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ABSTRACT A fully-quantum network implies the creation of quantum entanglement between a given source
node and some other destination node, with a number of quantum repeaters in between. This paper tackles the
problem of quantum entanglement distribution by solving the routing problem over an infrastructure based on
quantum repeaters and with a finite number of pairs of entangled qubits available in each link. The network
model considers that link purification is available such that a nested purification protocol can be applied at
each link to generate entangled qubits with higher fidelity than the original ones. A low-complexity multi-
objective routing algorithm to find the shortest path between any two given nodes is proposed and assessed
for random networks, using a fairly general path extension mechanism that can fit a large family of particular
technological requirements. Different types of quantum protocols require different levels of fidelity for the
entangled qubit pairs. For that reason, the proposed algorithm identifies the shortest path between two nodes
that assures an end-to-end fidelity above a specified threshold. The minimum requirements for the end-to-
end entanglement fidelity depend on the whole extension of the paths, and cannot be looked at as a local
property of each link. Moreover, one needs to keep track not only of the shortest path, but also of longer paths
holding more entangled qubits than the shorter paths in order to satisfy the fidelity criterion. Thus, standard
single parameter shortest-path algorithms do not necessarily converge to the optimal solution. The problem of
finding the best path in a network subject to multiple criteria (known as multi-objective routing) is, in general,
an NP-hard problem due to the rapid growth of the number of stored paths. This work proposes a metric that
identifies and discards paths that are objectively worse than others. By doing so, the time complexity of the
proposed algorithm scales near-to-linearly with respect to the number of nodes in the network, showing that
the shortest-path problem in quantum networks can be solved with a complexity very close to the one of the
classical counterparts. That is analytically proved for the case where all the links of a path have the same
fidelity (homogeneous model). The algorithm is also adapted to a particular type of path extension, where
different links along a path can be purified to different degrees, asserting its flexibility and near-to-linearity
even when heterogeneous fidelities along the sections of a path are considered.

INDEX TERMS Quantum networks, quantum repeaters, path-finding algorithm, end-to-end fidelity, multi-
objective routing.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Quantum technologies are presently undergoing a fast devel-
approving it for publication was Bijoy Chand Chatterjee . opment, particularly in the areas of quantum computing,
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quantum secure communications, and also quantum sensing
and metrology [1]. There is a renewed interest in quantum
computation [2], [3], the first quantum satellite was already
sent to space [4], and quantum sensing is pushing the limits
of our detection and measurement capabilities [5].

In order to take full advantage of these technologies the
next natural step is to have a quantum network capable of
distributing entanglement between any two quantum termi-
nals, or even more demanding, between multiple parties at the
same time, called multipartite entanglement, and sometimes
seen as a form of quantum multicast [6]. The work in [7]
considers multipartite entanglement assuming no existence
of quantum memories, while [8] assumes they exist at the
nodes. Quantum networks should connect multiple quantum
computers in order to scale up quantum computing. This dis-
tributed quantum computing could circumvent the limitation
caused by the reduced number of qubits that a single quan-
tum computer can currently handle, and become a practical
manner of making quantum computers with a large number
of qubits. Even so, one of the first applications of the future
quantum networks will be to secure communication chan-
nels based on quantum key distribution (QKD) cryptographic
systems [9], doing away with the need for the so-called
trusted nodes that operate in the classical signal domain.
The properties of quantum physics are opening doors to new
computing and communication algorithms [10], [11] and the
architecture of these future quantum networks (often dubbed
Quantum Internet) is currently coalescing in the research
community [12], [13] and can potentially play a crucial role
in future 6™ generation networks, in tandem with classical
processing in order to dramatically reduce the amount of
classical data needed to be transferred to quantum central pro-
cessing units [14]. A number of applications that will require
quantum networks have already been identified in [15], which
also proposes methods to evaluate the performance of each
one of those applications.

The traditional stack model, consisting of a physical layer,
a link layer, a network layer, and a transport layer, remained
a solid foundation for the impending work of specifying the
protocols at all layers [16]. A first contribution to defin-
ing a specific protocol for the quantum physical layer has
been proposed in [17]. An overview of the whole network
stack required for a quantum internet, and including routing,
is provided in [18]. At the network layer, finding the shortest
path between any two nodes of a network is a fundamental
problem in both network theory and graph theory, and is at
the core of several important applications, such as finding
the shortest route between two locations, or efficiently rout-
ing information packets in communication networks. These
objectives also hold in the context of quantum networks.

The details of how a quantum node should respond to
incoming requests was analysed in [19]. However, the routing
problem is one of a different nature and has been approached
in different ways. In [20], the authors have studied protocols
for remote entanglement that maximize the rate at which
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entanglement is produced between the nodes in homoge-
neous quantum repeater chains. They show that long-distance
entanglement is possible in quantum networks with quan-
tum repeaters even when these perform imperfect swapping.
In that work, remote entanglement operates in a different
manner than the entanglement routing protocols that are
the concern of the present paper, and which only focus on
finding the optimal path, given some criteria. The remote
entanglement protocols focus on deciding the order at which
the swapping operations take place along a given path in
order to maximise the entanglement rate. The problem of
minimizing the entanglement time (and therefore maximizing
the entanglement rate) is usually considered assuming that
the number of network segments (i.e., the number of links)
between the two end-nodes is a power of two [20], [21].
In [22], the authors departed from that paradigm and proposed
a swapping scheme for the cases when that does not hold
true. In [23] and [24] the authors take a theoretical approach
to quantum networks based on the end-to-end capacity and
investigate its interplay with routing.

Until very recently, previous works on routing in quantum
networks only guarantee that the fidelity at each link in a path
lies above a certain minimum. Assuring that a given end-to-
end fidelity is attained was only recently addressed in [25]
and [26]. In [26], the existence of purification at each link
is also considered, and the goal is the one of maximizing the
network throughput given memory constraints at the quantum
repeaters and capacity constraints in the links. The model
used in [26] considers that link purification is possible and
solves the optimization problem by means of a polynomial
time approximation scheme; nevertheless finding the exact
solution would still be NP-hard. Our work rather solves a
non-linear optimization problem, that can be solved in a exact
form in linear time. Despite these advances, to the authors’
best knowledge, there is no quantum routing algorithm that
considers multi-objective optimization using nested purifi-
cation protocols, which greatly increase the communication
range [27].

A. QUANTUM NETWORKS

This paper looks at the problem of finding the best path to
connect two nodes (in the sense of establishing entanglement
between qubits) in a quantum repeater network [28]. These
will be networks with quantum nodes, possibly intercon-
nected with the help of quantum repeaters that are able to
extend the entanglement of qubit pairs beyond one single
section (also known as a hop or link). Tackling this problem
involves looking at both the link layer and the network layer.
The algorithm proposed in the present paper can be applied to
any network topology (in contrast with works assuming lat-
tice structures [29], [30]). To assess the proposed algorithm
the paper assumes a random network, more specifically an
Erdds-Rényi network, in which all links in the network are
established with the same probability [31].
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In classical networks, with the nodes connected by ana-
logue or digital transmission links, the problem of finding
the shortest path between any two nodes is efficiently solved
by the well-known Dijkstra algorithm (and similar ones) in
an exact manner [32]. The concept of distance between the
nodes is not necessarily the physical distance; it can be any
other type of cost associated to the links (e.g., price, power
loss, or bandwidth). In quantum networks the definition of a
cost metric is still an unsettled matter, even so the so-called
fidelity of a connection seems to be an unavoidable metric; it
measures the quality of an entanglement, providing a measure
of the correlation between the qubits of a link. The fidelity is
a real number between 0 and 1 (naturally, only values above
0.5 are of any practical value).

The fidelity of a link can be increased by the so-called
purification process if more than one pair of entangled qubits
exist in that link. This amounts to ‘“merging” two qubits
into one with a higher fidelity level, and this process can be
iteratively extended by successively merging further entan-
gled pairs (alternatives to this purification process will be
detailed later in the paper). Consequently, the highest attain-
able fidelity in a link is proportional to the number of qubit
pairs available in that link. This number of qubits in a link is
referred to in the literature as the number of resources in the
link, and is of central importance to the problem dealt with in
this work. As pointed out in [30], quantum routing protocols
should depend on a metric that explicitly takes into account
the required fidelities and the purification steps.

Although having a set of different paths connecting a
source node and an end node may have a positive impact
on the final entanglement of the qubits [33], the objective in
this paper is to determine the unique shortest path between
any two nodes that guarantees some minimum entanglement
fidelity. Previous work suggested that, although not exact,
Dijkstra’s path finding algorithm could be used, in some
cases, to find the best route in a quantum network [34].
In some situations, as seen in [34], Dijkstra’s algorithm finds
the optimal path, however, finding the optimal route that
connects two nodes in a quantum repeater network poses
more challenges than its classical counterpart.

In [35] the authors considers links with purification and a
minimum constraint on the end-to-end fidelity but it does not
look at the problem as a multi-objective optimization problem
and therefore the found paths are sub-optimal in respect to the
bi-dimensional framing of the problem.

One may look at the network models as being an advance
generation model (where entanglement pre-exists before
routing takes place) and on-demand generation model (Where
entanglement is created after routing) [35], [36]. In this work
we deal with an advance generation model, where there is a
decoupling between the physical layer and the network layer
that makes the routing decision, based on the information
it has about the link layer. Beyond the path selection prob-
lem, other problems in quantum networks also need to be
addressed, such as the scheduling of different services over
some previously selected end-to-end path [37]. Moreover, the
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operation of a link needs to be maintained by taking care of
packet losses, which requires specific protocols such as [38]
and quantum error correction [39].

B. ROUTING IN QUANTUM NETWORKS

This paper presents an exact algorithm to find the shortest
path to connect two nodes in a quantum repeater network that
is random in the Erdds-Rényi sense, while attaining a given
fidelity. Most importantly, it is shown that solving this prob-
lem exactly is not computationally much more expensive than
solving the classical shortest-path problem. The approach can
be seen as an application of multi-objective routing [40], [41],
and a predictable consequence of a general algebraic theory
for routing [41], [42]. Of practical importance is the fact that
the presented solution can be combined with works such as
[20], [43], and [44], which apply sophisticated mathematical
tools to perform decentralized routing.

The first step is to characterize the links by the number
of entangled qubits (with the required fidelity) available in
that connection. This can be seen as the maximum number of
qubits that can be entangled between two quantum nodes (one
of them may happen to be a quantum repeater) while attaining
a certain fidelity after a purification process. What limits in
practice the number of resources available in a link depends
on the particular hardware implementation: for example, in a
quantum repeater network based on nitrogen-vacancy cen-
ters (NV-centers), both the amount and the quality of the
entangled pairs will likely be related to the number and
quality of its constituent quantum memories [45], while for
an all-photonic implementation of a quantum network the
limitation will likely come from the difficulty in generating
entangled photon pairs in the first place. In general, the net-
works’ characterization made in this paper is fully compatible
with the quantum network stack model proposed in [17]. One
assumes here that the link layer would communicate to the
network layer (which hoovers immediately above the link
layer) information about the links’ properties. The proposed
algorithm, or a variation of it, can then be applied at the
network layer to find the best path.

It is relevant to stress the fundamental distinction of the
routing problem in classical and in a quantum network. In a
classical network paradigm, after having found the best path
(in some sense) between two nodes A and B, any connection
from A to a third node C that is linked to B can be established
by extending the previously found best-path between node
A and B, unless a better path exists from A to C. This
is not true in a quantum network due to a known feature
of quantum repeaters based on entanglement swapping and
requiring a purification phase: the number of entangled qubits
in each link (in all the links constituting the path between a
source-node and an end-node) needs to increase with the total
distance of the overall end-to-end chain, i.e., it needs to grow
with the number of hops, or the number of quantum repeaters
in between) [45]. The simple extension of a previously known
best path may not be possible in a quantum network since the
number of resources sustaining the entanglement of nodes A
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and B may not suffice to perform entanglement starting from
node A and ending in a third node C, through node B. Any
extension to a path involves having at least one more hop,
and consequently a larger number of resources available in all
links right from the departing node A, through node B, and up
until node C. In short, extending the path, even by one single
additional hop, impacts on the minimum requirements for all
the other sections in the path or chain. As a consequence,
some of the links become ineligible to be a member of that
end-to-end path.

This paper sets the problem in the context of multi-criteria
(or multi-objective) routing [40]; in particular, the proposed
path-finding algorithm makes use of two parameters to effi-
ciently find the shortest path between two nodes in a static
quantum repeater network. This is in strike contrast with other
similar problems such as the classical resources-constrained
shortest path [46] and the Pareto shortest-path problem, both
of which are, in general, NP-hard problems [47]. In yet
another related problem, one can similarly find an algorithm
to solve the maximum rate problem in a quantum repeater
networks that is also computationally hard, growing factori-
ally with the network size in [48] (in detail: O(N 3N'L1n L),
from [48, corolary 3 and subsequent discussion], where N and
L are the number of nodes and links in the network, respec-
tively). In contrast, the herein proposed algorithm solves the
shortest path in a quantum repeater network in polynomial
time. As it shall be presented, this complexity reduction
comes from some embedded mechanisms that discard some
low-value paths. However, for a general Pareto shortest-path
problem there is no guarantee that it is possible to discard
enough paths to reduce the complexity of the problem, and
such mechanisms were also not taken into account in [48].
Although the problem in the present paper is not exactly the
one in [48], the proposed solution suggests that the maximum
rate problem in a quantum repeater network might also be
solvable in polynomial time. How to exactly write such an
algorithm will depend on the specific quantum repeater pro-
tocol and implementation.

After this introductory section, section II presents a
detailed statement of the problem, section III describes the
proposed algorithm, section IV presents simulation results
that allow one to verify the algorithm’s complexity, section
V shows that the algorithm can be particularised to specific
quantum repeater strategies, and the conclusions are drawn in
section VI. A formal proof of the algorithm’s complexity is
presented in appendix A.

Notation: In the paper, I, denotes a a x a identity matrix
and In(-) is the Napierian logarithm.

Il. SYSTEM MODEL AND PROBLEM DEFINITION

Likewise a classical network, a quantum network consists of
a set of nodes connected by /inks (sometimes also referred as
sections or hops in a path). In graph theory they correspond to
the vertices and the edges of a graph, respectively. A network
comprising of V nodes and L links will be considered. A link
e;j between node v; and node v; contains a finite number
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of entangled qubits, n;;, each one with fidelity f;;. Applying
this characterization of the network in the context of the
stack model of abstract layers proposed in [17], the links
would inform the network layer of how many entangled
qubit pairs it could entangle, and with which fidelity. The
network layer would then find the best path to connect the
two nodes. The algorithm here presented can be easily applied
to any description of the links between nodes, such as the
time required to generate entangled qubits, the probability of
entanglement success, or other metrics describing the links.
Note that in a practical setup some of the assumed symmetry
of the problem may not exist: due to the stochastic nature of
entanglement generation and link purification there may exist
several entangled qubit pairs with different fidelities in that
link. Even so, this system model still captures the essential
aspects at stake in the path-finding problem.

In short, the problem is the one of finding the shortest
path between nodes v; and v; such that each link holds the
minimum resources to create an entangled qubit pair with a
goal fidelity frarget- In order to achieve this, the considered
swapping and purification model imposes that the number of
entangled qubit pairs necessary in each of the links must grow
with the total end-to-end distance (i.e., the number of sections
or hops traversed), as pointed out in [45]. The reason for this
requirement will be detailed in the next section.

A. PURIFICATION AND SWAPPING STRATEGIES FOR PATH
EXTENSIONS

We begin with a brief introduction to how quantum repeaters
operate based on quantum purification and swapping. Let one
consider two nodes, v; and vy, that are not directly connected
but share a neighbor v;, as depicted in step 0 of Fig. 1 (a).
The picture also depicts seven additional nodes for which this
discussion can be extrapolated. The entanglement of qubits
between v; and v can be accomplished by means of entangle-
ment swapping on the qubits contained in v;, half of which is
connected to v; and the other half to v (these qubits are high-
lighted by the orange dashed boxes at v;). The entanglements
between v; and vy that result from the swapping operations are
represented in Fig. 1 (b) by dashed red lines. Unfortunately,
swapping is a lossy operation [20] and the resulting fidelity
of these new entangled qubit pairs is lower than the fidelities
of the original entangled qubits in the links connecting v; to
vj and v; to v¢. Even so, this fidelity can be augmented by
means of a procedure called purification, which combines
multiple entangled qubits between the same two nodes in
order to create one single entangled pair with higher fidelity.
The mechanism is represented in steps 1 and 2 of Fig. 1 (a):
the qubit pairs to be purified are represented within the blue
dot-dashed boxes in step 1 of Fig. 1 (a), and the resulting qubit
pairs are represented in step 2 by black lines.

The number of entangled qubits necessary for a purifica-
tion process to recover the original fidelity of the entangled
qubit pairs depends on the type of entanglement that is used at
the physical layer. Another degree of freedom of the purifi-
cation process is the ordering in which the purification and
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(b)Quantum repeater strategy: swapping after full link purification

FIGURE 1. Two different quantum repeater strategies: (a) iterations
between link purification phases and swapping phases, (b) full link
purification applied first in the links, and then followed by swapping
processes occurring at each repeater node.

swapping operations are applied [20]. For that matter, there
are two different strategies that can be applied, and which will
now be shortly described. Fig. 1 (a) depicts the method that
alternates between purification and swapping phases: for each
round of swapping and purification, the distance between
entangled qubits is doubled (in the sense of number of hops it
bridges). Step zero shows the original network, and the qubits
inside the orange dashed box are the ones to undergo the
swapping process, leading to the equivalent quantum links
shown in step 1. Now nodes v;, vk, Vi, Vo, and v, are con-
nected by eight lower fidelity qubit pairs, represented by red
lines. The entangled qubits of lower fidelity inside the blue
boxes can be purified in order to obtain four entangled qubits
holding the original fidelities. This is an iterative process that
cycles through the rules applied in the first three steps. The
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remaining represented steps (3 to 6) are analogue to what
was described and apply the same rules. The iterations are
repeated until quantum entanglement between the end-nodes
is attained. In this description one considered that purifying
two entangled qubits after a swap suffices to recover the
original fidelity. In practice, how much purification is needed
in step one will depend on the original fidelity and distance
between the two nodes.

Fig. 1 (b) illustrates a different strategy in which purifica-
tion is first applied to all the qubit pairs in the links (inside
the blue boxes) such that the qubits are purified to the highest
possible fidelity value, leading to the equivalent single-qubit
links represented by dashed green lines in Step 1. Later,
in step 2, the resulting qubit pairs undergo swapping oper-
ations at all intermediate nodes, eventually establishing the
end-to-end entanglement between v; and v, with the original
fidelity (solid black line). The actual repeater protocols used
in a practical systems will likely be a combination of the
two aforementioned strategies, complemented by an error
correction phase [27], [47].

Regardless of the applied strategy for purification and
swapping, once a path that verifies the selection criteria is
found, it will consist of a set of links which in general hold
different number of resources. Some sections will only have
the minimum number of resources but several may have a
number above that threshold. Given the larger number of
qubits available at those links, one could eventually purify
those links to a higher degree. In the first model to be assessed
by simulation, here dubbed homogeneous model, all links are
purified to the same degree. To illustrate the concept, consider
for example a case of a path consisting of four links, where
the minimum number of resources is four. A link holding, for
example, nine entangled qubits, would still only make use of
four qubits in order to attain the desired minimum fidelity,
rather than using all the nine pairs of qubits to get a higher
fidelity. Under the homogeneous model several sections of
a path will have resources underused. For a particular type
of quantum repeaters, that waste can be eradicated, leading
to the so called heterogeneous model, where the links can be
purified to the maximum degree and compensate for some
sections with a diminished number of resources.

B. MINIMUM LINK RESOURCES WITH HOMOGENEOUS
PURIFICATION

One considers an high-level model of a quantum internet
such as the one in [49]. A consequence of applying the two
described strategies, or a combination of both, is that in the
first generations of quantum repeaters the minimum number
of resources, R, necessary in each link to connect two distant
nodes, scales polynomially (with order «) with the distance
d, [27], [45], [49], i.e., with a leading term of the form:

R(d) = d“. (1)

Let one consider the goal of connecting nodes v; and vj,
where a path p with a distance of d, hops is a possible
candidate to sustain the entanglement between those two
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nodes. Furthermore, consider that one of the sections of path
p is the link ey, characterized by having n,, qubits. The link
e can only be a section of a path connecting node i to j if
nm = R(dp)*. Without loss of generality, it is possible to
simply consider ¢ = 1

R(d) =d. (2)

One starts by applying (1) to a particular link,

R(dy) = dy, 3)
which implies that
e g, @)

By simply redefining the resources in each link as 71;; = ”;1 /e

ij
we obtain
iy > d, 5)

which is equivalent to considering the case with the linear
exponent « = 1. This relabeling is possible because the
output of the minimum operator is invariant to the & exponent,
i.e., min(a, b, ¢) = (min (a®, b*, ¢*))'/%. In fact, even if R(d)
was not of the form (1), it would be possible to apply the
inverse function of R(d) and convert it to the form of (2).
While the number of entangled qubits might not be an integer
number in those cases, one can still accommodate that, as it
will be seen in section V. Without loss of generality in what
respects finding the best path, it is assumed henceforth that
the required number of resources in each link grows linearly
with the distance between them, as given in expression (2).

IIl. ENTANGLEMENT PATH-FINDING ALGORITHM
The no-cloning theorem of quantum physics prohibits the
cloning of unknown qubits, that is, when they are in a
superposition state, before measurement and the consequent
collapse of the state. For that reason no quantum repeater
will ever be able to copy qubits. Furthermore, as just seen
in section II, the number of minimum resources across all the
sections of a quantum path scales with the number of hops.
These limitations makes the well-known Dijkstra’s algo-
rithm unfit to optimally solve the shortest-path problem, mak-
ing entanglement routing more challenging. Such limitations
become glaring even in a very simple network such as the one
represented in Fig. 2. In this example, the aim is to connect the
source node v; to the target (or destination) node v;. Although
the shortest path between vertices vy and v; is p/z, there are
not enough entangled qubits pairs in each of the constituent
links of p), to establish entanglement from v; to v; making
use of the sub-path p>. This is because a minimum of three
resources is required at all nodes once there are three hops
in p’2 to connect vy to v;). In contrast, albeit being a longer
path, p| guarantees in all its sections the minimum number of
resources to connect vy and v; with the desired fidelity, so that
the swapping and purification path-extension technique can
be applied.
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FIGURE 2. Example of a small network for which a classical shortest-path
algorithms cannot find the shortest path between the source node vs and
and target node v;.

A. PATH-METRICS’ ALGEBRAIC PROPERTIES

According to the formal networking theory of cost metrics
defined for paths on graphs, as described in [42], the path
metric considered in this work is monotone but not isotone.
Monotonicity is the property of cost metrics that, when a path
extension occurs, invariably either increases or decreases,
never changing that behavior. Let us look at path p; for
example; the distance between vy and v; is larger than the
distance between vy and v; and the distance between vy and
v is also larger than the distance between vy and v;. If we
consider a situation like the one found through p», where
the number of resources is insufficient to reach v, from vy,
we can assign an infinite distance to the link between these
two nodes, and the monotonicity is preserved, given that
those two nodes will be treated as if they were disconnected.
On the other hand, isofonicity is a propriety related to the
comparison of paths and its meaning will be next defined by
means of the example at hand. As hinted in section II, the
proposed algorithm has the following multi-objective goal:
to find the shortest path that holds sufficient resources for
establishing an end-to-end entanglement. If this metric were
isotone, it would mean that since path p, is better (in a
distance sense) than p; to connect v; to vi, then the extended
path p, would also be better than the extended path p| to
connect vy to v,. However, as explained before, this is not
the case. This has also been pointed out in [48] in relation to
finding the path that maximizes the rate transfer in a quantum
network, by using the non-classical algebra of [42].

Using the notation of [42], the concatenation of a path
p1 with p’, where p’ by acts as an extension to path pi,
is denoted as p; @ p’. Given the aforementioned properties
of the path-finding problem, it is useful to define for any path
p the following cost metric:

d(p) = d[,
d(p) = +o0

ifnjj > dy, foralle;; € p ©)

if n;j < dp, for any e;; € p.

d(p)=[

Therefore, the problem of finding the shortest path between
two nodes with sufficient number of resources, becomes the
one of finding the path that minimizes the metric d (p). Indeed,
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Algorithm 1 Shortest-Path Algorithm

function ShortestPath(source)

A := the set of all admissible paths p; = {d(i), n;, v}
ordered as a priority queue data structure (initialized as
{0, oo, source}). The order is defined by an increasing
d(k), with the smallest distance at the top of the priority
queue.

B := the set that contains, for each node, a set B[v;]
containing a history of visited paths {d(i), n;} up to date
and the paths to be next visited (initialized as B = @).

while A is not empty do

Select path p, = {d(u), n,, v,} at the top of the
priority queue and remove it from .A.
if 3{d(i), n;} € B[v,] such that n; > n, and d(i) <
d(u) then
Add path p, to B.
for each neighbouring vertex v; of the end ver-
tex v, of path p, do
if n,, > d(p,) then
Add path p; to A.
end if
end for
end if
if 3{d(i), n;} € B[v,] such that n; < n, and d(i) >
d(u) then
remove B[v;] € B.
end if

end while
end function
pi == pathp, & v
np, := min (7, Ny)
ny,; .= available resources in the link v,, — v;.

this metric is non-isotononic, given that
dip) >d(p) #d(pir®p)>dp®p). @)

B. THE PROPOSED ALGORITHM

The central proposition in this work is that in the case of
quantum networks relying on swapping and purification, it is
possible to solve the multi-objective routing problem while
overcoming the non-isotonicity of the cost metric. Further-
more, we achieve this in near-to-linear computational com-
plexity by keeping track of more paths than just the shortest
path between nodes. To that end, each possible path p between
two nodes v; and vj, is characterized by two parameters: i) the
path distance, d,, which amounts to the number of hops (i.e.,
sections or links), and ii) the distance associated with the
smallest number of entangled qubit found along all the links
(or sections) of the path, denoted as n;,ni“. Hence, a path p is
characterized by the pair (d,,,n;ni“). In this framework, a path
is only discarded if it does not contain the minimum number
of entangled qubit pairs to connect two vertices at distance
dp, i.e., when ng‘i“ < R(d,), or when there is unequivocally
a worst path than p. In the latter case, there must exist a path
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Update path record

Visit neighbouring
nodes of current
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Select the path with the
smallest cost to achieve the
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Does the current
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its length?
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ones
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s this the last
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Have we found
a shorter path
with the same
end nodes and more
resources?

FIGURE 3. Flowchart for the proposed algorithm.

p’ that is shorter and has a larger number of resources than p,
ie., di’7 < dp, and pmin > n;“i". The reason why it is possible
to discard some paths is that the parameters characterizing
each path are isotonic themselves when the other parameter is
fixed — this is dubbed partial isotonicity. Let one focus on the
distance metric and consider three paths p, p’, p”; given any
values for ngli",n“}i",ng},i“, if d, > dy then one will always
have d,g, > dg/@pn, meaning that the parameter d, is an
isotonic partial metric. Similarly, it is easy to check that this
partial isotonicity also holds for the parameter n;,ni“.

Algorithm 1 solves the routing problem from a fixed source
node to all the remaining nodes in the network. For a fixed
network (i.e., a given topology and a given resources distri-
bution among the links), the algorithm can be run once, before
the network starts operating with successive entanglement
requests taking place.

The algorithm starts at a source node and then visits all
its neighbors. Then the paths are added to a priority queue
(set A) that is ordered from the path with shortest distance
(places at the top) to the one with the longest one (placed
at the bottom). The path at the top of the priority queue is
selected and its neighbors are visited. New paths from the
source to the visited node are only added to the priority queue
is there is no other path from the source to that same node
holding an unequivocal better pair of (distance, number of
resources). In order to perform this checking, one needs a data
structure for each node v;, the B[v;] sets, that keeps track of
all paths from the source to v; that are not objectively worse
than the new ones. The ones who are not, are removed from
B[v;]. At that point the following binary case unfolds:

i) if the current path offers no advantage over the others
(i.e., if there is a path in B[v;] that guarantees both a
greater fidelity and a shorter distance), then the current
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path is immediately discarded and the remaining path
with the smallest distance in the priority queue set A is
now selected. This process repeats itself until there are
no more paths to explore;
it) if this current path offers some advantage, then a set of
new paths p; are added to the priority queue set A, cor-
responding to the extension of p to all its neighbors v;.
A more general version of Algorithm 1 is depicted by the
flowchart in Fig. 3, where, in addition to the described cost
metric, each path also has a fidelity associated to it. This more
general approach will be later explored in section V.

IV. SIMULATION RESULTS

The proposed routing algorithm was applied to random quan-
tum repeater networks (of the Erdds-Rényi type) in order
to initially assess the algorithm’s complexity via computer
simulation. Intuitively, the path exploration process should
not lead to a complexity explosion given that, when the length
of the paths grows, it is increasingly less likely that the
minimum required number of entangled qubits exist across
all the path such that the target fidelity can be met. For sim-
plicity, one considers a network model with no degree-degree
correlation (i.e., two directly connected nodes have indepen-
dent degrees), and also no correlation between the degree
of a node and the number of qubits in each link incident to
that node. In this case, the computational complexity scales
quasi-linearly with the number of nodes, V, with the fol-
lowing upper-bound, which is derived in section A of the
appendix:

UB=0 (Vk_2n_21n(Vk_2 ﬁ)) , 8)

where k2 and n? respectively correspond to the second
moment of the degree distribution (i.e., the distribution of
the number of links connected to a node) and to the second
moment of the distribution of the qubits across the links. The
random networks considered are Erdds-Rényi networks [31],
with its degree distribution following a Poisson law. In this
network model, the probability that a node v; is connected to
k other nodes is given by

o
pht = > FeF k. 9)
k=0
Also for simplicity, the number of qubits across the network’s
links are exponentially distributed, being pg. the probability
that n qubits exist in the link connecting node v; to node v;
given by

pin) = e/ /. (10)

In such a network k2 = &> + 1 and #n2 = 7%. Furthermore,
for an Erdds-Rényi network with constant link-to-node ratio,
when the network size increases, its diameter (number of
hops necessary to connect two given nodes) also increases.
This assumes that the network is operating in the so-called
connected regime [31], [49]. For the network to remain in the
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connected regime, it is necessary to increase the number of
qubits in each edge when the number of nodes in the network
increases. The distances in an Erdds-Rényi network in the
connected regime increase roughly logarithmically with the
number of nodes [31]. This is accounted for by generating
networks with 77 o< In V. In general, the distance in an Erdds-
Rényi network grows logarithmically with the network size,
or even sub-logarithmically, as a consequence of the small-
world effect [31]. Substituting in (8), one obtains a more
detailed upper-bound:

UB=0 (VE2 n2(V) In(Vk" 1n2(V)) . (11)

In fact, the results obtained via numerical simulation for
the computation time (which serves as a proxy metric for
the algorithm’s complexity) exhibited a dependence with the
network size, V, lower than (11). As it can be observed in
Fig. 4, the computational time increases as O (V lnz(V)),
which is below the upper-bound in (11).

The average execution time presented in Fig. 4 is com-
puted based on the selection of a percentage P, of the nodes
as sources nodes (1% in figures 4(a) and 4(b), and 10%
in figures 4(c) and 4(d)). The variance, represented by the
shadowed region, is computed using 100 networks for each
value of V.

V. HETEROGENEOUS MODEL

The model considered so far can be called homogeneous,
in the sense that all links have an equal number of resources,
and thus the same fidelity. This section extends the system
model to the case where the links concatenated along the
full extension of a path between two nodes have heteroge-
neous fidelities, that is, the different sections along a path are
purified to different levels of fidelity. For the analysis of this
case, one will consider the second quantum repeater strategy
described in section II-A (Fig. 1(b)), in which each link first
purifies the qubits ensemble to a desired level and a series
of swapping processes are performed across all the nodes
of the path. A key difference of the heterogeneous model
in respect to the homogeneous one is that some links with
larger fidelity will be able to compensate for some links with
reduced fidelity along a path.

Algorithm 1 can be modified to take into account both
fidelities and path costs explicitly, and solve problems beyond
the shortest-path problem, such as the one of finding the
cheapest path to connect two nodes with some minimum end-
to-end fidelity fiarge. The cost metric can be associated to
different quantities, depending on which metric one wants
to maximize (or minimize); in the proposed algorithm, the
metric is the number of entangled qubits pairs available in the
link. For another set of problems, related to the entanglement
distribution rate (EDR), one alternative cost metric might be
the time taken in the creation of a new quantum connection.

Instead of using n;”i” and dj,, each path p can be charac-
terized by 1) the maximum single-qubit pair fidelity that can
be harvested from the existing resources in that path, fpmax,
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FIGURE 4. Average execution time of Algorithm 1 as a function of the size of the network, V, fitted to the expression time = a x V In(V)z, witho =1,
and for different pairs of average degree k and a fraction of sampled nodes Py. The fitting constant a is given on the plots.

and ii) the cost, ¢, of creating a path with fidelity fiuges in a
certain path p. A path is only discarded if either there are not
enough resources in the path, if fpmax < fiarger, or there is a
better path p’ that is “cheaper” and contains more resources,
i.e., path p’ has ¢,y < cp and £ > f1%.

Note that selecting the best combination of fidelity levels
at the sections along a path imply solving an optimization
problem to find the cheapest way of assuring the desirable
end-to-end fidelity. Next, the heterogeneous model will be
studied for the case of Werner states, which allow a suffi-
ciently simple mathematical treatment of the concatenation
of links via the swapping operation. This is due to the way
that the resulting fidelity of the concatenation of two links
can be computed.

A. QUANTUM LINKS BASED ON WERNER STATES

To compute the cost ¢, of creating a link with a certain
fidelity, or similarly, to compute the loss in fidelity after
a swapping process, the details of the implementation do
matter. Additionally, the type of entanglement between the
qubits ought to be known. Hereafter one of the most studied
types of entanglement considered for quantum networks is
assumed: the Werner state [27]. The state of two entangled
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qubits can be fully characterized by its density function [50].

In the case of two qubits in a Werner state with fidelity f, the

density function can be written as [27]
I—vy

p=—"l+yle")e"

where the following linear transformation is used (see
appendix B):

; 12)

4 -1
v="3 (13)

The y parameter is a mere linear transformation of f and
therefore they are interchangeable metrics to characterize the
fidelity of a Werner state. However, as seen in Appendix
B, this alternative characterization of the fidelity allows to
compute the end-to-end fidelity in a path p as a simple simple
multiplication of the y;; in the links along the path (this
technique is also used in [25]):

v =[] vi- (14)
ijep
One first needs to define the cost of creating an entangled

qubit pair with fidelity f starting from a large number of
entangled qubit pairs, each of which holding an initial fidelity,
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FIGURE 5. Example of a nested purification protocol.

fin, that is low. It is important to highlight that f;;, = 1/2 is
the lowest value that entangled qubits pairs can have so that
they can still have a positive contribution to the purification
process.

Fig. 5 illustrates the process of combining pairs of entan-
gled qubits in a nested manner [27], starting with entangled
qubits with a fidelity f;, = 1/2 + §, with § « 1, and
progressing until the desired fidelity is reached. In the figure,
the process starts with six entangled qubit pairs with fidelity
f1i > 0.5 (one purification fails because of this restriction),
which are then combined two at a time in order to obtain
two entangled qubits with fidelity f > f;. In round 2 one
starts with two entangled qubits with fidelity f>, which are
combined to create an entangled qubit with fidelity f3 > f>.
For the case of Werner states, it is known that the resulting
fidelity from combining two entangled qubits with fidelity

fiis [27]
fE+50-f)?

fr= . (15)
RF3A=f0+30-f)
and this succeeds with a probability of purification
2, 2 5 2
pp =S + §f1 a—fo+ ) a—f-. (16)

It can be shown that the average number of entangled qubits
with fidelity f needed to create one entangled qubit with
fidelity f> is 2/pp, on average. This information can be
used to compute how many entangled qubits are necessary,
on average, to create one entangled qubit with fidelity /', when
starting with an initial fidelity f;, across all the qubit pairs.

When the fidelity is characterized by the y parameter
defined in (13) rather than by f, the mathematical treatment
becomes simpler, as it shall be seen later. As an example,
Fig. 6(a) shows that for extremely low values of § (6 =
1078, 1077,10"%and 10~ ) the average number of entangled
qubits pairs, IV,-j, with initial fidelity y;,, that are necessary to
create one purified entangled qubit pair with fidelity f scales
according to the following approximation

Nij ~ (=Inyp™". 7)

For § = 1078, one has n = 1.17288 %+ 0.00056. Fig. 6(a)
was generated by applying expressions (15)-(16) recursively
until the desired fidelity was reached, while keeping track of
the average number of entangled qubits used in each round
of purification. The black dashed line exemplifies the scaling
law given in (17), with n = 1.17288. The gaps between
the points are due to the assumption of an integer number
of purification rounds in the nested purification protocol.
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necessary to create an entangled qubit with fidelity f = (3y;; +1)/4, as a
function of y;;. (b) Normalized number of qubits, n;;, necessary to create
an entangled qubit with fidelity f = (3yjj +1)/4,asa function of Yij-

Naturally, some fidelity values are obtained with a number
of purification rounds that is not a power of two. In such
cases the purification process needs to be taken beyond that
minimum threshold. This can be put in place in a practical
manner by means, for example, of three entangled qubits (or
other number of qubits) in order to achieve those fidelities
without using more qubits than the ones really needed. Note
that this procedure would not change the overall scaling. For
further simplicity, the number of qubits will be normalized
to the number of entangled qubits necessary to obtain an
entangled qubit with target fidelity ysaree; between adjacent
nodes, with average

_ Iny; )_"
= —2—) (18)
Y ( 11’1( Vtarget)

so that for n; = 1, a link e;; can generate one entangled
qubit pair with the target fidelity, for n;; = 2 it can generate
two entangled qubits with the target fidelity, and so on. Note
that, in this context, n; = 1.5 allows the creation of a
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FIGURE 7. Average execution time of Algorithm 1 and the corresponding variance per number of vertices V applied to the heterogeneous model, fitted
to the expression time = a x V In(V)3, for different pairs of average degree k and fraction of sampled nodes Py . In all simulations i = 8 In V%, with

« = 1. The fitting constant a is given on the plots.

single entangled qubit pair with the target fidelity, while the
fidelity of the remaining entangled qubit pairs will not be
improved. The number of resources #;; is plotted as a function
of In y;;/ In Yyarger in Fig. 6(b), showing that the scaling given
by (18) is fairly accurate.

From now on, n;; stands for the number of entangled qubits
in a link, while nf/ is the cost (i.e., the number of resources that
is required) of creating one entangled qubit with the desired
fidelity. In this framework, a link can only be used for a par-
ticular connection if nfj < ny;. In practice, a measure for the
cost of creating a link with a certain fidelity will depend on the
particular technology that is used. Nevertheless, the proposed
framework is implementation independent, it captures the key
scaling problem of this process, and is simple enough to be
treated analytically.

The remaining of this section focuses on the computation
of the end-to-end fidelity of a path and on how much purifi-
cation is necessary at each link in order to obtain the end-to-
end target fidelity. For a Werner state, considering that each
section has fidelity y;;, the end-to-end fidelity is simply

w=[]r = nyp=> Iy (19)
ijep ijep
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as shown in appendix B. At this point one needs to find
the cheapest allocation of resources along path p provided
that the target fidelity between the source and target nodes
is achieved and that no more entangled qubits are used than
the ones present in the link. Considering the relation between
the number of resources in a link and the fidelity it can attain
when purification is applied to that link, the cost of a path p
is defined by the following minimization:

In Yii -
I c ) i
¢ =min | > nj | = min Z(—) Y

. In
i \ijep iiep Vtarget

subject to the constraints:

i) nf] < njj due to the limited number of entangled qubits
in each link;

i) > iicp In yl.; > In Viarget> Since the end-to-end fidelity
of the entangled qubit pairs has to match the target
fidelity.

Note that there are different ways of achieving a certain ptarget
by distributing the fidelities of the links along a path in dif-
ferent manners, which justifies the optimization in (20). This
problem can be easily solved by using convex optimization
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to find the cheapest allocation of resources in each link that
allows achieving the required fidelity between the source and
the destination nodes through a certain path. Since it is now
possible to characterize each path p by its maximum fidelity,
fpmax, and its cost ¢, one can therefore use the algorithm
proposed in section III. It can be easily checked that if all links
are homogeneously purified to the same fidelity, the scaling
of the homogeneous model (n = «) is recovered, meaning
that the average number of entangled qubits necessary at each
link, ]V,,, becomes the one defined by (1), equal in all links of
a path.

In order to prove the adaptability of the proposed algorithm
to different parameters, it was applied to an Erdds-Rényi
network with the same features as the one in section IV.
The results for complexity dependence on the network size
are presented in Fig. 7. Once again one observes a near-to-
linear time complexity, which in this case is (9(V10g3 V).
The slight increase in the computational complexity in respect
to the one in the homogeneous model was expected, since
the number of qubits in each edge scales with V as n
(In V)7 and a convex optimization is made to find the best
way of distributing the entangled qubits along the path. The
average execution time presented in Fig. 7 is computed based
on the selection of a percentage P, of the nodes as sources
nodes (1% in figures 7(a) and 7(b), and 10% in the case of
figures 7(c) and 7(d)), and the variance, represented by the
delimited region, is computed using 300 networks for each
value of V. The optimization of the combination of fidelities
of each section (associated to a certain purification level)
along a path was performed via a convex optimization solver.

VI. CONCLUSION

This paper provides an efficient algorithm that finds, for any
given source node of a quantum network, a list of all nodes
with which it can establish a quantum link with some required
end-to-end fidelity, and the respective shortest path to reach
that destination node. The proposed multi-objective routing
algorithm can be applied to maximize or minimize any path
property even if the overall metric is not isotonic, provided
that the non-isotonic metric results from the combination
of several metrics that are themselves isotonic. The routing
problem of finding the shortest path from one source to any
other node in the network is solved while considering an end-
to-end fidelity constraint, which is an objective that only very
recently has been taken into consideration [25], [26]. More-
over, the role of purification in enabling a larger number of
hops (and thus physical distances) is modeled and considered
in the multi-objective path selection mechanism.

This work considers an homogeneous model, with all sec-
tions in a path purified to the same degree; and an hetero-
geneous model, where different sections take full advantage
of the existing number of resources they hold, allowing for
some sections with a higher fidelities to compensate for lower
fidelities in other sections. The proposed algorithm finds the
optimal solution in linear time (in respect to the number of
nodes in the network). This linearity has been proved both
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analytically and numerically in the case of the homogeneous
model, and for the heterogeneous model a numerical assess-
ment exhibited that same linear growth.

A. FUTURE DIRECTIONS

Interesting questions can be raised regarding the computa-
tional complexity of the shortest and other optimal paths in
quantum repeater networks:

o Could the complexity of these problems depend on
the specifics of their implementation? For instance, the
algorithm could consider the time required to generate
entanglements between end nodes and tackle the prob-
lem of finding the path that maximizes the entanglement
creation rate.

o Could the maximum rate problem be solved with near-
to-linear time complexity? The complexity depends on
how many paths can be found to be objectively worse
than others so that they can be immediately discarded.

The present work is expected to provide a solid foundation
to exactly solve more general routing problems encompassing
a larger number of parameters, and also to be used in a
decentralized routing framework. Nevertheless, the proposed
routing solution can be improved and here one provides some
future research directions that appear as a natural extension of
the present work:

o The characterization of the quantum repeater protocol
assumed in this work is quite high-level and it could be
fleshed out with more details dictated by the underly-
ing technology (e.g., photonic wireless channels, optical
fibers). For example, the link resources may be char-
acterized by a probability density function. Moreover,
the statistics of the swapping and purification protocols
could be taken into account by means of the entangle-
ment times (and therefore the associated rates), as well
as the success probabilities of such operations.

o The linear complexity of the proposed technique is only
analytically proved for the case of the homogeneous
model, while in the case of the heterogeneous model that
is only conjectured via numerical results. An analytical
proof for the latter would be important to derive.

o Formulating the homogeneous and the heterogeneous
scenarios as a canonical non-linear programming (NLP)
could be helpful, so that efficient tools from NLP could
be directly applied.

APPENDIX A COMPLEXITY ANALYSIS

Let L and V be, respectively, the number of links and the
number of nodes in a graph. Let also k and 7 be, respectively,
the average number of links connected to a node and the
average number of entangled qubits with the required fidelity
in the links of the network. n"®* denotes the number of
resources of the link with more entangled qubit connected to
node i. One must note that i) node v; will never be connected
to the source node through a path with a length d larger
than n"**. Moreover, ii) for a node v; at distance d we can

7191



IEEE Access

S. Santos et al.: Shortest Path Finding in Quantum Networks With Quasi-Linear Complexity

have at most d paths passing trough it. This is because the
only surviving paths that connect to it will be ones holding a
maximum number of resources n;,ni“ < d, and only one for
each value of nl‘}‘i“ = 1,2, ---,d.Therefore, the observations
i) and ii) lead to the following upper bound on the maximum
number of paths going trough a node (i.e., pairs of the form
{distance, resources}):

nx
Pi<Y j=
J=1

where the equality comes from the sum formula of the arith-
metic progression. One other, perhaps more obvious, obser-
vation is that the maximum number of entangled qubits in
a link connected to node v; is always smaller than the total
number of entangled qubits connected to v;

n;nax (n;nax + 1)

5 ; 21

v

ma:

i < E agnij, (22)
J=1

where a;; is the adjacency matrix [31] (with a;; = 0 if there
is no connection between i and j, and a;; = 1 otherwise).
Albeit not a tight bound, this is sufficient to show that the
complexity of the algorithm scales near-to-linearly with the
size of the network. The total number of paths added to the
priority queue is then
1% 1V 1% 2 AN
P= 2Pi < 3 Z Zaijnij + 3 z Zaijn,-j, (23)
=

i=1 \Jj=1 i=1 j=1

where the first term is the leading one. Applying the

Cauchy—Schwarz inequality and the fact that a;; = alzj, one
can write:
14 2 v 2
Z aijingj = Z aij(aijn,-j)
j=1 j=1
14 14
2 2
< D @) D (aymy)
j=1 j=1
14
2
=ki ) (ayny)
j=1
v
2
=k > ayn3. (24)
j=1
, _ - 2
where the degree on node v; equals to k; = Zj aj = 2 ;a;.

The leading term in (23), by using the inequality (24), can be
upper bounded as

14 14

2
v
Z ajjnij SE ki
1 i=1 Jj

i=1 \j=

|4
aijn%j . (25)
1

By considering that there is no correlation between the
number of entangled qubits in a link and the degree of the
nodes connected by that link, a simpler expression can be
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FIGURE 8. Entangled qubits chain.

derived. Given that the two discrete distributed random vari-
ables k; (the degree of a node v;) and n;; (the resources from
node v; to node v;) are independent, the expected value of the
right-hand side of (25) is

Vv
E(D kiagng) =V - (kay) -nf =V -k? -nZ,  (26)

where we used the fact that @; ; = k; (the mean of the values
of the incident matrix). Therefore, the number of surviving
paths is of the order:

P=0 (Vk_2 n_2) . 27)

In order to estimate the time efficiency of the algorithm one
also needs to incorporate the time spent adding and removing
an element from a binary min-heap. It is known that for a
binary min-heap with M elements, it takes a time O(In M).
Since the maximum number of elements in the set A is the
maximum number of paths, P, the total time of all priority
value updates is

M P
> In(M,) < D In(P). (28)
p=1 p=1

Since the binary min-heaps at each node are always smaller
than the binary heap .4, by using (27) and (28), the running
time can be upper bounded by

UB =0 (Vk_Zn_Zln (Vk_2 E) n V) , (29)

where the last term is the time necessary to initialize the
set 3. For networks in the connected regime one can simply
consider

UB=0 (Vk_Zn_Zln (Vk_2 n_Z)) . (30)

APPENDIX B SWAPPING MULTIPLE WERNER STATES IN
A CHAIN

Let us consider two entangled qubits pairs, connecting nodes
v1 and v and nodes v; and v3, all in Werner states form [27].
Node v, will contain two qubits, one at each end of the link:
one qubit denoted as 2a, entangled with the qubit in node
v1, and one qubit 2b, entangled with the qubit in node v3,
as exemplified in Fig.8. This system can be described by the
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following state:

(I = y12)(1 = y23)

pP=p2®p3= 16 Is b
V12(1 — )/23)

+ TIIZ ® |3} (D3| (32)
y23(1 — y12)

+ TR e leh) ohd (33

+ v12v23 |6125) (8154 © |333) (B333] -
(34)

By performing a Bell measurement on the two qubits at
node v;, depending on the result of the Bell measurement,
one of the following four different states can be obtained with
probability 1/4:

1 —

o1 = %14 + yi2y23 [815) (015 (33)
1 —

0y = %L‘ + yi2v23 |673) (053] (36)
1 —

03 = %14 + vi2vas [Us) (¥ (37)
1 —

o4 = %14 + vy [V ) (Vi) - (38)

where ¢i and wi are the states forming the Bell basis [50].
These four states can be converted to the form of expression
(12) using local operations and classical communication, with
y = y12)23. Note that this corresponds to an entangled state
between the qubits in nodes v; and v3. From this elementary
swapping operation it is straightforward to extrapolate the
general rule of a quantum repeater chain p with any number
of links. One considers a quantum repeater chain where all
entangled qubits are in a Werner state with fidelity f; =
By + 1)/4. By performing a Bell measurement on inter-
mediate nodes and performing local operations and classic
communication, the final state will be a Werner state with
fidelity f, = (3yp + 1)/4, where y, is given by (19).
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