho D (2015) Software
Analytics to Software Practice: A Systematic Literature
Review. In: 1st International Workshop on Big Data
Software Engineering, IEEE/ACM, pp 30–36, DOI
10.1109/BIGDSE.2015.14, URL https://www.eng.
uwo.ca/Electrical/faculty/capretz_l/docs/
publications/Tamer-BIGDSE-v2.pdf

2. AlOmar EA, Mkaouer MW, Ouni A (2021) Toward
the automatic classification of self-affirmed refactoring.
Journal of Systems and Software 171, DOI 10.1016/J.
JSS.2020.110821

https://www.eng.uwo.ca/Electrical/faculty/capretz_l/docs/publications/Tamer-BIGDSE-v2.pdf
https://www.eng.uwo.ca/Electrical/faculty/capretz_l/docs/publications/Tamer-BIGDSE-v2.pdf
https://www.eng.uwo.ca/Electrical/faculty/capretz_l/docs/publications/Tamer-BIGDSE-v2.pdf

18 João Caldeira et al.

3. Anwar H, Pfahl D (2017) Towards greener software engi-
neering using software analytics: A systematic mapping.
In: Proceedings - 43rd Euromicro Conference on Soft-
ware Engineering and Advanced Applications, SEAA
2017, Institute of Electrical and Electronics Engineers
Inc., pp 157–166, DOI 10.1109/SEAA.2017.56

4. Avila SDG, Cano PO, Mejia AM, Moreno IS, Lepe
AN (2020) A data driven platform for improving per-
formance assessment of software defined storage solu-
tions. Advances in Intelligent Systems and Computing
1071:266–275, DOI 10.1007/978-3-030-33547-2 20

5. Bangash AA, Sahar H, Hindle A, Ali K (2020) On
the time-based conclusion stability of cross-project de-
fect prediction models. Empirical Software Engineering
25:5047–5083, DOI 10.1007/S10664-020-09878-9

6. Buse RP, Zimmermann T (2012) Information needs for
software development analytics. In: Proceedings - Inter-
national Conference on Software Engineering, pp 987–
996, DOI 10.1109/ICSE.2012.6227122

7. Buse RPL, Zimmermann T (2010) Analytics for Soft-
ware Development. Tech. rep., Microsoft Research, URL
https://www.microsoft.com/en-us/research/
wp-content/uploads/2016/02/MSR-TR-2010-111.
pdf

8. Cai KY (2002) Optimal software testing and adaptive
software testing in the context of software cybernetics.
Information and Software Technology 44(14):841–855,
DOI https://doi.org/10.1016/S0950-5849(02)00108-8,
URL https://www.sciencedirect.com/science/
article/pii/S0950584902001088

9. Cai KY, Chen T, Tse T (2002) Towards research on soft-
ware cybernetics. In: 7th IEEE International Symposium
on High Assurance Systems Engineering, 2002. Proceed-
ings., pp 240–241, DOI 10.1109/HASE.2002.1173129

10. Capizzi A, Distefano S, Araújo LJ, Mazzara M, Ah-
mad M, Bobrov E (2020) Anomaly detection in devops
toolchain. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 12055 LNCS:37–51,
DOI 10.1007/978-3-030-39306-9 3

11. Chen C, Xing Z, Liu Y (2019) What’s Spain’s Paris?
Mining analogical libraries from Q&A discussions. Em-
pirical Software Engineering 24(3):1155–1194, DOI
10.1007/s10664-018-9657-y

12. Chen L, Babar MA (2011) A systematic review of eval-
uation of variability management approaches in soft-
ware product lines. Information and Software Technol-
ogy 53(4):344–362

13. Cosentino V, Izquierdo JL, Cabot J (2017) A Systematic
Mapping Study of Software Development with GitHub.
IEEE Access 5:7173–7192, DOI 10.1109/ACCESS.
2017.2682323

14. Cruz L, Abreu R, Lo D (2019) To the attention of mo-
bile software developers: guess what, test your app!
Empirical Software Engineering 24:2438–2468, DOI
10.1007/s10664-019-09701-0

15. Dasanayake S, Markkula J, Oivo M (2014) Concerns
in software development: A systematic mapping study.
In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering,
Association for Computing Machinery, pp 1–4, DOI
10.1145/2601248.2601290

16. Davenport TH, Harris JG, Morison R (2010) Analytics
at work : smarter decisions, better results. Harvard
Business Press, URL http://discovery.uoc.edu/
iii/encore/record/C__Rb1049687__SAnalytics%
20at%20Work__Orightresult__U__X7?lang=spi

17. D’Avila LF, Farias K, Barbosa JLV (2020) Effects of
contextual information on maintenance effort: A con-
trolled experiment. Journal of Systems and Software
159, DOI 10.1016/J.JSS.2019.110443

18. Dybå T, Dingsøyr T (2008) Strength of Evidence in Sys-
tematic Reviews in Software Engineering. In: ESEM’08:
Proceedings of the 2008 ACM-IEEE International Sym-
posium on Empirical Software Engineering and Mea-
surement, pp 178–187, DOI 10.1145/1414004.1414034

19. Emam KE, Koru AG (2008) A Replicated Survey of IT
Software Project Failures. IEEE Software 25(5):84–90,
DOI 10.1109/MS.2008.107, URL http://ieeexplore.
ieee.org/document/4602680/

20. Fan Y, Xia X, Lo D, Li S (2018) Early prediction of
merged code changes to prioritize reviewing tasks. Em-
pirical Software Engineering 23(6):3346–3393, DOI
10.1007/s10664-018-9602-0

21. Fucci D, Turhan B (2014) On the role of tests in test-
driven development: A differentiated and partial repli-
cation. Empirical Software Engineering 19(2):277–302,
DOI 10.1007/s10664-013-9259-7

22. Garcia CdS, Meincheim A, Faria Junior ER, Dallagassa
MR, Sato DMV, Carvalho DR, Santos EAP, Scalabrin
EE (2019) Process mining techniques and applications
– A systematic mapping study. Expert Systems with
Applications 133:260–295, DOI 10.1016/j.eswa.2019.
05.003

23. Gomes TL, Oliveira TC, Cowan D, Alencar P (2014)
Mining reuse processes. In: CIBSE 2014: Proceed-
ings of the 17th Ibero-American Conference Soft-
ware Engineering, Curran Associates, Pucon, Chile, pp
179–191, URL https://dblp.org/rec/bib/conf/
cibse/GomesOCA14

24. Guerrouj L, Kermansaravi Z, Arnaoudova V, Fung
BC, Khomh F, Antoniol G, Guéhéneuc YG (2017)
Investigating the relation between lexical smells and
change- and fault-proneness: an empirical study. Soft-
ware Quality Journal 25(3):641–670, DOI 10.1007/

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-111.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-111.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-111.pdf
https://www.sciencedirect.com/science/article/pii/S0950584902001088
https://www.sciencedirect.com/science/article/pii/S0950584902001088
http://discovery.uoc.edu/iii/encore/record/C__Rb1049687__SAnalytics%20at%20Work__Orightresult__U__X7?lang=spi
http://discovery.uoc.edu/iii/encore/record/C__Rb1049687__SAnalytics%20at%20Work__Orightresult__U__X7?lang=spi
http://discovery.uoc.edu/iii/encore/record/C__Rb1049687__SAnalytics%20at%20Work__Orightresult__U__X7?lang=spi
http://ieeexplore.ieee.org/document/4602680/
http://ieeexplore.ieee.org/document/4602680/
https://dblp.org/rec/bib/conf/cibse/GomesOCA14
https://dblp.org/rec/bib/conf/cibse/GomesOCA14

Software Development Analytics in Practice 19

s11219-016-9318-6
25. Hassan S, Shang W, Hassan AE (2017) An empirical

study of emergency updates for top android mobile apps.
Empirical Software Engineering 22(1):505–546, DOI
10.1007/s10664-016-9435-7

26. Hassan S, Tantithamthavorn C, Bezemer CP, Hassan
AE (2018) Studying the dialogue between users and
developers of free apps in the Google Play Store. Em-
pirical Software Engineering 23(3):1275–1312, DOI
10.1007/s10664-017-9538-9

27. IEEE Computer Society (2014) SWEBOK V3.0. No.
V3.0 in 1, IEEE Computer Society, DOI 10.1234/
12345678, URL http://www4.ncsu.edu/˜tjmenzie/
cs510/pdf/SWEBOKv3.pdf

28. Izquierdo-Cortazar D, Sekitoleko N, Gonzalez-Barahona
JM, Kurth L (2017) Using Metrics to track code review
performance. In: ACM International Conference Pro-
ceeding Series, Association for Computing Machinery,
vol Part F128635, pp 214–223, DOI 10.1145/3084226.
3084247

29. Jha AK, Lee S, Lee WJ (2019) An empirical study of
configuration changes and adoption in Android apps.
Journal of Systems and Software 156:164–180, DOI
10.1016/j.jss.2019.06.095

30. Jiang J, Lo D, He J, Xia X, Kochhar PS, Zhang L
(2017) Why and how developers fork what from whom
in GitHub. Empirical Software Engineering 22(1):547–
578, DOI 10.1007/s10664-016-9436-6

31. Kitchenham B, Brereton P (2013) A systematic review of
systematic review process research in software engineer-
ing. Information and Software Technology 55(12):2049–
2075, DOI 10.1016/j.infsof.2013.07.010, URL http:
//dx.doi.org/10.1016/j.infsof.2013.07.010

32. Kitchenham B, Pearl Brereton O, Budgen D, Turner M,
Bailey J, Linkman S (2009) Systematic literature reviews
in software engineering - A systematic literature review.
Information and Software Technology 5:7–15

33. Krishna R, Menzies T (2020) Learning actionable
analytics from multiple software projects. Empirical
Software Engineering 25:3468–3500, DOI 10.1007/
S10664-020-09843-6

34. Li H, Shang W, Zou Y, E Hassan A (2017) Towards
just-in-time suggestions for log changes. Empirical
Software Engineering 22(4):1831–1865, DOI 10.1007/
s10664-016-9467-z

35. Li H, Chen THP, Shang W, Hassan AE (2018) Study-
ing software logging using topic models. Empirical
Software Engineering 23(5):2655–2694, DOI 10.1007/
s10664-018-9595-8

36. Liu Y, Wang J, Wei L, Xu C, Cheung SC, Wu T,
Yan J, Zhang J (2019) DroidLeaks: a comprehensive
database of resource leaks in Android apps. Empirical
Software Engineering 24(6):3435–3483, DOI 10.1007/

s10664-019-09715-8
37. McIlroy S, Ali N, Hassan AE (2016) Fresh apps: an

empirical study of frequently-updated mobile apps in
the Google play store. Empirical Software Engineering
21(3):1346–1370, DOI 10.1007/s10664-015-9388-2

38. Menzies T, Bird C, Zimmermann T, Schulte W, Koca-
ganeli E (2011) The Inductive Software Engineering
Manifesto: Principles for Industrial Data Mining. In:
Proceedings of the International Workshop on Machine
Learning Technologies in Software Engineering, As-
sociation for Computing Machinery, p 19–26, URL
http://bit.ly/o02QZJ

39. Menzies T, Minku L, Peters F (2015) The Art and Sci-
ence of Analyzing Software Data; Quantitative Methods.
In: Proceedings - International Conference on Software
Engineering, IEEE Computer Society, vol 2, pp 959–960,
DOI 10.1109/ICSE.2015.306

40. Mittal M, Sureka A (2014) MIMANSA : Process Mining
Software Repositories from Student Projects in an Under-
graduate Software Engineering Course Categories and
Subject Descriptors. Software Engineering Education
and Training, ICSE 2014 pp 344–353

41. Mittal M, Sureka A (2014) Process mining software
repositories from student projects in an undergradu-
ate software engineering course. In: 36th International
Conference on Software Engineering, ICSE Companion
2014 - Proceedings, Association for Computing Machin-
ery, pp 344–353, DOI 10.1145/2591062.2591152

42. Mohagheghi P, Conradi R (2007) Quality, productiv-
ity and economic benefits of software reuse: A review
of industrial studies. Empirical Software Engineering
12(5):471–516, DOI 10.1007/s10664-007-9040-x

43. Mohagheghi P, Jorgensen M (2017) What Contributes
to the Success of IT Projects? Success Factors, Chal-
lenges and Lessons Learned from an Empirical Study
of Software Projects in the Norwegian Public Sector.
In: 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), IEEE, pp
371–373, DOI 10.1109/ICSE-C.2017.146, URL http:
//ieeexplore.ieee.org/document/7965362/

44. Morales-Ramirez I, Kifetew FM, Perini A (2018)
Speech-acts based analysis for requirements discovery
from online discussions. Information Systems 86:94–
112, DOI 10.1016/j.is.2018.08.003

45. Munaiah N, Meneely A (2016) Vulnerability severity
scoring and bounties: Why the disconnect. In: SWAN
2016 - Proceedings of the 2nd International Workshop
on Software Analytics, co-located with FSE 2016, As-
sociation for Computing Machinery, Inc, pp 8–14, DOI
10.1145/2989238.2989239

46. Nakamoto S (2009) Bitcoin: A Peer-to-Peer Electronic
Cash System. Tech. rep., www.bitcoin.org, URL www.
bitcoin.org

http://www4.ncsu.edu/~tjmenzie/cs510/pdf/SWEBOKv3.pdf
http://www4.ncsu.edu/~tjmenzie/cs510/pdf/SWEBOKv3.pdf
http://dx.doi.org/10.1016/j.infsof.2013.07.010
http://dx.doi.org/10.1016/j.infsof.2013.07.010
http://bit.ly/o02QZJ
http://ieeexplore.ieee.org/document/7965362/
http://ieeexplore.ieee.org/document/7965362/
www.bitcoin.org
www.bitcoin.org

20 João Caldeira et al.

47. Nayebi M, Ruhe G, Mota RC, Mufti M (2016) Analytics
for software project management - Where are we and
where do we go? In: Proceedings - 2015 30th IEEE/ACM
International Conference on Automated Software En-
gineering Workshops, ASEW 2015, Institute of Elec-
trical and Electronics Engineers Inc., pp 18–21, DOI
10.1109/ASEW.2015.28

48. Poncin W, Serebrenik A, Brand MVD (2011) Process
Mining Software Repositories. 2011 15th European Con-
ference on Software Maintenance and Reengineering pp
5–14, DOI 10.1109/CSMR.2011.5

49. Prana GAA, Treude C, Thung F, Atapattu T, Lo D (2019)
Categorizing the Content of GitHub README Files.
Empirical Software Engineering 24(3):1296–1327, DOI
10.1007/s10664-018-9660-3

50. Qu Y, Yin H (2021) Evaluating network embedding
techniques’ performances in software bug prediction.
Empirical Software Engineering 26, DOI 10.1007/
S10664-021-09965-5

51. Rakha MS, Shang W, Hassan AE (2016) Studying the
needed effort for identifying duplicate issues. Empirical
Software Engineering 21(5):1960–1989, DOI 10.1007/
s10664-015-9404-6

52. Rakha MS, Bezemer CP, Hassan AE (2018) Revis-
iting the performance of automated approaches for
the retrieval of duplicate reports in issue tracking sys-
tems that perform just-in-time duplicate retrieval. Em-
pirical Software Engineering 23(5):2597–2621, DOI
10.1007/s10664-017-9590-5

53. Rana G, Haq EU, Bhatia E, Katarya R (2020) A study
of hyper-parameter tuning in the field of software analyt-
ics. Proceedings of the 4th International Conference on
Electronics, Communication and Aerospace Technology,
ICECA 2020 pp 455–459, DOI 10.1109/ICECA49313.
2020.9297613

54. Rodriguez D, Herraiz I, Harrison R (2012) On software
engineering repositories and their open problems. In:
2012 1st International Workshop on Realizing AI Syn-
ergies in Software Engineering, RAISE 2012 - Proceed-
ings, pp 52–56, DOI 10.1109/RAISE.2012.6227971

55. Saborido R, Morales R, Khomh F, Guéhéneuc YG, Anto-
niol G (2018) Getting the most from map data structures
in Android. Empirical Software Engineering 23(5):2829–
2864, DOI 10.1007/s10664-018-9607-8

56. Salza P, Palomba F, Nucci DD, D’uva C, De Lucia A,
Ferrucci F (2018) Do Developers Update Third-Party
Libraries in Mobile Apps. In: Proceedings of the 26th
Conference on Program Comprehension, Association for
Computing Machinery, vol 12, p 255–265

57. Sawant AA, Robbes R, Bacchelli A (2019) To react,
or not to react: Patterns of reaction to API deprecation.
Empirical Software Engineering 24(6):3824–3870, DOI
10.1007/s10664-019-09713-w

58. Sultana KZ, Williams BJ, Bhowmik T (2019) A study ex-
amining relationships between micro patterns and secu-
rity vulnerabilities. Software Quality Journal 27(1):5–41,
DOI 10.1007/s11219-017-9397-z

59. Taba SES, Keivanloo I, Zou Y, Wang S (2017) An ex-
ploratory study on the usage of common interface ele-
ments in android applications. Journal of Systems and
Software 131:491–504, DOI 10.1016/j.jss.2016.07.010

60. Tapscott D, Tapscott A (2016) Blockchain Revolution:
How the Technology Behind Bitcoin Is Changing Money,
Business, and the World. Portfolio

61. Thongtanunam P, Shang W, Hassan AE (2019) Will
this clone be short-lived? Towards a better understand-
ing of the characteristics of short-lived clones. Empiri-
cal Software Engineering 24(2):937–972, DOI 10.1007/
s10664-018-9645-2

62. Tian Y, Nagappan M, Lo D, Hassan AE (2015) What
are the characteristics of high-rated apps? A case study
on free Android Applications. In: 2015 IEEE 31st In-
ternational Conference on Software Maintenance and
Evolution, ICSME 2015 - Proceedings, Institute of Elec-
trical and Electronics Engineers Inc., pp 301–310, DOI
10.1109/ICSM.2015.7332476

63. Tim Menzies LW, Zimmermann T (2016) Perspectives
on Data Science for Software Engineering. Elsevier,
DOI 10.1016/C2015-0-00521-4

64. Van Der Aalst W (2016) Process Mining: Data Science
in Action, 2nd edn. Springer-Verlag Berlin Heidelberg,
DOI 10.1007/978-3-662-49851-4

65. Van Der Aalst W, Adriansyah A, De Medeiros AKA,
Arcieri F, Baier T, Blickle T, Bose JC, Van Den Brand P,
Brandtjen R, Buijs J, Burattin A, Carmona J, Castellanos
M, Claes J, Cook J, Costantini N, Curbera F, Damiani E,
De Leoni M, Delias P, Van Dongen BF, Dumas M, Dust-
dar S, Fahland D, Ferreira DR, Gaaloul W, Van Geffen
F, Goel S, Günther C, Guzzo A, Harmon P, Ter Hof-
stede A, Hoogland J, Ingvaldsen JE, Kato K, Kuhn R,
Kumar A, La Rosa M, Maggi F, Malerba D, Mans RS,
Manuel A, McCreesh M, Mello P, Mendling J, Mon-
tali M, Motahari-Nezhad HR, Zur Muehlen M, Munoz-
Gama J, Pontieri L, Ribeiro J, Rozinat A, Seguel Pérez
H, Seguel Pérez R, Sepúlveda M, Sinur J, Soffer P, Song
M, Sperduti A, Stilo G, Stoel C, Swenson K, Talamo
M, Tan W, Turner C, Vanthienen J, Varvaressos G, Ver-
beek E, Verdonk M, Vigo R, Wang J, Weber B, Wei-
dlich M, Weijters T, Wen L, Westergaard M, Wynn M
(2012) Process mining manifesto. Lecture Notes in Busi-
ness Information Processing 99 LNBIP:169–194, DOI
10.1007/978-3-642-28108-2{\ }19

66. Vashisht R, Rizvi SAM (2021) An empirical study
of heterogeneous cross-project defect prediction us-
ing various statistical techniques. International Jour-
nal of e-Collaboration 17:55–71, DOI 10.4018/IJEC.

Software Development Analytics in Practice 21

2021040104
67. Wani ZH, Bhat JI, Giri KJ (2021) A generic analogy-

centered software cost estimation based on differential
evolution exploration process. Computer Journal 64:462–
472, DOI 10.1093/COMJNL/BXAA199

68. Wohlin C (2014) Guidelines for snowballing in system-
atic literature studies and a replication in software engi-
neering. In: Proceedings of the 18th International Con-
ference on Evaluation and Assessment in Software En-
gineering - EASE ’14, pp 1–10, DOI 10.1145/2601248.
2601268

69. Wu R, Wen M, Cheung SC, Zhang H (2018) ChangeLo-
cator: locate crash-inducing changes based on crash re-
ports. Empirical Software Engineering 23(5):2866–2900,
DOI 10.1007/s10664-017-9567-4

70. Wu W, Khomh F, Adams B, Guéhéneuc YG, Anto-
niol G (2016) An exploratory study of api changes and
usages based on apache and eclipse ecosystems. Em-
pirical Software Engineering 21(6):2366–2412, DOI
10.1007/s10664-015-9411-7

71. Yan M, Xia X, Lo D, Hassan AE, Li S (2019) Char-
acterizing and identifying reverted commits. Empirical
Software Engineering 24(4):2171–2208, DOI 10.1007/
s10664-019-09688-8

72. Yang H, Chen F, Aliyu S (2017) Modern software cy-
bernetics: New trends. Journal of Systems and Software
124:169–186, DOI 10.1016/j.jss.2016.08.095

73. Yang XL, Lo D, Xia X, Wan ZY, Sun JL (2016)
What Security Questions Do Developers Ask? A Large-
Scale Study of Stack Overflow Posts. Journal of Com-
puter Science and Technology 31(5):910–924, DOI
10.1007/s11390-016-1672-0, URL https://archive.
org/details/stackexchange,

74. Ye D, Xing Z, Kapre N (2017) The structure and
dynamics of knowledge network in domain-specific
Q&A sites: a case study of stack overflow. Empirical
Software Engineering 22(1):375–406, DOI 10.1007/
s10664-016-9430-z

75. Zannier C, Melnik G, Maurer F (2006) On the success
of empirical studies in the international conference on
software engineering. In: Proceedings - International
Conference on Software Engineering, pp 341–350, DOI
10.1145/1134285.1134333

76. Zhang D, Han S, Dang Y, Lou JG, Zhang H, Re-
search Asia M, Xie T (2013) Software Analytics in Prac-
tice. IEEE Software pp 30–37, URL http://channel9.
msdn.

77. Zhang D, Han S, Dang Y, Lou JG, Zhang H, Xie T
(2013) Software analytics in practice. IEEE Software
30(5):30–37, DOI 10.1109/MS.2013.94

78. Zhang L, Tian JH, Jiang J, Liu YJ, Pu MY, Yue T (2018)
Empirical Research in Software Engineering — A Liter-
ature Survey. Journal of Computer Science and Technol-

ogy 33(5):876–899, DOI 10.1007/s11390-018-1864-x

https://archive.org/details/stackexchange,
https://archive.org/details/stackexchange,
http://channel9.msdn.
http://channel9.msdn.

22
João

C
aldeira

etal.

Appendices

A Data Extraction

Selection Process

Google Scholar
Manual Add
(n=2010)

ACM Scopus Web of Science ScienceDirect IEEE Wiley Online SpringerLink

Eligible Studies
(n=42)

Retrieved
(n=1144) Invalid Scope/

Language
(n=531)

Excluding
Common
(n=56)

Retrieved
(n=625)

Retrieved
(n=442)

Retrieved
(n=239)

Duplicated
(n=171)

Not Meeting
Quality
(n=131)

Apply Exclusion
Criteria
(n=452)

Stage 1
(n=3154)

Stage 2
(n=681)

Stage 3
(n=173)

Stage 4
(n=42)

Invalid Scope/
Language
(n=1632)

Duplicated
(n=139)

Fig. 8: Study Selection Process Stages

Softw
are

D
evelopm

entA
nalytics

in
Practice

23

Table 10: Data Collection Form

Item Description

General Information
1 Publication Id A sequential identifier for each publication.
2 Extraction Date Date/Time when the data was extracted.
3 Bibliography Reference The references of each publication.
4 Publication Date The Date/Time of publishing.
5 Publication Type The type publication (eg: Journal, Conference, etc).
6 Publisher Name The name of the publisher.
7 Publication Author(s) The author(s) of the publication.

Addressing RQs
8 Study Type(s) Extracting the type of empirical study as defined in [75, 42].
9 Data Source(s) The different types of data sources used in the publications. Admissible values are open.
10 Process Perspective The timing of when the study was conducted (eg: Pre-Mortem, if study was executed before project/product was finished,

Post-Mortem, if it was conducted after).
11 SDLC Activity(ies) We followed the SWEBOK to build our list of admissible values [27]. Implementation - refers to the activity of constructing

artifacts for a new product based on new defined requirements and design. Maintenance - refers to the task of maintaining, by
changing or evolving an existing software under operation according to early defined specifications. Testing - refers to the
automated or manual task of finding bugs and/or errors. Debugging - is the effort of fixing those known bugs. Operations - is
related with the phase where the software is under exploration by the end-users. Our approach extends the taxonomy used by
[15].

12 Study Stakeholder(s) The publication outcomes should be targeted to specific individuals in the software development process. We identify them
here.

13 Mining Method(s) The identification of the methods used for data mining/analysis.
14 Analytics Scope(s) Identifies what type of analytics was performed. We used the valid options(Descriptive Analytics, Diagnostics Analytics,

Predictive Analytics and Prescriptive Analytics) identified in [16].
15 Contribution(s) to SDLC We framed the admissible options to the following assessment dimensions of software: Technical Debt/Quality, Time, Costs,

Risk and Security. Our approach adapt and extends some of the dimensions and concerns identified earlier in section 2.1.

Findings
16 Findings and Conclusions What were the interpretation of the results obtained.
17 Validity Identifying the threats to the validity of the publication.
18 Relevance What other relevant outcomes could be inferred from the publication other then the ones in item 15.

24
João

C
aldeira

etal.

B Studies List

Table 11: Systematic Literature Review Studies.

Score Year Author Title Publication

S01 12 2019 Sultana et al. A study examining relationships between micro patterns and
security vulnerabilities

Software Quality Journal

S02 10.5 2019 Jha et al. An empirical study of configuration changes and adoption in
Android apps

Journal of Systems and Software

S03 10 2017 Hassan et al. An empirical study of emergency updates for top android
mobile apps

Empirical Software Engineering

S04 10 2016 W. Wu et al. An exploratory study of api changes and usages based on
apache and eclipse ecosystems

Empirical Software Engineering

S05 10.5 2017 Taba et al. An exploratory study on the usage of common interface
elements in android applications

Journal of Systems and Software

S06 10 2019 Prana et al. Categorizing the Content of GitHub README Files Empirical Software Engineering

S07 10 2018 R. Wu et al. ChangeLocator: locate crash-inducing changes based on crash
reports

Empirical Software Engineering

S08 10.5 2019 Yan et al. Characterizing and identifying reverted commits Empirical Software Engineering

S09 10 2018 Salza et al. Do developers update third-party libraries in mobile apps? International Conference on Program
Comprehension

S10 10 2019 Liu et al. DroidLeaks: a comprehensive database of resource leaks in
Android apps

Empirical Software Engineering

S11 11 2018 Fan et al. Early prediction of merged code changes to prioritize
reviewing tasks

Empirical Software Engineering

S12 10 2016 McIlroy et al. Fresh apps: an empirical study of frequently-updated mobile
apps in the Google play store

Empirical Software Engineering

S13 11 2018 Saborido et al. Getting the most from map data structures in Android Empirical Software Engineering

S14 10 2017 Guerrouj et al. Investigating the relation between lexical smells and change-
and fault-proneness: an empirical study

Software Quality Journal

S15 10 2014 Fucci et al. On the role of tests in test-driven development: a differentiated
and partial replication

Empirical Software Engineering

S16 10 2014 Mittal et al. Process mining software repositories from student projects in
an undergraduate software engineering course

International Conference on Software
Engineering

S17 10.5 2018 Rakha et al. Revisiting the performance of automated approaches for the
retrieval of duplicate reports in issue tracking systems that
perform just-in-time duplicate retrieval

Empirical Software Engineering

S18 10 2018 Morales-Ramirez et al. Speech-acts based analysis for requirements discovery from
online discussions

Information Systems Journal

S19 10.5 2018 Li et al. Studying software logging using topic models Empirical Software Engineering

S20 11 2018 Hassan et al. Studying the dialogue between users and developers of free
apps in the Google Play Store

Empirical Software Engineering

S21 10 2016 Rakha et al. Studying the needed effort for identifying duplicate issues Empirical Software Engineering

S22 10.5 2017 Ye et al. The structure and dynamics of knowledge network in
domain-specific Q&A sites: a case study of stack overflow

Empirical Software Engineering

S23 10.5 2019 Sawant et al. To react, or not to react: Patterns of reaction to API deprecation Empirical Software Engineering

Continued on next page

Softw
are

D
evelopm

entA
nalytics

in
Practice

25

Table 11: continued from previous page

Score Year Author Title Publication

S24 10 2019 Cruz et al. To the attention of mobile software developers: guess what, test
your app!

Empirical Software Engineering

S25 10 2017 Li et al. Towards just-in-time suggestions for log changes Empirical Software Engineering

S26 10 2017 Izquierdo-Cortazar et al. Using Metrics to track code review performance International Conference on Evaluation and
Assessment in Software Engineering

S27 10 2016 Munaiah et al. Vulnerability severity scoring and bounties: Why the
disconnect?

International Workshop on Software
Analytics

S28 10 2015 Tian et al. What are the characteristics of high-rated apps? A case study
on free Android Applications

International Conference on Software
Maintenance and Evolution

S29 11 2016 Yang et al. What security questions do developers ask? a large-scale study
of stack overflow posts

Journal of Computer Science and
Technology

S30 10.5 2019 Chen et al. What’s Spain’s Paris ? Mining analogical libraries from Q&A
discussions

Empirical Software Engineering

S31 10 2017 Jiang et al. Why and how developers fork what from whom in GitHub Empirical Software Engineering

S32 10.5 2019 Thongtanunam et al. Will this clone be short-lived? Towards a better understanding
of the characteristics of short-lived clones

Empirical Software Engineering

S33 11 2020 Avila et al. A Data Driven Platform for Improving Performance
Assessment of Software Defined Storage Solutions

Advances in Intelligent Systems and
Computing

S34 12 2021 Wani et al. A Generic Analogy-Centered Software Cost Estimation Based
on Differential Evolution Exploration Process

Computer Journal

S35 12 2020 Rana et al. A Study of Hyper-Parameter Tuning in the Field of Software
Analytics

International Conference on Electronics,
Communication and Aerospace Technology

S36 12 2021 Vashisht et al. An empirical study of heterogeneous cross-project defect
prediction using various statistical techniques

International Journal of e-Collaboration

S37 10.5 2020 Capizza et al. Anomaly Detection in DevOps Toolchain International Workshop on Software
Engineering Aspects of Continuous
Development and New Paradigms of
Software Production and Deployment

S38 11 2020 Avila et al. Effects of contextual information on maintenance effort: A
controlled experiment

Journal of Systems and Software

S39 12 2021 Qu et al. Evaluating network embedding techniques performances in
software bug prediction

Empirical Software Engineering

S40 11 2020 Krishna et al. Learning actionable analytics from multiple software projects Empirical Software Engineering

S41 10 2020 Bangash et al. On the time-based conclusion stability of cross-project defect
prediction models

Empirical Software Engineering

S42 10 2021 AIOmar et al. Toward the automatic classification of Self-Affirmed
Refactoring

Journal of Systems and Software

26 João Caldeira et al.

Comments on Studies

[S01] explores the correlation between software vulnerabilities and
code-level constructs called micro patterns. The authors analyzed the
correlation between vulnerabilities and micro patterns from different
viewpoints and explored whether they are related. The conclusion shows
that certain micro patterns are frequently present in vulnerable classes
and that there is a high correlation between certain patterns that coexist
in a vulnerable class [58].

[S02] presents an empirical study to analyze commit histories of An-
droid manifest files of hundreds of apps to understand their evolution
through configuration changes. The results is a contribution to help
developers in identifying change-proneness attributes, including the
reasons behind the changes and associated patterns and understand-
ing the usage of different attributes introduced in different versions of
the Android platform. In summary, the results show that most of the
apps extend core functionalities and improve user interface over time.
It detected that significant effort is wasted in changing configuration
and then reverting back the change, and that very few apps adopt new
attributes introduced by the platform and when they do, they are slow in
adopting new attributes. Configuration changes are mostly influenced
by functionalities extension, platform evolution and bug reports [29].

[S03] studied updates in the Google Play Store by examining more than
44,000 updates of over 10,000 mobile apps, from where 1,000 were
identified as emergency updates. After studying the characterirstics of
the updates, the authors found that the emergency updates often have
a long lifetime (i.e., they are rarely followed by another emergency
update) and that updates preceding emergency updates often receive a
higher ratio of negative reviews than the emergency updates [25].

[S04] analyzed and classified API changes and usages together in 22
framework releases from the Apache and Eclipse ecosystems and their
client programs. The authors conclude that missing classes and meth-
ods happen more often in frameworks and affect client programs more
often than the other API change types do, and that missing interfaces
occur rarely in frameworks but affect client programs often. In sum-
mary, framework APIs are used on average in 35% of client classes
and interfaces and most of such usages could be encapsulated locally
and reduced in number. Around 11% of APIs usages could cause ripple
effects in client programs when these APIs change. Some suggestions
for developers and researchers were made to mitigate the impact of API
evolution through language mechanisms and design strategies [70].

[S05] extracted commonly used UI elements, denoted as Common Ele-
ment Sets (CESs), from user interfaces of applications. The highlight
the characteristics of CESs that can result in a high user-perceived qual-
ity by proposing various metrics. From an empirical study on 1292
mobile applications, the authors observed that CESs of mobile applica-
tions widely occur among and across different categories, whilst certain
characteristics of CESs can provide a high user-perceived quality. A
recommendation is made, aiming to improve the quality of mobile ap-
plications, consisting on the adoption of reusable UI templates that are
extracted and summarized from CESs for developers [59].

[S06] performed a qualitative study involving the manual annotation
of 4,226 README file sections from 393 randomly sampled GitHub
repositories and design and evaluate a classifier and a set of features that
can categorize these sections automatically. The findings show that in-
formation discussing the ’What’ and ’How’ of a repository hapens very
often, while at the same time, many README files lack information
regarding the purpose and status of a repository. A classifier was built
to predict multiple categories and the F1 score obtained encourages its
usage by software repositories owners. The approach presented is said

to improve the quality of software repositories documentation and it has
the potential to make it easier for the software development community
to discover relevant information in GitHub README files [49].

[S07] conducted an empirical study on characterizing the bug induc-
ing changes for crashing bugs (denoted as crash-inducing changes).
ChangeLocator was also proposed as a method to automatically locate
crash-inducing changes for a given bucket of crash reports. The study
approach is based on a learning model that uses features originated
from the empirical study itself and a model was trained using the data
from the historical fixed crashes. ChangeLocator was evaluated with
six release versions of the Netbeans project. The analysis and results
show that it can locate the crash-inducing changes for 44.7%, 68.5%,
and 74.5% of the bugs by examining only top 1, 5 and 10 changes in
the recommended list, respectively, which is said to outperform other
approaches [69].

[S08] explored if one can characterize and identify which commits
will be reverted. The authors characterized commits using 27 commit
features and build an identification model to identify commits that will
be reverted. Reverted commits were identified by analyzing commit
messages and comparing the changed content, and extracted 27 commit
features that were divided into three dimensions: change, developer and
message. An identification model (e.g., random forest) was built and
evaluated on an empirical study on ten open source projects including a
total of 125,241 commits. The findings show that the ’developer’ is the
most discriminative dimension among the three dimensions of features
for the identification of reverted commits. However, using all the three
dimensions of commit features leads to better performance of the cre-
ated models [71].

[S09] conducted an empirical study on the evolution history of almost
three hundred mobile apps, by investigating whether mobile developers
actually update third-party libraries, checking which are the categories
of libraries with respect to the developers’ proneness to update their
apps, looking for what are the common patterns followed by developers
when updating a software library, and whether high- and low-rated
apps present any particular update patterns. Results showed that mobile
developers rarely update their apps with respect to the used libraries,
and when they do, they mainly tend to update the libraries related to
the Graphical User Interface, with the aim of keeping the mobile apps
updated with the latest design trends. In some cases developers ignore
updates because of a poor awareness of the benefits, or a too high
cost/benefit ratio [56].

[S10] extracted real resource leak bugs from a bug database named
DROIDLEAKS. It consisted in mining 34 popular open-source Android
apps, which resulted in a dataset having a total of 124,215 code revi-
sions. After filtering and validating the data, the authors found, on 32
analyzed apps, 292 fixed resource leak bugs, which cover a diverse set
of resource classes. To fully comprehend these bugs, they performed an
empirical study, which revealed the characteristics of resource leaks in
Android apps and common patterns of resource management mistakes
made by developers [36].

[S11] built a merged code change prediction tool leveraging machine
learning techniques, and extracted 34 features from code changes, which
were grouped into 5 dimensions: code, file history, owner experience,
collaboration network, and text. Experiments were executed on three
open source projects (i.e., Eclipse, LibreOffice, and OpenStack), con-
taining a total of 166,215 code changes. Across three datasets, the re-
sults show statistically significantly improvements in detecting merged
code changes and in distinguishing important features on merged code
changes from abandoned ones [20].

Software Development Analytics in Practice 27

[S12] studied the frequency of updates of 10,713 mobile apps (the top
free 400 apps at the start of 2014 in each of the 30 categories in the
Google Play store). It was found that only ∼1% of the studied apps
are updated at a very frequent rate - more than one update per week
and 14% of the studied apps are updated on a bi-weekly basis (or more
frequently). Results also show that 45% of the frequently-updated apps
do not provide the users with any information about the rationale for the
new updates and updates exhibit a median growth in size of 6%. The
authors conclude that developers should not shy away from updating
their apps very frequently, however the frequency should vary across
store categories. It was observed that developers do not need to be
too concerned about detailing the content of new updates as it appears
that users are not too concerned about such information and, that users
highly rank frequently-updated apps instead of being annoyed about the
high update frequency [37].

[S13] studied the use of map data structure implementations by Android
developers and how that relates with saving CPU, memory, and energy
as these are major concerns of users wanting to increase battery life.
The authors initially performed an observational study of 5713 An-
droid apps in GitHub and then conducted a survey to assess developers’
perspective on Java and Android map implementations. Finally, they
performed an experimental study comparing HashMap, ArrayMap, and
SparseArray variants map implementations in terms of CPU time, mem-
ory usage, and energy consumption. The conclusions provide guidelines
for choosing among the map implementations: HashMap is preferable
over ArrayMap to improve energy efficiency of apps, and SparseArray
variants should be used instead of HashMap and ArrayMap when keys
are primitive types [55].

[S14] detected 29 smells consisting of 13 design smells and 16 lexical
smells in 30 releases of three projects: ANT, ArgoUML, and Hibernate.
Further, the authors analyzed to what extent classes containing lexical
smells have higher (or lower) odds to change or to be subject to fault
fixing than other classes containing design smells. The results obtained
bring empirical evidence on the fact that lexical smells can make, in
some cases, classes with design smells more fault-prone. In addition,
it was empirically demonstrated that classes containing design smells
only are more change- and fault-prone than classes with lexical smells
only [24].

[S15] examined the nature of the relationship between tests and ex-
ternal code quality as well as programmers’ productivity in order to
verify/refute the results of a previous study. With the focus on the role
of tests, a differentiated and partial replication of the original study and
related analysis was conducted. The replication involved 30 students,
working in pairs or as individuals, in the context of a graduate course,
and resulted in 16 software artifacts developed. Significant correlation
was found between the number of tests and productivity. No significant
correlation found between the number of tests and external code qual-
ity. For both cases we observed no statistically significant interaction
caused by the subject units being individuals or pairs. Results obtained
are consistent with the original study although, as the authors admit,
there were changes in the timing constraints for finishing the task and
the enforced development processes [21].

[S16] presented an application of mining three software repositories:
team wiki (used during requirement engineering), version control sys-
tem (development and maintenance) and issue tracking system (cor-
rective and adaptive maintenance) in the context of an undergraduate
Software Engineering course. Visualizations, metrics and algorithms
to provide an insight into practices and procedures followed during
various phases of a software development life-cycle were proposed
and these provided a multi-faceted view to the instructor serving as a

feedback tool on development process and quality by students. Event
logs produced by software repositories were mined and derived insights
such as degree of individual contributions in a team, quality of commit
messages, intensity and consistency of commit activities, bug fixing
process trend and quality, component and developer entropy, process
compliance and verification. Experimentation revealed that not only
product but process quality varies signicantly between student teams
and mining process aspects can help the instructor in giving directed and
specific feedback. Authors, observed that commit patterns characteriz-
ing equal and un-equal distribution of workload between team members,
patterns indicating consistent activity in contrast to spike in activity just
before the deadline, varying quality of commit messages, developer and
component entropy, variation in degree of process compliance and bug
fixing quality [41].

[S17] investigated the impact of the just-in-time duplicate retrieval on
the duplicate reports that end up in the ITS of several open source
projects, namelly Mozilla-Firefox, Mozilla-Core and Eclipse-Platform.
The differences between duplicate reports for open source projects be-
fore and after the activation of this new feature were studied. Findings
showed that duplicate issue reports after the activation of the just-in-
time duplicate retrieval feature are less textually similar, have a greater
identification delay and require more discussion to be retrieved as dupli-
cate reports than duplicates before the activation of the feature [52].

[S18] exploited a linguistic technique based on speech-acts for the
analysis of online discussions with the ultimate goal of discovering
requirements-relevant information. The datasets used in the experimen-
tal evaluation, which are publicly available, were taken from a widely
used open source software project (161120 textual comments), as well
as from an industrial project in the home energy management domain.
The approach used was able to successfully classify messages into Fea-
ture/Enhancement and Other, with significant accuracy. Evidence was
found to support the rationale, that there is an association between types
of speech-acts and categories of issues, and that there is correlation
between some of the speechacts and issue priority, which could open
other streams of research [44].

[S19] studied the relationship between the topics of a code snippet and
the likelihood of a code snippet being logged (i.e., to contain a logging
statement). The intuition driving this research, was that certain topics in
the source code are more likely to be logged than others. To validate the
assumptions a case study was conducted on six open source systems.
The analysis gathered evidences that i) there exists a small number of
”log-intensive” topics that are more likely to be logged than other topics;
ii) each pair of the studied systems share 12% to 62% common topics,
and the likelihood of logging such common topics has a statistically
significant correlation of 0.35 to 0.62 among all the studied systems. In
summary, the findings highlight the topics containing valuable informa-
tion that can help guide and drive developers’ logging decisions [35].

[S20] revisits a previous work in more depth by studying 4.5 million
reviews with 126,686 responses for 2,328 top free-to-download apps
in the Google Play Store. One of the major findings is that the assump-
tion that reviews are static is incorrect. In particular, it is found that
developers and users in some cases use this response mechanism as a
rudimentary user support tool, where dialogues emerge between users
and developers through updated reviews and responses. In addition,
four patterns of developers were identified: 1) developers who primarily
respond to only negative reviews, 2) developers who primarily respond
to negative reviews or to reviews based on their contents, 3) developers
who primarily respond to reviews which are posted shortly after the
latest release of their app, and 4) developers who primarily respond
to reviews which are posted long after the latest release of their app.
To perform a qualitative analysis of developer responses to understand

28 João Caldeira et al.

what drives developers to respond to a review, the authors analyzed a sta-
tistically representative random sample of 347 reviews with responses
for the top ten apps with the highest number of developer responses.
Seven drivers that make a developer respond to a review were identified,
of which the most important ones are to thank the users for using the
app and to ask the user for more details about the reported issue. In
summary, there were significant evidences found, that it can be worth-
while for app owners to respond to reviews, as responding may lead to
an increase in the given rating and that studying the dialogue between
user and developer can provide valuable insights which may lead to
improvements in the app store and the user support process [26].

[S21] empirically examined the effort that is needed for manually iden-
tifying duplicate reports in four open source projects, i.e., Firefox,
SeaMonkey, Bugzilla and Eclipse-Platform. Results showed that: (i)
More than 50% of the duplicate reports are identified within half a day.
Most of the duplicate reports are identified without any discussion and
with the involvement of very few people; (ii) A classification model
built using a set of factors that are extracted from duplicate issue reports
classifies duplicates according to the effort that is needed to identify
them with significant values for precision, recall and ROC area; and
(iii) Factors that capture the developer awareness of the duplicate issues’
peers (i.e., other duplicates of that issue) and textual similarity of a
new report to prior reports are the most influential factors found. The
results highlight the need for effort-aware evaluation of approaches that
identify duplicate issue reports, since the identification of a consider-
able amount of duplicate reports (over 50%) appear to be a relatively
trivial task for developers. As a conclusion, the authors highlight the
fact that, to better assist developers, research on identifying duplicate
issue reports should put greater emphasis on assisting developers in
identifying effort-consuming duplicate issues [51].

[S22] analyzed URL sharing activities in Stack Overflow. The approach
was to use open coding method to analyze why users share URLs in
Stack Overflow, and develop a set of quantitative analysis methods to
study the structural and dynamic properties of the emergent knowledge
network in Stack Overflow. The findings show: i) Users share URLs
for diverse categories of purposes. ii) These URL sharing behaviors
create a complex knowledge network with high modularity, assorta-
tive mixing of semantic topics, and a structure skeleton consisting of
highly recognized knowledge units. iii) The structure of the knowledge
network with respect to indegree distribution is scale-free (i.e., stable),
in spite of the ad-hoc and opportunistic nature of URL sharing activi-
ties, while the outdegree distribution of the knowledge network is not
scale-free. iv) The indegree distributions of the knowledge network
converge quickly, with small changes over time after the convergence
to the stable distribution. The conclusions highlight the fact that the
knowledge network is a natural product of URL sharing behavior that
Stack Overflow supports and encourages, and proposed an explanatory
model based on information value and preferential attachment theories
to explain the underlying factors that drive the formation and evolution
of the knowledge network in Stack Overflow [74].

[S23] questioned if there was really a strong argument for the Java 9
language designers to change the implementation of the deprecation
warnings feature after they notice no one was taking seriously those and
continued using outdated features. The goal was to start by identifying
the various ways in which an API consumer can react to deprecation
and then to create a dataset of reaction patterns frequency consisting
of data mined from 50 API consumers totalling 297,254 GitHub based
projects and 1,322,612,567 type-checked method invocations. Findings
show that predominantly consumers do not react to deprecation and
a survey on API consumers was done to try to explain this behavior
and by analyzing if the APIs deprecation policy had an impact on the
consumers’ decision to react. The manual inspection of usages of depre-

cated API artifacts lead to the discovery of six reaction patterns. Only
13% of API consumers update their API versions and 88% of reactions
to deprecation is doing nothing. However the survey got a different
result, where 69% of respondents say they replace it with the recom-
mended repalcement. Over 75% of the API barelly affect consumers
with deprecation and 15% of the consumers are affected only by 2
APIs(hibernate-core and mongo-java-driver) [57].

[S24] investigated working habits and challenges of mobile software
developers with respect to testing. A key finding of this exhaustive
study, using 1000 Android apps, demonstrates that mobile apps are
still tested in a very ad hoc way, if tested at all. However, it is shown
that, as in other types of software, testing increases the quality of apps
(demonstrated in user ratings and number of code issues). Furthermore,
there is evidence that tests are essential when it comes to engaging the
community to contribute to mobile open source software. The authors
discuss reasons and potential directions to address the findings. Yet
another relevant finding of this study is that Continuous Integration
and Continuous Deployment (CI/CD) pipelines are rare in the mobile
apps world (only 26% of the apps are developed in projects employing
CI/CD) - authors argue that one of the main reasons is due to the lack
of exhaustive and automatic testing [14].

[S25] tries to understand the reasons for log changes and, proposes an
approach that can provide developers with log change suggestions as
soon as they commit a code change, which is referred to as ”just-in-time”
suggestions for log changes. A set of measures is derived based on man-
ually examining the reasons for log changes and individual experiences.
Those measures were used as explanatory variables in random forest
classifiers to model whether a code commit requires log changes. These
classifiers can provide just-in-time suggestions for log changes and was
evaluated with a case study on four open source projects: Hadoop, Di-
rectory Server, Commons HttpClient, and Qpid. Findings show that: i)
the reasons for log changes can be grouped along four categories: block
change, log improvement, dependence-driven change, and logging is-
sue; ii) the random forest classifiers can effectively suggest whether
a log change is needed; iii) the characteristics of code changes in a
particular commit and the current snapshot of the source code are the
most influential factors for determining the likelihood of a log change
in a commit [34].

[S26] designed and conducted, with the continuous feedback of the
Xen Project Advisory Board, a detailed analysis focused on finding
problems associated with the large increase over time in the number
of messages related to code review. The increase was being perceived
as a potential signal of problems with their code review process and
the usage of metrics was suggested to track the performance of it. As a
result, it was learned how in fact the Xen Project had some problems,
but at the moment of the analysis those were already under control.
It was found as well how diferent the Xen and Netdev projects were
behaving with respect to code review performance, despite being so
similar from many points of view. A comprehensive methodology, fully
automated, to study Linux-style code review was proposed [28].

[S27] analyzed the Common Vulnerability Scoring System (CVSS)
scores and bounty awarded for 703 vulnerabilities across 24 products.
CVSS is the de facto standard for vulnerability severity measurement
today and is crucial in the analytics driving software fortification. It
was found a weak correlation between CVSS scores and bounties, with
CVSS being more likely to underestimate bounty. Such a negative result
is suggested to be a cause for concern. The authors, investigated why
the measurements were so discordant by i) analyzing the individual
questions of CVSS with respect to bounties and ii) conducting a qualita-
tive study to find the similarities and diferences between CVSS and the
publicly-available criteria for awarding bounties. It was found that the

Software Development Analytics in Practice 29

bounty criteria were more explicit about code execution and privilege
escalation whereas CVSS makes no explicit mention of those. Another
lesson learnt was that bounty valuations are evaluated solely by project
maintainers, whereas CVSS has little provenance in practice [45].

[S28] through a case study on 1,492 high-rated and low-rated free apps
mined from the Google Play store, investigated 28 factors along eight
dimensions to understand how high-rated apps are different from low-
rated apps. The search for the most influential factors was also addressed
by applying a random-forest classifier to identify high-rated apps. The
results show that high-rated apps are statistically significantly different
in 17 out of the 28 factors that we considered. The experiment also
presents eveidences for the fact that the size of an app, the number of
promotional images that the app displays on its web store page, and the
target SDK version of an app are the most influential factors [62].

[S29] conducted a large-scale study on security-related questions on
Stack Overflow. Two heuristics were used to extract from the dataset the
questions that are related to security based on the tags of the posts. Later,
to cluster different security-related questions based on their texts, an
advanced topic model, Latent Dirichlet Allocation (LDA) tuned using
Genetic Algorithm (GA) was used. Results show that security-related
questions on Stack Overflow cover a wide range of topics, which belong
to five main categories: web security, mobile security, cryptography,
software security, and system security. Among them, most questions
are about web security. In addition, it was found that the top four most
popular topics in the security area are ”Password”, ”Hash”, ”Signature”
and ”SQL Injection”, and the top eight most difficulty security-related
topics are ”JAVA Security”, ”Asymetric Encryption”, ”Bug”, ”Browser
Security”, ”Windows Authority”, ”Signature”, ”ASP.NET” and ”Pass-
word”, suggesting these are the ones in need for more attention [73].

[S30] present an approach to recommend analogical libraries based
on a knowledge base of analogical libraries mined from tags of mil-
lions of Stack Overflow questions. The approach was implemented in
a proof-of-concept web application and more than 34.8 thousands of
users visited the website from November 2015 to August 2017. Results
show evidences that accurate recommendation of analogical libraries
is not only possible but also a desirable solution. Authors validated the
usefulness of their analogical-library recommendations by using them
to answer analogical-library questions in Stack Overflow [11].

[S31] explored why and how developers fork what from whom in
GitHub. This approach was supported by collecting a dataset containing
236,344 developers and 1,841,324 forks. It was also validated by a
survey in order to analyze the programming languages and owners of
forked repositories. Among the main findings we have: i) Developers
fork repositories to submit pull requests, fix bugs, add new features
and keep copies etc. Developers find repositories to fork from various
sources: search engines, external sites (e.g., Twitter, Reddit), social
relationships, etc. More than 42% of developers that were surveyed
agree that an automated recommendation tool is useful to help them
pick repositories to fork, while more than 44.4% of developers do not
value a recommendation tool. Developers care about repository owners
when they fork repositories. ii) A repository written in a developers’
preferred programming language is more likely to be forked. iii) De-
velopers mostly fork repositories from creators. In comparison with
unattractive repository owners, attractive repository owners have higher
percentage of organizations, more followers and earlier registration in
GitHub. The results show that forking is mainly used for making contri-
butions of original repositories, and it is beneficial for OSS community.
In summary, there is evidence of the value of recommendation and
provide important insights for GitHub to recommend repositories [30].

[S32] designed and executed an empirical study on six open source Java
systems to better understand the life expectancy of clones. A random
forest classifier was built with the aim of determining the life expectancy
of a newly-introduced clone (i.e., whether a clone will be short-lived
or longlived) and it was confimed to have good accuracy on that task.
Results show that a large number of clones (i.e., 30% to 87%) lived
in the systems for a short duration. Moreover, it finds that although
short-lived clones were changed more frequently than long-lived clones
throughout their lifetime, short-lived clones were consistently changed
with their siblings less often than long-lived clones. Findings show that
the churn made to the methods containing a newly-introduced clone, the
complexity and size of the methods containing the newly- introduced
clone are highly influential in determining whether the newly-introduced
clone will be short-lived. Furthermore, the size of a newly-introduced
clone shares a positive relationship with the likelihood that the newly
introduced clone will be short-lived. Results suggest that, to improve
the efficiency of clone management efforts, such as the planning of
the most effective use of their clone management resources in advance,
practitioners can leverage the presented classifiers and insights in order
to determine the life expectancy of clones [61].

[S33] This paper introduces DDP (Data Driven Plataform) platform, a
scalable platform to analyze and exploit performance data. This plat-
form centralizes, analyzes and visualizes the performance data produced
during the software development cycle. DDP employs big data and ana-
lytics technology to collect, store and process performance data in an
efficient and integrated way. They have demonstrated the successful
application of DDP for Spectrum Scale, a software defined storage solu-
tion, where they have been able to implement performance regression
data analysis to validate the performance consistency of new produced
builds [4].

[S34] To help the industry practitioners in these situations, a analogy-
centered model based on differential evolution exploration process is
proposed in this research study. The proposed model has been assessed
on 676 projects from 5 different data sets and the results achieved are sig-
nificantly better when compared with other benchmark analogy-based
estimation studies [67].

[S35] The paper attempts to analyze and compare various methodologies
to tune the defect predictors. The research papers which are analyzed
here have used data-set from the PROMISE repository, open-source
[53].

[S36] This paper evaluates empirically and theoretically heterogeneous
Cross-project defect prediction (HCPDP) modeling, which comprises
of three main phases: Feature ranking and feature selection, metric
matching, and finally, predicting defects in the target application. The
research work has been experimented on 13 benchmarked datasets of
three open source projects. Results show that performance of HCPDP is
very much comparable to baseline within project defect prediction [66].

[S37] An anomaly detection system can operate in the staging envi-
ronment to compare the current incoming release with previous ones
according to predefined metrics. The analysis is conducted before going
into production to identify anomalies. In this paper, they describe a
prototypical implementation of the aforementioned idea in the form of
a proof-of-concept [10].

[S38] This article reports a controlled experiment that compares the
effort to implement changes, the correctness and the maintainability of
an existing application between two projects; one that uses qualitative
dashboards depicting contextual information, and one that does not [17].

30 João Caldeira et al.

[S39] In this paper conducts an extensive empirical study to evalu-
ate network embedding algorithms in bug prediction by utilizing and
extending node2defect, a newly proposed bug prediction model that
combines the embedded vectors with traditional software engineering
metrics through concatenation. Experiments are conducted based on
seven network embedding algorithms,two effort-aware models, and 13
open-source Java systems [50].

[S40] This paper presents a technology for prescriptive software an-
alytics. Their planner offers users a guidance on what action to take
in order to improve the quality of a software project. Our preferred
planning tool is BELLTREE, which performs cross-project planning
with encouraging results.With our BELLTREE planner, we show that it
is possible to reduce several hundred defects in software projects [33].

[S41] In this paper they investigate whether conclusions in the area of
defect prediction, if the claims of the researchers are stable throughout
time. This case study provides evidence that in the field of defect pre-
diction the context of evaluation (in our case, time) plays an important
role [5].

[S42] In this paper, they propose a two-step approach to first identify
whether a commit describes developer-related refactoring events, then
to classify it according to the refactoring common quality improvement
categories [2].

Software Development Analytics in Practice 31

General Statistics

1
2
1
1

1
1

1
1

1
1 1
1

1
1

1
1 1

1
1

1
1

1
1

1
1

1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

AIOmar et al.
Avila et al.

Bangash et al.
Capizza et al.

Chen et al.
Cruz et al.
Fan et al.

Fucci et al.
Guerrouj et al.

Hassan et al.
Izquierdo-Cortazar et al.

Jha et al.
Jiang et al.

Krishna et al.
Li et al.

Liu et al.
McIlroy et al.

Mittal et al.
Morales-Ramirez et al.

Munaiah et al.
Prana et al.

Qu et al.
R. Wu et al.
Rakha et al.
Rana et al.

Saborido et al.
Salza et al.

Sawant et al.
Sultana et al.

Taba et al.
Thongtanunam et al.

Tian et al.
Vashisht et al.

W. Wu et al.
Wani et al.
Yan et al.

Yang et al.
Ye et al.

2014 2015 2016 2017 2018 2019 2020 2021

Year

A
ut

ho
r

Fig. 9: Number of studies published by each main author over the years

Table 12: List of all Contributors

Name Freq. Perc. Ref.

Ahmed E. Hassan 10 23.81% [S03], [S08], [S12], [S17], [S19], [S20], [S21], [S25], [S28], [S32]
David Lo 7 16.67% [S06], [S08], [S11], [S24], [S28], [S29], [S31]
Weiyi Shang 5 11.9% [S03], [S19], [S21], [S25], [S32]
Xin Xia 4 9.52% [S08], [S11], [S29], [S31]
Foutse Khomh 3 7.14% [S04], [S13], [S14]
Giuliano Antoniol 3 7.14% [S04], [S13], [S14]
Yann-Gael Guéhéneuc 3 7.14% [S04], [S13], [S14]
Cor-Paul Bezemer 2 4.76% [S17], [S20]
Heng Li 2 4.76% [S19], [S25]

Continued on next page

32 João Caldeira et al.

Table 12: continued from previous page

Name Freq. Perc. Ref.

Mohamed Sami Rakha 2 4.76% [S17], [S21]
Safwat Hassan 2 4.76% [S03], [S20]
Shanping Li 2 4.76% [S08], [S11]
Shing-Chi Cheung 2 4.76% [S07], [S10]
Ying Zou 2 4.76% [S05], [S25]
Zhenchang Xing 2 4.76% [S22], [S30]
Abdul Ali Bangash 1 2.38% [S41]
Abram Hindle 1 2.38% [S41]
Ajay Kumar Jha 1 2.38% [S02]
Alberto Bacchelli 1 2.38% [S23]
Ali Ouni 1 2.38% [S42]
Anand Ashok Sawant 1 2.38% [S23]
Andrea De Lucia 1 2.38% [S09]
Andrew Meneely 1 2.38% [S27]
Anna Perini 1 2.38% [S18]
Antonio Capizzi 1 2.38% [S37]
Arianne Navarro Lepe 1 2.38% [S33]
Ashish Sureka 1 2.38% [S16]
Ayrton Mondragon Mejia 1 2.38% [S33]
Benjamin C. M. Fung 1 2.38% [S14]
Bram Adams 1 2.38% [S04]
Burak Turhan 1 2.38% [S15]
Byron J. Williams 1 2.38% [S01]
Chakkrit Tantithamthavorn 1 2.38% [S20]
Chang Xu 1 2.38% [S10]
Christoph Treude 1 2.38% [S06]
Chunyang Chen 1 2.38% [S30]
Cosmo D’Uva 1 2.38% [S09]
Daniel Izquierdo-Cortazar 1 2.38% [S26]
Dario Di Nucci 1 2.38% [S09]
Davide Fucci 1 2.38% [S15]
Deheng Ye 1 2.38% [S22]
Ejaz ul Haq 1 2.38% [S35]
Eklavya Bhatia 1 2.38% [S35]
Eman Abdullah AlOmar 1 2.38% [S42]
Evgeny Bobrov 1 2.38% [S37]
Fabio Palomba 1 2.38% [S09]
Ferdian Thung 1 2.38% [S06]
Filomena Ferrucci 1 2.38% [S09]
Fitsum Meshesha Kifetew 1 2.38% [S18]
Garvit Rana 1 2.38% [S35]
Gede Artha Azriadi Prana 1 2.38% [S06]
Hareem Sahar 1 2.38% [S41]
Heng Yin 1 2.38% [S39]
Hongyu Zhang 1 2.38% [S07]
Iman Keivanloo 1 2.38% [S05]
Ismael Solis Moreno 1 2.38% [S33]
Itzel Morales-Ramirez 1 2.38% [S18]
Javaid Iqbal Bhat 1 2.38% [S34]
Jesus M. Gonzalez-Barahona 1 2.38% [S26]
Jiahuan He 1 2.38% [S31]
Jian-Ling Sun 1 2.38% [S29]
Jian Zhang 1 2.38% [S10]
Jing Jiang 1 2.38% [S31]
Jorge Luis Victória Barbosa 1 2.38% [S38]
Jue Wang 1 2.38% [S10]
Jun Yan 1 2.38% [S10]
Kaisar Javeed Giri 1 2.38% [S34]
Karim Ali 1 2.38% [S41]
Kazi Zakia Sultana 1 2.38% [S01]
Kleinner Silva Farias de Oliveira 1 2.38% [S38]
Lars Kurth 1 2.38% [S26]
Latifa Guerrouj 1 2.38% [S14]
Leandro Ferreira D’Avila 1 2.38% [S38]
Li Zhang 1 2.38% [S31]
Lili Wei 1 2.38% [S10]
Luis Cruz 1 2.38% [S24]

Continued on next page

Software Development Analytics in Practice 33

Table 12: continued from previous page

Name Freq. Perc. Ref.

Luiz J. P. Araújo 1 2.38% [S37]
Manuel Mazzara 1 2.38% [S37]
Megha Mittal 1 2.38% [S16]
Meiyappan Nagappan 1 2.38% [S28]
Meng Yan 1 2.38% [S08]
MingWen 1 2.38% [S07]
Mohamed Wiem Mkaouer 1 2.38% [S42]
Muhammad Ahmad 1 2.38% [S37]
Nachiket Kapre 1 2.38% [S22]
Nasir Ali 1 2.38% [S12]
Nelson Sekitoleko 1 2.38% [S26]
Nuthan Munaiah 1 2.38% [S27]
Pasquale Salza 1 2.38% [S09]
Patanamon Thongtanunam 1 2.38% [S32]
Patricia Ortegon Cano 1 2.38% [S33]
Pavneet Singh Kochhar 1 2.38% [S31]
Rahul Katarya 1 2.38% [S35]
Rahul Krishna 1 2.38% [S40]
Rodrigo Morales 1 2.38% [S13]
Rohit Vashisht 1 2.38% [S36]
Romain Robbes 1 2.38% [S23]
RongxinWu 1 2.38% [S07]
Rubén Saborido 1 2.38% [S13]
Rui Abreu 1 2.38% [S24]
Salvatore Distefano 1 2.38% [S37]
Seyyed Ehsan Salamati Taba 1 2.38% [S05]
Shaohua Wang 1 2.38% [S05]
Silvana De Gyves Avila 1 2.38% [S33]
Stuart McIlroy 1 2.38% [S12]
Sunghee Lee 1 2.38% [S02]
Syed Afzal Murtaza Rizvi 1 2.38% [S36]
Tanmay Bhowmik 1 2.38% [S01]
Thushari Atapattu 1 2.38% [S06]
Tianyong Wu 1 2.38% [S10]
Tim Menzies 1 2.38% [S40]
Tse-Hsun (Peter) Chen 1 2.38% [S19]
Venera Arnaoudova 1 2.38% [S14]
Wei Wu 1 2.38% [S04]
Woo Jin Lee 1 2.38% [S02]
Xin-Li Yang 1 2.38% [S29]
Yang Liu 1 2.38% [S30]
Yepang Liu 1 2.38% [S10]
Yu QU 1 2.38% [S39]
Yuan Tian 1 2.38% [S28]
Yuanrui Fan 1 2.38% [S11]
Zahid Hussain Wani 1 2.38% [S34]
Zeinab Kermansaravi 1 2.38% [S14]
Zhi-Yuan Wan 1 2.38% [S29]

34 João Caldeira et al.

Table 13: Statistics per Institution

Institution Freq. Perc. Ref.

Queen’s University 11 26.19% [S03], [S05], [S08], [S12], [S17], [S19], [S20], [S21],
[S25], [S28], [S32]

Singapore Management University 7 16.67% [S06], [S08], [S11], [S24], [S28], [S29], [S31]
Concordia University 4 9.52% [S03], [S19], [S25], [S32]
Zhejiang University 4 9.52% [S08], [S11], [S29], [S31]
École Polytechnique de Montréal 3 7.14% [S04], [S13], [S14]
Monash University 3 7.14% [S08], [S11], [S30]
Rochester Institute of Technology 3 7.14% [S27], [S28], [S42]
Hong Kong University of Science and Technology 2 4.76% [S07], [S10]
Nanyang Technological University 2 4.76% [S22], [S30]
University of Adelaide 2 4.76% [S06], [S20]
University of Zurich 2 4.76% [S09], [S23]
Australian National University 1 2.38% [S30]
Beihang University 1 2.38% [S31]
Bitergia 1 2.38% [S26]
Citrix 1 2.38% [S26]
Columbia University 1 2.38% [S40]
Delft University of Technology 1 2.38% [S23]
Delhi Technological University 1 2.38% [S35]
École de Technologie Supérieure 1 2.38% [S14]
ETS Montreal, University of Quebec 1 2.38% [S42]
Fondazione Bruno Kessler 1 2.38% [S18]
Free University of Bozen-Bolzano 1 2.38% [S23]
IBM 1 2.38% [S33]
Indraprastha Institute of Information Technology 1 2.38% [S16]
INESC ID 1 2.38% [S24]
INFOTEC 1 2.38% [S18]
Innopolis University 1 2.38% [S37]
Islamic University of Science and Technology 1 2.38% [S34]
Jamia Millia Islamia 1 2.38% [S36]
Kyungpook National University 1 2.38% [S02]
McGill University 1 2.38% [S14]
Mississippi State University 1 2.38% [S01]
Nanjing University 1 2.38% [S10]
NC State University 1 2.38% [S40]
Southern University of Science and Technology 1 2.38% [S10]
Universidad Rey Juan Carlos 1 2.38% [S26]
Universitá della Svizzera Italiana 1 2.38% [S09]
University of Alberta 1 2.38% [S41]
University of California 1 2.38% [S39]
University of Chinese Academy of Sciences 1 2.38% [S10]
University of Lisbon 1 2.38% [S24]
University of Melbourne 1 2.38% [S32]
University of Messina 1 2.38% [S37]
University of Newcastle 1 2.38% [S07]
University of Oulu 1 2.38% [S15]
University of Salerno 1 2.38% [S09]
University of Vale do Rio dos Sinos 1 2.38% [S38]
University of Waterloo 1 2.38% [S12]
Vrije Universiteit Brussel 1 2.38% [S09]
Washington State University 1 2.38% [S14]

Software Development Analytics in Practice 35

Table 14: Statistics per Continent and Country

Freq. Perc. Ref.

Continent
North America 23 54.76% [S01], [S03], [S04], [S05], [S08], [S12], [S13], [S14], [S17], [S18], [S19], [S20],

[S21], [S25], [S26], [S27], [S28], [S32], [S33], [S39], [S40], [S41], [S42]
Asia 17 40.48% [S02], [S06], [S07], [S08], [S10], [S11], [S16], [S22], [S24], [S28], [S29], [S30],

[S31], [S34], [S35], [S36], [S37]
Europe 7 16.67% [S09], [S15], [S18], [S23], [S24], [S26], [S37]
Oceania 7 16.67% [S06], [S07], [S08], [S11], [S20], [S30], [S32]
South America 1 2.38% [S38]

Country
Canada 16 38.1% [S03], [S04], [S05], [S08], [S12], [S13], [S14], [S17], [S19], [S20], [S21], [S25],

[S28], [S32], [S41], [S42]
Singapore 9 21.43% [S06], [S08], [S11], [S22], [S24], [S28], [S29], [S30], [S31]
USA 8 19.05% [S01], [S14], [S26], [S27], [S28], [S39], [S40], [S42]
Australia 7 16.67% [S06], [S07], [S08], [S11], [S20], [S30], [S32]
China 6 14.29% [S07], [S08], [S10], [S11], [S29], [S31]
India 4 9.52% [S16], [S34], [S35], [S36]
Italy 4 9.52% [S09], [S18], [S23], [S37]
Mexico 2 4.76% [S18], [S33]
Switzerland 2 4.76% [S09], [S23]
Belgium 1 2.38% [S09]
Brazil 1 2.38% [S38]
Finland 1 2.38% [S15]
Portugal 1 2.38% [S24]
Republic of Korea 1 2.38% [S02]
Russian 1 2.38% [S37]
Spain 1 2.38% [S26]
The Netherlands 1 2.38% [S23]

36 João Caldeira et al.

Table 15: Data Sources Findings (Frequency > 1)

Data Sources Freq. Perc. Ref.

GitHub Repositories 10 23.81% [S02], [S06], [S09], [S10], [S13], [S23], [S24], [S31], [S37], [S42]

Google Play Store 7 16.67% [S03], [S05], [S10], [S12], [S20], [S24], [S28]

Git Repositories 6 14.29% [S08], [S14], [S16], [S19], [S26], [S32]

BugZilla 5 11.9% [S07], [S14], [S16], [S17], [S21]

F-Droid Repository 5 11.9% [S02], [S03], [S09], [S10], [S24]

Promise Repositories 4 9.52% [S35], [S39], [S40], [S41]

Online Survey 3 7.14% [S15], [S23], [S24]

StackOverflow 3 7.14% [S22], [S29], [S30]

JAVA 2 4.76% [S35], [S38]

Maven Repositories 2 4.76% [S04], [S09]

SVN Repositories 2 4.76% [S09], [S14]

Unknown 2 4.76% [S34], [S36]

Android Issue Tracker 1 2.38% [S27]

Apache OpenOffice Issue Tracking System 1 2.38% [S18]

Apache Tomcat Archive 1 2.38% [S01]

BinTray 1 2.38% [S09]

Cassandra 1 2.38% [S33]

Chrome Releases Blog 1 2.38% [S27]

Chromium Issue Tracker 1 2.38% [S27]

CodeClimate 1 2.38% [S37]

Docker 1 2.38% [S37]

Eclise API 1 2.38% [S38]

Exception Reports 1 2.38% [S07]

Gerrit 1 2.38% [S11]

Google 1 2.38% [S09]

Google Forms 1 2.38% [S13]

HackerOne Bug Bounty Platform 1 2.38% [S27]

JCenter 1 2.38% [S09]

Jenkins 1 2.38% [S37]

JIRA 1 2.38% [S14]

Lab Computers 1 2.38% [S15]

Mailing List 1 2.38% [S26]

Mercurial Repositories 1 2.38% [S16]

MongoDB 1 2.38% [S33]

Mylyn 1 2.38% [S38]

NetBeans Source Code Repository 1 2.38% [S07]

Node 1 2.38% [S37]

Python 1 2.38% [S33]

SEACRAFT Repositories 1 2.38% [S35]

SecuriBench Archive 1 2.38% [S01]

SEnerCON Feedback Gathering System 1 2.38% [S18]

Slack 1 2.38% [S37]

Spark 1 2.38% [S33]

Team Wiki (BitBucket) 1 2.38% [S16]

Version Control Repositories 1 2.38% [S25]

Vulnerability Reports 1 2.38% [S01]

Softw
are

D
evelopm

entA
nalytics

in
Practice

37

1

1

1 3 4 6 7 2 1

1

1

1

1

1

1

1

1

1

1

1 1 1 1

1 1

Advances in Intelligent
Systems and Computing

Computer Journal

Empirical
Software Engineering

Information
Systems Journal

International
Conference on Software

Maintenance and Evolution

International Conference
on Evaluation and Assessment

in Software Engineering

International Conference
on Program Comprehension

International Conference
on Software Engineering

International Conference on Electronics
Communication and Aerospace Technology

International Journal
of e-Collaboration

International Workshop
on Software Analytics

International Workshop
on Software Engineering Aspects

of Continuous Development
and New Paradigms

of Software Production and Deployment

Journal of
Systems and Software

Journal of Computer
Science and Technology

Software
Quality Journal

2014 2015 2016 2017 2018 2019 2020 2021

Year

P
ub

li
ca

ti
on

Fig. 10: Frequencies of studies per Publisher over the Years

38
João

C
aldeira

etal.

10

7

6

5 5

4

3 3

2 2 2 2

1 1

0.0

2.5

5.0

7.5

10.0

Cod
eC

lim
ate

Slac
k

Spa
rk

And
ro

id

Iss
ue

 T
rac

ke
r

Apa
ch

e

Ope
nO

ffi
ce

 Is
su

e T
rac

kin
g S

ys
temApa

ch
e

Tom
ca

t A
rch

ive
BinT

ray
Bug

Zill
a

Cas
sa

nd
ra

Chr
om

e

Rele
as

es
 B

log
Chr

om
ium

Iss
ue

 T
rac

ke
r

Doc
ke

r
Ecli

se
API

Exc
ep

tio
n

Rep
or

ts
F-D

ro
id

Rep
os

ito
ry Gerr

it Git

Rep
os

ito
rie

s
GitH

ub

Rep
os

ito
rie

s
Goo

gle
Goo

gle
For

ms
Goo

gle

Play
 S

tor
e

Hac
ke

rO
ne

Bug
 B

ou
nty

 P
lat

fo
rm JA

VA
JC

en
ter

Je
nk

ins

JIR
A

Lab

Com
pu

ter
s

M
ail

ing
ListM

av
en

Rep
os

ito
rie

s
M

erc
ur

ial

Rep
os

ito
rie

s
M

on
go

DB
M

yly
n

NetB
ea

ns

Sou
rce

 C
od

e R
ep

os
ito

ry Nod
e

Onli
ne

Sur
ve

y
Pro

mise

Rep
os

ito
rie

s
Pyth

on
SEACRAFT

Rep
os

ito
rie

s

Sec
ur

iB
en

ch
Arch

ive
SEne

rC
ON

Fee
db

ac
k G

ath
eri

ng
 S

ys
tem

Stac
kO

ve
rfl

ow SVN

Rep
os

ito
rie

s
Tea

m

W
iki

 (B
itB

uc
ke

t)
Unk

no
wn

Vers
ion

Con
tro

l R
ep

os
ito

rie
s

Vuln
era

bil
ity

Rep
or

ts

Fig. 11: Frequencies of studies for Data Sources

Softw
are

D
evelopm

entA
nalytics

in
Practice

39

41

23

10
9

8

4 4
3

2 2 2
1 1 1 1 1 1 1

0

10

20

30

40

Ana
lys

is

Asso
cia

tio
n

Rule
s

Clas
sif

ier

Lea
rn

ing Clus
ter

Ana
lys

is

Cor
rel

ati
on

Ana
lys

is

Des
cri

pti
ve

Stat
ist

ics

Fea
tur

e

Extr
ac

tio
n

Gen
era

liz
ed

Suf
fix

 T
ree

s

Gen
eti

c

Algo
rit

hm
s

Heu
ris

tic
Fea

tur
es

Hyp
oth

es
is

Tes
tin

g
M

ixe
d-

Effe
ct

M
od

els

Natu
ral

Lan
gu

ag
e P

ro
ce

ssi
ng Patt

ern

Extr
ac

tio
n

Pro
ce

ss
M

ini
ng

Red
un

da
nc

y
Ana

lys
is

Reg
res

sio
n

M
od

els Top
ic

M
od

eli
ng

Fig. 12: Frequencies of studies for Mining Methods

40 João Caldeira et al.

10

20

30

40

A
na

ly
ze

 a
nd

 C
om

pa
re

 M
et

ho
do

lo
gi

es

C
on

tr
ol

le
d

Exp
er

im
en

t

Surv
ey

Case
Study

Quasi-E
xperiment

Exploratory Case Study

Operations
Debugging

Testing

M
aintenanceIm

plem
entation

E
du

ca
to

rs

E
nd

-U
se

rs

Req
ui

re
m

en
ts

Eng
in

ee
rs

Pro
jec

t M
anager

sResearchers
Testers

Product Managers

Developers

Prescriptive

Predictive

D
iagnostics

D
escriptive

1

1

5

9

13

19

6

7

13
26

38

1

1

1

3

3

8

17

42

1

11
38

42

Study

Types

SDLC

Activities

Project

Stakeholders

Analytics

Scope

Fig. 13: Frequencies of studies combining multiple RQs in the SLR

Software Development Analytics in Practice 41

C Studies Appraisal

The following acronyms were used for SLR results interpretation:

– Study Type
ACM-Analyze and Compare Methodologies, CS-Case Study, CE-Controlled Experiment
ECS-Exploratory Case Study, QE-Quasi-Experiment, S-Survey

– SDLCActivities
D-Debugging, I-Implementation, M-Maintenance, O-Operations, T-Testing

– Project Stakeholders
D-Developers, E-Educators, EU-End-Users, T-Testers, PM-Product Managers
PjM-Project Managers, R-Researchers, RE-Requirements Engineers

– Analytics Scope
Des-Descriptive Analytics, Dia-Diagnostics Analytics
Pred-Predictive Analytics, Pres-Prescriptive Analytics

The following taxonomy was used to assess the SDLC contributions:

– The benefit is:
Absent (0) Not addressed
Weak (0.25) Implicitly addressed
Moderate (0.5) Explicitly addressed (not detailed)
Strong (0.75) Explained with details and implications
Complete (1) Fully explained, validated and replicable

42
João

C
aldeira

etal.

Table 16: Systematic Literature Review Results.

Study
Type

Data
Sources

Process
Perspective

SDLC
Activities

Project
Stakeholders

Mining
Methods

Analytics
Scope

Contributions
to SDLC

Study Te
ch

ni
ca

l
D

eb
t

Ti
m

e
M

an
ag

em
en

t

C
os

ts
C

on
tr

ol

R
is

ks
A

ss
es

sm
en

t

Se
cu

ri
ty

A
na

ly
si

s

S01 CS Vulnerability
Reports,Apache
Tomcat
Archive,SecuriBench
Archive

Post-Mortem I,T D,T Descriptive Statis-
tics,Pattern Extrac-
tion,Correlation Analysis

Des,Dia

S02 CS F-Droid Repos-
itory,GitHub
Repositories

Post-Mortem I D Descriptive Statis-
tics,Pattern Extrac-
tion,Correlation Analysis

Des,Dia

S03 CS F-Droid Reposi-
tory,Google Play
Store

Post-Mortem O D,PM Descriptive Statis-
tics,Pattern Extraction

Des,Dia

S04 ECS Maven Repositories Post-Mortem I D Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analysis

Des,Dia

S05 ECS Google Play Store Post-Mortem O D Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analysis

Des,Dia

S06 QE,S GitHub Repositories Post-Mortem I D,PM Descriptive Statis-
tics,Pattern Extrac-
tion,Classifier Learning

Des,Dia,Pred

S07 QE NetBeans Source
Code Reposi-
tory,BugZilla,Exception
Reports

Post-Mortem I,D,M D Descriptive Statis-
tics,Pattern Extrac-
tion,Heuristic Fea-
tures,Classifier Learning

Des,Dia

S08 CS Git Repositories Post-Mortem I,D,M D Descriptive Statis-
tics,Feature Extrac-
tion,Correlation Anal-
ysis,Redundancy Analy-
sis,Classifier Learning

Des,Dia,Pred

S09 ECS F-Droid Reposi-
tory,SVN Repos-
itories,GitHub
Reposito-
ries,BinTray,JCenter,Maven
Reposito-
ries,Google

Post-Mortem I,D,M D Descriptive Statis-
tics,Pattern Extraction

Des,Dia

S10 ECS F-Droid Reposi-
tory,GitHub Repos-
itories,Google Play
Store

Post-Mortem I,D,M D Descriptive Statis-
tics,Pattern Extraction

Des,Dia

S11 QE Gerrit Post-Mortem I,D,M D Descriptive Statis-
tics,Hyphotesis Test-
ing,Redundancy Anal-
ysis,Feature Extrac-
tion,Correlation Analy-
sis,Classifier Learning

Des,Dia,Pred

S12 QE Google Play Store Post-Mortem I,D,M D,PM Descriptive Statistics Des,Dia

Continued on next page

Softw
are

D
evelopm

entA
nalytics

in
Practice

43

Table 16: continued from previous page

Study
Type

Data
Sources

Process
Perspective

SDLC
Activities

Project
Stakeholders

Mining
Methods

Analytics
Scope

Contributions
to SDLC

Study Te
ch

ni
ca

l
D

eb
t

Ti
m

e
M

an
ag

em
en

t

C
os

ts
C

on
tr

ol

R
is

ks
A

ss
es

sm
en

t

Se
cu

ri
ty

A
na

ly
si

s

S13 ECS,QE,S GitHub Repos-
itories,Google
Forms

Post-Mortem I,M D Descriptive Statis-
tics,Pattern Extraction

Des,Dia

S14 QE Git Reposito-
ries,SVN Reposito-
ries,BugZilla,JIRA

Post-Mortem I,M D Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analysis

Des,Dia

S15 QE Online Survey,Lab
Computers

Post-Mortem I D Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analysis

Des,Dia

S16 ECS Team Wiki (Bit-
Bucket),Mercurial
Repositories,Git
Reposito-
ries,BugZilla

Post-Mortem I D Descriptive Statis-
tics,Process Mining

Des,Dia

S17 QE BugZilla Post-Mortem I,M D,R Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analysis

Des,Dia

S18 QE Apache OpenOffice
Issue Tracking
System,SEnerCON
Feedback Gathering
System

Post-Mortem I,M,O D,PM,RE Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analy-
sis,Classifier Learning

Des,Dia,Pred

S19 QE Git Repositories Post-Mortem I D Descriptive Statis-
tics,Correlation Anal-
ysis,Topic Model-
ing,Regression Models

Des,Dia,Pred

S20 ECS Google Play Store Post-Mortem I,M,O D,EU,PM,R Descriptive Statis-
tics,Correlation
Analysis,Mixed-Effect
Models,Cluster Analy-
sis,Regression Models

Des,Dia,Pred

S21 QE BugZilla Post-Mortem I,M D Descriptive Statis-
tics,Correlation Analy-
sis,Classifier Learning

Des,Dia,Pred

S22 ECS StackOverflow Post-Mortem I,M D Descriptive Statis-
tics,Correlation Analy-
sis,Topic Modeling,Cluster
Analysis

Des,Dia

S23 ECS,S GitHub Reposito-
ries,Online Survey

Post-Mortem I,M D Descriptive Statis-
tics,Pattern Extraction

Des,Dia

S24 QE,S F-Droid Reposi-
tory,GitHub Repos-
itories,Google Play
Store,Online Survey

Post-Mortem I,M,T D,T Descriptive Statis-
tics,Correlation Analysis

Des,Dia

S25 ECS Version Control
Repositories

Post-Mortem I,M D Descriptive Statis-
tics,Correlation Anal-
ysis,Classifier Learn-
ing,Cluster Analysis

Des,Dia,Pred

Continued on next page

44
João

C
aldeira

etal.

Table 16: continued from previous page

Study
Type

Data
Sources

Process
Perspective

SDLC
Activities

Project
Stakeholders

Mining
Methods

Analytics
Scope

Contributions
to SDLC

Study Te
ch

ni
ca

l
D

eb
t

Ti
m

e
M

an
ag

em
en

t

C
os

ts
C

on
tr

ol

R
is

ks
A

ss
es

sm
en

t

Se
cu

ri
ty

A
na

ly
si

s

S26 ECS Mailing List,Git
Repositories

Post-Mortem I,M D,PjM Descriptive Statistics Des,Dia

S27 ECS Android Issue
Tracker,Chrome
Releases
Blog,Chromium
Issue
Tracker,HackerOne
Bug Bounty Plat-
form

Post-Mortem I,M D,PM Descriptive Statis-
tics,Correlation Analysis

Des,Dia

S28 ECS Google Play Store Post-Mortem I,M,O D,PM Descriptive Statis-
tics,Correlation Analysis

Des,Dia

S29 ECS StackOverflow Post-Mortem I,M D,R,PjM,E Descriptive Statistics,Topic
Modeling,Genetic Algo-
rithms

Des,Dia

S30 ECS StackOverflow Post-Mortem I,M,T D Descriptive Statis-
tics,Association
Rules,Natural Language
Processing

Des,Dia,Pres

S31 ECS,S GitHub Repositories Post-Mortem I D Descriptive Statistics Des,Dia

S32 ECS Git Repositories Post-Mortem I D Descriptive Statis-
tics,Generalized Suf-
fix Trees,Correlation
Analysis,Cluster Analy-
sis,Classifier Learning

Des,Dia,Pred

S33 CS MongoDB,Python,
Spark,Cassandra

Post-Mortem I,T D,T,PM Descriptive Statis-
tics,Analysis

Des

S34 QE Unknown Post-Mortem I,M,T D,T,PM Descriptive Statis-
tics,Analysis

Des,Dia

S35 ACM Promise Reposito-
ries,JAVA,SEACRAFT
Repositories

Pre-Mortem I,M,O,T D,T,PM Analysis Des

S36 CS Unknown Post-Mortem I,T D,PM Descriptive Statistics Des,Dia

S37 ECS GitHub Repos-
itories,Jenkins,
CodeClimate,
Docker, Slack,Node

Post-Mortem I,T D,T,PM,PjM Descriptive Statistics Des

S38 CE JAVA,Eclise
API,Mylyn

Post-Mortem M,T D,PM Descriptive Statis-
tics,Analysis

Des,Dia

S39 CS Promise Reposito-
ries

Post-Mortem D,M,T D,PM Descriptive Statis-
tics,Hypothesis Test-
ing,Correlation Analysis

Des,Dia,Pred

S40 ECS Promise Reposito-
ries

Post-Mortem I,M,T D,T,PM Descriptive Statis-
tics,Correlation Analy-
sis,Classifier Learning

Des,Dia,Pred

S41 CS Promise Reposito-
ries

Post-Mortem I,T D,PM Descriptive Statis-
tics,Correlation Analy-
sis,Classifier Learning

Des,Dia

Continued on next page

Softw
are

D
evelopm

entA
nalytics

in
Practice

45

Table 16: continued from previous page

Study
Type

Data
Sources

Process
Perspective

SDLC
Activities

Project
Stakeholders

Mining
Methods

Analytics
Scope

Contributions
to SDLC

Study Te
ch

ni
ca

l
D

eb
t

Ti
m

e
M

an
ag

em
en

t

C
os

ts
C

on
tr

ol

R
is

ks
A

ss
es

sm
en

t

Se
cu

ri
ty

A
na

ly
si

s

S42 CS GitHub Repositories Post-Mortem I,T D,T,PM Descriptive Statis-
tics,Correlation Analysis

Des

