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Abstract— The LMMSE (Linear Minimum Mean Square Error) 
algorithm are one of the best linear receivers for DS-CDMA 
(Direct Sequence-Code Division Multiple Access). However, for 
the case of MIMO/BLAST (Multiple Input, Multiple Output / 
Bell Laboratories Layered Space Time) with high loading, the 
perceived complexity of the LMMSE receiver is taken as too big, 
and thus other types of receivers are employed, yielding worse 
results. In this paper, we investigate the complexity of the 
solution to the MIMO LMMSE receiver’s equations using Block-
Fourier algorithms, for both steady and unsteady channel 
situations. 

Keywords- MMSE, MIMO,Block Fourier, unsteady channels. 

I. INTRODUCTION 

The LMMSE algorithm (explained in detail in [1] and [2]), or 
algorithms based on them, are equalizers that are essential for 
compensating the various error sources that are present in the 
wireless communication link, such as ISI (Inter-Symbolic 
Interference) and MAI (Multiple Access Interference), which 
become more significant as the loading of the system is 
increased, with special incidence on MIMO systems.    
The Block-Fourier algorithms, presented in [3],[4] for the ZF 
algorithm, are only suitable for constant channel conditions. In 
this work new versions of these algorithms are derived, capable 
of dealing with detection in unsteady channels with speeds up 
to 100km/h. These new algorithms are based in the partitioned 
block-Fourier algorithms of earlier works [3],[4], but extra 
steps were added to take in consideration the channel change 
from partition to partition. Inside each partition the channel is 
considered constant (thus providing approximate, yet 
reasonable results). The new algorithms, although more 
computationally expensive than the ones presented in earlier 
works, are not as expensive as the Gauss or Cholesky 
algorithms (that provide exact results). 

The paper is organized as follows. Section II describes the 
Block Fourier (BF) algorithm. Section III introduces the 
LMMSE algorithm (similar to the Zero Forcing (ZF) 
algorithm, without the noise estimation figure), alongside the 

notion of matrix partitioning for solving the system equation. 
Simulation results are discussed in section IV, and the 
conclusions are given on Section V.  

II. BLOCK FOURIER ALGORITHM  

The BF algorithm can be easily applied for circulant matrices. 
Since in our case, the matrices we deal with are block-
circulant, we will exploit this structure.  
 
A. Diagonalizing Circulant Matrices 
A circulant matrix is a square Toeplitz matrix with each 
column being a rotated version of the column to the left of it: 
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The interesting property of circulant matrices is that its 
eigenvectors matrix is equal to the orthonormal DFT matrix 

nF ′  of corresponding dimension n . 
nF ′  can be written as: 

*n nn′ =F F  (2) 

where
nF  is the non-orthonormal DFT matrix: 
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with 2 /j ne πω −= ; 1j = − . 
Using this property a circulant matrix C , can be decomposed 
in: 

1 1
n n

− −′ ′= =C F � � �  (4) 

where Λ  is a diagonal matrix that contains the eigenvalues of 
C . The Λ matrix can be easily computed from: 

( (:,1))diag= )&  (5) 
where ( )d i a g x  represents the diagonal matrix whose 
diagonal elements are taken from the x  vector. Substituting C  
by (4) in the linear system: 



=Cx b  (6) 
and solving for x  results in: 

1 1− −=x F )E  (7) 
Equation (7) can be computed efficiently with three discrete 
Fourier transforms and the inversion of the diagonal matrix . 
The complete solution would require 23n  complex 
multiplication/addition pairs for the three DFT matrix/vector 
multiplications; n  complex divisions to invert ; and n  
complex multiplications to multiply 1−  by Fb . 
Using the Cooley & Tukey Fast Fourier Transform algorithm 
the complex multiplication/addition operation pairs needed to 
compute a size n  DFT [3] is:  

2lo g
2

C
F F T

n n⊕ ⊗ =N  (8) 

This means that equation (7) can be computed spending 

only
2

3
log 2

2
n n +  

 complex floating point operations 

(considering each multiplication/addition pair as one 
operation). The memory requirements to solve the system 
using such algorithm are also very modest. It’s only necessary 
to keep in memory two size n  vectors: the b  vector and the 
first column of C . All operations can be made in-place as the 
solution vector x  replaces b . Further economy can be 
achieved if C  is sparse (band or block diagonal for example). 
 
B. Application to Block-Circulant Matrices 
A block-circulant matrix can be visualized as a circulant 
matrix where each element is a matrix instead of a scalar 
value. Consider a block-circulant matrix 

( )PQC  composed by 

N N×  blocks of size P Q× . If 
( )

NP NQ
PQ

×∈C ^  is block-

circulant it must satisfy: 

( ) , ( ) ,P Q i j P Q i j=C C �	�  (9) 

with ( ( 1 ) m o d ) 1

( ( 1 ) m o d ) 1

i i P N P

j j Q N Q

= + − +
= + − +






. This means that each 

element of 
( )PQC  is repeated P rows below and Q columns to 

the right of it. Indices that exceed the NP lines or NQ columns 
wrap around to the first lines and first columns, respectively. 
From now on we will consider only square block matrices 
with N N×  blocks, so the N  index will be omitted for 
simplicity. The block dimensions of the matrix will be 
represented in subscript between curve brackets, and in the 
case of square blocks matrices, only a dimension represented. 
To deal with block circulant matrices we need to introduce the 
block-Fourier transformation. The block-Fourier matrix is 
defined as: 

( )K N K= ⊗F F I  (10) 

where 
NF  is a non-orthonormal DFT matrix of dimension N  

as defined in (2); 
KI  is the K  size identity matrix; and ⊗  

denotes the Kronecker product. 
Similar to the last sub-section, a block-circulant matrix can 
also be decomposed using block-Fourier transforms: 

1
( ) ( ) ( ) ( )PQ P PQ Q

−=C F )  (11) 

where 
( )PQΛ is a block-diagonal matrix computed from: 

( ) ( ) ( ) ( )( ( : ,1 : ) )P Q P Q Q P Qd ia g Q= �
�  (12) 

where 
( ) ( )PQdiag x  represents the block-diagonal matrix  whose 

block-elements are the P Q×  sized blocks of x . Similarly to 
the circulant systems, a block-circulant system can also be 

efficiently solved using the block-Fourier decomposition. The 
block-circulant system: 

( )P =C x b  (13) 

with 
( )

NP NP
P

×∈C ^ ; NP∈x ^ ; NP∈b ^ . It can be solved with: 
1 1

( ) ( ) ( )P P P
− −=x F ) E  (14) 

If the blocks are not square the Moore-Penrose pseudoinverse 
concept can be used. Consider a block-circulant matrix 

( )
NP NQ

PQ
×∈C ^ , with P Q×  sized blocks.  

( )PQ =C x b , (15) 

( )
NP NQ

PQ
×∈C ^ ; NQ∈x ^ ; NP∈b ^ ; Q P≤ . 

The system (15) can be solved using the Moore-Penrose 
pseudo-inverse of the complex matrix 

( )PQC : 

( ) 1

( ) ( ) ( )
H H
PQ PQ PQ

−
=x C C C b  (16) 

if ( ) ( )
H
PQ PQC C

 is invertible. 
This solution is the least squares solution (ZF) to the system 
(15), as previously shown. Applying the block-Fourier 
decomposition of (11) to (16) results: 
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with (PQ)  defined as in (12). 
Equation (17) can be simplified, considering that 1

( ) ( )
H
K K

−=F F : 
11 H H

( ) (PQ) (PQ) (PQ) ( )Q P

−−  =  x F ) E  (18) 

This solution can be computed with only three block-Fourier 
transforms, the inversion of H

(PQ) (PQ)
 and the multiplication 

of two block diagonal matrices by a column vector. The 
multiplication  

( )1H H
(PQ) (PQ) (PQ) ( )P

−
  ∗ ∗  ) E  (19) 

must be performed from right to left to minimize the number 
of operations required, since a matrix-vector multiplication is 
faster than a matrix-matrix one. Regarding that: 
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the multiplication (19) requires ( )NP NQ NQ+  pairs of 
complex multiplications/additions. From the definition of 
block-Fourier transform in (10) it can be shown that given  

( )K=y F x  (21) 

with , NK∈x y ^ ; 
( )

NK NK
K

×∈F ^ , we have: 

( ) ( ): : ( 1) : : ( 1)Ni K N K i i K N K i− + = − +y F x  (22) 

with 1 i K≤ ≤ , where NF  represents a non-orthonormal DFT 

matrix of dimension N  as defined in (3). 
This simply means that each block-Fourier transform of block-
size K  can be decomposed in K  Fourier transforms of size 
N . Furthermore, each Fourier transform can be executed 
independently of each other and thus advantage of parallel 
hardware implementations can be taken. Taking this into 
consideration, recalling equation (8) and considering that are 
needed two block-Fourier transforms of block-size Q  and one 
of block-size P  to compute (18), the number of operations 
required for that three Fourier transforms is: 

2
3

lo g
(2 )

2
C

blo ck F F T

N N
N Q P⊕ ⊗

− = +  (23) 



Due to finite precision round errors, the 
kR  matrices may not 

be Hermitian positive definite even if 
( ) ( )
H
PQ PQC C  is Hermitian 

positive definite. This can be corrected simply by removing 
the imaginary part of the diagonal elements and zeroing all 
other elements that have complex modulus below some 
threshold value, before applying the Cholesky factorization. 
This new simplified versions require the same number of 
floating point operations as derived before because null 
elements operations were not considered from the beginning. 
 

III. LMSSE DETECTOR 

The equation of the LMMSE detector is [1]: 

( ) 12ˆ σ
−

= +H H
n Qd T T I T e  (24) 

where e is the received symbols vector, after the spreading and 
channel effects (represented by matrix T), and corrupted by 
AWGN (n).   

e T d n= +  (25)  
T  is not square, in general. Figure 1 (left) represents the 
structure of T . 

 
Figure 1 – Block Structure of the T  matrix (left), Extended T  

matrix, constant channel (right) 
 
T  is a block matrix with 

nV  blocks disposed along its 

diagonal. 
All N  blocks are equal in a constant channel condition. Even 
if the channel varies slowly it can be a reasonably 
approximation to consider all 

nV  block equal as we will 
investigate later. In a constant channel condition, it’s easy to 
extend matrix T  to become block-circulant, simply by adding 
extra block-columns to it, as shown in Figure 1 (right). The 
elements below the last 

aV  block wrap around to the top of the 

columns. The number of extra columns needed to make T  
block-circulant is: 

/ 1E N n H P= − = −    (26) 

We have also to extend the noise matrix 2σ= nQN I . This can 

also be done just by adding E lines & columns to it, obtaining 
the new noise matrix: 

2σ=NQ NQN I  (27) 

The block-circulant version of the MMSE detector becomes: 

( ) 1

( ) ( ) ( )
ˆ −≈ ′= +H H

PQ PQ NQ PQd T T N T e , (28) 

( )
NP NQ

PQT ×∈^ ; ×∈\
NQ NQ

NQN ; ˆ NQd ≈ ∈^ ; NPe′∈^  

 
and solved with the Fourier method, as done for equation (15) 
in last section. The e′  vector can be obtained from e  by 
padding at its end with ( 1)N n P H− + −  zeros, and  d̂  can be 

extracted from the first nQ  elements of  d̂ ≈ . The block-

circulant matrices can be decomposed using the block-Fourier  
transform as 

1
( ) ( ) ( ) ( )

−= ΛPQ P PQ QT F F  (29) 
1

( ) ( )
−= ΛNQ Q N QN F F  (30) 

where: 

( ) ( ) ( ) ( )( (:,1: ))Λ =PQ PQ Q PQdiag F T Q  (31) 

( ) ( )( (:,1: ))Λ =N QQ Q NQdiag F N Q  (32) 
×Λ ∈^

NQ NQ
N

 

Replacing (29) and (30) in equation (28) results: 

( )
( )

1
1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( )

ˆ
−

− − −

−

 = Λ Λ + Λ ⋅  

⋅ Λ

H

P PQ Q P PQ Q Q N Q

H

P PQ Q

d F F F F F F
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Considering that 1
( ) ( )
H
K KF F −= , last equation can be simplified: 

( ) 11
( ) ( ) ( ) ( ) ( )

ˆ −−= Λ Λ + Λ ⋅ΛH H
Q PQ PQ N PQ Pd F F e  (34) 

Since 
NQN  is a diagonal matrix and from the definition of the 

block-Fourier matrix [3] it can be shown that: 

( ) ( )( (:,1: ))QQ Q NQ NQdiag F N Q N=  (35) 

This is true only when the 
NQN  matrix is a block-diagonal 

matrix composed by N equal blocks of size Q. 
Now equation (34) can be rewritten as: 

( ) 11 2
( ) ( ) ( ) ( ) ( )

ˆ H H
Q PQ PQ NQ PQ Pd F I F eσ

−−= Λ Λ + ⋅Λ  (36) 

This equation can be used in the derivation of new algorithms 
based in the work already done for the Zero-forcing detector. 

The extension is very obvious since  2
NQIσ  is a real positive 

diagonal matrix that added to ( ) ( )
H
PQ PQΛ Λ  results in a block-

diagonal matrix whose blocks remains positive definite 
Hermitian. This means that they can be inverted with the 
Cholesky algorithm as done for the Zero-forcing detector. 
The MMSE algorithms require more NQ real floating point 
additions in the non-partitioned case, more LQ real floating 
point additions in the constant channel partitioned case, and 
more FLQ real floating point additions in the partitioned 
unsteady channel case. 
There are two approximations in the transformation of T  in 

( )PQT : all 
nV  blocks were made equal and extra columns/lines 

were added to the matrix. If all blocks were made equal to the 
first block, the approximation would be increasingly worse 
(directly correlated to the speed) towards the last block.  
A better approximation would be expected if a middle block 
was used. Let us use the middle block of T  if n  is even or the 
left-middle block if n  is odd: 

( )/ 2n
V V

  
=  (37) 

Using this method, better approximations in a wider central 
range can be attained, as shown in Figure 2. Nevertheless, the 
approximation is very poor for the firsts and lasts elements of 
the d̂  vector. The last pictures make obvious that the methods 
presented in [3],[4], although valid for a constant channel 
condition, are not very useful if the channel changes, even if 
low speeds are considered. 
We will first concentrate on constant channel conditions. First 
we will determine the error level introduced by the addition of 



extra columns/lines to the T  matrix that transform it in the 
block-circulant matrix 

( )PQT , as explained before and the error 

of the block-Fourier algorithm. 
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Figure 2 – Constant channel approximation relative error 

(PedestrianA, minimum load, 4x4 antennas) – Middle block. 
 
A. Constant Channel Conditions 
Table 1 show the error level introduced in the determination of 
vector d̂  by each phase of the detection process in 12 constant 
channel situations. Each value is the maximum complex 
modulus of the relative difference between the estimated d̂  
and real d  obtained in 100 runs with distinct random d  
vectors. The “Estimation” column indicates the maximum 
error of solving the MMSE equation directly. The “Circulant” 
column shows the maximum error introduced by the extension 
of the T  matrix to become 

( )PQT  relative to the estimated 

solution. The “Fourier1” and “Fourier2” columns show the 
maximum error introduced by the use of the Fourier 
algorithms 1 and 2 compared with the circulant system 
solution. 
Since a SF=16 is considered, the minimum load situation 
corresponds to 0 interferers while the maximum load situation 
correspond to 15 interferes (with each user having only 1 
physical channel). As can be seen the errors are very low for 
all the tested matrices and are only slightly above the floating 
point precision used. Furthermore the T  matrix extension is 
not the main error cause. 
Table 1 – Maximum absolute error introduced by each phase 

of the Zero-Forcing detector 

 
 
It can be seen that the error level is constant along the entire 
symbol vector and no beginning neither end high error levels 
appear, since no multipath interference from adjacent blocks is 
being considered. Excluding the midamble from the detection 
and splitting the process in two independent detections, each 
one involving only data symbols, some errors can be 
introduced in the beginning of the second data chunk. This can 
be corrected by including some symbols of the midamble in 
the second detection process. 
 

Table 2 – Number of operations required by the Block-Fourier 
algorithm 

 
B. Partitioning 
The algorithms proposed in last sub-section reveal already 
many parallel paths that could be exploited for parallel 
processing in adequate hardware. Nevertheless the algorithm 
remains globally sequential since it only determines the 
estimated d̂ ≈  vector at the end. 
Figure 3 illustrates an approach to split the extended MMSE 
equation in smaller systems. Figure 3 represents 

( ) ( )
H

Q PQ PQS T T=  and the estimated vector d̂ ≈ . The idea is to 

split the 
QS  matrix in smaller ones. This can be an reasonable 

approximation because the 
QS  has the greater values 

concentrated around the diagonal, and decreasing modulus as 
we get far away from the diagonal. This means that each 
element of vector d̂ ≈  depends mainly of the same index value 
of vector 

( )
H
PQT e′  and it depends less and less of the values of it 

as we get farther from that same index value.  
Since each partition just approximates well the middle values, 
the d̂ ≈  values of the beginning and end of each partition must 
be discarded. In the simulations it will be discarded the first 

l − and last l +  elements of each d̂ ≈  partition. 
Note that since the block-Fourier algorithm will be applied at 
each partition, and because each partition has to be 
approximated as a block-circulant matrix, high error will 
appear also in the first elements of the first partition and in the 
last elements of the last partition. This would not happen if 
each partition would be solved with an exact method like 
Gauss or Cholesky. This is the reason why those elements are 
also discarded in Figure 3. 

 
Figure 3 – Partitioning block-Fourier algorithm 

 
The overlapping length must be carefully selected accordingly 
the precision required. The bigger the overlapping the better 
the approximation but more expensive will be the 

computation. In the derivation of the algorithms a prelap −l  



and postlap +l  were defined in a similar way as done in [4] 

but we shall always use l l− += , since there is no advantage 
of defining dissimilar overlapping lengths. The partition 
length can be selected according the number of intended 
partitions and the overlapping selected, and this is usually 
determined by the hardware structure. 

C. Unsteady Channel Conditions 
The block-Fourier algorithm presented so far works well just 
under constant channel conditions or with very slow changing 
speeds. Even at 1 Km/h significant errors arise. The standard 
block-Fourier algorithm cannot be adapted for unsteady-
channel conditions because it just works for block-circulant 
matrices, but the partitioned version can be easily adapted just 
by using in each partition a different block of the original T 
matrix.  If we use the middle block in each partition of the 
original  T  matrix to construct each extended 
approximate ( )PQT , the block-Fourier algorithm can be used 

for each partition as done in the last sub-section, and d̂ ≈  
obtained from the middle elements of each partition 
computation. 
The overlapping length must be selected accordingly the 
precision required as for the constant channel. The bigger the 
overlapping the better the approximation but more expensive 
will be the computation. 
The partition length now must be also selected according the 
precision required: bigger partitions will approximate quickly 
changing channels worst, but smaller partitions will require 
too much computational power. Partition and overlapping 
length can also be determined by the hardware structure 
available, if some kind of parallel processing is available in an 
already developed hardware platform. Also, very small 
partitions or very long overlapping can become incompatible 
making the required error level just not attainable for high 
speed channels.  

IV. SIMULATION RESULTS 

The Pedestrian A channel with full loading (k=SF); MIMO 
2x2 antennas; v=100Km/h situation was taken as reference. 
In Figure 4 is presented the bit error rate obtained, while 
Figure 5 shows the block error rate. 
As “ Standard”  is represented the estimation obtained with the 
full inversion of matrix H +T T N  with standard Gauss 
algorithm. 
The Fourier algorithms are divided into algorithms for a 
constant channel, and algorithms for a variable channel 
(subscript c and v respectively), with partitions of size xx and 
pre-laps and post-laps of size yy (the naming is of the kind 
Fourierc/vxx-yy-yy). 
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Figure 4 – MMSE Simulations results – BER 
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Figure 5 – MMSE Simulations results – BLER 
 

As expected, the constant channel approximations are useless 
for a v=100km/h situation. This is evident from the two block 
Fourier simulations for constant channels run. 
The partitioned algorithms revealed very effective, since theirs 
solutions are only distinguishable from the standard Gauss 
algorithm solution for high EB/N0 values. 

V. CONCLUSIONS 

The Block-Fourier algorithms presented in [3],[4] for the zero-
forcing algorithm under constant channel conditions where 
also tested under unsteady channel situations, having revealed 
useless in conditions of medium or high speeds. New versions 
of those algorithms, capable of dealing with detection in 
unsteady channels with speeds until v=100km/h were derived 
and tested. 
These new algorithms where based in the partitioned block-
Fourier algorithms of [3],[4], but extra steps were added to 
take in consideration the channel change from partition to 
partition. Inside each partition the channel is considered 
constant. The new algorithms, although more computationally 
expensive than the original block-Fourier ones, are not as 
expensive as the Gauss algorithm (even if optimized versions 
were considered). 
The best algorithm must be selected according the channel 
conditions: for almost constant channels, constant block-
Fourier algorithms could be used with good results, while for 
high speeds the new block-Fourier algorithms proposed must 
be used, preferably with small sized partitions.  
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