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Abstract

Current research on multi-agent coordination and distributed problem

solving is still not robust or scalable enough to build large real-world

collaborative agent societies because it relies on either centralised com-

ponents with full knowledge of the domain or pre-defined social struc-

tures. Our approach allows overcoming these limitations by using

a generic coordination framework for distributed problem solving on

totally unstructured environments that enables each agent to decom-

pose problems into sub-problems, identify those which it can solve

and search for other agents to delegate the sub-problems for which it

does not have the necessary knowledge or resources. Regarding the

problem decomposition process, we have developed two distributed

versions of the Graphplan planning algorithm. To allow an agent

to discover other agents with the necessary skills for dealing with

unsolved sub-problems, we have created two peer-to-peer search al-

gorithms that build and maintain a semantic overlay network that

connects agents relying on dependency relationships, which improves

future searches. Our approach was evaluated using two different sce-

narios, which allowed us to conclude that it is efficient, scalable and

robust, allowing the coordinated distributed solving of complex prob-

lems in unstructured environments without the unacceptable assump-

tions of alternative approaches developed thus far.
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Resumo

As abordagens actuais de coordenação multi-agente e resolução dis-

tribúıda de problemas não são suficientemente robustas ou escaláveis

para criar sociedades de agentes colaborativos uma vez que assen-

tam ou em componentes centralizados com total conhecimento do

domı́nio ou em estruturas sociais pré-definidas. A nossa abordagem

permite superar estas limitações através da utilização de um algo-

ritmo genérico de coordenação de resolução distribúıda de problemas

em ambientes totalmente não estruturados, o qual permite a cada

agente decompor problemas em sub-problemas, identificar aqueles que

consegue resolver e procurar outros agentes a quem delegar os sub-

problemas para os quais não tem conhecimento suficiente. Para a

decomposição de problemas, criámos duas versões distribúıdas do al-

goritmo de planeamento Graphplan. Para procurar os agentes com as

capacidades necessárias à resolução das partes não resolvidas do prob-

lema, criámos dois algoritmos de procura que constroem e mantêm

uma camada de rede semântica que relaciona agentes dependentes

com o fim de facilitar as procuras. A nossa abordagem foi avaliada

em dois cenários diferentes, o que nos permitiu concluir que é uma

abordagem eficiente, escalável e robusta, possibilitando a resolução

distribúıda e coordenada de problemas complexos em ambientes não

estruturados sem os pressupostos inaceitáveis em que assentava o tra-

balho feito até agora.

Palavras-chave: Sistemas multi-agente, planeamento distribúıdo,

coordenação.
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Chapter 1

Introduction and Motivation

Most real-world problems are too complex to be solved by individuals working in

isolation, due to the lack of necessary expertise, resources or information. One

of the powerful motivations for distributed problem solving is that it is difficult

to build an agent to be competent in every possible task. Moreover, even if it

is feasible to build (or train) an omni-capable agent, it is often overkill because,

at any given time, most of those capabilities will go to waste (Durfee, 1999).

Combining different expertise to solve problems that are beyond each individu-

als capabilities may be the right strategy to solve complex problems. However,

without coordination, distributed problem solving may become impossible.

The research work described in this thesis strives to answer (affirmatively)

to the following: is it possible to create a robust, efficient and scalable system

to coordinate the distributed problem solving activity of multiple heterogeneous

agents in unstructured environments? The relevance of our question and, there-

fore, of our work comes from our research experience of the last 8 years, in which

we have developed several kinds of approaches to allow agents to seamlessly co-

operate with each other in complex coordination activities. Our previous work

and the work of others were based on structured (centralised, hierarchical, social

or organisational) systems that have robustness and scalability issues.

The limitations of structured environments motivated us to focus our work on

totally unstructured distributed environments and create a more flexible, generic

and robust approach to contribute to the deployment of real-world intelligent

agent societies. Our goal is to develop a robust, scalable and efficient distributed

1



1. INTRODUCTION AND MOTIVATION

coordination framework that allows agents to decompose problems into sub-

problems, identify and solve the sub-problems for which they have the necessary

skills, discover agents with the potential to solve the remaining sub-problems and

send them the partially-solved problem. Each agent uses this process until the

problem is completely solved.

The first two sections of this introductory chapter summarise the work that

we (and our project partners) have done in two different projects funded by the

European Commission, the Agentcities project (described in section 1.1) and

the CASCOM project (described in section 1.2). These two projects represent

what has been the mainstream approach to solving the coordination problem

in large-scale distributed environments, e.g., using structured or centralised ele-

ments. Section 1.3 summarises the limitations of these approaches by pointing

out potential robustness and scalability issues.

We then briefly present, in section 1.4, our alternative approach that proposes

the combination of peer-to-peer computing and distributed problem solving to

allow agents to collaborate in solving complex problems without the need for

structured elements of any kind. In particular, we propose the use of artificial

intelligence planning algorithms to allow agents to determine which parts of a

problem they can contribute to and the use of efficient peer-to-peer search algo-

rithms to find agents that can contribute to solving the remaining parts. Finally,

section 1.5 presents the structure of the remainder of this thesis.

1.1 The Agentcities Project

Coordination, communication, discovery, trust, security and ontology issues are

some of the challenging elements that are found in truly open environments where

agents, owned by many different individuals and organisations, can interact and

interoperate. The Agentcities Project (Willmott et al., 2001) was an initiative

to create a global, open, heterogeneous network of agent platforms and services

to which any agent researcher could connect his or her agents. The actual net-

work was built through the deployment of several agent platforms throughout the

world, based on the cities where the project partners were operating. Each plat-

form contained mandatory management agents and a set of application specific

2



1. INTRODUCTION AND MOTIVATION

agents that provided services in several domains ranging from travel, tourism and

entertainment services to marketplaces and payment systems.

While the main focus of the project was to address interoperability and open-

ness issues, the domains of the services available in the network were so diverse

that the environment was an obvious candidate to explore the large-scale coordi-

nation of multi-agent-based services. One of the attempts of providing a composi-

tion service (combining several different services into one value-added compound

service) was based on a template mechanism (Dale & Ceccaroni, 2002). These

template-based planning processes were very specific and aimed at providing fast

and well-defined services based on user preferences. However, this required that

new templates had to be manually created for each new domain or integrated

service that the system would provide.

This raised the need to create a dynamic composition process that would be

as independent as possible of the particular application domain in which it would

operate. The solution was to develop an ontology-based broker agent (Botelho

et al., 2003) capable of searching information from various sources, pertaining di-

verse topics, integrating it in coherent ways and evaluating it (using a fuzzy logic

mechanism) according to specified user preferences. Even though this approach

was generic enough to be used in several different domains, it still had some ma-

jor drawbacks. The composition process was totally centralised, which not only

originated a central point of failure but also accumulated a lot of work (like gath-

ering many different pieces of information) onto a single entity. Although it was

possible to have several broker agents of this type, the replication was futile since

the agents could not cooperate in the information gathering process. Another

disadvantage resided on the fact that it could only be used for information ser-

vices using well-defined ontologies. Moreover, the similarity of concepts between

ontologies could lead to using information sources that were completely irrelevant

to the problem at hand.

1.2 The CASCOM Project

The main goal of the CASCOM project (Helin et al., 2005) was to create a sup-

portive infrastructure for business application services in which these were flexibly

3



1. INTRODUCTION AND MOTIVATION

coordinated and pervasively provided to the mobile user by intelligent agents in

dynamically changing contexts of open and large-scale environments. One step

towards this vision was the development of an agent-based service coordination

system. This system included several domain-independent coordination agents

responsible for the discovery (Schumacher et al., 2008), matchmaking (Botelho

et al., 2008a), composition (Blankenburg et al., 2008) and execution (Botelho

et al., 2008b) of semantic web services.

Service composition, being one of the most complex problems within service

coordination, was addressed in the project by using an artificial intelligence (AI)

planner to create the desired compound service. AI planners require the set

of all available actions (also referred to as action or planning operators) that

can be used to create the compound service. In the realm of service composition,

planning operators (i.e., available actions) are the services that may be considered

to be included in the final value-added compound service. This means that,

using the CASCOM’s approach, it would be necessary to provide the set of all

relevant available services to the central planner that ultimately would create the

compound service.

Although conceptually simple, this turns out to be a very complex problem.

The main challenge being to locate only the relevant services, which is an im-

possible problem to solve, in the general case. One solution would be to provide

the planner with the set of all existing service descriptions. This is not a feasible

option because the set of all existing services, in a large-scale environment, tends

to be gigantic, rendering the approach impracticable. A different option would be

to restrict the existing services to those of the categories (or using the ontologies)

related to the service to be composed. This option is also problematic since, as

concluded in the previous section, it is often impossible to determine the set of all

relevant categories to the creation of the compound service. Some compound ser-

vices may include services from various unrelated categories, making it impossible

to accurately determine which categories are to be included in the process.

The CASCOM Project tried also a different approach, namely the use of con-

text aware computing (Costa et al., 2008). In this approach, context information

would be used to restrict the set of services to be considered by the AI planner.
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Unfortunately, it was also impossible to devise a general approach that could ef-

fectively reduce the number or returned services without risking gathering sets of

services that would be insufficient to create the desired compound service, since

it is not yet known how context information should be used in general purpose

agents. Similarly to what happened in the Agentcities project, this approach

presented some drawbacks mainly because it relied on single centralised entities

to perform main coordination tasks. Each service coordination agent would have

to know all existing services (ideally, only those relevant to their operation) and

their descriptions, which is not an option.

1.3 Limitations of Structured Systems

The research on intelligent agents has devoted considerable effort not only to

communication and coordination, but also to reasoning, learning, and adapta-

tion of each agent, seeking to increase their autonomy. However, multi agent

systems often suffer from incapability to coordinate themselves in dynamic en-

vironments where no structure is present (Küngas & Matskin, 2006). The two

projects described above constitute good examples of what has been the main-

stream research in the field of distributed problem solving for the past few years.

The use of structured systems has been the obvious choice mainly because they

are simpler and faster to implement. However, the dependency on centralised or

structured components, while it simplifies the deployment of coordination envi-

ronments, has some major drawbacks.

On one hand, the main components of such systems can turn into bottlenecks

and potentially catastrophic points of failure. Unless they are very resourceful

(large processing power – which, in turn, has high maintenance costs) and robust

(able to withstand failures) they will not be able to keep up with the growth of

the environment in which they operate. On the other hand, structured systems

usually require previous knowledge (often provided by the human user) to be

deployed. This refers not only to the main components, but also to the individual

agents that, wanting to connect to such systems, must have prior knowledge of

the organisation of the main components in the system, its protocols, languages

and used ontologies.
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Our approach pursues the alternative of using unstructured networks to deploy

fully distributed cooperative environments. However, these have some disadvan-

tages of their own. For example, agents operating in these environments, not

being able to rely on structured elements, need efficient search mechanisms to

find the resources they require to solve specific problems. This is one of the areas

in which peer-to-peer (P2P) research has been focusing on the past few years and

one that we believe can help develop efficient and scalable distributed problem

solving systems on top of unstructured networks.

1.4 Peer-to-Peer Computing and Distributed Prob-

lem Solving

The evolution of peer-to-peer (P2P) research has reached promising results, paving

the way for developing more robust and scalable applications on top of P2P

networks. Nonetheless, even though P2P computing presents some interesting

properties that would enable creating high performance applications, it still lacks

the degree of proactivity that would enable higher autonomy, and rationality

(Küngas & Matskin, 2006). Research on P2P computing has mainly addressed

the efficient management of the network, treating each peer as a simple reactive

node, with little or no autonomy at all, thus ignoring the potential for developing

collaborative environments.

The combination of the distributed capabilities of P2P networks with the in-

telligence of autonomous agents seems promising since it will allow the transpar-

ent access to large-scale distributed resources while maintaining high availability,

fault tolerance and low maintenance application deployment through self organ-

isation (Willmott et al., 2005). We use both technologies to create an intelligent

P2P infrastructure that will enable a dynamic network of intelligent agents to

cooperatively and efficiently discover and coordinate several resources to solve

faced problems.

Our main goal is to develop a robust, efficient and scalable agent architec-

ture that enables agents to freely participate in distributed problem solving in

unstructured societies. In such societies, agents receiving requests from other
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agents would be capable of using their own capabilities to handle the part of

the problem for which they have competence and resources, and distribute the

partially solved problem to other agents that can possibly provide further contri-

butions. This work combines multi-agent systems and peer-to-peer computing in

order to address its two main challenges:

• In very large networks it is impracticable for one agent to know which agent

skills exist at a given moment. Therefore, each agent has to be equipped

with an AI-based algorithm capable of planning with only partial knowledge

of available skills, that is, they will be able to contribute to solving only

a part of the problem, for which they have know-how, but the remaining

parts will remain unsolved and thus will be sent to other agents that may

contribute to them. Current state of the art planning algorithms, while very

efficient, are dependent on having full knowledge of a domain’s planning

operators to solve specific planning problems. Otherwise, they fail without

providing any information as to which part of the problem they are able to

solve.

• Since, in general, agents will only be able to contribute to parts of a spe-

cific problem, they have to be able to discover the most suitable agents

to which the partially solved problem should be forwarded. However, cur-

rent state-of-the-art network search algorithms are unable to efficiently and

robustly discover specific agents in large unstructured networks since they

make use of central entities, hierarchical structures or social rules to address

the inefficiencies of unstructured algorithms. In doing so, these algorithms

become prone to failures that can compromise an entire (or at least a very

significant part of the) system.

1.5 Thesis Overview

In this section, we present an overview of the thesis with the goal of providing

an overall summary of the research work to the reader. The introduction sets

the research goal of the thesis and the tone to the work that is described in the

remainder of the document. Our goal is to test and evaluate the hypothesis of
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deploying a coordination environment for agent-based distributed problem solving

that relies on a totally unstructured network. This goal was motivated by the

shortcomings of current research in this field that mainly relied on structured

systems. To fully expose these limitations, following the introductory chapter,

we present in Chapter 2 a thorough review of state-of-the-art research in the field

by focusing on the limitations and challenges of related work and by identifying

the aspects on which our research work contributes to advance the state of the

art.

The conclusions of Chapter 2 are two-folded. On one hand, we establish that

classical planning (in section 2.1) and current research on distributed coordina-

tion and planning (in section 2.2) are not adequate to efficiently and robustly

deal with very large distributed environments, mainly due to the use of cen-

tralised components and pre-defined organisational or social structures. On the

other hand, distributed problem solving in a large unstructured network requires

efficient peer-to-peer search mechanisms and dynamic self-organisation methods,

which current research on distributed artificial intelligence still fails to deliver (as

stated in sections 2.3 and 2.4). The chapter ends by summarising the limita-

tions and challenges of the analysed approaches and outlines the main research

contributions of this thesis (in section 2.5).

In Chapter 3, we describe and analyse two different testing scenarios, both

of which demonstrate distributed problem solving approaches in environments

larger than those used in concurrent approaches. Each scenario explores different

aspects of the overall distributed problem solving process. On one hand, the Res-

cue Agents scenario (described in section 3.1) is a very complex and demanding

environment from the cooperation point of view. Most problems in this scenario

require agents to often interact with each other, that is, the level of interaction

and dependency between the agents is very high. On the other hand, the Cus-

tom Balls Factory scenario (described in section 3.2) is less complex from that

cooperation point of view but it is highly demanding from the discovery point of

the view. Most problems in this scenario are easily solved with the participation

of only a few agents. The challenge is to find the appropriate agents from a

very large list of potential candidates. The goal of this chapter is, not only, to

show how these scenarios’ problems could be addressed in a distributed problem
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solving environment, but also to accurately determine the requirements of such

environments. Hence, Chapter 3 ends with a detailed analysis (in section 3.3)

of the requirements for a technical approach suitable to deal with problems from

these scenarios.

Driven by the conclusions of the review of related work (in Chapter 2) and

the analysis of the testing scenarios (in Chapter 3), the main requirement of our

research is the development of a framework for robust and scalable collabora-

tive distributed problem solving and coordination in large, unstructured agent

networks. This framework, which is described in Chapter 4, includes two major

components. One of the components (described in section 4.1) is a set of P2P

search algorithms that discover the agents to which the unsolved sub problems

will be delegated. These P2P algorithms dynamically build and update a self-

organised semantic overlay network that greatly speeds up the discovery process.

The other component of the framework is a distributed partial planning algorithm

(described in section 4.2), which allows an agent to identify and solve parts of a

problem for which it has enough skills and resources, and to identify those other

parts that need to be delegated to other agents.

The framework described in Chapter 4 does not resort to pre-imposed or-

ganisational structures, social laws, or centralised components. This means that

agents equipped with the distributed planning and the P2P algorithms of the pro-

posed framework can integrate very large and totally unstructured agent societies

and collaboratively and efficiently solve complex problems.

Chapter 5 shows that the proposed framework is indeed robust, scalable and

efficient. This chapter presents the tests we have performed and the results ob-

tained in the two different testing scenarios described in Chapter 3. We conclude

that the system is robust, since the forced removal of some nodes throughout

the execution of some tests showed little negative impact on the performance of

the distributed system. Regarding scalability, this chapter also shows that the

system’s performance, using the appropriate planner, is proportional to the size

of the problem to be solved. Moreover, workload tests show that our approach

uses fewer resources to achieve faster results, thus allowing us to conclude that it

is in fact an efficient system.
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These are the major achievements of our research work, which are also outlined

in Chapter 6 (in section 6.1), the concluding chapter of this document. We also

present (in section 6.2) some of the limitations of the chosen approach and discuss

how these can be addressed in future work. Namely, the possibility of exploring

alternative (and potentially better) solutions by forcing agents to search for extra

participants that can solve parts of the problem in parallel. Also, we discuss

how our approach can perform faster if we assume agents can act on behalf of

other agents if they hold the necessary knowledge about them. Moreover, we

speculate how a context-aware approach could be used to improve the selection

of the agents to which the partially-solved problem should be forwarded.

A list of the published papers during the course of our research work is pre-

sented in Appendix A.
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Chapter 2

Related Work

One of the major challenges of creating real-world agent societies is to develop a

coordination infrastructure that is scalable and robust enough to support increas-

ingly complex problems. Multi-agent coordination has been the focus of much

research in the area of distributed problem solving and multi agent systems. Al-

though extensive research has been done in this area, there is still room left for

improvement. In the introductory chapter, we have proposed the combination of

multi-agent coordination and peer-to-peer (P2P) computing as an efficient way

of deploying scalable and robust distributed problem solving.

This chapter addresses the analysis of related research in the areas pointed

above. P2P computing is thoroughly described in section 2.3, while multi agent

based coordination in distributed environments is reviewed in detail in section

2.2. However, since multi-agent based coordination involves splitting problems

into several pieces and distributing them to agents with appropriate skills, thus

relying on some kind of planning algorithm, we present a brief tutorial of planning

approaches for the single agent case. Hence, in section 2.1, we review the fun-

damentals of automated planning by describing the major algorithms and their

limitations. These algorithms were designed for being used by a single agent with

full and deterministic knowledge of its domain and environment. However, some

of them can be adapted to be used in distributed environments.

In section 2.2, we analyse current coordination and planning approaches de-

signed for multiple agents collaborating to solve complex problems. This analysis
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mainly concludes that, even though these approaches are able to address the gen-

eral problem of coordination for distributed planning, they do so by making use

of centralised components or organisational-based structures that, in the event of

sudden failure, can compromise the entire system.

Considering the potential of P2P computing to address the efficient manage-

ment of large networks, we review, in section 2.3, the fundamental aspects of

network search algorithms and techniques in order to determine how these can

be used to help multi-agent coordination approaches avoid centralised elements

or superimposed organisational structures and deploy totally decentralised and

efficient societies of agents. Although P2P computing does hold this potential,

this section points out that some of the algorithms and techniques can be further

improved, namely, by introducing semantic information.

In section 2.4, we analyse hybrid approaches that combine semantic based and

multi-agent coordination with P2P computing. This section mainly shows that

such approaches do not fully explore the potential of semantic information or do

so very inefficiently.

Finally, in section 2.5, we summarise the analysis by discussing the limitations

of current research and by presenting the challenges that define our research

contributions, inline with the goals set in the introductory chapter.

2.1 Automated Planning

For several years, Artificial Intelligence (AI) has been trying to create intelligent

autonomous entities that perceive their environment and act upon it to achieve

their goals. With the aim of providing agents with the necessary capabilities to

define strategies or action sequences that lead them closer to their objectives,

Automated Planning became one of the main research fields of AI.

A typical planner uses an algorithm that takes the initial state of the world,

a description of one or more goal states and a set of available actions (also called

operators) and generates an ordered sequence of actions capable of leading the

agent from the initial state to a goal state. There are essentially three types

of planning algorithms, according to the search space in which they operate:
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state-space planning, plan-space planning and planning-graph planning. These

algorithms are further described in the following sub-sections.

2.1.1 State-space Planning

Fikes & Nilsson (1971) have been the first to create a formal description of a

planner, called STRIPS (STanford Research Institute Problem Solver), with the

characteristics described above. STRIPS is an automated planner whose name

was later used to refer to the formal language used to describe the inputs for

a classical planning problem. The formal specification of STRIPS allows plan-

ning problems to be represented as state-space graphs, where nodes represent

the different possible states of the domain (each state is represented by a set of

propositions that hold true at that state) and arcs are state transitions (or ac-

tions). In such a representation, a plan is a sequence of actions corresponding to

a path (in the state-space graph) from the initial state to a goal state.

The state-space graph provides a useful abstraction for finding plans. How-

ever, it is important to define a strategy that allows finding the best plan faster.

There are two main classes of algorithms that search plans in the described state-

space: forward-chaining and backward-chaining algorithms.

The algorithms differ basically in the direction in which they search the state

space graph. Forward-chaining finds actions that can be chained together starting

from the initial state leading to the goal state, whereas backward-chaining applies

the reverse process, starting from the goal state and finding actions that can be

chained together until the initial state is reached. The forward-chaining algorithm

determines (starting from the initial state) if, in each iteration, the goal state has

been reached. If so, then the current plan is returned. Otherwise, it chooses

an action (from the set of available actions that can be applied to the current

state, that is, actions whose pre-conditions are satisfied by the conditions of the

current state) to produce a partial solution for the next iteration. The backward-

chaining algorithm starts at the goal state and inversely applies available actions

to produce sub goals (the preconditions of the applied actions), stopping if it

produces a set of sub goals that are satisfied by the initial state.

In each iteration of the algorithms, an action is chosen to be applied to the

current state. Unfortunately, choosing the appropriate action that will lead to the
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shortest (or the less expensive) plan is not a trivial task. Some of the techniques

that can be employed are the breadth-first, depth-first, best-first and branch-and-

bound searches. Even though all of these techniques can be applied to both

algorithms, for the sake of simplicity, we will only show how they apply to forward-

chaining.

A breadth-first search starts by generating nodes that represent the states

produced by the application of all actions to the initial state and by checking if

any reaches the desired goal. Nodes to which all actions have been applied are

termed expanded nodes. If the goal is not reached, the search is continued in the

state produced by the action that was used first. Again, if the generated nodes do

not represent goal states, the search is carried out, from the yet to be expanded

node that was generated earlier.

The distinctive feature of the breadth-first search is that the next node to be

expanded is always selected from the shallowest nodes not yet expanded, which

ensures that, if it exists, the shortest plan is always generated. The process is

carried out until the goal state is found at some level of the state-space graph.

Although the shortest plan is guaranteed to be found if it exists, this algorithm

has huge memory requirements. If there are n potential actions and the goal

nodes are found at depth d, the required memory space will be nd times the

average amount of memory required for each state. Since the time taken by the

algorithm to generate the plan is proportional to the generated number of nodes,

it is also proportional to nd.

A depth-first search does exactly the opposite of the breadth-first search by

giving priority to exploring deepest nodes prior to exploring shallowest nodes. It

applies one specific action to the initial state and if the desired goal state has not

been achieved yet, then it chooses one action to apply at the state produced in

the first step (the second depth level). This search process continues until either

a solution is found or no more actions can be applied to the state at the current

level, in which case it backtracks to the previous level with unvisited nodes.

In the worst case, a depth-first search may need to examine the entire search

space before finding a solution. Therefore, its running time may be worse than

that of a breadth-first search (Ghallab et al., 2004). However, because a depth-

first search keeps track of only the nodes on the current path, its space/memory
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requirement is only equal to the depth of the deepest node it visits. Unfortunately,

the depth-first search is not guaranteed to find a solution, even if one exists, let

alone an optimal solution.

If some knowledge of the domain exists and can be used to help choose the

appropriate nodes to be visited next, then these search techniques can be greatly

improved. Best-first search uses a heuristic approach based on a deterministic

function that helps decide which node on the state-space graph should be visited

next. The best-first search also maintains a list of nodes that have been generated

but not yet visited. However, instead of using this list as a queue the way other

search techniques do, it uses the list as a priority queue: the next node chosen

from the list will be the one with the best value of the heuristic function. The best

value may be the smallest (in case of a minimisation function) or the largest (in

case of a maximisation function) depending on the domain dependent heuristic

function that is being used.

The branch-and-bound search (also referred to as A* ) is a particular case of a

best-first search technique. It uses a heuristic function that considers the cost of

the built plan so far, plus an estimative of the cost of the rest of the plan (to reach

the goal state) to decide which node should be considered next. Additionally, it

uses that function to eliminate nodes that it does not need to visit (also called

pruning). In this technique, a global variable that holds the best solution seen

so far is kept. If the best estimate of the current node is already worse than the

best solution seen so far, then there is no need to visit its child nodes. This node

is pruned and, thus, the search space is reduced.

2.1.2 Plan-space planning

State-space planning views a plan as a mere sequence of actions that achieves a

desired goal state, given an initial state and a set of potential actions to be used.

In most real world problems this view is too simplistic and it is not suitable to

achieve more complex goals, mainly because of its deterministic approach and

the lack of representation for more complex views, which may include temporal

constraints, conditioned actions and uncertainty. Plan space planning, first sug-

gested by Sacerdoti & Center (1975), provides a more complete view of a planning

problem by introducing the notion of partially specified plans.
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In a plan-space graph, nodes are partially specified plans instead of sets of

conditions that represent states of the world. Arcs in the graph represent plan

refinement operations intended to further complete a partial plan. Using this

notion of a plan space graph, a planner starts from an initial node, corresponding

to an empty plan, and searches for a final node containing a solution plan that

achieves the specified goals. Hence, plan space planning does not merely generate

action sequences, as it explicitly considers two different operations: choosing

actions to be executed and define the ordering in which those actions are to be

organised in order to achieve the goal.

A partial plan1 can be viewed as a structured collection of actions that pro-

vides their causal relationships, as well as their intrinsic ordering and variable

binding constraints. A partial plan is no longer partial when no open condi-

tions (conditions not yet satisfied) exist, all actions are totally ordered (including

actions that can occur in parallel) and all binding constraints of variables are

consistent, that is, it is a complete and consistent solution plan that defines a

path from the initial state to a state containing all goal propositions.

Although plan space planning allows solving more interesting and complex

problems, it lacks however a notion of explicit states along a plan, which makes

it difficult to use domain specific heuristics to improve the efficiency of the search

space, thus compromising the scalability of this approach. Nevertheless, plan

space planning still presents some important advantages. Building partially or-

dered and partially instantiated plans provides more flexibility when it comes to

control the execution phase, as the flexibility of this approach allows detecting

and resolving flaws in the plan efficiently. This is due to the fact that the causal-

ity representation used in the partial plans allows having an explicit notion of

which operator has caused which result in a plan, thus helping solve flaws that

may occur.

2.1.3 Planning Graphs

Both state-space and plan-space planning present some compelling advantages.

While state-space planners deal with a simple abstract view of states, which allows

1A formal representation is given in (Ghallab et al., 2004)
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them to provide a plan as a sequence of actions, plan-space planners synthesise a

plan as a partially ordered set of actions, opening the planning process to more

complex problems.

The planning-graph (Blum & Furst, 1997) approach takes the best of both

worlds. On one hand, it allows having a clear representation of states and to make

use of domain-based heuristics much like in state-space planning. On the other

hand, the condensed and parallel graph representation of actions and propositions

provides a clear sense of causality between them, thus allowing to easily detect

incompatibilities amongst actions and propositions as efficiently as in plan-space

planning.

Regarding the actual representation, the planning-graph adopts a solution

somewhere in the middle by providing a sequence of sets of actions, which repre-

sents all sequences starting with a set of actions that can be executed in any order,

followed by another set of actions that can be executed in any order, and so forth.

More precisely, given the initial and goal states and a set of potential actions,

a planning-graph consists of a directed, levelled graph where levels alternate be-

tween proposition levels containing proposition nodes and action levels containing

action nodes. The first level is a proposition level composed of proposition nodes

corresponding to all of the propositions of the initial state. The second level is an

action level composed of action nodes, one for each action whose preconditions

are satisfied by the propositions in the first level. The third level is a proposition

level composed of proposition nodes which represent the propositions created by

the effects of the actions in the second level and by the propositions created by

previous proposition levels (also referred to as no-ops).

The planning-graph is built this way until a proposition level is reached where

all propositions of the goal state are included. Arcs (or edges) in a planning

graph represent relations between actions and propositions, where action nodes

in an action level are connected by precondition-arcs to their preconditions in the

previous proposition level, by add-arcs to their add-effects in the next proposition

level, and by delete-arcs to their delete-effects in the next proposition level. The

extraction of a plan from a planning graph is similar to searching an And/Or

graph, where Or -branches of a proposition are arcs from all actions in the pre-

ceding action level that satisfy this proposition, and And -branches from an action
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node are its precondition arcs.

A planning-graph does not represent a valid plan for a planning problem.

Instead, it uses the principles of independence and mutual exclusion to drasti-

cally reduce the search space and help finding a valid plan faster. An action is

considered independent from another action, if the effects of the former do not

interfere with the preconditions and effects of the latter. Independent actions can

be arranged in a plan in any order (or in parallel if there are multiple executing

agents) with exactly the same outcome, hence, the output of a planning graph

being a sequence of sets of actions. Two actions at a given action level are mu-

tually exclusive (also referred to as being mutex ) if no valid plan could possibly

contain both. Similarly, two propositions at the same given proposition level are

mutually exclusive if no valid plan could possibly make both true.

Graphplan (Blum & Furst, 1997) is an example of a planning algorithm that

relies on a planning-graph structure. The Graphplan algorithm iteratively ex-

pands the planning-graph by one level and then searches backwards from the last

level of this graph for a solution. However, the initial iterative expansion process

is done until a proposition level is reached where all goal propositions are included

and no pairs of them are mutex . This is done because it does not make sense

to start searching for a plan in a graph that has not reached the goal state yet.

The search procedure then looks for a sequence of non-mutex actions that achieve

the goal propositions. Preconditions of the chosen actions become the new goal

propositions and the process continues. A failure to meet the goal at some level i

leads to backtrack over all other subsets of actions in level i+1. If the first level

is successfully reached, then the corresponding sequence is a solution plan. This

iterative graph expansion and search processes are pursued until either a plan is

found or the search reveals that no solution can be found in the planning-graph.

Graphplan has revolutionised automated planning research mainly because

of its simple, elegant algorithm and its representation of planning problems that

created the basis for an extremely fast planner (Weld, 1999). Some work has been

done on extending Graphplan, namely to handle actions with conditional effects

(Kambhampati et al., 1997) (Anderson et al., 1998) and to handle uncertainty

and sensing actions (Weld et al., 1998). Nevertheless, these extensions apply
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to the one agent planning paradigm and do not explore the potential of using

Graphplan in a distributed setting.

2.2 Multi-agent Planning and Coordination

Distributed Planning is a specific area of Distributed Artificial Intelligence, aimed

at developing mechanisms that allow finding solution plans while coordinating

the activities of multiple intelligent agents. The motivation for this branch of

automated planning came from the need to solve more computationally complex

problems, which could not be solved by centralised planners such as Graphplan.

Parallelism, cooperation and concurrency within multi-agent systems have since

then been the main areas explored in Distributed Planning research.

Distributed Planning is carried out by intelligent agents, which are autonomous

entities perceiving and acting upon the environment. An agent is able to com-

municate with other agents in order to achieve individual or shared goals. This

abstraction of an autonomous entity allowed researchers to have a different view

of Artificial Intelligence, namely as a network of intelligent nodes that can inter-

act to further extend their capabilities, as opposed to a single-agent view that

is responsible for performing all the desired tasks in an environment. Hence, a

multi agent system can be defined as a loosely coupled network of problem solvers

that work together to solve problems that are beyond the individual capabilities

or knowledge of each problem solver (Durfee & Lesser, 1989).

As stated before, taking advantage of the decentralised control of such dis-

tributed environments requires that coordination mechanisms exist that are able

to avoid conflicts that arise from the concurrent interactions of agents, which

otherwise would result in a turmoil. Considering this necessity, we can divide the

distributed planning process into five separate activities that may occur in this

or in a different sequence depending on the taken approach:

• Goal/Task decomposition – the agents refine the initial goal/task such that

each created subgoal/task matches one or more of an agents capabilities;

• Subgoal/task allocation – the agents attempt to assign subgoals/tasks to

each other according to the matching process performed in the first stage;
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• Individual planning – each agent tries to find a plan to solve the subgoal

allocated in the previous stage;

• Overall coordination – the agents coordinate their activities in order to

ensure that all of them are working to achieve the global goal;

• Plan execution – the agents execute the jointly built plan in a coordinated

fashion.

Although this decomposition is convenient to explain the problem of multi-agent

planning, most researchers have addressed the problem from different points of

view, which include focusing only on one step, interlacing some of the steps or

offering alternatives as how to perform one single step. With that in mind we

have approached this analysis from a different perspective, dividing the review of

related work into five different categories that are transversal to the list depicted

above.

In sub-section 2.2.1, we review research that mostly covers the goal decom-

position and allocation stages. Sub-section 2.2.2 focuses on pre-planning coor-

dination, a type of coordination that is performed prior to the act of planning

to ensure that agents will not compromise to actions that may affect the activ-

ity of other agents. Sub-section 2.2.3 is dedicated to interleaved planning and

coordination, in which both activities are performed in an iterative process to

maintain the consistency of the distributed problem solving. Sub-section 2.2.4

reviews work that focuses on post-planning coordination, in which agents are left

free to perform individual planning and then merge their solution plans into a

unified global solution. In subsection 2.2.5, we describe some approaches that

perform the coordination process at the final stage, the execution of the solution

plan.

In spite of the variety of approaches, domains and contexts, most of the re-

search work on this field presents the same limitations: they rely on some sort

of centralised component or on a pre-defined structure/knowledge that rules the

activity of all entities in the environment, thus compromising scalability and ro-

bustness. Scalability can be compromised when a system fails to keep up with the

growth rate of the environment due to either centralisation of some components

or the use of communication intensive techniques. We consider that systems are
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not robust when they are not able to effectively deal with constant changes and

unexpected events whether they are caused by failures in planning or execution,

or simply by dynamic environments where agents and capabilities are added or

removed without notice.

2.2.1 Goal/Task Decomposition and Allocation

The Hierarchical Task Networks (HTN) approach (Erol et al., 1995) (Erol, 1996)

is a paradigm for task refinement in coordination environments. HTN repre-

sentations are based on actions and states of the world similar to those used in

state-space planning (see section 2.1.1). However, HTN planning is different from

state-space planning in the sense that the objective is not to find a sequence of ac-

tions that will bring the world to a state that satisfies certain conditions. Instead,

HTN planning searches for plans that accomplish task networks. A task network

is a collection of tasks that need to be carried out, together with constraints on

the order in which tasks can be performed, the way variables are instantiated,

and on the literals that must be true before or after each task is performed (Erol

et al., 1995). The goal of an HTN planner is to decompose the task network

into primitive tasks (process which can be done through the application of meth-

ods) and find a conflict free plan that can execute the tasks in the task network.

A method is a syntactic construct that states how a task can be achieved by

representing the way it can be decomposed.

The decomposition of task networks into primitive tasks, using an HTN based

approach, requires the complete knowledge of the available planning operators.

This has often been addressed by using centralised views of the planning space

(Amigoni et al., 2005), such as directories or brokers where agents can register

their operators. However, these approaches are not scalable and central points of

failure or bottlenecks compromise the robustness or the efficiency of such systems.

Even though there have been some attempts to distribute the HTN planning ap-

proach, namely through the decomposition of goals into team (sub) plans and

individual plans (Bonnet-Torres & Tessier, 2005), this paradigm still needs task

networks and methods to be provided a priori (often by a human user). This

compromises the application of HTN-based approaches in highly dynamic envi-

ronments where no agent knows all the capabilities of all other agents.
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From a goal allocation point of view, most approaches rely on centralised com-

ponents, such as blackboards (Wellman, 1993) (Wellman, 1996) (Walsh, 1999),

tables of capabilities (Fung & Chen, 2005) or broker-like auctioneers (Walsh et al.,

2000) (Wellman et al., 2001). An obvious limitation of centralised approaches for

task allocation in very large networks is its non-scalability.

To avoid depending on centralised components, the Contract-Net protocol

(Davis & Smith, 1983) can be used by a manager agent to broadcast bid requests

(announcements of sub-tasks that need to be performed) in a network of potential

contractor agents. This protocol enables dynamic task allocation, allows agents

to bid for multiple tasks at a time, and provides natural load balancing (busy

agents do not need to bid). It does not, however, detect or resolve conflicts, there

is no pre-emption in task execution (time critical tasks may not be attended to),

and it is communication intensive (Jennings et al., 1998). In fact, the Contract-

Net protocol relies on the existence of capabilities tables (Durfee, 1999) to help

the manager determine where the requests for bids should be sent. When such

tables are not available, the manager uses non scalable and uninformed flooding

techniques (see section 2.3.1) to broadcast the request to all agents, which causes

the congestion of the network.

Other approaches (de Weerdt et al., 2007) proposed the use of social networks

of agents for solving the task allocation problem. These social networks help

agents choose the agents that should be allocated to each task. Unfortunately, the

structure of the social network is imposed on the agents by some organisational

based method, instead of being built dynamically. Thus, this process limits the

range of applicability of the approach because it does not allow the dynamic

evolution and adaptation of the social network.

2.2.2 Pre-planning Coordination

In this approach, pre-imposed rules or organisational structures (Abdallah &

Lesser, 2004) (Jamali & Zhao, 2005a) (Gaston & Desjardins, 2005) define the

way the agents in the society interact and operate in the environment. With this

kind of implicit coordination approach, agents follow local rules of behaviour that

ensure that they can operate without having to worry about interference from

other agents (de Weerdt et al., 2005).
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Social laws (Shoham & Tennenholtz, 1992), as generally accepted conventions

that each agent has to follow, were the first proposal to address this issue. They

ensure that, once an agent adopts a goal, no other agent would interfere. One of

the best real-world examples of this kind of technique is the application of traffic

rules. Little or no communication at all is required between drivers as long as

they all respect traffic signs and rules. Even though this technique can be very

efficient from the coordination point of view, it requires that social laws exist and

are known to all entities participating in the society.

Some authors (Ephrati et al., 1995) believe that social laws are typically very

difficult to design and are very complex. Instead, they propose a different ap-

proach for pre-planning coordination. By using a filtering mechanism where they

bypass options that are incompatible with any agents known or presumed goals,

agents are expected to improve their performance in a society, but not to guaran-

tee success for each specific goal. The filtering strategy can be generated straight-

forwardly from the abstract properties of the environment and the interaction

(Ephrati et al., 1995). This contrasts with social laws, which are imposed on the

environment where agents operate. Nevertheless, this filtering technique requires

that agents have at least partial knowledge of the goals and intentions of other

relevant agents in order to avoid conflicting with them. Hence, agents need to

engage in communication intensive interactions to collect this knowledge from

other agents in the network.

2.2.3 Interleaved Planning and Coordination

Since communication among agents in a distributed problem solving environment

is a major issue regarding the systems scalability, an alternative approach is to

explore a coordination strategy based only on the observation of the environ-

ment. The Multi-Agent Planning System (MAPS ) (Tews & Wyeth, 2000) op-

erates without explicit communication between agents, relying upon observation

of team members to produce meaningful coordinated behaviour in the domain of

Robot Soccer. By generating an abstract representation of each agents environ-

ment at a particular point in time, (MAPS ) allows the agent to observe important

objects and behaviours of other agents before setting new goals, choosing their
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actions and planning future moves. This kind of approach is suitable for spatial

environments in which it is possible to observe the behaviour of other entities,

such as in robots coordination systems. Although observation based coordina-

tion allows agents to prevent conflicts while acting according to observations they

make of the environment, it often leads to far optimal solutions since they reason

on their future intentions based on actions that already took place (executed by

other agents) and cannot be undone (or being undone contributes to increase

even more the size of the plan). In contrast, communication-based coordina-

tion reaches optimal solutions more easily but at the cost of possibly limiting

scalability because of the excessive communication involved in the coordination

process.

Adopting a divide and conquer strategy to solve the multi agent coordination

problem has proven to be an effective alternative. Cox et al. (2003) propose the

use of goal transformations as a coordination mechanism. Basically, this strategy

allows an agent, who has to solve goal G, to solve a goal G’ instead that generates a

sub-solution and then pass the remainder of the goal (i.e. G minus G’) to another

agent. In more detail, an agent looking to solve goal G must solve the set of

open conditions of this goal, i.e., it must have the necessary operators to solve

all conditions that are not true in the desired goal state. If the agent does not

have the necessary skills to do so, it divides the open conditions into two sets:

one with the set of open conditions for which it has an operator; and another

with the remaining conditions. It is this set of open conditions, for which the

agent cannot contribute, that is sent to another agent, hoping it will contribute

to satisfy them.

In order for the agent to know where to delegate this set of conditions, this

approach considers each agent as a sub-domain, which contains not only those

operators assigned to it, but also a set of phantom operators that are not as-

signed. A domain can be split into any number of sub-domains bounded by the

total number of operators in the domain. A phantom operator points to the

agent(s) to whom the operator is assigned. This way, communication between

agents is encoded in every sub-domain. Hence, if an agent does not own an oper-

ator, it knows which agent to enlist for that operator. From a network topology

point of view, this means that each agent must have a phantom connection to all
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other agents in the network (which in network topology is referred to as a fully-

connected network), which is prohibitive for very large and dynamic networks

with high churn rates (the rate at which agents enter or leave a network) making

the approach non-scalable. In the experiments presented in this paper, the au-

thors have only used a maximum of 3 agents with a maximum of 3 operators each.

The described mechanism concatenates the resultant sub-plans from agents into

a final solution plan, without a central coordination process. However, it does

not take into account possible conflicts that may arise from the fact that agents

only contribute to parts of the problem without considering the effect that their

decisions may have on other agents’ contributions.

2.2.4 Post-planning Coordination

On one hand, defining a set of rules a priori to prevent conflicts between agents is

impaired by the difficulty to perceive all possible interdependencies between the

agents and their operations. On the other hand, while coordinating and planning

at the same time may facilitate the task of detecting conflicts, resolving them

while providing an optimal solution plan can be a very lengthy process. With

this in mind, some researchers decided to explore the post planning approach

to multi agent coordination. This approach has the advantage of making use of

the parallel processing power of a multi agent system for the planning process,

while postponing the coordination process until after all agents have made their

contributions.

Georgeff (1988) described a centralised method for synthesising multi agent

plans from simple single agent plans. The author proposes inserting communica-

tion acts into the single agent plans so that agents can synchronise their activities

and avoid harmful interactions. The method performs an interaction and safety

analysis to identify critical regions in the plans. This method allows inserting

communication primitives into the plans and creating a supervisor process that

will handle execution synchronisation.

An alternative (also centralised) approach was described in (Ephrati & Rosen-

schein, 1994), which integrates sub plans provided by single agents (solving sub

goals of a major desired goal) into a joint, multi agent plan. Their algorithm
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performs an A* search over possible combinations of the plan steps in the sub

plans to arrive at a near globally optimal solution. However, this approach is

incomplete, i.e., it is not guaranteed to return a solution to a given coordination

problem (Cox & Durfee, 2005), even if a solution exists.

A centralised approach for detecting temporal conflicts between plans was

proposed in (Tsamardinos et al., 2000). The authors propose constructing a

conditional simple temporal network to identify temporal conflicts between indi-

vidual plans. One of the problems of this kind of plan merging approach is the

possibility of creating cyclic interdependencies between agents that will lead to

deadlocks (de Weerdt et al., 2005).

Cox & Durfee (2005) also presented a centralised post-planning coordination

algorithm. The coordination process consists of merging the plans of the multiple

agents, thus centring its activity on detecting plan step merge flaws (steps whose

post-conditions subsume all of the necessary post conditions of another step). The

described coordination algorithm starts by analysing a flawed (or inconsistent)

multi agent plan and detecting individual flaws that need to be repaired. While

repairing flaws, the algorithm needs to iteratively analyse the new plan to check

if flaws still exist or if new flaws were not created by the repairing process. The

algorithm also maintains a record of the best solution seen so far to make sure that

it returns the best consistent plan. In order to avoid cyclic merged plans, which

is not done in (Tsamardinos et al., 2000), a cycle check is done by performing a

depth-first search on the partial order of the steps. If a particular step is visited

more than once, then the plan cannot be used since it is cyclic.

All of the presented approaches suffer from being based on a centralised or

communication-intensive strategy for plan merging, which is usually computa-

tionally expensive. This can compromise the scalability of the system if the

number of agents (and thus, the number of individual plans to be merged) is

too high. In (Scerri et al., 2007) a decentralised coordination approach for large

networks of autonomous vehicles is described. This approach is neither com-

putationally expensive nor communication intensive because it is based on the

assumption that, in sparse environments, collisions are rare. This allows vehi-

cles to plan independently and then resolve the small number of conflicts that

actually occur. The coordination algorithm basically operates by having each
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vehicle send their planned paths to close by teammates. Each vehicle is then

required to check for conflicting paths that they have been informed about and

inform those involved when any conflict is detected. Unfortunately, operating

in this kind of environments has some particular characteristics that cannot be

mapped to other domains, such as detecting close by entities. In non geographic

domains, detecting close by agents would be equivalent to an agent being able

to detect which agents are producing plans that can potentially conflict with the

plan that it is producing. This can only be done if all agents know each other

in a network, which would lead to fully connected networks. Unfortunately, as

previously mentioned, fully connected networks are not scalable.

2.2.5 Execution and Coordination

In distributed problem solving, multiple agents collaborate to build a plan with

the necessary steps that need to be taken in order to achieve a certain goal.

It is only during the execution phase that the steps actually change the world.

Different strategies can be used to execute the plans produced by the agents in a

network, but seldom coordination activities are dealt with only at the execution

stage. Possible exceptions are observation based coordination approaches (Tews

& Wyeth, 2000), which rely on the observation of previously executed plans

to trigger a new planning phase. Instead, the execution stage is used only to

carry out the plan as instructed and learn something from the experience to

improve future planning and execution processes; much like when a person follows

a ”recipe” and learns that there is an error or there is room for improvement in

some steps of the ”recipe”. The motivation behind this kind of approach is the

unexpected behaviour that may occur after the execution of the plan, which could

not have been predicted in the planning stage.

Sugawara et al. (2004) have proposed a learning method in which agents ex-

plore previously used plans to improve problem solving in environments where

similar problems appear repeatedly. Lopes & Botelho (2007) have proposed an

alternative approach that relies instead on (either past or current) context in-

formation to improve the execution process of compound semantic web services.

This approach is based on a special-purpose broker agent, the Service Execution
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Agent (SEA), which is able to receive descriptions of compound semantic web

services, isolate the atomic steps involved in the plan control constructs and then

request the execution of each atomic step to the appropriate service provider.

While doing so, SEA collects relevant context information (such as the service

providers requests queue and average execution time) from a generic context sys-

tem (Costa et al., 2008) to adapt and improve the service execution process.

Although these approaches may help improve the execution process and may

even help improve future planning, they reflect a separation between the planning

and execution process that does not contribute to efficiently address the overall

coordination problem. Some researchers suggest that the planning, execution and

coordination processes should be interleaved as if they were only one process. Dis-

tributed Continual Planning (Desjardins et al., 1999) is a paradigm that consists

of interleaving planning and execution into a continual process which takes into

account changes in the environment and handles them through re-planning and

employing effective multi agent coordination techniques based on the success or

failure of previous decisions.

As described throughout section 2.2, many proposals have been made to ad-

dress the issues pointed out by this paradigm. However, to this date, no single

generic approach has proved to be able to effectively coordinate large networks of

autonomous intelligent agents in different domains of distributed problem solving.

Main reasons for this are the centralisation of some components of the environ-

ment or the use of communication intensive techniques; and systems that are

not able to effectively deal with constant changes and unexpected events whether

they are caused by failures in planning or execution, or simply by dynamic envi-

ronments where entities are added or removed without notice.

2.3 Peer-to-peer Computing

Cooperating in distributed problem solving processes requires agents to be able

to discover other agents to delegate the sub-problems for which they cannot con-

tribute. Ideally these other agents should be as adequate as possible to solve the

delegated sub-problems. In small networks, the best strategy is for an agent to

know the skills of all other agents, thus allowing it to easily determine where the
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sub-problem should be forwarded. However, in large-scale dynamic networks, this

kind of approach is unacceptable, as it is very difficult for an agent to maintain

an accurate and up-to-date view of the entire network and to know exactly where

all agents (and corresponding capabilities) are at a certain moment in time.

It is clear that the approaches described in section 2.2 are not suitable to be

used in highly dynamic large networks of intelligent problem solvers, as most of

them present scalability and robustness issues. With this in mind, we believe the

use of P2P computing techniques can improve the way multi agent coordination is

done. Indeed, some approaches have shown that P2P network search mechanisms

and techniques have helped multi agent systems to become more scalable and

robust.

2.3.1 Network Structure and Search Mechanisms

The research on P2P computing classifies P2P systems according to two dimen-

sions: network structure and search mechanisms. Network structure refers to the

existence of some sort of structure according to which, some peers have different

responsibilities or are hierarchically organised within the network. In terms of

network structure, P2P systems can either be pure (also referred to as unstruc-

tured) or hybrid (also referred to as structured). In pure P2P systems, all peers

are equal in responsibilities and no hierarchy exists, whereas in hybrid P2P sys-

tems, peers are organised in specific hierarchies or some peers – also referred to as

super-peers or ultra-peers – have different responsibilities. Hybrid P2P systems

also refer to networks where peers are connected according to a specific structure

based on the resources they manage.

The search mechanism dimension classifies P2P systems according to the way

peers search other peers or specific resources in the network. According to this

classification, P2P systems can employ uninformed searches (also referred to as

blind searches) or informed searches. In an uninformed search, each peer searches

the network by randomly querying other peers, whereas in an informed search,

each peer uses additional information about other peers resources to select the

peers that will be contacted during the search process (Bianchini et al., 2006).

In unstructured networks, where peers cannot rely on any information to

optimise the search process, searching a certain network resource or peer is often
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carried out by a flooding algorithm or a random walk algorithm. In the flooding

algorithm (also referred to as breadth-first search), a peer broadcasts the search

query to all of its neighbours, which in turn will apply the same process until the

search result is found or some condition holds. A Time-To-Live (TTL) constant

is often used to stop the flooding propagation at a certain level. In the random

walk algorithm (also referred to as k-random or depth first search – when k =

1), a peer chooses a k number of random neighbours to propagate the search

query. These, in turn, will use the same process until the search result is found.

Both algorithms present some disadvantages. Flooding increases network load

with copies of the query message but may retrieve the results faster, whereas a

random walk reduces the network load but increases search latency.

In recent years, some approaches designed search mechanisms based on some

variations of these two algorithms. Iterative deepening (Yang & Garcia-Molina,

2002) is an example of an effort to improve the use of flooding techniques. A

peer, employing this search mechanism, initiates multiple breadth-first searches,

over the iterations of the technique, with successively larger depth limits, until

either the query is satisfied, or a maximum depth limit has been reached. To

avoid having nodes processing the same request multiple times, Resend messages

are used to guarantee that only nodes beyond the previous depth limit process

the request; nodes within the previous depth limit only forward the request.

2.3.2 Informed Searches

In an attempt to improve the effectiveness of search mechanisms in P2P networks,

informed searches were introduced, offering the possibility to improve the perfor-

mance of the discovery process by using information on peers and their resources.

This information is obtained from previous queries. Knowing exactly which peers

to use when propagating a query can help reduce the network load (less flooding)

while improving the search performance.

Routing Indices (Crespo & Garcia-Molina, 2002) allow nodes to forward queries

to a subset of neighbours that are the best candidates to satisfy the query. The

subset of candidate neighbours is identified by evaluating an index table that

contains the inventory of the neighbouring nodes (Ratsimor et al., 2004). This
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approach is based on a push update technique where each peer sends to its neigh-

bouring nodes information about its resources and constantly updates them when-

ever its resources change. Similar approaches are exploited in the Directed Breadth

First Search (Yang & Garcia-Molina, 2002) and in the Intelligent Search mech-

anism (Kalogeraki et al., 2002) where each peer in the network builds a profile

of its peers and uses the profile to determine the peers that are more likely to

answer each query. Using routing indices-like approaches enables agents to effec-

tively answer queries as they gather information on the interests and information

provision abilities of others, without altering the topology or imposing an overlay

structure to the network of acquaintances (Vouros, 2007), as long as the number

of agents does not increase to very large numbers (tenths of thousands or higher).

A self-learning approach is the basis of the Adaptive Probabilistic Search

(Tsoumakos & Roussopoulos, 2003), where each peer uses feedback from pre-

vious searches to adjust the probability of successfully using certain neighbouring

peers in future searches. This approach constitutes an advantage over the ones

proposed in (Yang & Garcia-Molina, 2002), (Crespo & Garcia-Molina, 2002) and

(Kalogeraki et al., 2002) because it does not introduce an excessive overhead to

update the indexes at the neighbours. A more flexible feedback-based approach

is employed by the Directed Searches (Lv et al., 2002), where peers use a vast set

of metrics, which range from the number of successfully returned query results to

network connectivity and latency, to learn from previous interactions and improve

future searches.

One approach used to improve the uninformed search mechanisms in un-

structured P2P networks, described above, was based on the use of indexes and

statistical information to help peers choose the appropriate neighbours to which

future search queries should be routed. Another approach is to introduce some

sort of structure to improve message routing, which is usually done by partition-

ing the network into a set of communicating clusters of peers that are connected

amongst them by a network of super peers (Bianchini et al., 2006).

A super-peer belongs to a higher level of a peers hierarchy, which is usually

based on content related criteria. Super-peers are responsible for managing and

facilitating search processes among the peers in their clusters (by maintaining an
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index of their peers resources) and for communicating with neighbouring super-

peers to further extend search processes that could not be resolved locally. An

example of this structured approach was introduced in the FastTrack P2P plat-

form (Liang et al., 2006). Hierarchical approaches such as the ones based on these

special-purpose peers come at the expense of potential semi catastrophic failures

of super-peers near the top of the hierarchy (Balakrishnan et al., 2003).

In order to offer a scalable and yet robust infrastructure for P2P networks,

an alternative approach, based on Distributed Hash Tables (DHT), has been pro-

posed. Chord (Stoica et al., 2001), Pastry (Rowstron & Druschel, 2001) and

Tapestry (Zhao et al., 2001) are examples of DHT implementations. The DHT

approach is based on the sole principle that a resource can be identified by a

numeric key that is created through a hash function, based on the resources

contents. In order for a resource to be published under a specific key, the peer

routes the publishing request to the peer with the key closest to the resources key

(based on some closeness function), which in turn stores that information in a

routing table. When a peer searches a specific resource in the network, it routes

the request to the peer with the closest key, which in turn will apply the same

process until the resource is located in the network. The Content Addressable

Network (Ratnasamy et al., 2001) differs from these approaches by operating in

a multi dimensional view of the DHTs, that is, by allowing for peers to search for

resources in the network using more than one type of key simultaneously.

Unfortunately, without some concrete way to describe relationships between

resources, these approaches do not leverage the potential of semantically linked

peers to improve the resource coordination process. Semantic links aim at pro-

viding a more meaningful way to connect peers and their resources, thus allowing

for peers to easily combine their resources with other semantically related peers.

2.4 Hybrid Approaches

The use of Multi-Agent Systems (MAS) to efficiently coordinate resources in col-

laborative environments has gained some attention, in part, due to the advances

in P2P computing. The evolution of search mechanisms, which were showing

signs of scalability and robustness, paved the way for the development of more
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complex and intelligent systems. However, current search algorithms do not en-

sure, by themselves, that a suitable basis for agents to cooperate in problem

solving is created.

Using the semantic link paradigm to create meaningful connections amongst

the agents in an environment (also referred to as semantic overlay networks (Cre-

spo & Garcia-Molina, 2005)) may be an effective way to optimise the coordination

process. If, for example, a peer manages a resource that is somehow related to

another resource that is managed by another peer, then it is important that a

semantic based connection exists between these two peers stating the meaning of

their relationship. This semantic link can then be used to improve future searches

or collaboration initiatives. Using P2P computing and semantic descriptions of

web services, several approaches have addressed agent/service coordination issues

especially related to matchmaking, discovery, planning and composition.

A decentralised web service organisation approach is presented in (Yu et al.,

2004), in which a DHT-based catalogue service is used to store the semantic

indexes for direct service publication and discovery. This semantic indexation

consists of a classification of the services based on domain-related categories. A

similar approach was described in (Jin et al., 2005), where peers in a network

advertise their ”service expertise” based on domain categories. The algorithm

used to spread the advertisements within the P2P network is based on a ranking

system, which allows peers to route their ”service expertise” only to peers that

operate in similar domain categories (according to a similarity function).

GloServ (Arabshian & Schulzrinne, 2007) uses a keyword based taxonomy

search on a hierarchical hybrid P2P network to build a semantic overlay be-

tween the peers that operate in the same (sub) domain. Several other keyword

based mechanisms for semantic web services discovery and matchmaking on P2P

networks that do not rely on centralised taxonomies or domain categories were

proposed. The keyword search in these approaches is done at the level of oper-

ation names (Liu & Zhuge, 2005) or non-functional service descriptions (Toma

et al., 2005) (Sapkota et al., 2005).

The Web Services Peer-to-Peer Discovery Service (WSPDS) (Banaei-kashani

et al., 2004) is a service discovery approach in pure P2P networks, where se-

mantic links between peers reflect the similarity of the services they provide.
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The matchmaking process is carried out by comparing services’ inputs and out-

puts. A similar matchmaking process is suggested in Bibster (Haase et al., 2004),

where peers’ capabilities are semantically linked by first applying the same inputs

and outputs comparison as in WSPDS and then by ranking services through a

similarity-based expertise matching. The METEOR-S Web Service Discovery In-

frastructure (Verma et al., 2005) presents a similar approach to the WSPDS and

Bibster but it relies on a hybrid P2P network architecture where special peers are

introduced to handle a global ontology. The approach presented in (Romeikat &

Bauer, 2007) also uses semantic matching at the level of inputs and outputs but

it differs from related approaches by using a DHT based service discovery process

on top of a Chord P2P network.

Some systems rely on structured solutions, such as aggregation of peers in

communities or the use of middle layers that have specific coordination capabil-

ities. SELF-SERV (Benatallah et al., 2002) is a framework where web services

are composed using state charts. The resulting composite services are executed

in a decentralised way within the P2P dynamic environment. This framework

relies on the concept of service communities (containers of alternative services),

which provide abstract descriptions of desired services and allow actual service

providers to register in the appropriate community. The distributed execution is

managed by coordinator agents that are in charge of initiating, controlling, mon-

itoring and collaborating with their peers to manage the execution of the services

they control or provide.

The approach presented in (Küngas & Matskin, 2006) uses a MAS to per-

form distributed composition of web services, using mediator agents. In (Arpinar

et al., 2005), a similar approach is used for automated web service composition

over a P2P network, where peers are organised into communities that represent

the same domain. The major difference between this approach and (Küngas &

Matskin, 2006) is that the former tries to determine links between web services

at publishing time (suitable for more stable networks) and the latter does this at

composition time (suitable for more dynamic networks). A-peer (Li et al., 2003)

is a multi-agent-based P2P system where agents rely on hierarchically arranged

advertising elements to find the services they need from other agents. This kind

of middleware solution is also used in (Ermolayev et al., 2004), which describes
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a framework for agent enabled web service composition where an Agent Middle

Layer is used to transform service requests into the corresponding tasks in the

P2P environment.

Structured systems contribute to optimise the routing mechanisms in P2P

computing, however, at the cost of introducing central points of failure and in

certain environments, compromising scalability. To avoid these failure prone so-

lutions, some approaches are based on pure P2P networks, such as the inference

system presented in (Adjiman et al., 2006). In this approach, each peer can answer

queries by reasoning with its local (propositional) theory but can also perform

queries to some other peers with which it is semantically related by sharing part

of its vocabulary. In order to create these semantic relations (referred by the au-

thors as acquaintance networks), new peers joining the P2P system simply declare

their acquaintances in the network, that is, the peers they know to be sharing

variables with, and they declare the corresponding shared variables. However,

the authors do not clearly explain how this ”acquaintances declaration” process

is carried out efficiently in the P2P network.

The study of ant communities has inspired some research on the development

of P2P systems based on multi-agent systems. Anthill (Babaoglu et al., 2002) is

a P2P based MAS which emulates the resource coordination behaviour of ants.

In this framework, storage or computational resources (referred to as nests) gen-

erate requests (referred to as ants) in response to user requests. These ants travel

across the network of nests in order to be processed and executed. Ants do not

communicate directly with each other. Instead, they communicate indirectly by

leaving information related to the service they are implementing in the appropri-

ate resource manager found in the visited nests. This pheromone-like approach,

also called stigmergy, allows the network to self-organise and improve its perfor-

mance over time. The idea of assigning agents to carry on requests (ants) avoids

a non-scalable flooding search technique, since each ant will only travel to a nest

at a time and it will not replicate. However, the search performance might be

slower because each edge of the network (nests) is only travelled once at a time

for each request (which is equivalent to a depth-first search). The selection of

the next nest to be visited by an ant can either have a deterministic approach

(once the network is organised and appropriate overlay networks are available) or
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a totally random (uninformed) approach. A similar approach to (Babaoglu et al.,

2002) is proposed in (Dasgupta, 2005), where mobile agents use pheromone-like

behaviour to optimise the trails within a P2P network. However, instead of using

the update process based on the discovered path, as in (Babaoglu et al., 2002),

the mobile agent creates a referral to the query answering node, thus creating a

direct link that will improve future similar searches.

A fully distributed approach to the resource discovery problem in a MAS

is presented in (Dimakopoulos & Pitoura, 2003). In this system, each agent

maintains a limited size local cache in which it keeps information about different

resources and the agents that provide them. An agent searching a specific resource

consults its local cache and if there is no information regarding the resource, it

contacts a k random subset of neighbours (to avoid flooding), which in turn

contact their neighbours. The process goes on until the resource is found in some

cache. This system innovates with respect to similar search mechanisms (Yang &

Garcia-Molina, 2002) (Crespo & Garcia-Molina, 2002) (Kalogeraki et al., 2002)

by proposing the use of inverted caches. Besides maintaining a local cache of

agents with certain resources, the agent maintains a cache of agents that have

a reference to its own resource in their caches to facilitate the mechanism of

updating changes in the network. However, this approach does not address the

problem of choosing the appropriate resources that each agent should maintain

in its cache. Doing so can help improve search performance in the network over

time.

2.5 Limitations and Challenges

Our main goal is to build a coordination framework that allows intelligent agents

to freely participate in totally decentralised large-scale collaborative environ-

ments. In particular, using adequate planning algorithms, these agents would

be able to use their own skills to partially contribute to received problems and

delegate the remaining (unsolved) parts to other agents that are better equipped

to further contribute to the problem.

In section 2.1, we reviewed the classical planning approaches: state-space plan-

ning (Fikes & Nilsson, 1971), plan-space planning (Sacerdoti & Center, 1975) and
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planning graphs (Blum & Furst, 1997). While these have evolved to address fairly

complex problems (Kambhampati et al., 1997) (Anderson et al., 1998) (Weld

et al., 1998), they are still inadequate to be used in large distributed environ-

ments. Such growing environments need to be efficiently coordinated in order for

the collective power of the network to be used in providing solutions to complex

problems.

In section 2.2 we have shown that, even though current research is able to

address the general problem of coordination for distributed planning, they do so

by making use of centralised components (Walsh, 1999) (Fung & Chen, 2005) or

organizational-based structures (Shoham & Tennenholtz, 1992) (Ter Mors et al.,

2004) (Abdallah & Lesser, 2004) (Jamali & Zhao, 2005a) (Jamali & Zhao, 2005b)

(Gaston & Desjardins, 2005) (de Weerdt et al., 2007) that are prone to failures

that can compromise the entire system. In fact, major comparisons of multi agent

coordination strategies (Ogston & Vassiliadis, 2002) (Ben-Ami & Shehory, 2005)

show that centralisation is only suitable when the environment is composed of a

few hundred agents and that distributed approaches are clearly more effective for

larger networks of agents.

We believe that peer-to-peer (P2P) computing research, which has been focus-

ing on building distributed environments in which peers can seamlessly exchange

and share resources between them, may help overcome the issues that have been

pointed out earlier.

On one hand, the survey of recent work has led us to conclude that the use of

semantic links (Crespo & Garcia-Molina, 2005) may improve the coordination of

entities that manage resources in collaborative environments. This improvement

can be achieved by using knowledge acquired in previous interactions to enhance

future ones, that will rely on more complex dynamically learnt and maintained

meaningful connections between agents.

On the other hand, building a semantic overlay network from a set of randomly

connected agents requires efficient algorithms that are able to balance search

speed and completeness, while allowing the network to evolve and self-organise.

Hence, constant dynamic adaptation, network evolution and self-organisation as-

sume very important roles in the development of more robust and scalable intel-

ligent dynamic environments. However, as shown in section 2.3, although P2P
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computing does hold this potential, current algorithms and techniques (Rowstron

& Druschel, 2001) (Stoica et al., 2001) (Zhao et al., 2001) (Ratnasamy et al.,

2001) (Crespo & Garcia-Molina, 2002) (Yang & Garcia-Molina, 2002) (Kaloger-

aki et al., 2002) (Tsoumakos & Roussopoulos, 2003) (Lv et al., 2002) (Liang et al.,

2006) are still not efficient enough to be integrated into multi-agent collaborative

environments.

With these limitations in mind, we have established the following challenges

to be addressed by our research work:

Design a discovery mechanism that will enable an agent to find others that

are semantically related to it (or its capabilities) or that are more adequate

to contribute to solve the yet unsolved parts of a given problem for which

the agent cannot contribute, without relying on centralised components or

organisation based structures.

Design a distributed planning algorithm that will take into account only

partial knowledge of the domain, that is, which allows agents to make partial

contributions to a solution plan, considering only the actions of the agent

(and possibly the ones of agents semantically related to it).
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Testing Scenarios

Our approach is intended to be used in environments where a problem, described

as a set of goals to be achieved, must be solved through decomposition and

delegation possibly to several agents. In such environments, agents have different

capabilities, which may or not be complementary, and it is their collaborative

work that ultimately produces a solution to the problem. In this chapter we

describe two such environments, the Rescue Agents and Custom Balls Factory

scenarios, in which we have deployed and tested our approach:

• Rescue Agents – In this scenario (described in section 3.1), agents represent

entities that participate in a rescue operation after the occurrence of a

natural disaster, where they have to perform operations such as clearing

roads, putting out fires and providing assistance to injured people.

• Custom Balls Factory – In this scenario (described in section 3.2), agents

represent machines that can apply different types of customisation in the

production of sports balls, such as colour, size, shape, fabric type, filing,

manufacturing process and other properties.

The scenarios, which were chosen because they represent diverse large classes

of coordination problems, are deliberately different to allow analysing and testing

different aspects of the coordination approach. On one hand, we have the Rescue

Agents scenario, which in spite of the low number of different types of entities

(paramedics, ambulances, firemen and policemen), is a very complex planning
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scenario due to the high level of interaction/cooperation that is needed between

the agents. In almost any situation, all entities of the environment are required

to intervene to provide the best assistance possible to the injured people, thus

making conflicts management the top most priority of the planning activity. Basi-

cally, this scenario is intended to represent those coordination problems in which

small teams of individuals have to intimately collaborate (to avoid conflicts) to

solve very complex or large problems (which usually lead to very large solution

plans), such as rescue operations, project planning or robots playing football.

On the other hand, we have the Custom Balls Factory scenario, which in spite

of involving many different capabilities, is a fairly simple planning scenario. For

each manufactured ball, only a very small set of skills is needed from the vast

selection of existing capabilities, thus characterising this scenario as a discovery

challenge. The planning process on this scenario only becomes relevant when

the requested customisation of the ball requires a set of interdependent features

requiring a specific execution sequence (for example, a ball must first be fully

painted with one colour and only then can stripes be painted with another colour

– executing these actions in reverse order would result in the effects of the paint

action cancelling the effects of the stripes action). Basically, this scenario rep-

resents those coordination environments in which the problems to be solved are

usually simple and small but for which the number of possible candidates to par-

ticipate in the creation of the solution plan is huge, such as service coordination,

travel planning or event planning.

The goal of this chapter is to allow the reader to become acquainted with the

kind of problems that are addressed by our approach. Through the presentation

of these two representative scenarios it will become clear that our coordination

approach for distributed problem solving in totally unstructured networks will

require two main components:

• A planning algorithm that allows agents to decompose problems into sub-

problems and delegate the unsolved parts to other agents;

• A P2P search algorithm that allows the agents to efficiently discover other

agents that can solve the sub-problems for which they do not have the

necessary skills.
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Section 3.3 summarises the presentation of the scenarios and the analysis

of requirements for our approach. This analysis, in conjunction with the goals

established in Chapter 1 and the conclusions of Chapter 2, constitute the basis

of our research work. All listings referenced in this Chapter are in Appendix B.

3.1 Rescue Agents

In the Rescue Agents scenario, agents represent entities that participate in a

rescue operation after the occurrence of a natural disaster, where they have to

perform operations such as clearing roads, putting out fires and providing assis-

tance to injured people. This scenario is characterised as having a small number

of different entities but with a high degree of complexity due to the high level of

necessary interaction/cooperation.

In order to fully understand the requirements of the scenario, we now describe

a simplified instance of the typical problem to be solved in this domain from start

to finish. To describe the example, we use the Planning Domain Description

Language, PDDL (McDermott, 2000), which has become a community standard

for the representation and exchange of planning domain models.

Although several different entities could be considered, for this particular

example, we will consider only the following:

• Paramedic - a medical physician that is able to assist injured people in

loco, by either providing immediate assistance (such as cardiopulmonary

resuscitation) or by diagnosing and dispatching the individual to a hospital;

• Ambulance Driver - the ambulance driver (which by association also rep-

resents the ambulance entity in the environment) who is able to drive

Paramedics, medical equipment/resources and patients from one location

to another;

• Fireman - an entity responsible for different tasks, such as putting out

fires, clearing roads of obstacles and buildings and removing people from

the wreckage;
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Consider the PDDL code listings B.1, B.2 and B.3 that depict, respectively,

the available operators in this domain1 for ambulance drivers, firemen and paramedics.

Each action is composed of its parameters (the objects used in the action),

preconditions (conditions that need to be true prior to the execution of the

action) and effects (conditions that are made true after the execution of the

action).

According to the action descriptions, both ambulance drivers and firemen can

move from one location to another but a paramedic cannot move between loca-

tions on his own. A paramedic can, however, get in (and out of) an ambulance to

then move around through several locations. Also, both paramedics and firemen

have additional operators to, respectively, perform a triage (evaluate the current

condition) on injured people and put out fires on specific locations.

Consider the PDDL code listing B.4 and figure 3.1 that depict a typical prob-

lem in this domain in which an injured person needs assistance but the only way

to reach her is through a path that is blocked by a fire. Also, PDDL code listings

B.5, B.6 and B.7 represent, respectively, the initial states for an ambulance driver,

a fireman and a paramedic in the example.

In this particular example, we represent the world as a 10 ∗ 10 grid. Each cell

of that grid represents a specific location and it is denoted as L + row number

+ column number. For example, L00 represents the uppermost left cell of the

grid. Dark grey cells represent roads and light grey cells represent other elements

of the world that are not relevant for the problem at hand. Each entity in the

environment is represented by one or more agents2. Agents in the environment

that can move from one location to another can only do so through road adjacent

cells (excluding diagonals). In this specific problem, an injured person is on

location L84, an ambulance and a paramedic are both on location L20, a fireman

is on location L27 and there is a fire occurring on location L64.

A paramedic can perform a triage on the injured person, but requires an

ambulance in order to move to the location where the injured person is. However,

1For the sake of simplicity we only show here the subset of the actions of the domain that
are required for the problem in the example.

2Even though not explicitly represented in the figure, we assume other agents of the same
type as the ones presented here also exist and are available to intervene in the problem solving
process.
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Figure 3.1: Rescue Agents scenario problem example

the ambulance cannot access that area while the fire has not been extinguished,

task which can only be handled by a fireman. So, this scenario requires the

intervention of all three entities described above, but in order to reach the desired

goal, they will need to coordinate themselves, that is, determine which of their

actions will be necessary and more importantly, the sequence in which they should

occur in the final solution plan.

Moreover, the scenario presents some limitations. At boot time, each agent

only has knowledge of its own skills (planning operators) and current state and

not the ones of others. Each agent is randomly connected to a fixed number

of neighbouring agents, with which it can communicate to collaborate on the

problem solving process. Also, the agents do not know the problem description

until they receive it from another agent that has forwarded it to them.

In this context, an agent that receives the request to solve this problem will

analyse it, determine which of its actions can be used to solve part of the problem

and then build a partial solution plan. Afterwards, it will communicate with its
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neighbours to find other agents, to which it will forward its current partial solution

plan. Each agent that receives the partially solved problem will not only become

aware of the problem that needs to be solved but also of the contributions that

were made so far.

So, let us imagine that for this example, the first agent that receives the

problem solving request is a paramedic (pmedic1, the one located at L20). By

analysing the problem3, agent pmedic1 determines that it can use its own actions

to produce the partial solution plan depicted in Figure 3.2. Grey squares represent

actions and the formulas without borders represent propositions. The proposition

with Bold font is the goal proposition. Elements in red represent unsolved parts of

the solution plan. The elements to the left of the grey vertical line are propositions

present in the initial state. Since at this point, the plan is being built by agent

pmedic1, this initial state includes all propositions of the problem’s initial state

and the propositions from pmedic1’s initial state.

As it is clear in Figure 3.2, the current solution plan requires some sort of

action that is able to contribute to the open conditions (ambulance at ?a l20)

and (ambulance at ?a l84). However, agent pmedic1 does not have any ac-

tion that can contribute to them. At this point, agent pmedic1 must initiate a

discovery process of some sort to find an agent with the necessary skills. This

can be done by using a P2P search algorithm to send a request to neighbouring

agents to find an agent with a specific skill that contributes to achieve those open

conditions.

Let us assume that pmedic1 is able to find the ambulance agent amb1, whose

action ambulance move is just the right skill to complete the solution plan. So,

after analysing the current solution plan, agent amb1 determines that its action

can be used to further contribute to the solution plan, as it is described in Figure

3.3.

In this figure, in which we present only the contributions made by agent amb1

and not the entire solution plan, we have removed some of the steps to make

it more legible. The propositions in Bold font represent the open conditions in

3At this point, we do not make any assumptions as to which type of planner (or if it is a
backward or forward-chaining approach) the agent is using. We simply assume the agent is
able to perform a matchmaking process between its actions and open conditions in the current
plan.
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Figure 3.2: Partial solution plan developed by agent pmedic1

Figure 3.3: Partial solution plan developed by agent amb1
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agent pmedic’s partial solution plan. The figure clearly shows that this solution

plan is still incomplete due to the open condition (road l64). The ambulance

cannot drive through the entire route from l20 to l84 because l64 is on fire,

blocking the path between the two locations.

Agent amb1 needs to engage in the discovery process in the P2P network in

order to find an agent with the necessary skills to put out the fire in location l64.

Agent fman1 is selected as being one possible candidate. After proper analysis,

agent fman1 makes the contributions depicted in Figure 3.4. By moving to an

adjacent position to the fire and then applying action fireman putout fire,

agent fman1 is able to solve the last open condition of the solution plan, thus

producing the final solution plan described in listing 3.1.

Figure 3.4: Partial solution plan developed by agent fman1

The final solution plan is described as a sequence of sets of steps. We use

this representation because some actions can occur in parallel since they do not

interfere with actions that occur in the same step. In this case, we can see that

at the beginning of the plan the paramedic gets inside the ambulance while the

fireman is performing its first move action. Then, both the fireman and the

ambulance execute their move actions at the same time. This produces a plan in
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which these actions occur in parallel because there is no interference between the

actions of the two agents.

1 <(f ireman move fman1 l27 l26 ) , ( paramedic load in ambulance pmedic1
amb1 l20 )>

2 <(f ireman move fman1 l26 l25 ) , ( ambulance move amb1 l20 l21 )>
3 <(f ireman move fman1 l25 l24 ) , ( ambulance move amb1 l21 l22 )>
4 <(f ireman move fman1 l24 l34 ) , ( ambulance move amb1 l22 l23 )>
5 <(f ireman move fman1 l34 l44 ) , ( ambulance move amb1 l23 l24 )>
6 <(f ireman move fman1 l44 l54 ) , ( ambulance move amb1 l24 l34 )>
7 <( f i r eman pu t ou t f i r e fman1 l54 l64 ) , ( ambulance move amb1 l34 l44 )>
8 <(ambulance move amb1 l44 l54 )>
9 <(ambulance move amb1 l54 l64 )>

10 <(ambulance move amb1 l64 l74 )>
11 <(ambulance move amb1 l74 l84 )>
12 <(paramedic unload from ambulance pmedic1 amb1 l84 )>
13 <(pa ramed i c t r i age pmedic1 p1 l84 )>

Listing 3.1: Final solution plan in the Rescue Agents domain example

3.2 Custom Balls Factory

In the Custom Balls Factory scenario, agents represent machines that can ap-

ply different customisations in the manufacture process of a sports ball, such as

colour, size, shape, fabric type and other properties. This scenario is charac-

terised as having a very large number of different entities but with a low degree

of complexity regarding the cooperation between the agents.

Again, we will be showing a complete example of cooperation between several

agents in order to fully describe the scenario. There are two main elements in a

ball’s manufacturing process: the exterior cover and the inflated or filed interior.

The exterior cover can either be composed of 4 (or more) slice-like parts or a mix

of 32 hexagonal and pentagonal tiles. The interior can either be inflated with

air or filed with foam. Naturally, most customisations are applied to the exterior

cover.

In this scenario, it is expected that a very large number of different customi-

sations exists. Contrary to the Rescue Agents scenario, this scenario is not very
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complex from the planning point of view because there are very few conflicts be-

tween the different customisations. And, since each customisation is represented

by a single agent, it is clear that the scenario constitutes an interesting challenge

from the discovery process point of view, instead. That is, most of the time of

the problem solving process will be spent finding the agents, amongst so many,

which have the necessary skills to apply the requested customisations.

Although many different skills could be considered in this scenario, for this

particular example, we will only consider the following agents4:

• trgb painter - can paint the top area of a ball in Red, Green or Blue. The

painter skill is described in listing B.8 and this agent’s initial state is de-

scribed in listing B.12;

• bb painter - can paint the bottom area of a ball in Blue. The painter skill is

described in listing B.8 and this agent’s initial state is described in listing

B.13;

• bs painter - can paint any part of the ball with blue stripes. The stripes

painter skill is described in listing B.9 and this agent’s initial state is de-

scribed in listing B.14;

• gs painter - can paint any part of the ball with green stripes. The stripes

painter skill is described in listing B.9 and this agent’s initial state is de-

scribed in listing B.15;

• assemb - can assemble the exterior cover and the interior together. The

assembling skill is described in listing B.11 and this agent’s initial state is

described in listing B.16;

• infla - can inflate any kind of ball. The inflating skill is described in listing

B.10 and this agent’s initial state is described in listing B.17;

4Keep in mind that the agents shown here are only the agents actually being used to solve
the problem. The number of candidate agents (agents that exist in the network but are not
actually used in this particular problem) can be quite large.
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Consider the ball customisation schema in Figure 3.5 and the listing B.18,

which represent a typical problem to be solved in this domain. A client wants a

basketball with the whole top area painted green, the top left section with blue

stripes, the whole bottom area painted blue and the bottom right section with

green stripes.

Figure 3.5: Custom Ball Factory scenario problem example

In this context, all of the agents described above will have to be used in order

to produce the solution plan that will ultimately lead to the production of the

customised ball. However, in a typical environment of this scenario, a lot of other

agents/skills are available. This can make the process of finding the appropriate

skills lengthy and complex.

Let us imagine that the first agent receiving this request is the infla agent,

responsible for inflating balls. After processing the request, the agent determines

that it can contribute to one of the goals, (inflated ball1), by using its action

inflate ball and produces the partial solution plan depicted in Figure 3.6.

Each agent in this domain has a particular skill related to the manufacturing

of custom sport balls. Besides having a particular skill, each agent has also a

pair of actions that guarantees that no two agents will end up working on the

same ball at the same time in the final solution plan: grab ball and drop ball.
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Figure 3.6: Partial solution plan developed by agent infla

However, for the sake of simplicity, we removed these auxiliary actions from the

following partial plans’ diagrams.

The dashed arrows represent propositions that are indirectly connected to the

action by the absence of the actions referred above. For example, proposition

(inflater free infla) is required by action grab ball that ultimately pro-

duces proposition (inflater has infla ball1) that is in fact a precondition

for action inflate ball.

At this point, agent infla needs to find one or more agents capable of con-

tributing to the open conditions (in red in the figure) of the current solution

plan. Considering that the environment in which it is operating can be very

large, agent infla needs to use an efficient P2P search algorithm to find the

appropriate agents that can contribute to the partially-solved problem.

Let us assume it is able to find agent assemb, which is capable of contributing

to the open condition (assembled ball1). Agent assemb will then contribute

to the partial solution plan and create the instance described in Figure 3.7.

Agent assemb will then use the same discovery process to forward the current

partial solution plan to another agent. Since agent assemb did not introduce new

open conditions, it will try to find agents that can contribute to the remaining

unsolved goal propositions. Let us consider that it will send the current solution

plan to agent gs painter, which after processing it creates the partial solution

plan described in Figure 3.85.

5Again, to simplify the diagrams, the contributions made by previous agents were removed.
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Figure 3.7: Partial solution plan developed by agent assemb

The addition of action paint stripes by agent gs painter, which paints

the green stripes in the bottom right slice of the ball, introduces a new open

condition: (painted ball1 br blue). This open condition reflects the need for

the whole bottom section of the ball to be first painted blue, before the stripes

are painted. So, agent gs painter needs to find an agent that is able to paint

that area of the ball in blue. After searching the network, it is able to find agent

bb painter, which after performing the necessary processing of the request, is

able to contribute to the current solution plan as depicted in Figure 3.9.

Agent bb painter contributes to the solution plan by adding its action paint

twice, one for each of the bottom slices of the ball, to paint it blue. After its

contribution, only two more goal propositions remain unsolved: (striped ball1

tl green blue) and (painted ball1 tr green). These propositions represent

the goal of painting the top area of the ball in green and blue stripes on the left

section.

These contributions are done in a similar way as shown above for agents

gs painter and bb painter, but instead using two other agents with the neces-

sary skills. The action of painting the whole top area of the ball in green is done by

agent trgb painter and the blue stripes are painted by agent bs painter. This
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Figure 3.8: Partial solution plan developed by agent gs painter

Figure 3.9: Partial solution plan developed by agent bb painter

completes the problem solving process and the final solution plan is presented in

listing 3.2.
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1 <( g r ab ba l l t r gb pa i n t e r ba l l 1 )>
2 <(pa int t r gb pa i n t e r ba l l 1 t r green ) , ( pa int t r gb pa i n t e r ba l l 1 t l

green )>
3 <( d r op ba l l t r gb pa i n t e r ba l l 1 )>
4 <( g r ab ba l l b s pa i n t e r ba l l 1 )>
5 <( p a i n t s t r i p e s b s pa i n t e r ba l l 1 t l green blue )>
6 <( d r op ba l l b s pa i n t e r ba l l 1 )>
7 <( g r ab ba l l bb pa inte r ba l l 1 )>
8 <(pa int bb pa inte r ba l l 1 br blue ) , ( pa int bb pa inte r ba l l 1 b l green )>
9 <( d r op ba l l bb pa inte r ba l l 1 )>

10 <( g r ab ba l l g s p a i n t e r b a l l 1 )>
11 <( p a i n t s t r i p e s g s pa i n t e r b a l l 1 br blue green )>
12 <( d r op ba l l g s p a i n t e r b a l l 1 )>
13 <( g r ab ba l l assemb ba l l 1 )>
14 <( a s s emb l e ba l l assemb ba l l 1 )>
15 <( d r op ba l l assemb ba l l 1 )>
16 <( g r ab ba l l i n f l a b a l l 1 )>
17 <( i n f l a t e b a l l i n f l a b a l l 1 )>
18 <( d r op ba l l i n f l a b a l l 1 )>

Listing 3.2: Final solution plan in the Custom Ball Factory domain example

The sequence of actions presented in this solution plan is only one among

many different alternatives. That is, most of these actions can be arranged in a

different order and that would not affect the outcome of the solution plan. For

example, the order in which the painting process for the top and the bottom of

the ball occur is completely irrelevant because these actions do not interfere with

each other. However, some conflicts exist and these are avoided by setting a strict

order in the solution plan. For example, the inflating action cannot occur before

the assembling action and the stripes action cannot occur before the painting

action. Hence, the order of these actions in the plan cannot be changed.

3.3 Requirements Analysis

Considering both scenarios described in the previous sections, it is clear that the

coordination framework inherent to the problem solving process has two main in-

gredients: a discovery mechanism that allows agents to find other agents that can
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help them solve parts of a complex problem; and a partial planning mechanism

that allows each agent to determine how it can contribute to parts of that prob-

lem and decide which parts have to be solved by other agents with the necessary

skills.

It is the combination of these two mechanisms that allows agents to coordinate

themselves in a distributed problem solving environment. They can assume,

however, different levels of importance for different scenarios. For example, as

we have seen in section 3.1, the focus of the Rescue Agents scenario is on the

planning process due to the high level of cooperation required by the entities of

the scenario, whereas in the Custom Balls Factory scenario, the focus is on the

discovery mechanism because the main task revolves around finding the agents

with the necessary skills in a very large network of potential candidates.

In order to make our approach as generic as possible and still guarantee a good

performance in many different scenarios, these two mechanisms have to be efficient

(rapidly generate responses without imposing a large work load onto the agents),

scalable (operate in very large environments) and robust (withstand occasional

failures in parts of the system). And more importantly, their combination has to

reflect those same properties in the resulting coordination infrastructure.

From the analysis of both scenarios, and especially the Custom Balls Factory

scenario, the discovery mechanism can be very challenging due to the large size of

the environment in which the agents operate. On one hand, a centralised solution

is not recommended for its lack of robustness or scalability, as we concluded in

section 2.5 of the previous chapter. On the other hand, using a totally distributed

solution can help overcome the limitations of a centralised solution but, if not

done efficiently, the performance degradation can be high (see section 2.3 of the

previous chapter). Thus, it is imperative that the discovery mechanism relies on

an efficient algorithm that is able to deal with increasingly large environments.

On scenarios such as the Rescue Agents scenario, the focus is on the planning

process. In such environments, conflict resolution assumes a very important role

and if the agents cannot cooperate efficiently to deliver a fast response to a

complex problem, the resulting solution plan may become obsolete very quickly.

Moreover, it is also very important that each agent can quickly determine the

level of contribution to the problem and not waste much time in the process, since
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this may jeopardise the participation of other agents that can actually perform

contributions. Thus, the planning mechanism will need to be very efficient in

performing the matchmaking process between the agent’s actions and the parts

of the problem that remain unsolved.

Classical planning approaches that are typically used in one-agent settings,

unless carefully adapted to consider large distributed environments, cannot be

used (see section 2.1 of the previous chapter). Centralised or organisational-

based solutions cannot be considered since, as concluded in section 2.2 of the

previous chapter, the approaches that use this kind of strategies compromise the

scalability and robustness of the environment.

These requirements, in conjunction with the goals established in Chapter 1

and the conclusions of Chapter 2, are the basis of our research work. The next

chapter builds on all these elements and describes our chosen technical approach

in detail.
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Chapter 4

Technical Approach

Efficiently coordinating the distributed problem solving activity of multiple het-

erogeneous agents in unstructured environments is quite challenging. On one

hand, as we have seen in Chapter 2, most approaches rely on some sort of organi-

sational-based model that, even though may generally address the coordination

problem, compromises the robustness and scalability of the system. On the other

hand, a detailed view of two completely different scenarios, in Chapter 3, has

shown that the two main ingredients of our approach, discovery and planning,

are equally important to guarantee an efficient domain-independent coordination

mechanism. Following these conclusions and the goals established in Chapter

1, we designed and developed a coordination framework on which agents seam-

lessly rely to solve complex problems1. In this chapter, we describe our technical

approach for coordinated distributed problem solving in unstructured intelligent

agent societies.

The process itself is quite simple and it starts with an agent receiving a request

to solve a specific problem, which includes a description of the initial state of the

world and the goals to be achieved. This agent processes the request using a

planning algorithm to decompose the received problem into sub-problems and

identify those sub-problems it can solve with its own skills and those that have to

be sent to another agent with other skills. To find another agent to send the non-

solved sub-problems, the agent uses a distributed discovery mechanism relying

1By complex problems we mean problems that must be solved by more than one agent in
cooperation.
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on dynamically built and maintained semantic information about the skills of the

other agents in the society.

The challenge lies in enabling the agents to perform these tasks without using

any structured or centralised elements. To that end, we first propose that agents

make use of their idle time to trigger a totally distributed self-organisation process

that allows them to learn more about each other’s skills and, thus become more

prepared to solve problems in the future. It is this self-organisation process, based

on the propagation of agents’ skills through the network using efficient algorithms,

that allows the agents to create and maintain a semantic overlay network, that is,

a set of links that enable agents to easily find other agents that are semantically

related to them. All of these elements, which compose the discovery process of

our coordination framework, are described in section 4.1 of this chapter.

In section 4.2, we focus on the other part of our coordination framework,

describing the distributed planning process in which agents are able to determine

how to partially contribute to complex problems and how to identify the problem

parts that need to be forwarded to other agents. It is by using the overlay network

described in section 4.1 that this planning algorithm is able to determine which

is the best agent to which the partially-solved problem should be forwarded.

Finally, in section 4.3, we substantiate some of decisions that were made

through the course of the research work. In particular, we address (in sub-section

4.3.1) the issue of choosing the appropriate network evolution techniques in the

self-organisation process described above, the decision regarding the planning

algorithm to be used in the distributed planning process (in sub-section 4.3.2)

and the decision of which heuristics to use in the backward-search phase of the

planning algorithm (in sub-section 4.3.3).

4.1 Distributed Agent Discovery

Agents facing problems that can only be solved by the collective effort of differ-

ent agents in unstructured dynamic networks need an efficient search algorithm

to find the agents with the necessary skills or resources to cooperatively solve

the problem. This search mechanism is the basis of the discovery process of our

coordination framework. With it, agents should not only be able to locate other
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necessary agents in the environment but also engage in a self-organisation pro-

cess that, through information gathering over time, improves the fully distributed

agent discovery process itself. However, as networks become larger, search mech-

anisms become less and less efficient and are unable to adapt to increasingly

complex environments.

As an agent enters a network and needs to search for other agents with par-

ticular skills or resources, it can employ different kinds of search mechanisms

depending on the type of the network in which it is operating. In case of struc-

tured networks, the agent must first become acquainted with the agents standing

higher in the hierarchy, which are responsible for ensuring the propagation of

queries through the entire (or just a part of the) network, and then perform their

search requests.

Structured networks have a good search performance but as the network be-

comes larger, the effort required to constantly adapt the network’s structure to

account for new agents entering or leaving it, becomes prohibitive. In such cases,

this maintenance effort overcomes the gains of good search performance. More-

over, the higher the agent that leaves the network is on the hierarchy, the greater

will be the impact on this maintenance process, which in some cases, may be

catastrophic.

Unstructured networks do not suffer from this problem since every agent is

equal in responsibility and the impact of any of those agents leaving the network is

minimal to the rest of the network. However, since there is no network structure,

the search mechanisms are often inefficient and/or resource-consuming. In such

networks, searching for another agent or resource is often carried out by a flooding

algorithm (when the agent broadcasts the search query to all of its neighbours)

or a random walk algorithm (when the agent broadcasts the search query to only

a small subset of its neighbours).

Figure 4.1 depicts the comparison between the flooding and random walk al-

gorithms and helps understand their relative advantages and disadvantages by

showing their position in a diagram that explores 3 different dimensions: query

response time, network bandwidth and network coverage. Even though the flood-

ing technique may retrieve the results faster, it is easy to perceive that it does so

at the cost of using the processing power of a large part of the network, whereas
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in the random walk algorithm, although the impact on the network load is sig-

nificantly lower, the search latency may increase immensely.

Figure 4.1: Comparison of different search algorithms

Other search mechanisms for unstructured networks (shown in section 2.3),

which are based on variations of these two algorithms, explore the trade-off be-

tween network load and coverage but the results are more or less similar, that

is, as they try to use less of the network bandwidth, they tend to increase the

query response time and vice-versa. Our goal is to develop a search algorithm

that outperforms any of the currently existing algorithms in, if possible, all 3

dimensions represented in the diagram.

In this section, we present two different search algorithms that we developed

aiming to fulfil this goal: the Priority-based Flooding (PbF) algorithm (described

in sub-section 4.1.1) and the Iterative Branching Depth-First Search (IBDFS)

algorithm (described in sub-section 4.1.2). We then present, in sub-section 4.1.3,

some network evolution techniques and show how these can be used to create a
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semantic overlay network that can improve the efficiency and accuracy of search

queries over time.

4.1.1 Priority-based Flooding

This approach is based on the assumption that a flooding technique is only in-

efficient if the network is already overloaded with requests. If the agents in the

network are idle, then the flooding mechanism is, in fact, the fastest and most

complete way of delegating a search query. However, it is difficult for a peer

to determine whether or not its neighbours have a heavy workload at a certain

moment.

We introduce the concept of Priority-based Flooding (PbF), which allows

agents to assign a priority to search queries based on their propagation level

within the network. The principle of this search mechanism is very simple: agents

use the propagation level of a search to calculate the priority of the query, that

is, the highest the propagation level, the lower the priority.

Basically, each agent in the network employs the following steps in each iter-

ation of the algorithm (which is formally presented in Algorithm 1):

• The agent determines the priority for each search query currently on the list

of search queries to be processed, by using the following formula: (1/qpl),

with qpl being the query’s current propagation level;

• The agent will then process the search query with the highest priority and

retrieve the corresponding result;

• If the result of the processing event is null, this means that the agent does

not hold the answer to the search query and needs to further propagate

the request to its neighbours. In that case, after increasing the propagation

level of the search query by one unit, the agent forwards the request to all

of its neighbours;

• Otherwise, the agent knows the answer and replies to the requesting agent

accordingly.
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Algorithm 1 PBF(Q, N): let Q be the list of queries currently waiting to be
processed (an agent’s workload), N the list of neighbours, mq and mp auxiliary
variables indicating the maximum priority query and its priority, p the priority
of a request and r the result of a query processing event.
Require: N > 0
1: mp ← 0
2: mq ← 0
3: for each qi ∈ Q do
4: p = 1/depth(qi)
5: if p > mp then
6: mp ← p

7: mq = qi

8: end if
9: end for

10: r ← process(mq)
11: if r = � then
12: depth(mq) = depth(mq) + 1
13: for each ni ∈ N do
14: reply(forward(mq, ni))
15: end for
16: else
17: reply(r)
18: end if

In line 4 of alg. 1, we can see that the priority of each request is calculated

by using the formula p = 1/depth(qi). The method depth retrieves the propa-

gation level of a search query, which roughly represents the number of different

agents that have already processed the request. Using this technique, agents

can efficiently manage their workload by giving priority to local requests (search

queries triggered by closer neighbours) in detriment of requests originated by far

away agents.

We believe that this is a fair policy, since it relies on the fact that if the

propagation level of a search query is high, then the number of agents that have

already had access to the search query is also quite high. Hence, it is reasonable

to assume that the probability for the search query to have been processed by

some other agent with a lower workload is also high.

This approach may allow increasing (or maybe even eliminate the need for)

the Time-To-Live parameter of flooding search queries because requests that have
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travelled a lot within the network will simply have such a low priority that the

workload of the agents in the network will not be affected by them.

The evaluation of this algorithm is provided in Chapter 5, more particularly,

in section 5.1.

4.1.2 Iterative Branching Depth-First Search

The Priority-based Flooding algorithm focused on reducing the impact of the

well-known flooding algorithm in the overall network load. The Iterative Branch-

ing Depth-First Search (IBDFS) explores, instead, the possibility of iteratively

increasing the coverage of the network of the opposite approach, the Depth-First

Search algorithm.

The principle on which this algorithm is based is very simple:

• When initiating a search query, an agent randomly contacts one of its neigh-

bours (this algorithm can also be adapted to consider a k number of neigh-

bours, in each iteration). If the neighbour immediately replies with the

answer, then the process ends.

• If the neighbour replies stating it has not found the answer, then the agent

contacts a second neighbour and so forth.

• Each of the agent’s neighbours will employ the exact same process.

This approach (Algorithm 2 depicts the steps of the recursive search mecha-

nism) increases the branching level iteratively on each hop, thus increasing the

chances of finding the answer faster, comparatively to the depth-first search (DFS)

approach. Also, the load effect of this algorithm on the network is much lower

than a flooding-based technique. However, by delaying the propagation of the

search query this algorithm may not retrieve answers as fast as the flooding al-

gorithm.

In order to easily understand the difference between the two algorithms, Figure

4.2 presents a comparison of the number of agents reached (darker nodes) in a

search query with a hop count of 3, that is, when the algorithms have made 3

iterations.
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Algorithm 2 IBDFS(q, N): let q be the query to be processed, N the list of
neighbours and r the result of a query processing event.
Require: N > 0
1: r ← �
2: if ¬processed(q) then
3: r ← process(q)
4: reply(r)
5: processed(q) → true

6: end if
7: if r = � then
8: randomly select ni ∈ N

9: rni ← forward(q, ni)
10: if rni = � then
11: IBDFS(q, N − ni)
12: end if
13: end if

Figure 4.2: Comparison between the Depth-First Search algorithm and the Iterative
Branching Depth-First Search algorithm with a hop count of 3, i.e., when the algorithms
have made 3 iterations.
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A detailed evaluation of this algorithm is provided in Chapter 5, more partic-

ularly, in section 5.1.

4.1.3 Network Evolution and Semantic Overlay Networks

In the beginning of the discovery process, agents in a peer-to-peer (P2P) network

do not have enough information about other agents. As they go along, the inter-

actions between them become valuable sources of information that can be used

to improve the performance of future searches. Furthermore, the use of informed

search techniques scales a lot better throughout time as agents develop connec-

tions with other agents discovered in previous interactions (Fletcher & Sheth,

2004).

To improve the performance of the proposed search mechanisms, we also

propose some adaptation procedures that we believe will improve the searches

throughout time. These procedures contribute to the evolution of the network

by triggering a self-organisation process that will improve future searches (thus

reducing the query response time and the network bandwidth usage and max-

imising the accuracy of the results), ultimately leading to the dynamic creation

of a semantic overlay network.

A Semantic Overlay Network (Crespo & Garcia-Molina, 2005) is an abstract

layer that represents a set of semantic relationships established between agents

that are randomly connected at a lower level of a peer-to-peer network. Basically,

a semantic overlay network represents the interconnections of semantically related

network nodes. Figure 4.3 shows an example of a semantic overlay network that

was created on top of a peer-to-peer network. A semantic link (green lines in

figure 4.3) between two agents represents a connection that denotes that one

agent is related to the other in terms of similarity or dependency of their skills

or resources.

The idea is to create an adaptable search algorithm that improves its perfor-

mance over time ultimately leading to the creation of a complete semantic overlay

network, as depicted in Figure 4.4, which revisits the 3-dimensional analysis of

figure 4.1.
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Figure 4.3: A semantic overlay network as a layer of the physical P2P network.

In order for an agent to improve its participation in future searches, it is

important that it caches previous search contributions. For example, as a query

response travels back to the requester agent, all agents in that specific path can

either store the response themselves or cache a link to the agent which has the

response, thus working as a referral for future searches.

However, after some time contributing to search queries, it may happen that

agents hold a huge cache of referrals that becomes intractable as they contribute

more and more throughout time. In order to avoid loss in performance due to the

size of the cache, agents can store only a fixed number of references and decide

which ones to store based on a metric, such as the frequency of the request. Even

though rare requests have lower performance in this process, frequent search

queries will be optimised, which globally seems to be a good option.

An alternative approach can be based on a direct link between the responder

agent and the requester agent. If we consider, for example, the priority-based

flooding algorithm, we see that this causes a massive generation of reply messages

(line 14 of alg. 1). To avoid this situation, the search mechanism can be changed

so that the query response is returned directly to the query requester, instead of

being carried back through the original path. For example, if agent α has the
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Figure 4.4: Network evolution techniques as a semantic overlay network generation
process.

response for the query made by agent β, α will directly send the response to β.

Even though the agents on the original request path will not learn the result of

the query, the result will reach the requester agent faster and a lot of messages

can be saved.

Furthermore, the agents that participated in the search, even if just for for-

warding or propagating the request, can assume that, after some time, the re-

quester agent has already received the necessary response. Hence, future similar

searches (for example, agent γ requesting the same contents as β) can be referred

to the previous requester agent (β), which in turn can refer it to the original

responder agent (α) or provide itself the response directly (to γ).

These techniques, which are analysed and evaluated in section 4.3.1, can be

very useful for improving the agent discovery process over time. But not only

do they improve the search mechanism, they also allow agents to collect valuable

information about the agents/skills/resources existing in the network at any given
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time. Considering that, in distributed problem solving environments, agents need

to collaborate, it is very important that they can maintain a record of where the

required skills are. The use of semantic links is just the ideal solution for that

problem.

In our approach, we use a semantic overlay network to establish relationships

between agents to facilitate their discovery. These relationships reflect semantic

dependencies between agent skills. Agent skills are actions that can be executed

in the environment in which they operate. An action has inputs and outputs

and can only be executed if its preconditions are met. After execution, an action

produces some effects (propositions guaranteed to be true after execution) in the

environment. These properties, which describe actions in a meaningful way, are

used to optimise the discovery process in collaborative environments.

As agents enter a network, they engage in a self-organisation process in order

to build and maintain a semantic overlay network that will ultimately establish

all the dependency relationships amongst agents (and their actions). The self-

organisation process is triggered by the agents as they propagate information

regarding their own skills (using one of the network algorithms described above).

During the self-organisation process, each agent uses a simple rule to deter-

mine whether or not other agent skills should be semantically linked to its own

skills. Agent α’s action a should be semantically linked to agent β’s action b if b’s

effects (denoted as effects(b)) contribute to achieve a’s preconditions (denoted

as precond(a)), as illustrated by the following expression2:

∃ c [(c ∈ precond(a) ∧ (effects(b) � c)] (4.1)

The main purpose of this process is to allow a network of otherwise unrelated

agents to self-organise, such that each agent knows exactly where the actions

on which its own actions depend (or contribute to) are. Also, during the self-

organisation process, it is natural that each agent will also acquire knowledge not

only related to its own actions but to the ones of other agents.

2We consider that preconditions and effects are sets of propositions that represent their
conjunction
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4.2 Distributed Planning

The self-organisation process described in the previous section creates links be-

tween agent actions, thus dynamically building a semantic overlay network. This

abstract layer is the basis of the discovery process of the proposed approach to co-

ordinated distributed problem solving, in large-scale unstructured environments.

It helps agents find each other relying on semantic relationships between them.

However, for an agent to solve a specific problem, it needs an algorithm that is

capable of dealing with partial knowledge of the domain (that is, restricted to the

agent’s local knowledge) and to derive its contributions to the referred problem.

Moreover, that algorithm should also take into account that the agent is working

together with other agents in order to solve a problem that can only be solved (or

solved more quickly or efficiently) through the collective effort of several agents.

This means the algorithm must also consider other agents’ contributions and

resolve any conflicts that may arise in the distributed problem solving process.

The proposed approach to coordinated distributed problem solving uses a

planning algorithm to decompose a problem into sub-problems, to identify those

sub-problems that can be solved by the agent, to identify those that must be

delegated to other agents, and coordinate the whole cooperative activity avoid-

ing conflicts. With the purpose of selecting the best alternative, we have tested

several different planning algorithms in a distributed setting. From that analy-

sis (which is presented in section 4.3.2) we have concluded that the Graphplan

algorithm is the most efficient approach.

This section describes the Graphplan algorithm and the extensions we have

made to it. First of all we describe, in sub-section 4.2.1, a very simple example

of a planning problem from the blocks world. We use such a simple example to

avoid producing illegible diagrams, difficult if not impossible to grasp. However,

the real problems in which we have tested our approach are far more complex. We

then describe, in sub-section 4.2.2, the fundamental aspects of planning graphs

and the Graphplan algorithm. In sub-section 4.2.3, we present our distributed

version of the Graphplan algorithm. And finally, in sub-section 4.2.4, we present

an alternative version of the distributed Graphplan algorithm, which uses means-

ends analysis.
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4.2.1 A Blocks World planning problem example

The Blocks World is one of the most famous planning domains in artificial in-

telligence and has often been used to describe the behaviour of some planners

in particular examples. Imagine a set of blocks (or cubes) sitting on a table.

The goal is to build some desired structure by vertically stacking blocks using a

mechanical hand. The catch is that only one block may be moved at a time: it

may either be placed on the table or placed on top of another block. Any blocks

that are, at a given time, under another block cannot be moved.

Figure 4.5: A planning problem example in the Blocks World domain.

Consider the following example in this domain, which is depicted in Figure

4.5. In the initial state, blocks A and B are placed on the table and block C is

placed on top of B; the goal is to reach a state in which C is placed on the table,

B is on top of C and A is on top of B.

In this domain, the following predicates are used to represent states of the

world3:

• (clear ?b) – indicates that there is no block on top of block ?b;

• (on ?a ?b) – indicates that block ?a is on top of block ?b;

• (ontable ?b) – indicates that block ?b is placed on the table;

Considering the predicates shown above, we now describe, in Listing 4.1, the

problem shown in figure 4.5 in PDDL:

3All listings presented here are written in PDDL.
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1 ( d e f i n e ( problem blocks1 ) ( : domain Blocks )
2 ( : ob j e c t s a b c )
3 ( : i n i t ( ontab le a ) ( c l e a r a ) ( ontab le b) ( on c b) ( c l e a r c ) )
4 ( : goa l (and ( ontab le c ) ( on b c ) ( on a b) ) ) )

Listing 4.1: Description of the Blocks World example problem in PDDL

In order to create a plan that, starting from the initial state, achieves the

desired goal, we need to have actions that produce certain effects on the world.

In this example, we will consider the following actions (a detailed description of

these actions in PDDL is provided in listing 4.2 below):

• (move ?a ?b ?c) – this action is used to make the mechanical hand move

block ?a from the top of block ?b onto block ?c;

• (stack ?a ?b) – this action is used to make the mechanical hand move

block ?a from the table onto block ?b;

• (unstack ?a ?b) – this action is used to make the mechanical hand move

block ?a from the top of block ?b onto the table.

1 ( d e f i n e ( domain Blocks )
2 ( : a c t i on move
3 : parameters (? a ?b ? c )
4 : p r e cond i t i on (and ( on ?a ?b) ( c l e a r ? c ) ( c l e a r ?a ) )
5 : e f f e c t (and ( c l e a r ?b) ( on ?a ? c )
6 (not ( on ?a ?b) ) (not ( c l e a r ? c ) ) ) )
7 ( : a c t i on stack
8 : parameters (? a ?b)
9 : p r e cond i t i on (and ( c l e a r ?b) ( ontab le ?a ) ( c l e a r ?a ) )

10 : e f f e c t (and ( on ?a ?b)
11 (not ( c l e a r ?b) ) (not ( ontab le ?a ) ) ) )
12 ( : a c t i on unstack
13 : parameters (? a ?b)
14 : p r e cond i t i on (and ( c l e a r ?a ) ( on ?a ?b) )
15 : e f f e c t (and ( c l e a r ?b) ( ontab le ?a )
16 (not ( on ?a ?b) ) ) ) )

Listing 4.2: Description of the Blocks World example domain in PDDL
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This will be the example used throughout the rest of this chapter to clearly

describe the behaviour of the different algorithms that are presented here.

4.2.2 Planning Graphs and the Graphplan algorithm

Given an initial state, a set of goal propositions4 and a set of available actions,

a planning graph (Blum & Furst, 1997) consists of a directed, levelled graph

where levels alternate between proposition levels containing proposition nodes

and action levels containing action nodes, as such: �P0, A1, P1, . . . , Ai, Pi�.
The first level (P0) is a proposition level composed of proposition nodes corre-

sponding to the initial state. The second level (A1) is an action level composed of

action nodes, one for each action whose preconditions are satisfied by the propo-

sitions in the first level (P0). The third level (P1) is a proposition level composed

of proposition nodes that represent the propositions resulting of the effects of the

actions in the second level.

Since the actions are only connected to the propositions they change, the

persistence of propositions during action execution is not explicit in the planning

graph. To explicitly make propositions persist from one proposition level to the

next one, at each level Pi, each proposition p ∈ Pi is propagated to the next

level Pi+1 by a dummy action no-op that has a single precondition and a single

positive effect p.

Figure 4.6 shows the state of the planning graph in the Blocks World example,

after the first level expansion. Black lines coming from propositions to actions

(squares in the figure) represent the action preconditions, and black lines coming

from actions to propositions represent action positive effects. Dashed lines rep-

resent action negative effects. No-op actions are not represented in the figure for

the sake of clarity. Red lines in the figure, represent mutexes, which are explained

below.

As we can see in the figure, only actions (stack a c), (move c b a) and

(unstack c b) can occur at the first action level of the planning graph (A1)

since only these have their preconditions satisfied in the first proposition level

4We use the STRIPS (Fikes & Nilsson, 1971) representation under the assumption of a
deterministic and fully observable domain.
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Figure 4.6: First level expansion of the planning graph in the Blocks World example
problem.

(P0). These actions will then add their effects onto the second proposition level

(P1), namely, (on a c) for action (stack a c), (on c a) and (clear b) for

action (move c b a) and (ontable c) and (clear b) for action (unstack c

b). The propositions that are in level P0 are also added to level P1 due to the

no-op actions (which are not represented in the figure).

The planning graph is built this way until a proposition level is reached that

includes all propositions of the goal state. A planning graph does not represent a

valid plan for a planning problem. Instead, it uses the principles of independence

and mutual exclusion – or mutex – to drastically reduce the search space and

help finding a valid plan faster.

We can say that two actions a and b are independent if and only if the following
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two conditions are met5:

effects
−(a) ∩ [precond(b) ∪ effects

+(b)] = � (4.2)

effects
−(b) ∩ [precond(a) ∪ effects

+(a)] = � (4.3)

Two actions a and b in level Ai are mutex if either a or b is dependent of the

other or if a precondition of a is mutex with a precondition of b. Two propositions

p and q in Pi are mutex if every action in level Ai−1 that has p as a positive effect

(including no-op actions) is mutex with every action that produces q. Basically,

a mutex represents two elements that cannot occur at the same level of a valid

plan at the same time. The set of mutex relations at a proposition level Pi and

action level Ai are denoted respectively µPi and µAi.

It can be seen in figure 4.6 that all pairs of actions in level A1 are mutex , that

is, are mutually exclusive, because each of them deletes at least one precondition

of the other. For example, action (move c b a) deletes the proposition (clear

a), which is a precondition of (stack a c). In level P1, several mutexes occur

between propositions. For example, proposition (on a c) is mutex with propo-

sition (on c a) because the only actions that have these propositions as positive

effects are actions (stack a c) and (move c b a), which in turn are mutex .

Graphplan (Blum & Furst, 1997) is an example of the use of a planning graph.

The Graphplan algorithm iteratively expands the planning graph by one level6 and

then searches backward from the last level of this graph for a solution. The search

procedure looks for a set of non-mutex actions that achieve the goal propositions.

Preconditions of the chosen actions become the new goal propositions and the

process continues. A failure to meet the goal at some level i leads to backtrack

over all other subsets of actions in level i + 1. If the first level is successfully

reached, then the corresponding action sequence is a solution plan.

Figure 4.7 represents the final planning graph for the Blocks World example.

The elements in light grey represent all reachable actions/propositions starting

5We denote precond(a) as the preconditions of an action a, and respectively effects+(a)
and effects−(a) as the positive and negative effects of a.

6With the exception of the first expansion, which is done until a proposition level is reached
where all goal propositions are included and no pairs of them are mutex since it does not make
sense to start searching for a plan in a graph that does not reach the goal state.
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Figure 4.7: Final planning graph in the Blocks World example problem.

from the initial state and generated by the expansion process. The expansion pro-

cess terminates at level P3 because all of the goal propositions occur at this level

and no pair of them is mutex . Black elements represent the actions/propositions

used in the backward search process, which ultimately finds the final solution

plan (shown in Listing 4.3).

1 <(unstack c b)>
2 <( s tack b c )>
3 <( s tack a b)>

Listing 4.3: Final solution plan of the Blocks World example problem.

The iterative graph expansion and the search processes are pursued until either

a plan is found or the search reveals that no solution can be found in the planning

graph. The algorithm knows that there is no solution to a given problem when

the planning graph levels-off, that is, when it reaches a fixed-point level k that is

the smallest k such that |Pk−1| = |Pk| and |µPk−1| = |µPk|.
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Graphplan has revolutionised automated planning research mainly because of

its simple, elegant algorithm and its representation of planning problems that

created the basis for an extremely fast planner (Weld, 1999). Nevertheless, the

algorithm applies to the one-agent planning paradigm and does not explore the

potential of being used in distributed settings.

4.2.3 Distributed Graphplan

In the centralised version of the Graphplan algorithm, the planning agent has full

knowledge of the available actions. However, in a distributed environment, each

agent only has knowledge of its own actions. So, we modified the algorithm to

take into account partial contributions to the development of the planning graph.

The process is carried out as follows (Algorithm 3 details the expansion process

engaged by each agent7):

• An agent receiving a problem solving request, which includes a description

of the initial state and a set of goals, creates the first proposition level (P0

- line 2 of alg. 3) that is composed of all propositions of the initial state

(this is only done by the first agent that receives this request);

• The agent then determines which of its own actions can be added to each

action level Ai (line 5 of alg. 3) and corresponding propositions to level Pi

(line 6 of alg. 3) of the planning graph;

• Mutexes are calculated for all possible pairs of added actions and of those

with the actions in level Ai. The mutexes between actions already present

in level Ai do note have to be recalculated. An identical process is carried

out for propositions (see lines 7 and 9 of Algorithm 3 for details).

• When the agent is unable to make further contributions to the planning

graph (i.e., when the planning graph levels-off – line 11 of the alg.), it

analyses the open propositions (to which it was unable to contribute) and

7Sets in the algorithm with a superscripted 2 in the name, represent all possible pairs of the
elements of those sets.
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Algorithm 3 Expand(i, PG): Let i be the current level of expansion
in the planning graph, I the set of propositions in the initial state,
G the set of goal propositions, PG a planning graph with the structure
�P0, A1, µA1, P1, µP1 . . . , An, µAn, Pn, µPn� and A the set of actions the agent
knows:
1: if i = 0 then
2: PG�P0� ← I

3: Expand(1, PG)
4: else
5: A� ← {a ∈ A | precond(a) ⊆ Pi−1 and

precond2(a) ∩ µPi−1 = �}
6: P � ← {p | ∃ a ∈ A� : p ∈ effects+(a)}
7: µAi ← {(a, b) ∈ A�2 and (a ∈ A�, b ∈ Ai), a �= b |

effects−(a) ∩ [precond(b) ∪ effects+(b)] �= �
or effects−(b) ∩ [precond(a) ∪ effects+(a)]
or ∃ (p, q) ∈ µPi−1 : p ∈ precond(a), q ∈ precond(b)}

8: Ai ← Ai ∪ A�

9: µPi ← {(p, q) ∈ P �2 and (p ∈ P �, q ∈ Pi) |
∀ a, b ∈ Ai, a �= b :
p ∈ effects+(a), q ∈ effects+(b) ⇒ (a, b) ∈ µAi}

10: Pi ← Pi ∪ P �

11: if |Pi−1| = |Pi| and |µPi−1| = |µPi| then
12: AnalyseAndForward(PG)
13: else
14: if (∀g ∈ G) | g ∈ Pi and G2 ∩ µPi = � then
15: return PG

16: else
17: Expand(i + 1, PG)
18: end if
19: end if
20: end if

forwards the partial planning graph to an agent chosen from a set of appro-

priate agents (obtained using the agent discovery mechanism supported by

the semantic overlay network – line 12 of alg. 3);

• The new agent receiving the planning graph will execute these same steps up

to a point where a level Pi in the graph is reached where all goal propositions

exist and none of which is mutex with any other (line 14 of alg 3), or until

a certain terminating condition holds.
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The AnalyseAndForward procedure in the algorithm (line 12) encapsulates

the choice of the agent to which the partially-filled planning graph should be

sent. There are several different ways as to how this process can be carried out

and we provide a detailed analysis on this in Chapter 5, more particularly, in

sub-section 5.2.3.

The termination of this overall expanding process in a distributed environment

is not trivial. In the centralised version an agent can declare that a problem is

impossible, if the graph levels-off. For an agent with only partial knowledge of

the world, it is impossible to know if a levelled-off graph means that the problem

is impossible or if it simply means that the agent does not have the necessary

skills to complete it.

This could lead to an indefinite process of forwarding partially solved problems

between agents. To avoid this situation, we use a similar mechanism as the one

used in P2P search algorithms, where a time-to-live (TTL) parameter is used

to specify the allowed number of times the request may be forwarded without it

being updated with new contributions. Once that TTL parameter expires, the

problem is considered impossible and the requester agent is duly informed.

Once a planning graph reaches a point where all goal propositions exist and

none of which are mutex , it is up to the agent holding the planning graph at

that time to execute the backward search (starting from the goal propositions)

that will find a valid solution plan. The agent can also request the assistance of

other agents in the backward search. In such cases, each agent will use a different

heuristic in the process (an analysis of the heuristics used in the backward search

is presented in sub-section 4.3.3). Algorithms 4 and 5 carry out this whole process.

Algorithm 4 takes as input a planning graph, a current set of goal propositions

and a current level index. It extracts a set of actions that achieves the goal

propositions by recursively calling Algorithm 5 (line 7). If it succeeds in reaching

level 0, then it returns an empty sequence (lines 1 and 2), from which pending

recursions successfully return a solution plan.

The mutex relation between propositions provides only forbidden pairs, not

tuples. But it might be the case that the search process shows that a tuple of

more than two propositions corresponding to an intermediate sub-goal fails. To

avoid analysing the same (invalid) tuple more than once, which might occur due
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Algorithm 4 Extract(PG, G, i): Let PG be a planning graph with the struc-
ture �P0, A1, µA1, P1, µP1 . . . , An, µAn, Pn, µPn�, G the current set of goal propo-
sitions, i the current level being analysed and πi a set of actions that achieve
propositions of G:
1: if i = 0 then
2: return ��
3: else
4: if G ∈ ∇(i) then
5: return �
6: else
7: πi ← SearchGP(PG, G,�, i)
8: if πi �= � then
9: return πi

10: else
11: ∇(i) ← ∇(i) ∪G

12: return �
13: end if
14: end if
15: end if

to the backtracking and the iterative deepening of the backward search process,

alg. 4 records any information regarding failed tuples (in the hashtable denoted

by ∇ – in line 11) and checks each current goal with respect to these recorded

tuples (in line 4) to save time in future searches.

Algorithm 5 selects each goal proposition p at a time (line 9) and from the

resolvers of p, that is, actions that achieve p and that are not mutex with actions

already selected for that level, it chooses one action a (line 14) that tentatively

extends the current subset πi through a recursive call at the same level (line 15).

This is performed on a subset of goals minus p and minus all positive effects of a

in g. If a failure regarding this choice occurs, a backtrack over other alternatives

for achieving p (if any) or a backtrack further up (if all resolvers of p have been

tried) is performed. When g is empty (line 1), then πi is complete. At this point,

the search recursively tries to extract a solution for the following level i-1 (line

2). This process carries on until the first proposition level is reached successfully

and a final solution plan is extracted from the planning graph.

In order to fully understand the specifics of the distributed approach, let us

recall the Blocks World example. Obviously, we will not consider a centralised
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Algorithm 5 SearchPG(PG, g, πi, i): Let PG be a planning graph with the
structure �P0, A1, µA1, P1, µP1 . . . , An, µAn, Pn, µPn�, G the current set of goal
propositions, πi a set of actions that achieve propositions of G, i the current
level being analysed, Ai the action level i, µAi the mutexes between actions in
Ai and Π the current solution plan:
1: if G = � then
2: Π ← Extract(PG,∪{precond(a) | ∀ a ∈ πi}, i− 1)
3: if Π = � then
4: return �
5: else
6: return Π.�πi�
7: end if
8: else
9: select any g ∈ G

10: resolvers ← {a ∈ Ai | g ∈ effects+(a) and ∀ b ∈ πi : (a, b) /∈ µAi}
11: if resolvers = � then
12: return �
13: else
14: select any a ∈ resolvers

15: return SearchGP(PG, G− effects+(a), πi ∪ a, i)
16: end if
17: end if

approach in which one agent is aware of all the actions existing in the domain.

Instead, the 3 actions are distributed through 3 different agents: agent mover is

the owner of action (move ?a ?b ?c); agent stacker is the owner of action (stack

?a ?b); and agent unstacker is the owner of action (unstack ?a ?b). We also

assume that the agents have already triggered the self-organisation process that

allowed them to create the semantic overlay network depicted in Figure 4.8.

The figure represents all semantic relationships between actions and proposi-

tions in the Blocks World domain. Actions (represented by round-cornered grey

boxes) and propositions are represented in the semantic overlay network by their

name and arity (number of parameters they have). Also, each action has a list

of the agents that are able to perform it. Arrows coming from propositions to

actions represent preconditions, and arrows coming from actions to propositions

represent positive effects. Negative effects are represented by dashed arrows.

Using the information present in this semantic overlay network, the agents can

automatically determine which agent should be contacted to satisfy a specific
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Figure 4.8: Semantic Overlay Network in the Blocks World example problem.

condition in a partially-solved plan.

Considering the example in the Blocks World domain, let us imagine that the

first agent to receive the request to solve the problem is agent mover. Using alg.

3, the agent produces the partial planning graph described in Figure 4.9.

Figure 4.9: Agent mover ’s contribution to the Blocks World example problem.

Agent mover, being able to perform action move/3, contributes to the planning

graph by adding instances of its action to the first and second levels. The agent

stops the expansion process at level P2, because the planning graph has levelled-
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off, i.e., |P1| = |P2| and |µP1| = |µP2|.
Since agent mover is unable to perform any more contributions at this point,

it analyses the current planning graph and, using the information in the seman-

tic overlay network, determines the agent that should be contacted next. Both

actions unstack/2 (owned by agent unstacker) and stack/2 (owned by agent

stacker) can be added to the graph in the first action level (A1). Agent mover

could use an heuristic to determine which one of the agents should the partially-

filled graph be sent to. However, at this point, we assume it simply uses a

non-deterministic approach and randomly selects one of the alternatives.

Let us assume the partially-solved problem is sent to agent unstacker. Using

alg. 3, the agent determines it can contribute to the problem using its own action

unstack/2, as depicted by Figure 4.10.

Figure 4.10: Agent unstacker ’s contribution to the Blocks World example problem.

As can be seen in the figure, the planning graph levels-off again at level P2.

However, one of the goal propositions, (ontable c), has now been achieved.

Since the graph is not yet complete, as some of the goal propositions remain to

be satisfied, this agent has to determine which agent this partially-filled graph

should be sent to. At this point, the planning graph is sent to agent stacker,
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which produces the planning graph described in Figure 4.11.

Figure 4.11: Agent stacker ’s contribution in the Blocks World example problem.

Fig. 4.11 shows that agent stacker adds a new level to the planning graph

in which all of the goal propositions are successfully achieved. Even though the

goal propositions were already achieved at level P2, there were mutex relations

between them, at that level. In level P3 these propositions are no longer mutex

due to the explicit persistence introduced by no-op actions. In fact, if we analyse

the planning graph we can see that the two actions that are needed in order

to achieve the goal at level A2, (stack b c) and (stack a b), cannot occur

at the same time at this level. The alternative is to execute these in sequence,

considering however that action (stack b c) must occur first. So, the expansion

to level A3 (and corresponding proposition levels) is required to achieve all goal

propositions with no mutex relations between them.

At this point, agent stacker is ready to search the planning graph backwards

for a solution plan. The agent can either perform this task alone or request

the collaboration of one of the other agents, in which case, each one will use a
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different search heuristic. Either way, the agent is able to find the final solution

plan, which is obviously the same as the one found in Listing 4.3.

An interesting aspect of distributing the Graphplan algorithm is evidenced

by the difference between the final planning graphs produced by the centralised

version (in figure 4.7) and the distributed version (in figure 4.11). The distributed

version has produced a smaller planning graph, which is a consequence of the

partial contributions approach. That is, agents add elements to the planning

graph as needed, as opposed to the centralised approach in which the single agent

that has all the necessary knowledge will try to use it all at once. In fact, for this

particular example, in which only actions stack/2 and unstack/2 are actually

used in the final plan, if agent mover was not called upon to participate in this

problem solving process, the planning graph produced by the two agents (stacker

and unstacker) would be even smaller and thus faster to generate. However, one

must still account for the overhead introduced by the agent discovery process and

the communication inherent to a distributed approach.

4.2.4 Goal-directed Distributed Graphplan

In most domains, some of the propositions contained in the initial state are com-

pletely irrelevant to reach the goal state of a specific problem. Consider, for

example, that we add to the Blocks World example above a pair of blocks, D

and E (which are simply placed on the table), and leave the rest of the problem

unchanged. For a person, devising a plan to this new problem or the previous

one is exactly the same, since he or she would be able to determine that the two

extra blocks that were added are completely irrelevant to the problem.

However, as most forward-based planners, Graphplan suffers from the problem

of distraction, where the planner considers all propositions in the initial state even

if they will not help reach a solution plan. For example, even though this would

not be used in the solution, the planner would try all combinations of stacking/un-

stacking/moving blocks D and E with the remaining blocks while generating the

planning graph. These unnecessary propositions have an undesirable effect be-

cause they can be very time-consuming, thus degrading the performance of the

planner. Therefore, they should be avoided. The problem lies in the fact that
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forward-chaining planners do not know which propositions are relevant to the

solution.

To cope with this problem, we have used a similar approach to (Kambham-

pati et al., 1997). We introduce means-ends analysis in the Graphplan algorithm,

by first producing an operators-graph (Smith & Peot, 1996) using a backward-

chaining process starting from the goal state. Since it only considers the proposi-

tions in the goal state, the operators-graph will produce a graph with only relevant

actions. The challenge is, however, distributing this process.

This planner uses a similar process to the one used in the generation of the

planning graph but in a different direction, as depicted by Algorithm 6. It finds

actions (including no-op actions) that can contribute to propositions in the goal

state (line 5 of alg. 6) and the preconditions of those actions become new goal

propositions (line 6 of alg. 6). As propositions become satisfied by the initial

state, they are marked as satisfied and that information propagates through-

out the entire graph. That is, actions which preconditions are satisfied are also

marked as satisfied, which in turn will allow marking their effects as satisfied and

so on.

This process carries on until the operators-graph levels-off (line 9 of alg. 6),

in which case it is forwarded to another agent, (line 10) or all goal propositions

are marked as satisfied (line 12). In this case, the forward expansion of the

planning graph (Algorithm 3) can take place (line 13 of alg. 6), except this time

it considers only the actions that are currently contained in the operators-graph,

thus significantly reducing the size of the planning graph and the number of mutex

calculations. Note that the Expand’ algorithm used here is slightly different from

the Expand algorithm (Algorithm 3). Instead of forwarding the planning graph

when it levels-off (as in line 12 of alg. 3), Expand’ returns null.

The actions generated by the operators-graph might not be enough to create

the solution plan, in which case a new level in the graph is created (lines 14 and

15 of alg. 6), possibly generating new actions to be considered.

This alternate process carries on until either the solution is found or the

operators-graph levels-off (line 9 of alg. 6). Since there are no mutexes in this

process, the condition associated with a leveled-off graph is slightly different: the
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Algorithm 6 BuildOG(i, OG): Let i be the current level of expansion in
the operators-graph, G the set of goal propositions, OG an operators-graph with
the structure �Pn, An, . . . , P1, A1, P0�, PG a planning graph with the structure
�P0, A1, µA1, P1, µP1 . . . , An, µAn, Pn, µPn� and A the set of actions the agent
knows:
1: if i = 0 then
2: OG�P0� ← G

3: BuildOG(1, OG)
4: end if
5: A� ← {a ∈ A, a /∈ Ai, p ∈ Pi−1 | (effects+(a) � p}
6: P � ← {p | ∃ a ∈ A� : p ∈ precond(a)}
7: Ai ← Ai ∪ A�

8: Pi ← Pi ∪ P �

9: if |Pi−1| = |Pi| and |Ai−1| = |Ai| then
10: AnalyseAndForward(OG)
11: else
12: if {∀ g ∈ G, satisfied(g)} then
13: PG ← Expand

�(0,�, OG)
14: if PG = � then
15: BuildOG(i + 1, OG)
16: else
17: return PG

18: end if
19: else
20: BuildOG(i + 1, OG)
21: end if
22: end if

operators-graph has a fixed-point level k that is the smallest k such that |Pk−1|
= |Pk| and |Ak−1| = |Ak|.

The generation of this graph is faster because it is not as complex as the

forward planning graph generation (which includes calculating mutexes). But

since it does not analyse the relations between actions of the same level, it still

generates actions that, even though relevant, cannot occur in a solution plan.

Nevertheless, this approach still presents advantages for domains in which the

distraction problem has an important negative impact, because it considers a lot

less actions than the original Graphplan algorithm. The drawback is, obviously,

the overhead introduced by the generation of the operators-graph.

Let us consider the Blocks World example again in the same distributed setting
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as in the previous section, but this time the algorithm used will be Algorithm 6.

Agent stacker is the first receiving the problem to be solved. After processing it

using alg. 6, the agent creates the operators-graph depicted by Figure 4.12.

Figure 4.12: Agent stacker ’s contribution to the operators-graph in the Blocks World
example problem.

Starting from the goal propositions, agent stacker adds actions (stack a b)

and (stack b c) to the graph since these can contribute to achieve, respectively,

the goal propositions (on a b) and (on b c). No-op actions are also added

but they are not represented in the figure. The goal proposition (ontable c)

remains unsatisfied (represented in red in the figure) as this agent does not have

the necessary action to contribute to it. The preconditions of the two actions

added now become new goal propositions to be achieved. Some of them can be

satisfied by the propositions in the initial state (the ones represented in green in

the figure) but proposition (clear b) remains unsatisfied.

Agent stacker performs a new expansion of the graph but this only causes it

to level-off. Faced with the impossibility to further contribute to the problem, the

agent must now find another agent that can perform the necessary contributions.

Starting from the unsatisfied goal propositions and using the information in the

semantic overlay network, agent stacker determines that agent unstacker can

contribute to the goal proposition (ontable c). After receiving the partially-

filled operators-graph and analysing it by using alg. 6, agent unstacker completes
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the graph as described in Figure 4.13.

Figure 4.13: Agent unstacker ’s contribution to the operators-graph in the Blocks World
example problem.

In order to contribute to goal proposition (ontable c), agent unstacker

knows it can use the partially-instantiated action (unstack c ?b). Note that

?b is a variable and does not necessarily refer to block b in the example. This

partial instantiation is obtained from the goal proposition (ontable c) and the

action’s definition, which states that action (unstack ?a ?b) produces the effect

(ontable ?a). Instantiating ?a with c in the goal proposition also instantiates

the action as (unstack c ?b). The agent now has to calculate all possible in-

stantiations of this action using the information already contained in the graph

and with the propositions in the initial state. At this point, the only possible

instantiation is the one caused by the proposition in the initial state, (on c b).

Since action (unstack c ?b) has precondition (on c ?b), which unifies with

(on c b), the agent can fully instantiate the action as (unstack c b) and add

it to the graph.

The agent then proceeds to analyse the second level in the operators-graph

as some propositions are still unsatisfied. Adding action (unstack c b) to the

second level (A2) causes proposition (clear b) to become satisfied, thus leaving

no more open conditions. This means, the forward expansion process can start
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and, as such, the planning graph in Figure 4.14 is produced.

Figure 4.14: Planning graph generated by using the operators-graph in the Blocks
World example problem.

This planning graph only uses the actions generated by the operators-graph,

which in this case means the planning graph is a lot smaller than previously

seen with other approaches. However, in order to save time in the planning

graph generation process, the agents must first spend some time generating this

operators-graph. Hence, the introduced overhead of generating the operators-

graph must not exceed the time it takes to normally generate the planning graph

in order for this to be considered as a valid alternative.

Not every situation may take advantage of this backward operators-graph gen-

erating process. In those domains where almost all propositions in the initial state

are relevant to building the solution this process will hardly bring any advantage.

Also, as we have seen above, this process includes a potentially time-consuming

step of calculating all possible combinations of partially-instantiated actions. This

step leads to an exponential branching in the graph generation process therefore,

in domains where there are actions that have a lot of parameters, there is a

high probability of this step leading to considerable degradation of the overall

performance. However, in most domains, this approach may bring just enough

improvement to justify its inclusion in the distributed planning process.
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4.3 Substantiating Decisions

Throughout the research work, and especially through the conception of our

technical proposal, some decisions were made regarding the approaches or tools

to use in certain parts of the system. This section focuses on substantiating

those decisions by summarising the existing alternatives and explaining, through

empirical evidence, the final decision.

4.3.1 Network Evolution Techniques

In section 4.1.3, we discussed some adaptation procedures intended to help agents

improve their searches over time. These procedures depend mainly on information

gathered during previous searches and on information shared by agents. Using

those procedures, agents can acquire useful knowledge regarding the location

of other agents and resources and thus contribute to the evolution of a better-

adapted network.

One of the procedures includes caching information regarding previous searches

so as to have useful information in case the same searches are triggered. Basi-

cally, information about the location of a certain agent or resource is stored and

can be used as a referral for future searches. Searches that are based on this

acquired knowledge are called informed searches. However, agents can only store

information that is passed through them as the search query propagates through

the network. That is, if they are not on the path travelled by the search query,

they do not acquire the referred information.

Even though exchanging this information may be useful for agents to improve

future searches, it also immensely increases their communication load. This leads

us to an important decision: once an agent has the answer to a query, should

it reply through the same path that was travelled by the query, thus allowing

the participating agents to learn this answer and store it for future reference?

Or should it reply directly to the requester agent (which in turn receives the

answer faster) avoiding an excessive communication load but also preventing the

participating agents from learning the answer?

In order to decide which approach should be taken, we have performed tests

with several different configurations of search algorithms in the dynamic creation
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of the semantic overlay network. In these tests, all agents start searching for

the skills that they depend on at the same time. We use the term network

completeness to represent the percentage of the semantic overlay network that is

created at a specific moment. The semantic overlay network is complete when

all agents have established a dependency connection for all of their own skills.

We have performed these tests with different algorithms (Depth-First Search

(DFS), Flooding, IBDFS and PbF) and all of them have shown similar results.

We show only the results for the Flooding algorithm, for which Table 4.1 presents

the different configurations that we have used in the tests.

Name Description
Flooding Agents do not cache previous searches and reply

through the path where the request came from
Improved Flooding 1 Agents do not cache previous searches and reply di-

rectly to the requester agent
Improved Flooding 2 Agents cache previous searches, use referrals and re-

ply through the path where the request came from
Improved Flooding 12 Agents cache previous searches, use referrals and re-

ply directly to the requester agent
Table 4.1: Configurations of the flooding algorithm

These tests were performed in an environment of 1000 agents, randomly con-

nected to 3 neighbours each and with a time-to-live parameter of 3 (each request

can only be forwarded 3 times). As depicted in Figure 4.15, the classical configu-

ration of the flooding algorithm has the worst performance of all configurations,

achieving a network completeness of only 20%.

The improved flooding 1 configuration, representing the version of the algo-

rithm that allows agents to reply directly to the requester agent (instead of using

the request path), presents an improvement in time performance whereas the

network completeness is maintained at 20%. This allows us to conclude that the

reduction in the number of messages (in consequence of the introduced variation)

and consequently on the workload of each agent is a good network evolution tech-

nique to be applied to a search algorithm. However, as stated above, this does

not allow all contributing agents to learn the response to the request.
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Figure 4.15: Comparison of different configurations of the Flooding algorithm

The improved flooding 2 configuration, representing the version of the algo-

rithm that allows agents to cache information about previous searches and use

referrals, has the worst time performance but a considerably better network com-

pleteness than the previous two configurations of the algorithm. This shows that

caching has also a positive effect on the search algorithms overall performance,

since it allows agents to take advantage of previously collected information to

trigger an evolution process that will improve future searches.

Finally, the improved flooding 12 configuration presents an excellent perfor-

mance (comparatively to the other configurations) both in time and network

completeness. Even though in this configuration, agents reply directly and do

not learn as much as in the improved flooding 2 configuration, we can see that

the combination of reduced communication load and cached referral information

has a very positive influence on the efficiency of the algorithm. Hence, the de-

cision here was to use the approach represented by this configuration in all the

other search algorithms presented in the thesis.
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4.3.2 Planning Algorithms

The work described in section 4.2 is based on a well-known planning algorithm,

Graphplan. The decision to use this planner in our approach was based on the

flexibility and innovative characteristics of the Graphplan algorithm that allowed

it to be considered as one of the fastest planners ever created. In fact, the Inter-

national Planning Competition, a biennial contest associated with the Interna-

tional Conference on Automated Planning and Scheduling, has been the stage for

showing how planning graph-based planners have evolved and presented excellent

results in different domains and areas. In order to demonstrate the superiority

of this planner, we have devised a simple test to evaluate the performance and

quality of Graphplan and several other planners.

In total, we used four different planners8 that represent different approaches

to classical and neo-classical planning. The two first planners represent the total-

order state-space planning approach (see section 2.1.1 for details). One uses a

forward-chaining approach (TOFC), in which the planner adds actions to the

solution plan starting from the propositions in the initial state, and the other

uses a backward-chaining approach (TOBC), in which the planner adds actions

to the solution plan starting from the goal propositions instead.

The third planner represents the partial-order plan-space planning approach

(see section 2.1.2 for details). While state-space planning views a plan as a

strict sequence of actions that achieves a desired goal state, plan-space planning,

provides a more complete view of a planning problem by introducing the notion of

partially specified plans. A partial plan can be viewed as a structured collection of

actions that provides their causal relationships, as well as their intrinsic ordering

and variable binding constraints. The partial-order planner (POP) iteratively

analyses the current partial plan and adds new actions or constraints accordingly,

ultimately producing a complete and consistent solution plan that defines a path

from the initial state to a state containing all goal propositions.

The fourth planner is the Graphplan algorithm, which represents the planning

graph approach (see sections 2.1.3 and 4.2.2 for details). We implemented cen-

tralised versions of all of these planners using the same programming language

8All planners were implemented by us using the the JAVATM programming language and
the formal descriptions presented in (Ghallab et al., 2004).
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and performed the tests using the same machine, so as to avoid any discrepan-

cies in the evaluation process. The tests consisted on a set of increasingly larger

planning problems in the Blocks World. Basically, the planners have to pro-

duce solution plans for reversing sets of 3-block piles and, on each new problem,

the number of 3-block piles is increased by one. Figure 4.16 shows the different

problems that were used in the evaluation of the planners.

Figure 4.16: 3-block piles problems used in the tests

We tested all of the planners against these problems and evaluated them in

terms of performance (time taken to present a valid solution plan, measured in

seconds) and quality of the solution plan (number of steps in the solution plan

relative to the optimal solution, measured in percentage9).

Figure 4.17 presents the results of the tests for both measurements. Regard-

ing performance (left diagram in the figure), the superiority of the Graphplan

approach is quite clear. The performances of all the remaining planners rapidly

degrade as the size of the problems increases, whereas Graphplan maintains a sta-

ble performance. The backward-chaining version (TOBC) of the totally-ordered

state-space planners has the worst performance followed by the forward-chaining

9If the planner has reached 100% quality, it means it has produced the optimal solution.
Hence, a lower percentage means that the produced solution plan is worse than the optimal
solution because it has more steps (with the assumption that each step takes exactly the same
time to be completed).
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Figure 4.17: Results of the 3-block problems tests. On the left, evaluation of the
performance of the planners. On the right, the quality of the solution plan relative to
the optimal solution.

version (TOFC). The partial-order planner (POP) is slightly faster than the total-

order planners but its performance also quickly degrades as the problem size

grows.

Regarding the quality of the solution plan (right diagram of figure 4.17), all of

the four planners have produced the optimal solution in the first problem, but the

total-order planners are unable to produce optimal solutions for the remaining

problems. This is due to the fact that these planners are focused on finding

a solution and not necessarily the optimal one. This holds true for POP and

Graphplan but, due to their properties (see details in sections 2.1.2 and 4.2.2

respectively), it is often the case that the optimal solution is the one produced.

In fact, for all four problems, both the POP and the Graphplan algorithms have

produced the optimal solution, as indicated by the right diagram in figure 4.17.

In light of these results, we have decided to use Graphplan as the planning

algorithm in our technical approach, as described in section 4.2.

4.3.3 Heuristics in Planning Graph Backward Search

In section 4.2.3, we described the backward search process that is carried out to

find a valid solution plan when the generation of the planning graph is complete.

This search process starts from the goal propositions and finds sets of non-mutex

actions that contribute to those goals and then the preconditions of those actions

become new goals (in the previous level). This process continues until the first
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level is reached successfully, in which case, pending recursions successfully return

a solution plan.

Although the planning graph generation process is distributed, allowing dif-

ferent agents to contribute to the planning problem, this backward search process

cannot be distributed. Moreover, sending the planning graph to other agents, so

that these could also perform a backward search, would be pointless because they

would simply be duplicating efforts.

However, as depicted by Algorithm 5, this search process has two important

choice points that may affect the performance of the search process: choosing

a goal proposition (line 9 of alg. 5) and choosing an action resolver (line 14 of

alg. 5). This could be used as a way to distribute the backward search through

different agents as well.

Still, this would not be a ”divide and conquer” approach. Instead, all agents

would be working on the same planning graph but each one would be using a

different heuristic. This can be thought of as a maze with multiple entrances.

The path to the other side of the maze constitutes the solution plan. The goal

is for at least one agent to find the solution, which it can then share with the

others. If each agent starts at a different entrance, chances are they will arrive at

the other side at different times because some paths take less time to travel than

others.

The difference is that travelling through a maze is a totally uninformed task,

whereas the algorithm for the backward search can be focused with heuristics for

selecting the next proposition g in the current set G and for choosing the action a

in resolvers. A general heuristic consists of selecting first a proposition g that

leads to the smallest set of resolvers, that is, the proposition g achieved by the

smallest number of actions. For example, if g is achieved by just one action, then

g does not involve a backtrack point and it is better if it is processed as early as

possible in the search tree. A symmetrical heuristic for the choice of an action

supporting g is to prefer no-op actions first because they have less preconditions.

Other heuristics that are more specific to the planning-graph structure and

more informed take into account the level at which actions and propositions

appear for the first time in the graph. The later a proposition appears in the
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planning graph the most constrained it is. Hence, one would select the latest

propositions first.

Considering all these possibilities, we decided to analyse the effect that dif-

ferent heuristics have on the performance of the planner and particularly, on

the backward search process. We tested all possible combinations of heuristics

for choosing a goal proposition and heuristics for choosing resolver actions. The

following is a list of the heuristics for choosing a goal proposition:

• FIFO – priority to propositions that appear earlier in the graph;

• LIFO – priority to propositions that appear later in the graph;

• Res− – priority to propositions that have fewer action resolvers;

• Res+ – priority to propositions that have more action resolvers;

• Random – propositions are randomly chosen;

The following is a list of the heuristics for choosing a resolver action:

• Precond− – priority to resolvers that have fewer preconditions;

• Precond+ – priority to resolvers that have more preconditions;

• Random – resolvers are randomly chosen;

The tests consisted on running the planner 10 times for each possible pair of

heuristics on a planning problem for the Blocks World, in particular, problem 4

described in section 4.3.2. Table 4.2 presents the average results for all possible

pairs of heuristics. Rows represent heuristics for choosing a resolver action and

columns represent heuristics for choosing a goal proposition.

The results seem to support the hypothesis presented above, that is, choosing

resolver actions that have less preconditions (which has a lower impact if back-

tracking occurs) and choosing propositions that appear later in the graph (which

are more constrained) has a very positive effect. That combination (Precond−

with LIFO) had the best time performance of all possible combinations (44 ms)

and, in general, these individual heuristics combined with other heuristics (see
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FIFO LIFO Res− Res+ Random
Precond− 45 44 240 5645 69
Precond+ 90 49 230 8092 315
Random 67 52 242 6790 298

Table 4.2: Comparison of heuristics in Graphplan backward search process. Values are
in milliseconds and represent only the time spent in the backward search process

row Precond− and column LIFO) have also presented satisfying results compared

to other combinations.

Processing the number of resolvers that a goal proposition has in order to

choose the proposition with fewer resolvers (column Res−), while it could appar-

ently have a positive effect, the time spent determining the proposition with fewer

resolvers is too much to actually bring any gain compared to the LIFO approach.

Also, it is quite clear that using the opposite approach (column Res+) severely

affects the performance of the search process, due to the ”heavy” backtracking

that is required to deal with giving priority to goal propositions that have more

resolvers.

Random heuristics do not present any generic pattern, in some cases present-

ing good results and in others the worst results, which is consistent with the

random choice of goal propositions and resolver actions and further proves the

results are sound.

Based on these results, we have decided to use the Precond− and Precond+

heuristics for choosing resolver actions and the FIFO and LIFO heuristics for

choosing goal propositions. This way, each agent participating in a backward

search process can use a different combination of heuristics. We also have to

consider that these results may be different for more complex problems (like

the ones presented in chapter 3), which further motivates the use of different

heuristics and the participation of different agents in the backward search for a

solution plan.
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Chapter 5

Evaluation

Our main goal, as stated in the introductory chapter, was to develop a robust

and scalable approach that enabled agents to efficiently participate in distributed

problem solving in unstructured agent societies. Although the technical work

described in this thesis was based on solid theoretical research, there is still need

to empirically prove the resulting system is satisfactory according to the goals

that were set. In this chapter we describe the evaluation process that was carried

out in order to determine if our approach is indeed robust, efficient and scalable.

First of all, let us clearly define each one of these terms so as to avoid any

confusion in the interpretation of the results. The efficiency of a system can

be measured in many different ways, which prompts for an exact definition of a

satisfactory evaluation process to measure a system in terms of its efficiency. In

general terms, an efficient system is expected to be fast (return results in useful

time) but it is also expected that the usage of available resources to accomplish its

goals is the best possible. Thus we consider these two dimensions when comparing

our system against the alternatives, in terms of efficiency.

Robustness refers to the capacity of a compound system to withstand any

failures or poor functioning of its composing elements. We aim to evaluate, from

this point of view, the impact on the operation of the system of removing or

disabling some of its elements.

Finally, scalability refers to the capacity of a system to maintain the same

level of performance as the problem/domain/environment grows. To this end, we

intend to evaluate the behaviour of the system (and corresponding alternatives)
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by increasing the size of the problem that it needs to solve. It is then expected that

the performance of the system does not decrease more than proportionally with

the problem size. Ideally, although the overall performance degrades (hopefully

not more than proportionally) with problem size, the system should still improve

its performance over time.

Since our system is composed of two different independent parts (planning

and agent discovery), we decided to separate the evaluation process in two. First,

section 5.1 describes the tests and conclusions of the evaluation performed to the

agent discovery process and the generation of the semantic overlay network. In

this case, no particular planning approach is considered. The performed tests

aim to evaluate the efficiency, scalability and robustness of our approach. The

efficiency, as stated above, is evaluated by comparing the performance of the

algorithms in terms of speed (see sub-sections 5.1.1 and 5.1.2) and resource usage

(see sub-sections 5.1.3 and 5.1.6). The robustness is measured by comparing the

performance of the algorithms in terms of their capacity to withstand random

failures in the network (see sub-section 5.1.4). The scalability is measured by

comparing the performance of the algorithms when the size of the network is

increased (tests shown in sub-section 5.1.5).

Section 5.2 describes the tests that were performed to the overall distributed

problem solving approach, by evaluating the performance of different approaches

while solving problems based on the scenarios described in Chapter 3. In par-

ticular, we aimed to evaluate the efficiency and the scalability of our distributed

planning approach by measuring the performance of the algorithms as the prob-

lems increased in size (see sub-section 5.2.1), as the distribution of skills varied

(see sub-section 5.2.2) and by testing different strategies to choose appropriate

resolver agents (see sub-section 5.2.3). Although the focus of this second sec-

tion is on the distributed planning process, the agent discovery process and the

semantic overlay network generation process are also included (see sub-section

5.2.2).

Finally, section 5.3 summarises the obtained results and outlines the major

conclusions.

99



5. EVALUATION

5.1 Algorithms for Distributed Agent Discovery

and Semantic Overlay Network Generation

In unstructured networks, agents cannot rely on central repositories to find other

agents or resources required to solve a specific problem. They have to use al-

gorithms that rely on propagating the search queries through the distributed

network. In fact, as explained in section 4.1.3, agents can use this information to

ultimately build a semantic overlay network that establishes important semantic

links between agents.

The way agents build the semantic overlay network and the time it takes to

be generated depends on the search algorithm they used. We have proposed two

different search algorithms: the Priority-based Flooding (see details in sub-section

4.1.1) and the Iterative Branching Depth-First Search (see details in sub-section

4.1.2). In this section, we present the tests that were performed in order to assess

the quality of these algorithms in terms of robustness, efficiency and scalability.

In order to perform the evaluation, we need to compare the performance of

these algorithms against the alternatives. We decided to use the best configura-

tion of the Flooding algorithm (as explained in sub-section 4.3.1), the Improved

Flooding 12 configuration, as a reference for comparison1. From this point on,

we will only refer to this algorithm as Flooding for simplicity.

The environment in which we tested these algorithms consisted of a real net-

work of 1000 agents that were randomly connected at boot time. In general, agent

networks or agent societies are made of agents with certain capabilities that can

only be enacted on certain conditions. The generation of the semantic overlay

network consists of each agent discovering the agents on which they depend and

create virtual links to them. To evaluate this process, we simulate it in the fol-

lowing way. Each agent has a specific resource identified by a number. In order

to build the semantic overlay network, each agent has to find the agent holding

the resource with the number immediately before its own number (referred to

as the agent it ”depends” on). For example, the agent holding resource 6 has

to find the agent holding resource 5. To complete the circle, the agent holding

1This specific configuration is used because it has shown to be the best in all of the algorithms
that we have tested (excluding our own).
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resource 1 has to find the agent with resource 1000. While doing this, each agent

is also able to find the agents to which it can contribute (i.e., an agent that has

the resource numbered next to its own resource) and collect information regard-

ing other agents in the network. As explained in section 4.3.1, this information

gathering process facilitates the search process inherent to the generation of the

semantic overlay network.

The term network completeness refers to the percentage of agents that were

already able to find those resources that theirs’ depend on.

To compare the performance of the algorithms, we decided to use the worst

possible situation: all 1000 agents try to search the agents on which they depend

at the same time. We then measured the time of the process of building the

semantic overlay network. All the results shown here represent the average data

of 10 runs, i.e., each test was ran 10 times and then we collected the necessary

average data. The results depicted in Figure 5.1 show the comparison between

the three algorithms using the following configuration:

• Number of agents: 1000;

• Number of neighbours (NN): Each agent is randomly connected to 3 other

(different) agents;

• Time To Live (TTL): Each search query can only be forwarded 3 times;

As we can see in the figure, the Iterative Branching Depth-First Search (IBDFS)

algorithm reaches the same level of network completeness almost always faster

than the Flooding and the Priority-based Flooding (PbF) algorithms. The Flood-

ing algorithm and the PbF algorithm have almost the same performance, except

towards the end where PbF only reaches 100% of network completeness almost

40 seconds later. In fact, the performance of the PbF algorithm is consistently

slightly worse than that of the Flooding algorithm throughout almost all of the

tests that we have performed. This is caused by the fact that the advantage of

choosing local search queries first (see sub-section 4.1.1 for details) is not enough

to cover the overhead introduced by the processing required to sort search queries.

For this reason, we will no longer show the results for the PbF algorithm and will

only show the comparison between the IBDFS and the Flooding algorithms.
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Figure 5.1: Comparison between the 3 algorithms in a semantic overlay network gen-
eration process

5.1.1 Variations in the ”Time To Live” Parameter

To fully understand the differences between the algorithms, we changed several

parameters of the test configuration and analysed the effects of those variations

on the performance of both algorithms. One of the parameters that we changed

was the Time To Live (TTL), that is, the number of times a search query can be

forwarded.

Figure 5.2 shows the results of the variations of the TTL in the test. The

left diagram refers to a TTL of 4 and the right diagram refers to a TTL of 52.

The other testing properties remain the same for both diagrams: 1000 agents

connected to 3 neighbours each. As depicted in fig 5.2, the larger the TTL, the

larger is the difference between the performances of both algorithms. Figure 5.3

presents a different view of the same test with all the configurations together in

one graphic.

This figure shows that the variation in performance between the two different

2Although the difference between the TTL values may seem small, the effect of increasing
the TTL (or the Number of Neighbours) by one unit is very significant for the performance of
the algorithms, as it can be perceived in sub-section 5.1.6.
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Figure 5.2: Comparison between the algorithms with a variation of the Time To Live
parameter

Figure 5.3: Comparison between the algorithms with a variation of the Time To Live
parameter

configurations of the IBDFS algorithm is less than that between the two configu-

rations of the Flooding algorithm. This suggests that the difference between the

two algorithms tends to increase as the TTL parameter increases. This is due to
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the overloading factor of the flooding algorithm, in which increasing TTL creates

a much larger number of messages being exchanged in the network, thus delaying

most search queries.

5.1.2 Variations in the Number of Neighbours

Another parameter that influences the performance of search algorithms is the

number of neighbours that each agent is connected to when the test begins.

Figure 5.4 shows the results of different tests using 4 and 5 neighbours (1000

agents and a TTL of 3). Similarly to what happened when the TTL changed,

the figure shows that the difference, in performance, between the configurations

of both algorithms increases as the number of neighbours increases.

Figure 5.4: Comparison between the algorithms with a variation of the number of
neighbours

Figure 5.5 presents the same test but this time with all of the configurations

together in one diagram. This figure depicts a very interesting phenomenon.

Increasing the number of neighbours does not seem to influence the performance

of the IBDFS algorithm, whereas the Flooding algorithm is severely affected. This

allows us to conclude that the IBDFS algorithm is well suited for high-load and

high-connectivity networks. This is due to the fact that, in the IBDFS algorithm,

each agent only uses the absolute necessary number of neighbours to find the
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Figure 5.5: Comparison between the algorithms with a variation of the number of
neighbours

answer, halting the discovery process once the answer is found. The Flooding

algorithm uses all possible neighbours and, although using more neighbours would

apparently increase the probability of finding the answer faster, it actually causes

the whole network to perform poorly.

5.1.3 Variations in Resource Distribution

Up to now, the agents in these tests managed resources that were unique in

the network, that is, each agent manages a single resource that cannot be found

anywhere else in the network. To analyse how resource distribution influences the

performance of both algorithms, we decided to perform the tests using different

distributions of resources.

We use the expression resource distribution factor (RDF) as a measure of

the amount of different resources existing in the network (relative to the total

number of agents) and consequently their availability. For example, if the RDF

is 100% (which was the case for all previous tests shown above), then the amount

of resources in the network is equal to the number of agents, thus making the
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resources owned by each agent unique. If the RDF is 70%, then the amount

of different resources in a network of 1000 agents is 700, thus allowing multiple

resources of the same type to exist in the network.

Figure 5.6: Comparison between the algorithms as the resource distribution factor
changes

Figure 5.6 shows the test results for different resource distribution factors

(1000 agents connected to 3 neighbours each, with a TTL of 3). As depicted in

the figure, the difference, in performance, between the IBDFS and the Flooding

algorithms slightly increases as the resource distribution factor (RDF) decreases.

However, when the distribution factor is 10%, the difference between the two

algorithms seems to decrease again. This is explained by the fact that, as the

distribution factor decreases, the amount of duplicate resources increases, making

them very easy to find in the network. Hence, as the availability of a resource
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increases in a network, the influence of a search algorithm in the time it takes to

find that resource tends to decrease. Basically, there will be a point in which it

does not matter which search algorithm one uses because, due to the fact that a

certain resource is very common in the network and thus easily found, the search

performance will always be fast.

Figure 5.7: Comparison between the algorithms as the resource distribution factor
changes

This can be seen in Figure 5.7. The diagram on the left shows the perfor-

mance difference between the different configurations of the Flooding algorithm.

The diagram on the right shows the performance difference between the different

configurations of the IBDFS algorithm. We can see that the Flooding algorithm

suddenly improves with a RDF of 10%. Since, in the Flooding algorithm, each

agent uses all of its neighbours to propagate the search query, the tendency is for

it to improve as the resource distribution factor decreases, as explained above.

5.1.4 Testing Robustness

Up to this point we have only focused on the performance of the algorithms

regarding the time it takes to generate the semantic overlay network, but there

is an important aspect of real-life networks that must be evaluated as well. It

is important to assess how a certain algorithm will behave under unfavourable
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conditions, for example, test how the performance of a search algorithm will be

affected if some of the elements in the network cease to work.

To evaluate the robustness, we ran the algorithms several times and, on each

time, each agent in the network had a certain probability of going offline. To

trigger this process, each agent executes a random function that decides whether

or not the agent goes offline. When offline, all received messages are ignored and

discarded. A similar rule governs the process of coming back online.

We decided to use the number of received messages as a trigger to execute

the random function. That is, every time the agent’s message count reaches a

certain value it executes the function, which decides if the agent goes offline. The

message count threshold is also randomly computed. The agent randomly chooses

a number between 5 and 10; the next time the agent’s message count reaches a

multiple of that number, it triggers the random function.

Figure 5.8: Comparison between the algorithms as the disconnecting probability
changes

Figure 5.8 shows the tests done with different probabilities of going offline.

The remaining parameters had the following values: 1000 agents, NN: 3, TTL:

3, RDF: 70%. Since some agents go offline, none of the algorithms is able to

reach 100% of network completeness. With 10% and 20% of disconnecting prob-

ability, both algorithms are able to reach, respectively, 92% and 85% of network

completeness. This is possible because the resource distribution factor is 70%,
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allowing for duplicate resources in the network.

It is also visible in the figure that the IBDFS is still better than the Flooding

algorithm. However, the difference in the performance of the algorithms seems to

be decreasing as the probability of going offline increases. In fact, for probabilities

greater than 28%, the Flooding algorithm starts to present the same performance

as IBDFS. This is caused by the fact that, as more agents disconnect, each agent

(when using the IBDFS algorithm) has to contact more neighbours to success-

fully find the necessary resource, which causes the IBDFS algorithm to introduce

almost the same load on the network as the Flooding algorithm.

5.1.5 Large-Scale Networks

The evaluation done up to this point has been based on tests performed on a

real network of 1000 agents. In order to assess the scalability of our approach,

we needed to test the algorithms in larger networks. However, we were unable

to deploy larger networks with the resources available, due to CPU and memory

constraints. Hence, we used stochastic simulation based on the sequencing of a

pending events chain to obtain the necessary data to evaluate the scalability of

the algorithms.

Figure 5.9 presents the results of tests performed in networks of up to 5000

agents with varying connectivity (up to 5 neighbours), TTL of 5 and resource

distribution (10-50%). We can see that the IBDFS algorithm outperforms the

Flooding algorithm in every test. We can also see that the same behaviour as

shown in sub-section 5.1.3 is also present here. As the resource distribution factor

lowers, the algorithm’s performances become closer.

Although these results were obtained in a simulation rather than on a real

agent network, they remain consistent and show that the IBDFS algorithm is

always faster than the Flooding algorithm, thus allowing us to conclude that the

IBDFS algorithm is the most suitable approach to search for agents and generate

a semantic overlay network.
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Figure 5.9: Comparison between the algorithms in larger networks

5.1.6 Network Load and Efficiency

In the beginning of the chapter we have set to answer the following question: does

our system make better use of the available resources to achieve the same (or

better) results faster than the alternatives? In fact, the IBDFS has consistently

outperformed the improved version of the Flooding algorithm in terms of time to

complete the generation of the semantic overlay network, as it was described in

the previous sub-sections. But the question remains: has it done so efficiently,

that is, has it used the available resources better than the alternative?

In this case, the available resources are the agents themselves. The agents

are the ones that do all the work by processing and propagating search queries

that lead to the generation of the semantic overlay network. So, to determine if

the algorithms used the available resources efficiently we have to determine the
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work load that was putted on the agents, i.e., the number of messages that were

exchanged.

Figure 5.10: Comparison of the algorithms in terms of the number of processed mes-
sages, in different configurations

Figure 5.10 depicts a comparison of the number of messages processed by all

agents in both algorithms in some of the different test configurations that were

already showed in previous sub-sections. As we can see, the IBDFS algorithm

has led to less messages having to be processed in all different test configurations.

The main reason for this is that the algorithm only propagates the search

queries as needed, thus avoiding an excessive load on the network and allowing

idle agents to deal with other search queries. Once again, in the Flooding algo-

rithm, the excessive propagation and duplication of messages through the network

overloads the agents with the unfruitful task of processing useless messages, which

limits their capability to perform efficiently.

There is one consequence of processing less messages: agents using the IBDFS

algorithm potentially learn less about other agents’ skills than the agents using

the Flooding algorithm. However, as shown by the tests in previous sub-sections,

this does not seem to affect the behaviour of IBDFS, as the high connectivity of

the networks (number of neighbours and TTL) is enough to compensate for the

knowledge that is not being learned.

The number of processed messages can, in fact, be regarded as both a cause

and a consequence of the behaviour of the algorithms in all of these tests. The
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Flooding algorithm is based on the idea that agents should propagate the queries

to all neighbours so as to obtain an answer faster, whereas the IBDFS algorithm

only propagates search queries as needed (when the contacted agent replies that it

does not know the answer). This has a consequence of generating more messages

per agent in Flooding and less on IBDFS. And, while the duplication of the

messages in the Flooding algorithm can potentially lead to finding the answer

faster, it has the unwanted effect of putting too much of a workload on the agents.

This then causes agents to perform poorly in comparison to a less demanding

approach such as IBDFS.

In summary, the evaluation performed in this section has proven that the

IBDFS algorithm is not only the fastest algorithm to generate the semantic over-

lay network (even in situations where failures can occur) but it is also the one

that makes better use of the available resources by not causing the agents to

process a massive number of messages. We believe that these are enough reasons

to affirm that this algorithm is robust, scalable and efficient.

5.2 Approaches for Distributed Planning

The previous section focused on providing a detailed evaluation of the algorithms

for searching and generating a semantic overlay network. Although important,

the evaluated part is responsible only for the agent discovery and the generation

of the semantic overlay network. Each agent also needs to determine how its skills

can be used to build a solution for a specific problem, and to identify the sub-

problems that need to be delegated to other agents. This is done by a planning

algorithm that is able to find, at least, a partial plan that contributes to solve

the referred problem.

As explained in chapter 4, we have developed two algorithms that are able to

deal with the partial knowledge that each agent holds and combine that with the

semantic overlay network to find other agents that can contribute to yet-unsolved

parts of each received problem. One of those algorithms is our distributed ver-

sion of the Graphplan algorithm (see sub-sections 4.2.2 and 4.2.3 for details).

This algorithm behaves similarly to the original Graphplan algorithm but it is

adapted to deal with each agent’s local view of the world, thus enabling agents to
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contribute to partially generate solutions for specific problems, in a distributed

fashion.

The other algorithm is a goal-directed version of the distributed Graphplan

algorithm (see sub-section 4.2.4 for details). To cope with the problem of ”distrac-

tion”, this algorithm first generates an operators-graph using a backward-chaining

process starting from the problem goal propositions. Then, using only the actions

generated by this operators-graph it proceeds in the same way as in the Graphplan

algorithm in order to find a solution plan.

This section presents the tests performed to evaluate these two algorithms

and determine which is the best approach to be used in distributed problem

solving. We start by evaluating, in sub-section 5.2.1 the overall performance of

the algorithms as the problems grow in size, in the two testing scenarios de-

scribed in Chapter 3. These tests clearly show that the goal-directed version of

the distributed Graphplan algorithm scales better than the other version of the

algorithm, by simply employing a much more efficient planning graph generation

process. Sub-section 5.2.2 continues the analysis of the scalability and efficiency

of the goal-directed version of the algorithm by evaluating and concluding that its

performance is not affected by variations in the number of agents and skills in the

environment. Finally, sub-section 5.2.3 explores a different strategy of choosing

resolver agents and evaluates how this affects the performance of the system.

5.2.1 Overall Performance

First of all, we wanted to test and analyse the overall performance of the planning

algorithms in both scenarios, as the problems became larger. The scenarios are

deliberately different to allow testing different aspects of the system. On one

hand, we have the Rescue Agents scenario, which in spite of the low number of

different types of entities, is a very complex planning scenario. In almost any

situation, all entities of the environment are required to intervene to provide the

best assistance possible to the injured people, thus making conflicts management

the top most priority of the planning activity. Regarding the discovery process,

this scenario is not such a challenge for the semantic overlay network lookup

mechanism, since it is not difficult to find the appropriate capabilities in an
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environment where the amount of different capabilities is so small, especially if

there are many agents that have the same type of capability.

On the other hand, we have the Custom Balls Factory scenario, which in

spite of having many different capabilities, is a fairly simple planning scenario.

For each manufactured ball, only a very small set of skills is needed from the vast

selection of existing capabilities, thus characterising this scenario as a discovery

challenge. The planning process on this scenario only becomes relevant when

the requested customisation of the ball involves a set of interdependent features

requiring a specific execution sequence. For example, a ball must first be fully

painted with one colour and only then can stripes be painted with another colour.

If these actions were executed in reverse order then the effects of the action for

painting the whole ball would cancel the effects of the action for painting stripes.

We have performed a set of tests using increasingly complex variants of these

scenarios on both algorithms. In the Rescue Agents scenario we used 3 different

types of entities (paramedic, ambulance driver and fireman) and 10 agents for

each of those entities. We tested a similar problem to the one presented in Figure

3.1 of Chapter 3. We then increased the number of injured people and the number

of fires (there was one fire for the tests with 1-4 injured people and a new fire was

introduced on the variants with 5 or more injured people) in the environment to

test the performance evolution of the algorithms.

In the Custom Balls Factory scenario we used 20 combinations of different

types of features of the balls manufacturing process (colour, size and other distinct

marks combined with painting, assembling and inflating) and 2 agents for each

of those combinations. We then increased the complexity of the manufactured

ball by changing the number of features of the ball and the dependencies between

them.

Figure 5.11 presents the test results for both scenarios (left diagram for the

Rescue Agents scenario and right diagram for the Custom Balls Factory scenario).

The measured time represents the overall planning time, including the distributed

graphs generation (operators-graph – where applicable – and planning-graph) and

backward search. The semantic overlay network ’s generation time is not included

since it is not of significance in the overall planning time (between 100-200 ms)

and because it is an activity that agents perform as they connect to the network,
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Figure 5.11: Comparison between Distributed Graphplan and Operators-graph-based
Distributed Graphplan in both testing scenarios.

which means the overlay network is already built when they receive the problem

solving request.

Both scenarios’ test results show a similar behaviour: although the operators-

graph based algorithm has poorer performance in smaller problems (when there

are less injured people or the balls are less complex), it is clear that it scales far

better than the distributed Graphplan algorithm. This is strongly linked to the

fact that, for more complex or large problems, means-ends analysis is effective in

reducing the planner search space, in spite of the introduced overhead. This is

particularly evident in the Rescue Agents scenario.

The non-linear behaviour of the operators-graph based algorithm in the Cus-

tom Balls Factory scenario, apparent in the right diagram of fig. 5.11, is due to

the fact that this scenario is more sensible to changes in planning complexity.

As explained above, this scenario is more of a discovery challenge and, since the

semantic overlay network is such an efficient agent discovery mechanism, as long

as the number of conflicts between capabilities does not increase (e.g. due to

ordering or dependency constraints), the performance remains the same. This is

clear in the figure for balls 4, 5 and 6, which in spite of having a different number

of features, the constraints between them are the same and thus, do not affect

the performance of the system.
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In order to fully understand what is really causing these behaviours in the

algorithms, let us analyse a breakdown of the activities of each algorithm in the

Rescue Agents scenario.

Figure 5.12: Breakdown and comparison of activities between Distributed Graphplan
and Operators-graph-based Distributed Graphplan in the Rescue Agents scenario.

Figure 5.12 presents the breakdown of activity data for the same test as shown

in the left diagram of fig. 5.11 but divided into two diagrams (the one on the left

presents the operators-graph based algorithm and the one on the right presents

the planning graph version that does not use an operators-graph).

As we can see, the most time-consuming activity is the Backward Search

process. This is the task that involves searching the planning graph backwards

in order to find a valid solution plan. The generation of the operators-graph,

although causing poorer performance in simpler problems, is very efficient in

improving the Backward Search phase in larger and more complex problems by

significantly reducing the number of actions that are considered in the planning

graph generation process3.

3Although not shown here, the same conclusions apply to the Custom Balls Factory scenario
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5.2.2 Distribution of Skills

In the previous section, we tested the behaviour of the planning algorithms as the

problems became larger in order to assess their scalability and efficiency. This

has shown that the operators-graph based version of the distributed Graphplan

algorithm scales far better. However, the scalability and efficiency analysis must

also include a test to assess how the planner behaves as the number of available

agents (and corresponding skills) increases.

In the tests shown in the previous section, the number of agents per skill was

10 in the Rescue Agents scenario and 2 (per combination of skills) in the Custom

Balls Factory scenario. The tests shown here, in Figure 5.13 (left diagram for

Rescue Agents scenario and right diagram for Custom Balls Factory scenario),

present the results for the same tests as in the previous section but with increasing

number of agents per skill (or combination of skills).

Figure 5.13: Evolution of performance of the Operators-graph-based Distributed
Graphplan in both testing scenarios as skills distribution increase. The given num-
ber of agents is per skill.

As we can see, in both scenarios, there seems to be almost no variation in the

overall performance of the planner as the number of agents per skill increases.

The lack of variation is caused by the fact that, when the time comes to choose
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an agent to which the partially-solved problem should be sent, even though the

choosing agent now has a larger number of alternatives to consider, it chooses the

appropriate agent randomly. Hence, the number of existing candidate agents is

of no relevance to the performance of the planner.

In the previous section, we did not consider the time it took to generate the

corresponding semantic overlay network for each scenario because it was equal

for all the tests and it was too insignificant relatively to the overall planning

time. However, now that the number of agents varies (and thus the skill distribu-

tion factor) the generation of the semantic overlay network is different for each

test. Figure 5.14 depicts the time taken to generate the overlay network for each

variation of the number of agents per skill, for both scenarios.

Figure 5.14: Comparison of time to generate the semantic overlay network as number
of agents per skill varies.

The figure depicts a very slight variation of the time to generate the semantic

overlay network as the number of agents per skill varies. Although the number

of agents has significantly increased (twice or three times more), the time it takes

to generate the semantic network is almost unchanged because, as the number

of agents increases, the skill distribution factor decreases. As previously shown

in sub-section 5.1.3, as the distribution factor decreases, the more likely it is to

find each different skill in the network. Hence, the variation of the time that it
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takes to complete the generation of the semantic overlay network in networks

with more agents per skill is considerably smaller.

5.2.3 Open Conditions and Resolvers

Each agent only plays a small part in the overall problem solving process. When

the agent realises that it can no longer contribute to the problem at hand, it must

find a suitable agent that can potentially contribute to the unsolved sub-problems.

As previously explained, the agent chooses one of the open conditions in the

planning problem (propositions that remain unsatisfied in the current graph) and

uses the semantic overlay network to determine which agents (and corresponding

skills) can be used to further contribute to solve it. Once a list of candidate agents

has been obtained, the agent must choose one to which the current problem will

be forwarded.

Up to this point, the tests performed to evaluate our approach have made

these decisions randomly. However, it is important to determine the influence a

deeper or more sophisticated analysis of the open conditions and available resolver

agents may have in the performance of the planning algorithm. One possible (and

intuitive) approach is to quantify the contribution of each candidate agent by

choosing the agent that can contribute to the largest number of open conditions

in the current graph. We applied this heuristic to the planning algorithm and

performed the same tests as in the previous sub-section, which results are shown

in Figure 5.15.

We can see in the figure that the performance of the planner got worse as the

number of agents per skill increased in both scenarios. However, the variation

was smaller in the Custom Balls Factory scenario. This is related to the fact that

each agent, when faced with the decision to choose the next agent to forward

the planning graph, has to perform the same open conditions/skills analysis to

a larger number of candidate agents. In the case of the Custom Balls Factory

scenario, the number of candidate agents per combination of skill is much smaller

than in the Rescue Agents scenario.

This leads us to conclude that a random approach is, in general, more suitable

for choosing the next open condition/agent to proceed in the planning process.
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Figure 5.15: Evolution of performance of the Operators-graph-based Distributed
Graphplan in both testing scenarios as skills distribution increase using a specific heuris-
tic. The given number of agents is per skill.

Nevertheless, one cannot disregard the advantages of a more careful analysis such

as the one depicted in this heuristic, just because, for these particular scenarios,

the introduced overhead was too much to compensate for the gain in the perfor-

mance of the planner. That is why we decided not to include this process in the

decisions section (see section 4.3 in Chapter 4), since it may potentially come as

an advantage in different problems. This is further discussed in the next chapter,

in particular, in sub-section 6.2.3.

5.3 Evaluation Summary

Our approach to coordinate multiple heterogeneous agents in large unstructured

networks is based on two complementary mechanisms: a distributed planning

process that allows agents to decompose problems into sub-problems; and a dis-

covery process that, through the dynamic generation and maintenance of a se-

mantic overlay network, enables agents to find the agents with the skills they

require to solve the unsolved sub-problems. In this chapter we have presented

the tests that were performed to assess the quality of our approach.
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First, we evaluated the discovery process by performing a set of tests aimed at

analysing the performance of the algorithms used to generate a semantic overlay

network. We compared our two algorithms, Priority-based Flooding (PbF – see

sub-section 4.1.1) and Iterative Branching Depth-First Search (IBDFS – see sub-

section 4.1.2), with alternative algorithms. The comparison (see section 5.1) was

based on the worst case scenario of 1000 agents trying to generate a semantic

overlay network at the same time. From this test, we concluded that the PbF

algorithm, in spite of our initial hypothesis, was not a valid alternative, since its

performance was not good enough to surpass other alternatives.

However, this first test has shown the potential of the IBDFS algorithm to

perform better than alternative algorithms. In order to empirically show that this

holds true, we continued testing this algorithm in different settings by changing

several test parameters, such as Time To Live (see sub-section 5.1.1), number

of neighbours (see sub-section 5.1.2), resource distribution (see sub-section 5.1.3)

and disconnecting probabilities (see sub-section 5.1.4). In all of the tests, the

IBDFS algorithm has consistently performed better than the alternatives.

We have also performed simulations in larger networks in order to determine

the scalability of the algorithms (see sub-section 5.1.5). Once again, IBDFS was

proven to be a far better alternative. This is due to the fact that IBDFS imposes

less work on the agents by iteratively using an alternative neighbour only when it

is required instead of making use of all possible alternatives right away. In order

to explain this behaviour, we also showed (in sub-section 5.1.6) how the network

load imposed by each of the algorithms has a direct link to their efficiency. The

different tests performed on these algorithms allowed us to conclude that the

IBDFS algorithm is an efficient, robust and scalable algorithm for searching and

building semantic overlays in unstructured networks.

As referred above, our coordination approach encompasses the discovery pro-

cess and the planning process. After showing that the IBDFS algorithm was an

efficient approach to be used in the discovery process, we tested two planning

algorithms, the distributed Graphplan algorithm (see sub-section 4.2.3) and the

operators-graph based distributed Graphplan algorithm (see sub-section 4.2.4),

in our overall distributed problem solving approach. The tests were done using

examples of problems of the two scenarios described in Chapter 3.
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The tests (see sub-section 5.2.1) indicate that the use of a goal-directed ap-

proach in the planning process is more suitable in larger and more complex prob-

lems. This is due to the fact that the simple generation of an operators-graph

helps reduce the number of actions that are considered in the rest of the planning

process, thus making the operators-graph based version scale a lot better than

the regular version of the distributed Graphplan algorithm.

In the same sense that we wanted to test the performance of the algorithms for

the generation of the semantic overlay network in different settings, we also tested

the planning algorithms under different configurations of the same problems, e.g.,

changing the number of agents and the distribution of skills (see sub-section 5.2.2),

to evaluate their impact in the algorithm performance. These tests have shown

that, as long as we use a random approach instead of a heuristic-based approach

(see sub-section 5.2.3), the generation of the semantic overlay network and the

performance of the algorithms is almost unaffected by changes in the number of

agents and the distribution of skills in the network.

In conjunction with the conclusions of the previous sub-sections, this allows

us to conclude that our approach of combining the IBDFS algorithm and the

operators-graph based version of the distributed Graphplan algorithm is a step

towards bringing efficiency, scalability and robustness to the distributed coordi-

nation of multiple agents for distributed problem solving in unstructured envi-

ronments.
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Chapter 6

Conclusions

Our research experience and the analysis of state-of-the-art work of the last few

years in the field of multi-agent coordination and distributed problem solving has

shown that focusing on structured environments presents undesirable limitations

regarding robustness and scalability. Considering this, we set the goal for our

research work: to create a robust, scalable and efficient coordination framework

that enables agents to freely participate in distributed problem solving in totally

unstructured agent societies.

For years, peer-to-peer (P2P) computing addressed similar challenges. How-

ever, P2P research focused mainly on the efficient management of the network,

that is, finding ways for peers to effectively search and exchange information in

a distributed network. However, each peer is treated, in P2P computing, as a

simple reactive node, with little or no autonomy at all, thus ignoring the potential

for developing collaborative environments. It was the distributed capabilities of

P2P networks and the intelligence of autonomous agents that encouraged us to

seek a realistic approach for developing a coordination framework for totally un-

structured distributed environments in the combination of these two apparently

separate fields.

In the end of this research, we have reasons to believe this thesis showed

exactly how these two different areas of expertise can be combined to deliver a

robust, efficient and scalable problem-solving framework for totally distributed

unstructured environments.
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6.1 Research Contributions

The analysis of related work allowed us to conclude that most multi-agent co-

ordination approaches rely on a structure of some sort (from social rules to the

existence of structuring elements in the society) to efficiently deploy distributed

problem solving systems. But it has also showed that depending on such structure

weakens the problem solving and coordination approaches especially in terms of

scalability and robustness.

In order to overcome that dependency on structured elements, we analysed the

work done in P2P computing and of some hybrid approaches that already made

use of P2P computing to enhance multi-agent coordination systems. Although

promising, current P2P research did not address all of the challenges associated

with a coordination system that did not rely on a structured network. With those

limitations in mind, we established the particular goals for our research work:

develop a distributed planning algorithm capable of taking into account only

partial knowledge of the domain in order to allow agents to partially contribute

to specific problems; and design an efficient search algorithm that allows agents

to search the unstructured environment for agents with necessary skills to further

contribute to the problems.

Regarding the discovery process we developed two different search algorithms,

the Priority-based Flooding (PbF) and the Iterative Branching Depth-First Search

(IBDFS). These algorithms allow agents, not only, to search for the necessary ca-

pabilities to solve specific problems but also to collect useful information, by using

network evolution techniques, to create and maintain a semantic overlay network

that facilitates future searches. The evaluation of these algorithms concludes

that, while the PbF algorithm is not a valid alternative, the IBDFS algorithm

was proven to be the best algorithm to be used in the search of agents in the

network and in the generation of the semantic overlay network.

Regarding the planning process, we developed two distributed versions of the

Graphplan planning algorithm. The first version was a transformation of the

planning graph generation into a distributed process, which included modifying

the algorithm to account for the fact that each agent has only knowledge of its

own capabilities and thus can only make partial contributions to that process.
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However, the transformation of the Graphplan algorithm into a distributed pro-

cess does not solve some of the limitations that this algorithm has, for example,

the problem of ”distraction”, in which the algorithm considers all propositions

of the initial state even if some of these are completely irrelevant to solve the

problem. The second version of this algorithm applied ”means-ends analysis”

(focusing on the goals) to our distributed version of the Graphplan algorithm

in order to diminish the effect of the ”distraction” problem of the original algo-

rithm. The tests performed on the distributed planning algorithms, which were

done with problems from two different demonstration scenarios, show that the

goal-directed version of the distributed Graphplan algorithm is efficient and scales

a lot better than the regular distributed version of the algorithm.

It is the combination of these two different but complementary mechanisms

that allows us to answer the research question initially presented in the introduc-

tory chapter: Yes, it is possible to create a robust, efficient and scalable system

to coordinate the distributed problem solving activity of multiple heterogeneous

agents in unstructured environments. The key to achieve that goal is the combi-

nation of a distributed version of an intelligent planning algorithm, as a general-

purpose problem-solving and coordination tool, with also general-purpose peer-

to-peer search and self-organisation algorithms as a robust and scalable means to

discover the agents with the required capabilities to solve the problem.

6.2 Limitations and Future Work

The research described in this thesis presented compelling results regarding the

cooperation of multiple agents in large unstructured environments. However, as

most research, this is a work in progress and we aim to improve some of the

aspects of the coordination system. In this section, we outline some of those

aspects that need improvement, which will be the guidelines for future work.
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6.2.1 Exploring Alternative Solutions

Our approach focuses on finding the agents with the necessary capabilities in the

network, as efficiently as possible, and performing the necessary planning to find a

solution to each problem. However, finding just the necessary capabilities to solve

a problem may end up producing inefficient solution plans. This is particularly

important in time-sensitive scenarios like Rescue Agents where it is essential that

the entities in the environment act quickly in order to save the lives of the injured

people.

Consider the following example: to rescue an injured person that is trapped

inside some wreckage, our system would try to find a doctor and a fireman, which

possess the necessary skills for the problem at hand. For this particular problem,

this solution is, in fact, the optimal solution. However, imagine that there are,

instead, several injured people and several doctors and firemen available. The

system would still try to find only one doctor and one fireman (because that is

enough to solve the problem) instead of delivering the optimal solution plan that

would explore the possibility of using several doctors and firemen in parallel.

However, improving our system to address this limitation is not an easy task.

For example, imagine that an agent has already produced a solution plan for a

specific problem but that the plan could be improved by adding other entities

that could work in parallel to reach a potentially faster execution. This situation

raises several questions. How can an agent know that the plan that it currently

holds, although enough to solve the problem, can be improved by adding new

participants? The only way the agent has to know for sure is to continue the

collaboration and continuously request the participation of new entities. But, if

each agent is constantly assuming the solution plan can be improved by adding

new participants, when does this process end? Maybe each agent can compare

the resulting plans to determine if any improvements were actually made. If

none were made, then the agent can assume the plan has reached an optimal

state. Alternatively, each agent could perform the planning process with the goal

of maximising a domain-dependent evaluation function that would, for example,

value plans with more parallelism.
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However, without those domain-dependent functions, these agents can only

operate with the partial knowledge of the skills available in the network. It might

be the case that an agent is not able of further improving a solution plan, thus

considering it to be optimal, but the plan could, in fact, be improved, if different

capabilities were available to the agent. In such distributed environments, there

is never a guarantee that the solution plan is the best possible. Moreover, in

order to come up with potentially better solution plans, the distributed problem

solving process must continue to explore new possibilities, which may result in

much longer planning processes. In fact, we have performed a few preliminary

tests in which the agents were forced to search for a better solution plan (until

no further improvements could be made) and, while the solution plans were in

fact better (less steps in the execution phase), the planning phase took a lot

more time than our original approach. So, although it can potentially lead to a

longer solution plan, our approach has the advantage of providing a much faster

planning process.

6.2.2 Acting on Behalf of Other Agents

Each agent in our system has only knowledge of its own skills. It is only af-

ter taking part in the self-organisation process of building the semantic overlay

network that an agent becomes aware of the skills of other agents, especially,

of those semantically related to it. In our approach, this information is only

used to locate agents that have the necessary skills to complete the solution to

a particular problem. Once the skill is located, the agent currently holding the

partially-solved problem sends it to the agent holding the required skill so that

it can contribute to the plan.

What if, instead, the first agent used that information directly in its planning

process thus saving the time it takes to communicate with the other agent? This

has the potential to speed up the planning process, but in doing so, the first agent

is acting on behalf of the other agent in terms of commitment to participate in the

solution plan. In other words, the first agent is assuming that, just because it has

the necessary skills, the other agent will contribute to solve the given problem.

This kind of assumption cannot be made because the first agent has no way of
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knowing if the second agent can commit to play the required role in the solution

plan or if there are any constraints preventing it from doing so, for example,

having previously committed to participate in another plan that will clash with

this one.

Planning with such strategy would only lead to solution plans that most likely

would not be executed due to the fact that the participating agents cannot per-

form the required actions because local constraints, which were not considered

at planning time, prevent them from committing to the actions on the solution

plan. A possible alternative is for agents to engage in a negotiation process in

which they exchange constraints. For example, the first agent, before adding the

action to the plan, would ask permission to the second agent, to which it could

reply, after checking current local constraints, whether it accepts it or not. These

messages are potentially less ”expensive” from the communications point-of-view

because they are simple queries, compared to the size of the messages that are

sent with partially-filled planning graphs. However, there may be more of them

in quantity, which reduces the potential of this approach.

Agents cannot act on behalf of other agents unless they have their permission

or they are aware of their constraints. In both cases, heavy communication may

be required. However, once an agent is aware of other agents constraints, it would

no longer have to ask for them again (assuming these do not change over time and

that the agent is in possession of all the constraints and not just a subset). This is

not a safe assumption to make, especially in highly dynamic environments, but it

may be of relevance for problems in which a continuous collaboration between two

or more agents is required. For some agents, contributing to a solution plan only

requires a small participation, that is, the number of times its actions appear in

the final solution plan is quite small. However, in scenarios as the Rescue Agents,

most participating agents have a more determining role in the solution plan, as

a doctor having to provide assistance to 6 injured people located in different

areas of a city. This problem, which requires the participation of a doctor and

an ambulance driver, will continuously be sent back and forth between the two

agents representing these two entities so that each can add its actions to the

solution plan. A lot of communication can be saved if one of the agents simply

performs the planning once all local constraints and necessary actions are known.
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For example, consider that the first agent receiving the problem is the medic

agent, which after processing it, determines that it can provide assistance to one

of the injured people, but for that it requires the participation of an ambulance

that can take him there. So, it contacts the ambulance agent by sending it the

partially-solved problem. At this point, the ambulance agent already has the

necessary knowledge to perform the entire planning process that would involve

providing assistance to the remaining injured people. However, as explained

before, it cannot commit to the plan on behalf of the medic agent unless it has

its permission or it is aware of its constraints. But, if the medic agent, when

sending the partially-solved problem to the ambulance agent, would also include

its local constraints (as an implicit authorisation to act on its behalf), then the

ambulance agent could build the entire solution plan, thus saving a lot of messages

in the process. We performed some preliminary tests and, in fact, the problems of

the Rescue Agents scenario were solved in less time than originally, whereas the

problems in the Custom Balls Factory scenario had little or no improvement at all.

Nevertheless, this approach, which is based on a potentially unsafe assumption

that agents can commit to the plans on behalf of other agents (as long as they

know their constraints), needs to be further analysed.

An alternative approach could be based on abstract commitments at the plan-

ning stage that would only be realised at the execution stage. That is, an agent

building the solution plan could include abstract commitments with the skills that

it found on the network. These commitments are abstract in the sense that no

actual agent has committed to them. They are only associated to a skill found

in the network. Then, at the execution stage, agents with the necessary skills

and that have no local constraints that would unable them to commit to those

abstract slots in the plan, would be contacted to perform those parts of the plan.

We have worked on similar approaches before (Botelho et al., 2008b) but further

research is necessary to consider dynamic unstructured environments. This is

something that we plan to do in the future.
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6.2.3 Choosing Appropriate Resolvers Based on Context

Each agent in this distributed problem solving process, after determining how its

own skills can be used to partially contribute to the solution, must find a suitable

agent that can potentially contribute to the unsolved parts of the problem. In

most situations, this includes having to choose a particular agent from a long

list of candidates, which may influence the performance of the system. This

decision was first mentioned in section 4.2.3, in which we stated that the agent

was chosen randomly, and later on discussed an alternative approach relying on

an heuristic that would quantify the potential contribution of each candidate

agent (see section 5.2.3).

The use of a random approach in choosing the adequate agent to contribute to

the solution was justified simply by the fact that it was faster than choosing the

agent that can solve more open conditions, in all performed tests. The random

approach is faster because the overhead introduced by the heuristic approach was

too much to compensate the improvement brought by its application. However,

in more complex environments, such as the ones in which agents commit and act

based on costs and rewards, a random approach can be very inefficient, leading to

very costly solution plans. In such cases, the challenge revolves around identifying

the information that should be used to select the appropriate agent.

The quantifiable contributions and the costs and rewards associated with the

commitment of chosen agents are very important to evaluate potential candidates,

but other different sources of information can also be very useful. Information

such as the agent’s general availability, workload, location and past average per-

formance are just a few examples of contextual data that, in combination with

other relevant data, can be used to narrow down the list of potential candidates.

Combining all of these considerations into a unified context-aware system is

quite a challenge, but it is one in which we have already presented some promising

research work (Botelho et al., 2008b) (Costa et al., 2008). Even though this was

not initially one of the goals of our research, we intend to evaluate how a context-

aware based process can be used in such distributed unstructured environments to

improve the process of choosing the appropriate resolvers for partial contributions

in distributed problem solving.
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6.3 Final Words

This thesis is an essential element to the work we have been developing in the last

few years in the field of intelligent agents and multi-agent systems. We tried to

fully substantiate, describe and evaluate our approach for cooperative distributed

problem solving in unstructured environments.

Each agent in our approach uses a goal-directed version of the distributed

Graphplan algorithm to make partial contributions to the generation of a solution

plan to a given problem. Agents with the necessary skills to contribute to unsolved

parts are easily and efficiently discovered resorting to a semantic overlay network

dynamically built and maintained by the discovery process itself. The evaluation

of our approach, based on two very distinct scenarios, has consistently shown

that it is robust, scalable and efficient and that, although with some room for

improvement (as explained above), it can be generically applied to large and

complex distributed problem solving environments.

These promising results encourage us to proceed with this research and over-

come its limitations. Thus, this thesis does not mark the end of our research in

this particular subject. On the contrary, it is rather a milestone in our vision

to build real world intelligent agent societies, in which autonomous agents can

seamlessly cooperate by combining their skills to build a collective intelligence

capable of solving complex problems.

131



References

Abdallah, S. & Lesser, V. (2004). Organization-based cooperative coalition

formation. In Proceedings of the IEEE/WIC/ACM Int. Conf. on Intelligent

Agent Technology , 162–168. 22, 37

Adjiman, P., Chatalic, P., Goasdoue, F., Rousset, M. & Simon, L.

(2006). Distributed reasoning in a peer-to-peer setting: Application to the

semantic web. Journal of Artificial Intelligence Research, 25, 5–6. 35

Amigoni, F., Gatti, N., Pinciroli, C., Roveri, M. & e Informazione,

D. (2005). What planner for ambient intelligence applications? IEEE Trans-

actions on Systems, Man and Cybernetics, Part A, 35, 7–21. 21

Anderson, C., Smith, D.E. & Weld, D.S. (1998). Conditional effects in

graphplan. In Proceedings of the 4th Int. Conf. on AI Planning Systems . 18,

37

Arabshian, K. & Schulzrinne, H. (2007). An ontology-based hierarchical

peer-to-peer global service discovery system. Journal of Ubiquitous Computing

and Intelligence, 1, 133–144. 33

Arpinar, I.B., Zhang, R., Aleman-Meza, B. & Maduko, A. (2005).

Ontology-driven web services composition platform. Information Systems and

E-Business Management , 3, 175–199. 34

Babaoglu, O., Meling, H. & Montresor, A. (2002). Anthill: A framework

for the development of agent-based peer-to-peer systems. In Proceedings of the

22nd Int. Conf. on Distributed Systems , 15–22. 35, 36

132



REFERENCES

Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R. & Stoica,

I. (2003). Looking up data in p2p systems. Communications ACM , 46, 43–48.

32

Banaei-kashani, F., Chen, C. & Shahabi, C. (2004). Wspds: Web services

peer-to-peer discovery service. In Proceedings of the Int. Conf. on Internet

Computing , 733–743, Citeseer. 33

Ben-Ami, D. & Shehory, O. (2005). A comparative evaluation of agent loca-

tion mechanisms in large scale mas. In Proceedings of the 4th Int. Joint Conf.

on Autonomous Agents and Multiagent Systems , 339–346, ACM New York,

NY, USA. 37

Benatallah, B., Dumas, M., Sheng, Q. & Ngu, A. (2002). Declarative

composition and peer-to-peer provisioning of dynamic web services. In Pro-

ceedings of the 18th Int. Conf. on Data Engineering , 297–308. 34

Bianchini, D., De Antonellis, V., Melchiori, M. & Salvi, D. (2006).

Peer-to-peer semantic-based web service discovery: state of the art. Tech. rep.,

Dipartimento di Elettronica per l’Automazione Università di Brescia. 29, 31
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Appendix B

Testing Scenarios Listings

Listing B.1: Ambulance driver ’s actions in the Rescue Agents domain

( : a c t i on ambulance move

: parameters (? a − ambulance ? l o c1 ? l o c2 − l o c a t i o n )

: p r e cond i t i on (and

( ambulance at ?a ? l o c1 )

( ad jacent ? l o c1 ? l o c2 )

( road ? l o c2 ) )

: e f f e c t (and

( ambulance at ?a ? l o c2 )

(not ( ambulance at ?a ? l o c1 ) ) )

)

Listing B.2: Fireman’s actions in the Rescue Agents domain

( : a c t i on fireman move

: parameters (? fm − f i reman ? l o c1 ? l o c2 − l o c a t i o n )

: p r e cond i t i on (and
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( f i r eman at ?fm ? lo c1 )

( ad jacent ? l o c1 ? l o c2 )

( road ? l o c2 ) )

: e f f e c t (and

( f i r eman at ?fm ? lo c2 )

(not ( f i r eman at ?fm ? lo c1 ) ) )

)

( : a c t i on f i r eman pu t ou t f i r e

: parameters (? fm − f i reman ? l o c1 ? l o c2 − l o c a t i o n )

: p r e cond i t i on (and

( f i r eman at ?fm ? lo c1 )

( ad jacent ? l o c1 ? l o c2 )

( f i r e ? l o c2 ) )

: e f f e c t (and

( road ? l o c2 )

(not ( f i r e ? l o c2 ) ) )

)

Listing B.3: Paramedic’s actions in the Rescue Agents domain

( : a c t i on paramed i c t r i age

: parameters (?pm − paramedic ?p − person ? l o c − l o c a t i o n )

: p r e cond i t i on (and

( paramedic at ?pm ? l o c )

( pe r son at ?p ? l o c )

( p e r s on in ju r ed ?p) )

: e f f e c t (and

( p e r s on t r i a g ed ?p) )
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)

( : a c t i on paramedic load in ambulance

: parameters (?pm − paramedic ?a − ambulance ? l o c − l o c a t i o n )

: p r e cond i t i on (and

( paramedic at ?pm ? l o c )

( ambulance at ?a ? l o c ) )

: e f f e c t (and

( paramedic at ambulance ?pm ?a )

(not ( paramedic at ?pm ? l o c ) ) )

)

( : a c t i on paramedic unload from ambulance

: parameters (?pm − paramedic ?a − ambulance ? l o c − l o c a t i o n )

: p r e cond i t i on (and

( paramedic at ambulance ?pm ?a )

( ambulance at ?a ? l o c ) )

: e f f e c t (and

( paramedic at ?pm ? l o c )

(not ( paramedic at ambulance ?pm ?a ) ) )

)

Listing B.4: PDDL description of an example problem in the Rescue Agents domain

( d e f i n e ( problem Tes t ingScenar i o s )

( : domain RescueAgents )

( : ob j e c t s

l 00 l 01 l02 l03 l04 l05 l06 l07 l08 l09
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l 10 l 11 l12 l13 l14 l15 l16 l17 l18 l19

l20 l21 l22 l23 l24 l25 l26 l27 l28 l29

l30 l31 l32 l33 l34 l35 l36 l37 l38 l39

l40 l41 l42 l43 l44 l45 l46 l47 l48 l49

l50 l51 l52 l53 l54 l55 l56 l57 l58 l59

l60 l61 l62 l63 l64 l65 l66 l67 l68 l69

l70 l71 l72 l73 l74 l75 l76 l77 l78 l79

l80 l81 l82 l83 l84 l85 l86 l87 l88 l89

l90 l91 l92 l93 l94 l95 l96 l97 l98 l99 − l o c a t i o n

p1 − person )

( : i n i t

( other l 00 )

( ad jacent l 00 l10 )

( ad jacent l 00 l01 )

( other l 01 )

( ad jacent l 01 l11 )

( ad jacent l 01 l00 )

( ad jacent l 01 l02 )

( road l02 )

( ad jacent l 02 l12 )

( ad jacent l 02 l01 )

( ad jacent l 02 l03 )

( . . . ) ; This l i s t i n g has been t runca ted to make i t more l e g i b l e

; In jured person d e t a i l s

( p e r s on in ju r ed p1 )

( pe r son at p1 l84 )

)
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( : goa l

(and

( p e r s on t r i a g ed p1 ) ) )

)

Listing B.5: Initial state description for the ambulance in the example problem in the

Rescue Agents domain

( d e f i n e ( problem ambulance1 state )

( : domain RescueAgents )

( : ob j e c t s

l 20 − l o c a t i o n

amb1 − ambulance

)

( : i n i t

( ambulance at amb1 l20 )

)

( : goa l

(and ) )

)

Listing B.6: Initial state description for the fireman in the example problem in the

Rescue Agents domain

( d e f i n e ( problem f i r eman1 s t a t e )

( : domain RescueAgents )

( : ob j e c t s

l 27 − l o c a t i o n
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fman1 − f i reman

)

( : i n i t

( f i r eman at fman1 l27 )

)

( : goa l

(and ) )

)

Listing B.7: Initial state description for the paramedic in the example problem in the

Rescue Agents domain

( d e f i n e ( problem paramed ic1 s tate )

( : domain RescueAgents )

( : ob j e c t s

l 20 − l o c a t i o n

pmedic1 − paramedic

)

( : i n i t

( paramedic at pmedic1 l 20 )

)

( : goa l

(and ) )

)
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Listing B.8: Painter ’s actions in the Custom Ball Factory domain

( : a c t i on g r ab ba l l

: parameters (?p − pa in t e r ?b − ba l l )

: p r e cond i t i on (and

( p a i n t e r f r e e ?p)

( b a l l f r e e ?b) )

: e f f e c t (and

( pa in t e r ha s ?p ?b)

(not ( p a i n t e r f r e e ?p) )

(not ( b a l l f r e e ?b) ) )

)

( : a c t i on pa int

: parameters (?p − pa in t e r ?b − ba l l ?a − area ? c − co l our )

: p r e cond i t i on (and

( pa in t e r ha s ?p ?b)

( can co l our ?p ? c )

( can pa int ?p ?a ) )

: e f f e c t (and

( pa inted ?b ?a ? c ) )

)

( : a c t i on d rop ba l l

: parameters (?p − pa in t e r ?b − ba l l )

: p r e cond i t i on (and

( pa in t e r ha s ?p ?b) )

: e f f e c t (and

(not ( pa in t e r ha s ?p ?b) )

( p a i n t e r f r e e ?p)

( b a l l f r e e ?b) )
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)

Listing B.9: Stripes painter ’s actions in the Custom Ball Factory domain

( : a c t i on g r ab ba l l

: parameters (? sp − s pa i n t e r ?b − ba l l )

: p r e cond i t i on (and

( s p a i n t e r f r e e ? sp )

( b a l l f r e e ?b) )

: e f f e c t (and

( s pa i n t e r ha s ? sp ?b)

(not ( s p a i n t e r f r e e ? sp ) )

(not ( b a l l f r e e ?b) ) )

)

( : a c t i on p a i n t s t r i p e s

: parameters (? sp − s pa i n t e r ?b − ba l l ?a − area ?pc ?nc − co l our )

: p r e cond i t i on (and

( s pa i n t e r ha s ? sp ?b)

( can co l our ? sp ?nc )

( c a n s t r i p e ? sp ?a )

( painted ?b ?a ?pc ) )

: e f f e c t (and

( s t r i p ed ?b ?a ?pc ?nc )

(not ( pa inted ?b ?a ?pc ) ) )

)

( : a c t i on d rop ba l l

: parameters (? sp − s pa i n t e r ?b − ba l l )

: p r e cond i t i on (and

( s pa i n t e r ha s ? sp ?b) )
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: e f f e c t (and

(not ( s pa i n t e r ha s ? sp ?b) )

( s p a i n t e r f r e e ? sp )

( b a l l f r e e ?b) )

)

Listing B.10: Inflater ’s actions in the Custom Ball Factory domain

( : a c t i on g r ab ba l l

: parameters (? i − i n f l a t e r ?b − ba l l )

: p r e cond i t i on (and

( i n f l a t e r f r e e ? i )

( b a l l f r e e ?b) )

: e f f e c t (and

( i n f l a t e r h a s ? i ?b)

(not ( i n f l a t e r f r e e ? i ) )

(not ( b a l l f r e e ?b) ) )

)

( : a c t i on i n f l a t e b a l l

: parameters (? i − i n f l a t e r ?b − ba l l )

: p r e cond i t i on (and

( assembled ?b)

( i n f l a t e r h a s ? i ?b) )

: e f f e c t (and

( i n f l a t e d ?b) )

)

( : a c t i on d rop ba l l

: parameters (? i − i n f l a t e r ?b − ba l l )

: p r e cond i t i on (and
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( i n f l a t e r h a s ? i ?b) )

: e f f e c t (and

(not ( i n f l a t e r h a s ? i ?b) )

( i n f l a t e r f r e e ? i )

( b a l l f r e e ?b) )

)

Listing B.11: Assembler ’s actions in the Custom Ball Factory domain

( : a c t i on g r ab ba l l

: parameters (? a − assembler ?b − ba l l )

: p r e cond i t i on (and

( a s s emb l e r f r e e ?a )

( b a l l f r e e ?b) )

: e f f e c t (and

( as semble r has ?a ?b)

(not ( a s s emb l e r f r e e ?a ) )

(not ( b a l l f r e e ?b) ) )

)

( : a c t i on a s s emb l e ba l l

: parameters (? a − assembler ?b − ba l l )

: p r e cond i t i on (and

( as semble r has ?a ?b) )

: e f f e c t (and

( assembled ?b) )

)

( : a c t i on d rop ba l l

: parameters (? a − assembler ?b − ba l l )

: p r e cond i t i on (and
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( as semble r has ?a ?b) )

: e f f e c t (and

(not ( as semble r has ?a ?b) )

( a s s emb l e r f r e e ?a )

( b a l l f r e e ?b) )

)

Listing B.12: Initial state description for the trgb painter agent in the example problem

in the Custom Ball Factory domain

( d e f i n e ( problem t r g b p a i n t e r s t a t e )

( : domain CustomBallFactory )

( : ob j e c t s

red green blue − co l our

t r gb pa i n t e r − pa in t e r

t l t r − area ; t l = top l e f t s e c t i on ; t r = top r i g h t

s e c t i on

)

( : i n i t

( p a i n t e r f r e e t r gb pa i n t e r )

( can co l our t r gb pa i n t e r red )

( can co l our t r gb pa i n t e r green )

( can co l our t r gb pa i n t e r blue )

( can pa int t r gb pa i n t e r t l )

( can pa int t r gb pa i n t e r t r )

)

( : goa l

(and ) )
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)

Listing B.13: Initial state description for the bb painter agent in the example problem

in the Custom Ball Factory domain

( d e f i n e ( problem bb pa i n t e r s t a t e )

( : domain CustomBallFactory )

( : ob j e c t s

blue − co l our

bb pa inte r − pa in t e r

b l br − area ; b l = bottom l e f t s e c t i on ; br = bottom

r i g h t s e c t i on

)

( : i n i t

( p a i n t e r f r e e bb pa inte r )

( can co l our bb pa inte r blue )

( can pa int bb pa inte r b l )

( can pa int bb pa inte r br )

)

( : goa l

(and ) )

)

Listing B.14: Initial state description for the bs painter agent in the example problem

in the Custom Ball Factory domain

( d e f i n e ( problem b s p a i n t e r s t a t e )

( : domain CustomBallFactory )
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( : ob j e c t s

blue − co l our

b s pa i n t e r − s pa i n t e r

t l t r b l br − area

)

( : i n i t

( s p a i n t e r f r e e b s pa i n t e r )

( can co l our b s pa i n t e r blue )

( c a n s t r i p e b s pa i n t e r t l )

( c a n s t r i p e b s pa i n t e r t r )

( c a n s t r i p e b s pa i n t e r b l )

( c a n s t r i p e b s pa i n t e r br )

)

( : goa l

(and ) )

)

Listing B.15: Initial state description for the gs painter agent in the example problem

in the Custom Ball Factory domain

( d e f i n e ( problem g s p a i n t e r s t a t e )

( : domain CustomBallFactory )

( : ob j e c t s

green − co l our

g s pa i n t e r − s pa i n t e r

t l t r b l br − area

)

156



B. TESTING SCENARIOS LISTINGS

( : i n i t

( s p a i n t e r f r e e g s pa i n t e r )

( can co l our g s pa i n t e r green )

( c a n s t r i p e g s pa i n t e r t l )

( c a n s t r i p e g s pa i n t e r t r )

( c a n s t r i p e g s pa i n t e r b l )

( c a n s t r i p e g s pa i n t e r br )

)

( : goa l

(and ) )

)

Listing B.16: Initial state description for the assemb agent in the example problem in

the Custom Ball Factory domain

( d e f i n e ( problem assemb state )

( : domain CustomBallFactory )

( : ob j e c t s

assemb − assembler

)

( : i n i t

( a s s emb l e r f r e e assemb ) )

( : goa l

(and ) )

)

Listing B.17: Initial state description for the infla agent in the example problem in the
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Custom Ball Factory domain

( d e f i n e ( problem i n f l a s t a t e )

( : domain CustomBallFactory )

( : ob j e c t s

i n f l a − i n f l a t e r

)

( : i n i t

( i n f l a t e r f r e e i n f l a ) )

( : goa l

(and ) )

)

Listing B.18: PDDL description of an example problem in the Custom Ball Factory

domain

( d e f i n e ( problem Tes t ingScenar i o s )

( : domain CustomBallFactory )

( : ob j e c t s

b a l l 1 − ba l l

green blue − co l our

t l t r b l br − area

)

( : i n i t

( b a l l f r e e ba l l 1 )

)
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( : goa l

(and

( s t r i p ed ba l l 1 t l green blue )

( painted ba l l 1 t r green )

( painted ba l l 1 b l b lue )

( s t r i p ed ba l l 1 br blue green )

( i n f l a t e d ba l l 1 )

( b a l l f r e e ba l l 1 )

)

) )
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