

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2023-03-10

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Paula, B., Coelho, J., Mano, D., Coutinho, C., Oliveira, J., Ribeiro, R....Batista, F. (2022).
Collaborative filtering for mobile application recommendation with implicit feedback. In Morel, L.,
Dupont, L., and Camargo, M. (Ed.), 2022 IEEE 28th International Conference on Engineering,
Technology and Innovation (ICE/ITMC) and 31st International Association For Management of
Technology (IAMOT) Joint Conference. (pp. 1065 - 1073). Nancy, France: IEEE.

Further information on publisher's website:
10.1109/ICE/ITMC-IAMOT55089.2022.10033307

Publisher's copyright statement:
This is the peer reviewed version of the following article: Paula, B., Coelho, J., Mano, D., Coutinho,
C., Oliveira, J., Ribeiro, R....Batista, F. (2022). Collaborative filtering for mobile application
recommendation with implicit feedback. In Morel, L., Dupont, L., and Camargo, M. (Ed.), 2022 IEEE
28th International Conference on Engineering, Technology and Innovation (ICE/ITMC) and 31st
International Association For Management of Technology (IAMOT) Joint Conference. (pp. 1065 -
1073). Nancy, France: IEEE., which has been published in final form at
https://dx.doi.org/10.1109/ICE/ITMC-IAMOT55089.2022.10033307. This article may be used for
non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ICE/ITMC-IAMOT55089.2022.10033307

Collaborative Filtering for Mobile Application
Recommendation with Implicit Feedback

Beatriz Paula
Caixa Mágica Software

Instituto Superior Técnico
Lisbon, Portugal

beatriz.paula@caixamagica.pt

João Coelho
Caixa Mágica Software

Instituto Superior Técnico
Lisbon, Portugal

joao.coelho@caixamagica.pt

Diogo Mano
Caixa Mágica Software
Faculdade de Ciências

Lisbon, Portugal
diogo.mano@caixamagica.pt

Carlos Coutinho
Caixa Mágica Software

Iscte - Instituto Universitário de Lisboa
Information Sciences, Technologies and Architecture

Research Center (ISTAR-IUL)
Lisbon, Portugal

carlos.coutinho@caixamagica.pt

João Oliveira
Iscte - Instituto Universitário de Lisboa

Information Sciences, Technologies and Architecture
Research Center (ISTAR-IUL)

Instituto de Telecomunicações (IT)
Lisbon, Portugal

joao.p.oliveira@iscte-iul.pt

Ricardo Ribeiro
Iscte - Instituto Universitário de Lisboa and INESC-ID

Lisbon, Portugal
ricardo.ribeiro@iscte-iul.pt

Fernando Batista
Iscte - Instituto Universitário de Lisboa and INESC-ID

Lisbon, Portugal
https://orcid.org/0000-0002-1075-0177

Abstract—This paper introduces a novel dataset regarding the
installation of mobile applications in users devices, and bench-
marks multiple well-established collaborative filtering techniques,
leveraging on the user implicit feedback extracted from the data.
Our experiments use 3 snapshots provided by Aptoide, one of
the leading mobile application stores. These snapshots provide
information about the installed applications for more than 4
million users in total. Such data allow us to infer the users
activity over time, which corresponds to an implicit measure
of interest in a certain application, as we consider that installs
reflect a positive user opinion on an app, and, inversely, uninstalls
reflect a negative user opinion. Since recommendation systems
usually use explicit rating data, we have filtered and transformed
the existing data into binary ratings. We have trained several
recommendation models, using the Surprise Python scikit, com-
paring baseline algorithms to neighborhood-based and matrix
factorization methods. Our evaluation shows that SVD-based
and KNN-based methods achieve good performance scores while
being computationally efficient, suggesting that they are suitable
for recommendation in this novel dataset.

Index Terms—Recommender System, Implicit Feedback, Col-
laborative Filtering

I. INTRODUCTION

Recommendation systems are extremely valuable tools for
companies. With personalized suggestions, these systems al-
low users to overview a small and relevant number of sug-
gestions when too many items are available and exploring
all possible options is difficult, hence being beneficial tools
to businesses in the areas of e-commerce [1] and entertain-
ment [2]. Leading companies in such areas, including Ama-

zon [3], Youtube [4] and Netflix [5], resort to recommendation
systems.

There are several approaches to recommendation systems,
typically based on two distinct strategies: collaborative filter-
ing, and content-based filtering. Considering an user-centered
formulation, the former recommends items to a user based
on other users with similar preferences, and is the approach
explored in this work. The latter considers features of the items
to be recommended (e.g., for musical items, the artist, genre
and language), recommending similar items to those a given
user liked in the past.

One of the biggest challenges of collaborative filtering is
the lack of explicit ratings data. Specifically, in the case of
mobile application stores, users have contact with much more
applications than the ones they leave a review on. This limits
the recommendation models to an extremely sparse training
data. Therefore it is necessary to infer users’ likes and dislikes
from their activity with implicit feedback.

The goal of this work is to benchmark a novel dataset
provided by Aptoide,1 a mobile application store with over
300 million users and 1 million apps, containing three daily
snapshots of the installed applications for over 4 million
users in total. We made this dataset publicly available2 for
reproducibility and future research. This is a unique (to our
knowledge) dataset that allows to profile mobile application

1https://aptoide.com
2https://apprecommender.caixamagica.pt/resources/

https://aptoide.com
https://apprecommender.caixamagica.pt/resources/

preferences based on their user installation patterns, whereas
most datasets containing users mobile app feedback do not
uniquely identify each user, and the ones that we have found
of a much smaller scale.

First, we thoroughly characterized this dataset, and de-
scribed a rating extraction technique based on installs/un-
ninstalls. Then, several collaborative filtering models, im-
plemented in the Surprise Python library, were trained and
evaluated on the inferred users’ ratings from the dataset. We
aim to answer the following research questions with reference
to the mobile application domain:
RQ1. Can install and uninstall history be used as a represen-

tation of users preferences?
RQ2. What is the performance of several Collaborative Fil-

tering models when using Implicit Feedback?
This paper is organized as follows: Section II presents the

related work on Recommendation Systems, more specifically
on Collaborative Filtering approaches. Section III presents
the format of the dataset being used. Section IV details the
procedure we took to solve our research questions, with a
detailed analysis of our dataset and of the Surprise library
models used. Section V presents and analyses the results of
our models. And, finally, section VI draws conclusions and
presents several possible directions for future work.

II. RELATED WORK

Collaborative filtering (CF), first used in [6], is based on
the insight that if two users have rated several items similarly,
due to the relative stability of people’s preferences, they will
probably rate other items similarly, as well, in the future.
There are two main techniques of collaborative filtering:
neighborhood-based models and latent feature models.

Neighborhood-based models are one of the first and most
basic approaches of CF, as they are a very direct implementa-
tion of its idea. There are two types of nearest neighbours al-
gorithms: user-user and item-item. The user-user approach [7]
finds users who have rated the same items similarly, and uses
their ratings to recommend new items to the current user. The
first step of these algorithms is to chose a similarity function
which quantifies the similarity between user tastes based on
their ratings, which can be classified as correlation-based
similarities, such as the Pearson correlation, the constrained
Pearson correlation, Spearman rank correlation and Kendall’s
τ correlation [8], [9]; or cosine-based similarity, such as vector
cosine similarity and adjusted cosine similarity [10]. After
computing the similarities, the next step is to define the set of k
nearest neighbors, where k is an hyperparameter which studies
have found best to be set between 20 to 60 for better perfor-
mance and lower computational cost [11]. Finally, to predict
the rating of user u to item i, we simply take the weighted
average of the ratings of item i from the neighbors of user u,
where the weight terms correspond to the similarity between
user u and its neighbors. Analogously, the item-item approach
recommends similar items to the ones the user has previously
rated positively, by first finding the k nearest neighbors of item
i and, secondly, taking the weighted average of user u ratings

on those similar items [12]. This latter approach is still widely-
used in modern day systems due to its low computational costs
and competitive performance [13]. Since there are usually
much more users than items in these applications, items, on
average, commonly have much more ratings than the number
of ratings per user. This results in stable similarity scores
between items, allowing the precomputation of these values
and resulting in a drastic speedup during prediction.

Alternatively, latent feature models address the idea that
different items can have common features, and users can be
interested in particular aspects of each item. These models
try to explicitly profile each user, pu, according to their
preferences to these latent features, and profile each item,
qi, in respect to the presence those same features, as vectors
of dimension k. The preference of user u towards item i
can then be computed as the dot product between these
two vectors, which will correspond to a higher value when
the user prefers the same features that are relevant in that
item. Singular Value Decomposition (SVD) algorithms use
the single value decomposition of the ratings matrix R, as
the product of three matrices: P and QT . The matrix P
has |U | × k dimensions and corresponds to the user-feature
preferences and Q is a k×|I| matrix corresponding to the item-
feature relevancy. Algebraically, P and Q are orthogonal and
give an approximation to the ratings matrix, and SVD is only
defined when R is complete. However, most entrances of the
ratings matrix are unknown. In practice, we use singular value
decomposition to define an optimization problem, such as
in [14], where we learn P and Q to minimize the error between
the R matrix and its approximation PQT , while ignoring the
missing rating values. It is common to use stochastic gradient
descent or alternating least square during training [15]. Other
common algorithms which use this latent factor technique are
very similar to this one, such as NMF and SVD++ [16].

Collaborative filtering models were initially designed and
are most suitable for explicit ratings, a high quality feedback
where users directly report their opinion on an item by
attributing it, for example, a star rating such as Netflix’s
previous 5 star ratings [15], or their current binary system of
like/dislike. However, this kind of data, although accurately
reflective of users’ opinions, is usually sparse due to users’
reluctance to rate every item they have tried. To solve this
lack of data, recommendation systems started leveraging im-
plicit feedback [17], which indicates users’ opinions based on
their activity history (such as purchase history, click history,
search patterns), leading to, usually, a binary rating indicating
confidence, contrary to explicit ratings which indicate prefer-
ence [18]. In this latter work, a neighborhood-based model and
latent factor model were developed with the implicit feedback
derived from the data collected in a 4 week period from
a digital television service, where television programs were
recommended based on the programs watched by the users.
The training dataset was generated by setting a confidence
rating, rui, of 1 if the user u watched more than half of a
program i throughout the sampling period, and a rating of 0
otherwise. Their models yielded much better results than the

baseline approach of recommending the most popular results,
which is still very powerful. Other works, such as [19], [20],
explore different ways to derive implicit feedback. In [19],
similarly to what is done in this project, several collaborative
filtering models are developed with the Surprise library [21],
leveraging data from a video game platform. They converted
total playing time per game to a 1 to 5 rating system, instead of
a more common binary approach, through the Python cut() and
rank() functions. In [20] an integration of implicit feedback to
matrix factorization (MF) framework is explored. They used
the popular Movielens-100k and Movielens-1M datasets that
use a five-level integer rating system. On top of this explicit
data, they derived three different implicit feedbacks and used it
to improve the explicit MF model. The first implicit feedback
is implicit user relationships which reflect user’ similarities
based on their preferences; the second is rated records of
items which reflect implicit influence among users for the same
item, since users can observe previous ratings when deciding
their own rating; and, lastly, the third implicit feedback is the
positive attitude, which reflects a user feeling on an item,
which is positive when a user gives 3 or more points to a
movie, and negative otherwise.

This specific application of recommendation systems to
mobile application stores is a relevant research topic due to
the continuous increase of existing apps. Numerous works
take into account specific characteristics of these items, such
as versions and access permissions. In [22], a factorization
machine model was developed by leveraging the interaction
information between different feature views, such as descrip-
tion, permissions and category. Another work [23] takes into
account that, with each version, the updates done to an
application can significantly change them which can result
in the interest of new users, sometimes making previous
versions relevant to them. Other works focus on the security
risks that come from the applications ability to access user’s
sensitive information, such as [24] which recognizes that
users may have specific privacy preferences for each app
category, and [25] that recommends applications based on
popularity and security features. Other recent works extract
app functionalities from their description and reviews, and
leverage them for recommendation. In [26] the authors retrieve
hidden item topics from user reviews, and profile each app
with the probability of topic distribution as a representation of
their latent features. In [27] app functionalities are extracted
from their respective description that are then used in a graph-
based approach to predict new functionalities the user might
be interested and to recommend candidate apps that contained
them.

Lastly, our work introduces and analysis a real-world dataset
of applications installed on users devices from February to
December 2020. A similar analysis of user-app interactions
has been made in [28] which focus on the application usage
information of over 4100 users and the context of their activity,
including time of day and location. Related datasets have
also been provided in other works such as in [29], where
the two distinct datasets provided contain 1390 and 3691 app

reviews classified according to their Software engineering’s
maintenance task (such as user experience, feature request, bug
report and rating) retrieved from several mobile application
stores. Similarly, in [30], a much larger dataset is supplied with
over 280,000 user reviews of 395 applications as well as some
code quality metrics for each application, including number of
classes and depth of inheritance tree. Finally, in [31] a context-
aware application usage dataset with over 90 thousand entries
is provided, containing information regarding 957 users and
4082 apps. This latter dataset was the only one containing
a unique user identifying, making it the only one possible
to profile users according to their mobile application tastes,
similarly to what we accomplish in this work, although at a
much smaller scale.

III. DATASET

This section describes the dataset, provided by Aptoide, that
has been used in our experiments, including the filtering and
transformation process. In order to use collaborative filtering
approaches, explicit ratings had to be extracted. As such, the
process of converting the implicit information based on user
activity into ratings, is also addressed.

A. Preliminary analysis

Our data comprise three snapshots collected from distinct
moments throughout the year of 2020: the first is from
February, 1st, the second is from July, 1st, and the third is
from December, 1st. Each one of the snapshots contains a
list of users who had showed some activity on that given
day, such as installing, updating or uninstalling an application.
The dataset contains information about the user activity, and
a list of applications currently installed in the user’s device.
All the three snapshots account for a total of about 4.5 million
users, where the first snapshot shows the activity for about 1.3
million users, the second snapshot shows the activity for about
1 million users, and the third snapshot reports the activity for
about 2.3 million users.

Figure 1 shows an excerpt of the data that corresponds
to a user entry. Each user entry contains an origin field,
which shows the type of user activity, the timestamp of the
data retrieval, the language set on the device, the Aptoide
user id, which has been masked to comply with Aptoide’s
Data Protection Policy, alongside the user email, which has
been removed. Finally, the apps field contains a list of the
applications currently installed on the user’s device. Each
element of this list has an id field for applications from
Aptoide, a package, which reflects the application name, an
optional store field, and sometimes the number of downloads
for that application.

While the dataset corresponds to three days of user ac-
tivity only, it provides interesting insights for the universe
of the Aptoide users and available apps. Figure 2 presents
the language distributions by the users on each one of the
snapshots. The most represented languages in the user devices
are: English (32.49%), Brazilian Portuguese (19.0%), Spanish
(13.2%), Mexican Spanish (6.4%), and French (4.9%).

{ ’ o r i g i n ’ : ’APPS UPDATES’ ,
’ vers ion ’ : 1 ,
’ meta ’ : { ’ t imestamp ’ : ’2020−02−01 12:34 :56 ’} ,
’ data ’ : { ’ language ’ : ’ pt BR ’ ,

’ user ’ : { ’ hash ’ : ’AnNHezXqXM4HdLS LmB gMoDSj
. . . ’ ,

’ email ’ : None ,
’ apto ide uid ’ : ’91 a7155c3ed5f04b7e6a16720 . . . ’ ,
’ s tores ’ : [1966380] ,
’ aptoide ’ : { ’ package ’ : ’cm. apto ide . pt ’ ,

’ vercode ’ : 9682 ,
’md5sum ’ : ’182 a335603b15d3c442dfa1e0 . . . ’ } ,

’ user agent ’ : ’ aptoide − 9 . 8 . 0 . 0 ;SM−J600F (
j 6 l t e u b) ; v8 . 0 . 0 ; armv8l ;0 x0 ; i d :617eb . . . ; ; ’ ,

’ country ’ : ’ ’} ,
’ apps ’ : [
{ ’ s ignature ’ : ’BA: 1 4 : 1 7 : 4 6 :D7: 0 4 :B9:6E : . . . ’ ,

’ enabled ’ : True ,
’ package ’ : ’com. andro id . ca l l logbackup ’ ,
’ vercode ’ : 26} ,

{ ’ s ignature ’ : ’ 38 :91 :8A:45 :3D: 0 7 : 1 9 : 9 3 : 5 4 : F8 :
B1 : . . . ’ ,

’ enabled ’ : True ,
’ package ’ : ’com. google . andro id . par tnersetup ’ ,
’ vercode ’ : 26} ,

. . .
{ ’ s ignature ’ : ’BA: 1 4 : 1 7 : 4 6 :D7: 0 4 :B9:6E:D4 :DB

: . . . ’ ,
’ enabled ’ : True ,
’ package ’ : ’com. andro id . p rov ide rs .

use rd i c t i ona ry ’ ,
’ vercode ’ : 26}
]}}

Fig. 1. Example of a user entry, from one of the snapshots.

February 1st July 1st December 1st
Other 355,581 262,999 609,611
French 59,227 47,723 113,562
Spanish (Mexico) 71,679 60,883 151,736
Spanish 141,533 129,669 318,829
Portuguese (Brazil) 203,997 168,985 476,110
English 449,465 363,845 638,719

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

N
um

be
r o

f U
se

rs

Fig. 2. Set of Language by users on their devices on each snapshot.

Fig. 3 shows the number of occurrences of users who have
a certain number of installed applications for each one of
the snapshots. The greatest number of occurrences of the
last snapshot are due to the larger number of records, which
roughly corresponds to the sum of the first two snapshots.
Nonetheless, while in the first two snapshots, most of the user
devices (about 70%) include at most 3 applications provided

1

10

100

1000

10000

100000

1000000

10000000

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 >79

oc
cu

rr
en

ce
s

Number of applications per device

February July December

Fig. 3. Number of Apps per user over time.

1

10

100

1000

10000

100000

1 - 2 3 - 4 5 - 9 10 -
19

20 -
49

50 -
99

100
199

200
499

500
999

> 999

oc
cu

rr
en

ce
s

Number of device installations

February July December

Fig. 4. Number of applications installed on a given number of devices.

by Aptoide, and only about 8% of the user devices contain 10
or more applications, such statistics are quite different for the
last snapshot, where only about 32% of the devices include 3
or less applications provided by Aptoide, and about 20% of
the user devices contain 10 or more applications. Such results
show a significant tendency for the adoption of applications
provided by Aptoide.

The three snapshots contain data about 31372, 38700, 83137
distinct applications, respectively, but the vast majority was
found in only a few of the user devices. Figure 4 shows
the number of occurrences of a given number of device
installations, for each one of the snapshots. These results
depend from the number of records involved, which is also
one of the main reasons for the bigger numbers corresponding
to the last snapshot.

Finally, we have analysed the most popular applications.
Table I shows the most popular applications for each one of
the snapshots, disregarding the Aptoide system applications,
together with the proportion of users that have the respective
application installed on their device. We have observed an
increasing adoption of the Aptoide store over the time, and
the appearance of new applications in the second and third
snapshots.

TABLE I
MOST POPULAR APPLICATIONS AND RESPECTIVE FREQUENCY.

App February July December

WhatsApp Messenger 7,1% 6,9% 16,1%
Messenger 1,0% 3,7% 14,2%
Facebook 2,5% 7,6% 11,6%
Gboard - the Google Keyboard 5,2% 5,5% 7,7%
Instagram 3,2% 2,9% 11,2%
Gmail 5,1% 5,0% 5,4%
Netflix 2,0% 2,1% 5,8%
Youtube TV 2,6% 3,3% 5,2%
Google Duo 0,9% 1,3% 4,5%
Facebook Lite 2,1% 2,0% 4,3%
Microsoft Word 1,1% 0,9% 3,9%
Discord 0,3% 0,4% 3,7%
Snapchat 1,2% 1,1% 3,1%
VLC for Android 1,6% 1,2% 2,0%
Microsoft PowerPoint 0,9% 1,0% 3,0%

Fig. 5. Analysis and transformation of Aptoide’s snapshots.

B. User Activity

Only users that are present in more than one snapshot are
relevant for this work, since their activity can be inferred,
to a certain degree, based on the differences between the
corresponding lists of installed applications. The first and the
second snapshots contain about 67,389 common users, the
second and third snapshots contain about 65,521 common
users, and the first and third snapshots contain about 47,763
common users. It is also interesting to note that the intersection
of the three snapshots result in 25,234 common users, which
suggest that these snapshots cover only a very small portion
of the Aptoide users. Figure 5 illustrates the process of
creating the final dataset used for training and evaluating our
models. We have started by creating three temporary datasets,
containing activity information about the overlapping users
between a pair of origin and destination snapshots. In a second

Fig. 6. Distribution of the number of installed and uninstalled applications
per user for each time period. The green triangle represents the mean value.

stage, we have merged the three temporary datasets, containing
about 140 thousand entries, into a big dataset. Each entry in
the dataset contains 3 lists that that can be used to derive the
state of both the origin and destination snapshots: i) a list of
applications installed in the origin snapshot, ii) list of installed
applications, and iii) list of uninstalled applications. Finally,
we have discarded all the entries where the list of installed
applications was empty, which resulted into a final dataset
containing 112,281 relevant entries.

We assessed the users’ activity patterns within the three
different dates, as depicted in the box plots in Figure 6, in
which the outliers were removed. Firstly, between February
and July, the majority of users installed and uninstalled no
more than 1 Aptoide application, more specifically 62.6%
and 65,1% of users, respectively. On average, users installed
2.28 and uninstalled 2.17 applications in this time period. The
highest numbers of installed and uninstalled applications from
a single user were, respectively, 56 and 50. Between July
and December, the majority of the users, more specifically
52.2%, installed 1 Aptoide application, and 56.4% of users
did not uninstall any applications. On average, users installed
3.22 and uninstalled 1.77 applications in this time period. The
highest number of installed and uninstalled applications from
a single user was 64 and 52. Finally, between February and
December, the majority of the users installed and uninstalled
no more than 1 Aptoide application, more specifically 55.3%
and 65.2% of users, respectively. On average, users installed
2.85 and uninstalled 2.06 applications in this time period. The
highest numbers of installed and uninstalled applications from
a single user were, respectively, 71 and 56.

C. Explicit Ratings dataset

In order to quantify the preferences of the users, we have
defined a rating score based on the activity of the users. For
a given user, if an application was maintained or installed it
was scored as 2, and if the user uninstalled the application it
was scored as 1. This process resulted into a set of 3,170,780

scores for a set of 74,850 applications. However, in order to
increase the significance of our results, while also reducing
the computational complexity of our models, we have filtered
out all the applications with less than 100 ratings and removed
user entries with less than 20 ratings, which resulted in a final
dataset containing 2,102,052 scores, involving 48,863 users
and 3,181 different applications.

IV. RECOMMENDATION MODELS

This section presents the methods used to develop the
recommendation models, namely Slope One [32], Matrix
Factorization-based [33], [34], and Neighborhood-based [12],
that were used in the scope of this work. All the recom-
mendation models were built using the well-known Surprise
Library [21], commonly used for building and analyzing
recommender systems in Python. The reminder of this section
overviews each one of these models.

A. Baseline models

To better analyse our work we also leveraged two baseline
models based on simple methods. The first one is implemented
with the NormalPredictor surprise class which generates a ran-
dom prediction, r̂ui based on a normal distribution N(µ̂, σ̂2) of
the training data, Rtrain, where σ̂ and µ̂ are calculated through
Maximum Likelihood Estimation, as seen in the following
equations:

µ̂ =
1

|Rtrain|
∑

rui∈Rtrain

rui , (1)

σ̂ =

√√√√ ∑
rui∈Rtrain

(rui − µ̂)2

|Rtrain|
. (2)

Although this algorithm is a good starting point for a
baseline, it is simply a random number generator and does
not take into account the user and the item bias that better
resemble the preferences of each user, which we will consider
in Collaborative Filtering.

Our second baseline model is the same baseline estimate
used in [35] and takes these biases into consideration, by
predicting the user rating for a given application, r̂ui, through
the Equation 3, where bu and bi correspond to the user and
application bias. To estimate these values, we minimized the
regularized squared error in Equation 4, considering λ as the
regularization parameter, and using Alternating Least Squares
with the default values of the BaselineOnly surprise class.

r̂ui = µ+ bu + bi , (3)

∑
rui∈Rtrain

(rui − (µ+ bu + bi))
2 + λ(b2u + b2i) . (4)

B. Slope One

Slope One [32] is a simple, yet accurate, collaborative
filtering algorithm. The Surprise Library implementation of the
method takes into account the average difference between the
ratings of users who have at least one application in common.
The predictions can be computed as follows:

r̂ui = µu+
1

Ri(u)

∑
j∈Ri(u)

 1

Ui ∩Uj

∑
u∈Ui∩Uj

(rui − ruj)

 . (5)

In the previous equation, Ui and Uj are the sets of users
for which implicit ratings (1 or 2) have been drawn for
applications i and j, respectively, and Ri(u) is the set of items
rated by u that were also rated by users that rated item i.

C. Neighborhood based models

Another approach we used was a nearest-neighborhood
algorithm to find neighborhoods of similar users, based on
their ratings. These neighborhoods have a maximum of k
neighbors and to find this similarity between users, the model
computes the Mean Square Difference (MSD) between ratings
of the same items as seen in Equations 6 and 7, where Iu
corresponds to the list of items rated by user u. The addition
of 1 in the latter equation is to enforce a non 0 denominator.

MSD(u, v) =

∑
i∈Iu∩Iv

(rui
− rvi)

2

|Iu ∩ Iv|
, (6)

sim(u, v) =
1

1 +MSD(u, v)
. (7)

We used the KNN Basic class, which uses the KNN algo-
rithm to determine the neighborhoods Ni(.) and, afterwards,
computes the rating predictions as the weighted sum seen in
Equation 8 used in [12].

r̂ui =

∑
v∈Ni(u)

sim(u, v) · rvi∑
v∈Ni(u)

sim(u, v)
(8)

D. Matrix Factorization

The last class of tested algorithms was Matrix Factorization,
where the rating prediction is computed based on Equation 9,
where qi is the corresponding item column of the items’ latent
factors matrix Q, and pu is the corresponding user column of
the users’ latent factors matrix P . To determine these matrices
we tried two different algorithms.

r̂ui = µ+ bu + bi + qTi pu . (9)

The first method we used was Single Value Decomposition
(SVD) [36], which was popularized in the Netflix Prize [33].
We leveraged the the Surprise prediction class SVD, minimiz-
ing the following error function:

∑
rui∈Rtrain

(rui − r̂ui)
2 + λ(b2i + b2u + ||qi||2 + ||pu||2) . (10)

Stochastic Gradient Descent (SGD) was used to update the
variables bu, bi, pu, qi. Let γ be the learning rate and λ a
regularization factor. The updates can be computed as follows:

bu ← bu + γ(rui − r̂ui − λbu) ,

bi ← bi + γ(rui − r̂ui − λbi) ,

qi ← qi + γ((rui − r̂ui) · qi − λqi) ,

pu ← pu + γ((rui − r̂ui) · pu − λpu) .

(11)

Another method used was Non-negative Matrix Factoriza-
tion (NMF) [34]. We used the unbiased version, in which it
sets the same prediction as in 9, but with bu and bi with null
value. This algorithm also uses SGD, but, at each step, the
latent factors matrices are updated as follows:

pu ← pu ·
∑

i∈Iu
qi · rui∑

i∈Iu
qi · r̂ui + λu|Iu|pu

, (12)

qi ← qi ·
∑

u∈Ui
pu · rui∑

u∈Ui
qi · r̂ui + λi|Ui|pu

. (13)

V. RESULTS

This section presents the achieved evaluation results. Since
we introduced a novel dataset, we now show the results for the
previously described well-established collaborative filtering
techniques on top of our implicit binary ratings. For evaluation
metrics, we consider the Precision@k (P@k), the Recall@k
(R@k), and the F1-score@k (F1@k), which were computed
as follows:

P@k =
1

|UT|

|UT|∑
i=1

|Reli ∩ Reck,i|
|Reci|

, (14)

R@k =
1

|UT|

|UT|∑
i=1

|Reli ∩ Reck,i|
|Reli|

, (15)

F1@k =
2 P@k R@k

P@k +R@k
. (16)

In the previous equations, UT is the test set of users, Reck,i
is the set of k recommendations for the ith user, and Reli is the
set of applications deemed relevant for the ith user. Given our
implicit ratings, the recommendation threshold was set to 1.7,
since rating predictions close to 1 symbolize a high probability
of a negative user opinion of an application.

All the models were trained with 5-fold cross validation
with the KFold Surprise model iterator. We will now be
comparing the results of each model produced when tuning
their parameters. Table II contains the best results for each
algorithm. The NormalPredictor algorithm, which statistically
predicts the ratings from a normal distribution estimated from
the training data as seen in Equations 1 and 2, showed the
worst result, as expected, with a F1@20 of 0.674. The Base-
lineAlgo presented much better results, as it actually accounts
for user and item bias as seen in Equation 3, achieving a
F1@20 of 0.845.

The Slope One algorithm was the only one, besides the Nor-
malPredictor, yielding worse results than the BaselineOnly,
with an F1@20 of 0.827, as it is a very simple implementation
of collaborative filtering. Its computational cost was also
higher than the baseline, but much lower than our remaining
models.

The neighborhood based model KNNBasic produced the
best F1 results, with a maximum value of 0.892 in F1@20, but
at an extremely high computational cost. We used Surpsrise’s
default parameters and we were unable to train models with a
number of neighbors k higher than 10 with our resources. The
model with this aggregation parameter set to 5 had a slightly
better P@20 of 0.886 and worse R@20 of 0.856 and F1@20
of 0.871, when compared to the model with the aggregation
parameter set to 10, which yielded a P@20 of 0.882, a R@20
of 0.856 and F@20 of 0.892.

For the SVD algorithm we used Surprise’s default parameter
values and a learning rate of 0.2 during training to compare our
models when varying the number of latent factors between 10,
20, 50, 100 and 200, and the number of epochs between 10, 25,
50, 75, 100 and 200, as seen in figure 7. As expected, a higher
number of epochs produced better results, as well as a higher
number of latent factors, since they allowed a more rigorous
profile of our users and applications, at a computational cost.
This model produced the highest P@5 of 0.913, which was
obtained with 200 latent factors and 200 epochs.

Finally, the NMF algorithm produced very similar results to
the SVD, and even produced the highest recall value of 0.971
in R@20, but it was much more difficult to train as it is highly
dependent on initial values. As an example of the impact the
initialization has on this recommendation system, by changing
the bounds of the random initialization of factors from (0.0,
1.0) to (0.0, 0.2), the F1@10 for the NMF model with 25
epochs and 100 factors changed from 0.0005 to 0.7583. Apart
from these parameters, we used Surprise’s default parameters
and compared our models when varying the number of latent
factors between 10, 20, 50, 100 and 200, and the number
of epochs between 20, 50, 100 and 200. The F1@10 results
from this algorithm can be seen in figure 8, where all the
models were initialized with values between 0.1 and 0.4, as
these produced the best scores.

VI. CONCLUSION

This work introduces a novel dataset provided by Aptoide
that reports the installed applications for over 4 million users
in three different daily snapshots during 2020. We analysed
the behavior of the users that appear in the three snapshots,
inferring implicit binary ratings for applications based on
installs and uninstalls. We have compared six well-established
collaborative filtering techniques on top of the binary ratings.
These models were trained using a 5-fold cross validation with
an 80/20 training/test dataset split, and evaluated using the
Precision@k, Recall@k, and F1-score@k metrics.

The presented findings found that for this dataset, the SVD-
based model achieves the higher precision results, and the
NMF-based achieves the best recall ones. However, at an

TABLE II
BEST RESULTS FOR EACH ALGORITHM, EVALUATED WITH P@5,10,20, R5,10,20, AND F1@5,10,20.

Training Precision Recall F1-score

Algorithm time [s] @5 @10 @20 @5 @10 @20 @5 @10 @20

NormalPredictor 39 0,786 0,786 0,786 0,526 0,579 0,590 0,630 0,667 0,674
BaselineOnly 56 0,869 0,869 0,859 0,698 0,806 0,831 0,774 0,837 0,845
SlopeOne 105 0,858 0,850 0,849 0,673 0,780 0,806 0,754 0,813 0,827
KNNBasic 5493 0,895 0,884 0,882 0,754 0,875 0,903 0,818 0,880 0,892
SVD 3917 0,913 0,905 0,903 0,719 0,827 0,853 0,804 0,864 0,877
NMF 611 0,832 0,821 0,819 0,762 0,931 0,971 0,795 0,873 0,888

0,780
0,790
0,800
0,810
0,820
0,830
0,840
0,850
0,860
0,870

10 25 50 75 100 200

Number of epochs

10 20 50 100 200 Latent Factors

Fig. 7. F1@10 performance of the SVD models.

0,680
0,700
0,720
0,740
0,760
0,780
0,800
0,820
0,840
0,860
0,880
0,900

20 50 100 200

Number of epochs

20 50 100 200 Latent Factors

Fig. 8. F1@10 performance of the NMF models.

higher computational cost, the KNNBasic model achieves a
better trade-off between both, yielding the higher F1-scores.

This way, we were able to successfully benchmark this
dataset for recommendation, presenting the results for the
most well-known techniques, thus allowing future experiments
with different techniques. However, due to our computational
limitations, we were not able to fully leverage this extensive
dataset, since we excluded a lot of applications with few
ratings, leading us not to address the cold start problem.

Future directions include the study of semantic relations
between applications, in order to better detect similar apps that
might not be that popular [37]. Also, recent work has studied
the benefits of the usage of auto-encoders for collaborative
filtering, and such approaches can be considered leveraging
our dataset and implicit feedback [38]–[40]. Additionally, we

only took into consideration the installs and uninstalls from
users, but it could be interesting to implement an hybrid model,
as in [41], that combines demographic information (such as
age, location) in an attempt to increase the accuracy of user
similarity. Finally, the chosen binary rating makes the overall
task easier, and this may have impacted the overall perfor-
mance. Other possible approach to a more comprehensive
characterization of users’ profiles may take into account the
change of users’ likes over time, as explored in [42].

ACKNOWLEDGMENTS

This work was supported by PT2020 project number 39703
(AppRecommender) and by national funds through FCT,
Fundação para a Ciência e a Tecnologia, under projects
UIDB/50021/2020 and UIDB/04466/2020.

REFERENCES

[1] J. B. Schafer, J. A. Konstan, and J. Riedl, “E-commerce recommendation
applications,” Data Min. Knowl. Discov., vol. 5, no. 1/2, pp. 115–153,
2001. [Online]. Available: https://doi.org/10.1023/A:1009804230409

[2] R. Zhou, S. Khemmarat, and L. Gao, “The impact of youtube
recommendation system on video views,” in Proceedings of the
10th ACM SIGCOMM Internet Measurement Conference, IMC 2010,
Melbourne, Australia - November 1-3, 2010, M. Allman, Ed.
ACM, 2010, pp. 404–410. [Online]. Available: https://doi.org/10.1145/
1879141.1879193

[3] B. Smith and G. Linden, “Two decades of recommender systems at
amazon.com,” IEEE Internet Comput., vol. 21, no. 3, pp. 12–18, 2017.
[Online]. Available: https://doi.org/10.1109/MIC.2017.72

[4] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM Conference
on Recommender Systems, Boston, MA, USA, September 15-19, 2016,
S. Sen, W. Geyer, J. Freyne, and P. Castells, Eds. ACM, 2016, pp.
191–198. [Online]. Available: https://doi.org/10.1145/2959100.2959190

[5] R. M. Bell and Y. Koren, “Lessons from the netflix prize challenge,”
SIGKDD Explor., vol. 9, no. 2, pp. 75–79, 2007. [Online]. Available:
https://doi.org/10.1145/1345448.1345465

[6] D. Goldberg, D. A. Nichols, B. M. Oki, and D. B. Terry, “Using
collaborative filtering to weave an information tapestry,” Commun.
ACM, vol. 35, no. 12, pp. 61–70, 1992. [Online]. Available:
https://doi.org/10.1145/138859.138867

[7] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: An open architecture for collaborative filtering of
netnews,” in CSCW ’94, Proceedings of the Conference on Computer
Supported Cooperative Work, Chapel Hill, NC, USA, October 22-26,
1994, J. B. Smith, F. D. Smith, and T. W. Malone, Eds. ACM, 1994, pp.
175–186. [Online]. Available: https://doi.org/10.1145/192844.192905

[8] J. S. Breese, D. Heckerman, and C. M. Kadie, “Empirical analysis
of predictive algorithms for collaborative filtering,” in UAI ’98:
Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, University of Wisconsin Business School, Madison,
Wisconsin, USA, July 24-26, 1998, G. F. Cooper and S. Moral,

https://doi.org/10.1023/A:1009804230409
https://doi.org/10.1145/1879141.1879193
https://doi.org/10.1145/1879141.1879193
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/1345448.1345465
https://doi.org/10.1145/138859.138867
https://doi.org/10.1145/192844.192905

Eds. Morgan Kaufmann, 1998, pp. 43–52. [Online]. Available:
https://dl.acm.org/doi/10.5555/2074094.2074100

[9] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. Riedl,
“Evaluating collaborative filtering recommender systems,” ACM Trans.
Inf. Syst., vol. 22, no. 1, pp. 5–53, 2004. [Online]. Available:
https://doi.org/10.1145/963770.963772

[10] G. Salton and M. McGill, Introduction to Modern Information Retrieval.
McGraw-Hill Book Company, 1984.

[11] J. L. Herlocker, J. A. Konstan, and J. Riedl, “An empirical
analysis of design choices in neighborhood-based collaborative filtering
algorithms,” Inf. Retr., vol. 5, no. 4, pp. 287–310, 2002. [Online].
Available: https://doi.org/10.1023/A:1020443909834

[12] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl, “Item-based
collaborative filtering recommendation algorithms,” in Proceedings of
the Tenth International World Wide Web Conference, WWW 10, Hong
Kong, China, May 1-5, 2001, V. Y. Shen, N. Saito, M. R. Lyu, and
M. E. Zurko, Eds. ACM, 2001, pp. 285–295. [Online]. Available:
https://doi.org/10.1145/371920.372071

[13] M. D. Ekstrand, F. M. Harper, M. C. Willemsen, and J. A. Konstan,
“User perception of differences in recommender algorithms,” in Eighth
ACM Conference on Recommender Systems, RecSys ’14, Foster City,
Silicon Valley, CA, USA - October 06 - 10, 2014, A. Kobsa, M. X.
Zhou, M. Ester, and Y. Koren, Eds. ACM, 2014, pp. 161–168.
[Online]. Available: https://doi.org/10.1145/2645710.2645737

[14] S. Funk, “Netflix update: Try this at home.” [Online]. Available:
http://sifter.org/∼simon/journal/20061211.html

[15] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.
[Online]. Available: https://doi.org/10.1109/MC.2009.263

[16] D. K. Bokde, S. Girase, and D. Mukhopadhyay, “Role of matrix
factorization model in collaborative filtering algorithm: A survey,”
CoRR, vol. abs/1503.07475, 2015. [Online]. Available: http://arxiv.org/
abs/1503.07475

[17] D. W. Oard, J. Kim et al., “Implicit feedback for recommender systems,”
in Proceedings of the AAAI workshop on recommender systems, vol. 83.
WoUongong, 1998, pp. 81–83.

[18] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Proceedings of the 8th IEEE International
Conference on Data Mining (ICDM 2008), December 15-19, 2008,
Pisa, Italy. IEEE Computer Society, 2008, pp. 263–272. [Online].
Available: https://doi.org/10.1109/ICDM.2008.22

[19] R. Bunga, F. Batista, and R. Ribeiro, “From implicit preferences
to ratings: Video games recommendation based on collaborative
filtering,” in Proceedings of the 13th International Joint Conference
on Knowledge Discovery, Knowledge Engineering and Knowledge
Management, IC3K 2021, Volume 1: KDIR, Online Streaming,
October 25-27, 2021, R. Cucchiara, A. L. N. Fred, and J. Filipe,
Eds. SCITEPRESS, 2021, pp. 209–216. [Online]. Available: https:
//doi.org/10.5220/0010655900003064

[20] Y. Hu, F. Xiong, D. Lu, X. Wang, X. Xiong, and H. Chen,
“Movie collaborative filtering with multiplex implicit feedbacks,”
Neurocomputing, vol. 398, pp. 485–494, 2020. [Online]. Available:
https://doi.org/10.1016/j.neucom.2019.03.098

[21] N. Hug, “Surprise: A python library for recommender systems,” J.
Open Source Softw., vol. 5, no. 52, p. 2174, 2020. [Online]. Available:
https://doi.org/10.21105/joss.02174

[22] T. Liang, L. Zheng, L. Chen, Y. Wan, P. S. Yu, and J. Wu, “Multi-view
factorization machines for mobile app recommendation based on
hierarchical attention,” Knowl. Based Syst., vol. 187, 2020. [Online].
Available: https://doi.org/10.1016/j.knosys.2019.06.029

[23] J. Lin, K. Sugiyama, M. Kan, and T. Chua, “New and improved:
modeling versions to improve app recommendation,” in The 37th
International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’14, Gold Coast , QLD, Australia -
July 06 - 11, 2014, S. Geva, A. Trotman, P. Bruza, C. L. A. Clarke,
and K. Järvelin, Eds. ACM, 2014, pp. 647–656. [Online]. Available:
https://doi.org/10.1145/2600428.2609560

[24] H. Yin, W. Wang, L. Chen, X. Du, Q. V. H. Nguyen, and Z. Huang,
“Mobi-sage-rs: A sparse additive generative model-based mobile
application recommender system,” Knowl. Based Syst., vol. 157, pp.
68–80, 2018. [Online]. Available: https://doi.org/10.1016/j.knosys.2018.
05.028

[25] R. C. Jisha, R. Krishnan, and V. Vikraman, “Mobile applications
recommendation based on user ratings and permissions,” in 2018

International Conference on Advances in Computing, Communications
and Informatics, ICACCI 2018, Bangalore, India, September 19-22,
2018. IEEE, 2018, pp. 1000–1005. [Online]. Available: https:
//doi.org/10.1109/ICACCI.2018.8554691

[26] K. Lin, Y. Chang, C. Shen, and M. Lin, “Leveraging online word of
mouth for personalized app recommendation,” IEEE Trans. Comput.
Soc. Syst., vol. 5, no. 4, pp. 1061–1070, 2018. [Online]. Available:
https://doi.org/10.1109/TCSS.2018.2878866

[27] X. Xu, K. Dutta, A. Datta, and C. Ge, “Identifying functional aspects
from user reviews for functionality-based mobile app recommendation,”
J. Assoc. Inf. Sci. Technol., vol. 69, no. 2, pp. 242–255, 2018. [Online].
Available: https://doi.org/10.1002/asi.23932

[28] M. Böhmer, B. J. Hecht, J. Schöning, A. Krüger, and G. Bauer, “Falling
asleep with angry birds, facebook and kindle: a large scale study
on mobile application usage,” in Proceedings of the 13th Conference
on Human-Computer Interaction with Mobile Devices and Services,
Mobile HCI 2011, Stockholm, Sweden, August 30 - September 2, 2011,
M. Bylund, O. Juhlin, and Y. Fernaeus, Eds. ACM, 2011, pp. 47–56.
[Online]. Available: https://doi.org/10.1145/2037373.2037383

[29] A. Al-Hawari, “A dataset of mobile application reviews for classifying
reviews into software engineering’s maintenance tasks using data mining
techniques,” Mendeley Data, 2019.

[30] G. Grano, A. D. Sorbo, F. Mercaldo, C. A. Visaggio, G. Canfora,
and S. Panichella, “Android apps and user feedback: a dataset for
software evolution and quality improvement,” in Proceedings of the
2nd ACM SIGSOFT International Workshop on App Market Analytics,
WAMA@ESEC/SIGSOFT FSE 2017, Paderborn, Germany, September
5, 2017, F. Sarro, E. Shihab, M. Nagappan, M. C. Platenius, and
D. Kaimann, Eds. ACM, 2017, pp. 8–11. [Online]. Available:
https://doi.org/10.1145/3121264.3121266

[31] L. Baltrunas, K. Church, A. Karatzoglou, and N. Oliver, “Frappe:
Understanding the usage and perception of mobile app recommendations
in-the-wild,” CoRR, vol. abs/1505.03014, 2015. [Online]. Available:
http://arxiv.org/abs/1505.03014

[32] D. Lemire and A. Maclachlan, “Slope one predictors for online rating-
based collaborative filtering,” Proceedings of the 2005 SIAM Interna-
tional Conference on Data Mining, SDM 2005, vol. 5, 02 2007.

[33] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, 2009.

[34] X. Luo, M. Zhou, Y. Xia, and Q. Zhu, “An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender
systems,” IEEE Trans. Ind. Informatics, vol. 10, no. 2, pp. 1273–1284,
2014. [Online]. Available: https://doi.org/10.1109/TII.2014.2308433

[35] Y. Koren, “Factor in the neighbors: Scalable and accurate collaborative
filtering,” ACM Trans. Knowl. Discov. Data, vol. 4, no. 1, pp. 1:1–1:24,
2010. [Online]. Available: https://doi.org/10.1145/1644873.1644874

[36] V. Klema and A. Laub, “The singular value decomposition: Its compu-
tation and some applications,” IEEE Transactions on Automatic Control,
vol. 25, no. 2, pp. 164–176, 1980.

[37] J. Kim, S. Kang, Y. Lim, and H. Kim, “Recommendation algorithm
of the app store by using semantic relations between apps,” J.
Supercomput., vol. 65, no. 1, pp. 16–26, 2013. [Online]. Available:
https://doi.org/10.1007/s11227-011-0701-6

[38] I. Shenbin, A. Alekseev, E. Tutubalina, V. Malykh, and S. I. Nikolenko,
“Recvae: A new variational autoencoder for top-n recommendations with
implicit feedback,” in Proceedings of the International Conference on
Web Search and Data Mining, 2020.

[39] H. Steck, “Embarrassingly shallow autoencoders for sparse data,” in
Proceedings of The World Wide Web Conference, 2019.

[40] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational
autoencoders for collaborative filtering,” in Proceedings of the World
Wide Web Conference, 2018.

[41] Y. Afoudi, M. Lazaar, and M. A. Achhab, “Intelligent recommender
system based on unsupervised machine learning and demographic
attributes,” Simul. Model. Pract. Theory, vol. 107, p. 102198, 2021.
[Online]. Available: https://doi.org/10.1016/j.simpat.2020.102198

[42] G. Xu, Z. Tang, C. Ma, Y. Liu, and M. Daneshmand, “A collaborative
filtering recommendation algorithm based on user confidence and
time context,” J. Electr. Comput. Eng., vol. 2019, pp. 7 070 487:1–
7 070 487:12, 2019. [Online]. Available: https://doi.org/10.1155/2019/
7070487

https://dl.acm.org/doi/10.5555/2074094.2074100
https://doi.org/10.1145/963770.963772
https://doi.org/10.1023/A:1020443909834
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/2645710.2645737
http://sifter.org/~simon/journal/20061211.html
https://doi.org/10.1109/MC.2009.263
http://arxiv.org/abs/1503.07475
http://arxiv.org/abs/1503.07475
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.5220/0010655900003064
https://doi.org/10.5220/0010655900003064
https://doi.org/10.1016/j.neucom.2019.03.098
https://doi.org/10.21105/joss.02174
https://doi.org/10.1016/j.knosys.2019.06.029
https://doi.org/10.1145/2600428.2609560
https://doi.org/10.1016/j.knosys.2018.05.028
https://doi.org/10.1016/j.knosys.2018.05.028
https://doi.org/10.1109/ICACCI.2018.8554691
https://doi.org/10.1109/ICACCI.2018.8554691
https://doi.org/10.1109/TCSS.2018.2878866
https://doi.org/10.1002/asi.23932
https://doi.org/10.1145/2037373.2037383
https://doi.org/10.1145/3121264.3121266
http://arxiv.org/abs/1505.03014
https://doi.org/10.1109/TII.2014.2308433
https://doi.org/10.1145/1644873.1644874
https://doi.org/10.1007/s11227-011-0701-6
https://doi.org/10.1016/j.simpat.2020.102198
https://doi.org/10.1155/2019/7070487
https://doi.org/10.1155/2019/7070487

