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This work describes a novel radiation algorithm designed to capture the three-dimensional, space-time 
resolved electromagnetic field structure emitted by large ensembles of charged particles. The algorithm 
retains the full set of degrees of freedom that characterize electromagnetic waves by employing the 
Liénard-Wiechert fields to retrieve radiation emission. Emitted electric and magnetic fields are deposited 
in a virtual detector using a temporal interpolation scheme. This feature is essential to accurately predict 
field amplitudes and preserve the continuous character of radiation emission, even though particle 
dynamics is known only in a discrete set of temporal steps. Our algorithm retains and accurately captures, 
by design, full spatial and temporal coherence effects. We demonstrate that our numerical approach 
recovers well known theoretical radiated spectra in standard scenarios of radiation emission. We show 
that the algorithm is computationally efficient by computing the full spatiotemporal radiation features of 
High Harmonic Generation through a plasma mirror in a Particle-In-Cell (PIC) simulation.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Radiative processes in plasma are ubiquitous in astrophysics [1]
and in laboratory settings. In plasma acceleration experiments, for 
example, they are important to the development of compact light 
sources [2], commonly employed in probing ultra-fast processes. 
Radiation emission mechanisms in plasma result from collective 
effects associated with the self-consistent dynamics of a large 
number of charged particles in the presence of strong electric and 
magnetic fields. Ab-initio numerical models, that can capture the 
motion of single particles, play an important role in this context, 
not only to validate theoretical advances, but also to predict radia-
tion emission from experiments and in conditions where analytical 
models are not available.

Among the different numerical techniques, the Particle-in-Cell 
(PIC) [3] scheme provides a standard model to compute the mo-
tion of ensembles of charged particles. In its standard version, the 
PIC scheme consists in a loop that iteratively computes electric and 
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magnetic fields by solving a discretized version of the full set of 
Maxwell’s equations in a grid, and then determines the next posi-
tions of the charged particles according to the relativistic Lorentz 
force. PIC codes are thus capable, by design, to retain most classical 
radiation emission processes.

The resolution required to capture radiation in the PIC algo-
rithm poses quite stringent limitations on the shortest wavelengths 
that can be captured directly in a simulation, given that increas-
ing the grid resolution will lead to a significant increase in the 
computational load. Consider a relativistic charged particle, with 
relativistic factor γp , undergoing a periodic motion with period 
T: The corresponding radiation wavelength, λrad , is proportional 
to λrad ∝ cT /γ 2

p Hence, the spatial resolution required to cap-

ture λrad is γ 2
p times higher than the resolution needed to de-

scribe the particle trajectory. Furthermore, because of the Courant–
Friedrichs–Lewy condition, the required temporal resolution is also 
γ 2

p higher than standard. This results in an increase of γ 4
p opera-

tions per simulation, pushing the limits of current computational 
capabilities, thereby motivating the development of advanced al-
gorithms to compute radiation emission in PIC codes.

The standard approach to avoid the increased computational 
load and obtain high-frequency radiation emission from PIC sim-
ulations consists in performing additional radiation calculations 
outside the PIC loop using particle trajectory information obtained 
with the PIC algorithm. Many simulation codes have been de-
veloped over the recent years following this strategy. The code 
 under the CC BY-NC-ND license 
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JRAD [4] receives a set of charged particle trajectories in order 
to compute the radiated spectra from the Fourier transform of 
the Liénard-Wiechert potentials; PIConGPU [5–7] follows a similar 
strategy, but can compute the emitted spectrum as the simulation 
progresses; the PIC codes OSIRIS [8] and EPOCH employ Monte-
Carlo approaches to compute the spectrum of radiation from QED 
processes at run time (see, e.g. Ref. [9]). These tools have been 
successfully used to predict the radiation properties of laboratory 
plasmas (in plasma based accelerators [10]), Quantum Electrody-
namics [11] and astrophysical plasmas.

However, the spatiotemporal profile of radiation is also impor-
tant in fields such as astrophysics, where it can reveal the prop-
erties of rotating black holes [1,12] for example. It can also play 
an important role in advanced microscopy based on twisted light 
with helical wavefronts [13]. Furthermore, this approach also pro-
vides a natural description of orbital angular momentum of light. 
To address this, we propose a new algorithm that retrieves the 
spatiotemporal radiation profile instead. This complementary ap-
proach includes built-in spatial and temporal coherence effects 
that are important to describe unexplored features of radiation 
emission, such as superradiant emission [14], for example. Our 
scheme can be used whenever the charged particle motion is well 
resolved, regardless of whether the spatial or temporal resolution 
is sufficient to resolve the resulting electromagnetic radiation.

The PIC simulation framework provides a direct and natural 
application to our present work and we focused on the imple-
mentation of this algorithm into the OSIRIS code naming our tool 
RaDiO, which stands for Radiation Diagnostic for OSIRIS. This diag-
nostic is composed of two distinct but equally useful counterparts: 
one implemented as a post-processing tool that uses previously 
generated trajectories to find the radiation that was emitted along 
them, and the other implemented as a run-time diagnostic for the 
PIC code OSIRIS, that uses the simulation data at each time step to 
compute the radiation.

This paper is structured as follows. In Section 2, we describe the 
theoretical framework behind radiation emission processes, which 
lays the groundwork for the development of the algorithm. Sec-
tion 3 describes the implementation of the algorithm in detail, 
exploring key aspects like the temporal interpolation scheme. In 
Section 4, we benchmark our code against theoretical predictions 
and the results obtained with other radiation codes. Section 5 con-
tains the study of the radiation emitted during the reflection of 
laser pulses by a plasma mirror. And, finally, Section 6 presents 
the conclusions.

2. Spatiotemporal electromagnetic field structure

The Fourier transformed Liénard-Wiechert fields [15] are com-
monly employed to predict the radiation spectra from charged par-
ticle trajectories. Here, instead, we calculate the Liénard-Wiechert 
fields directly, as these formulas provide the emitted electromag-
netic fields at a certain position in space-time. The spatiotemporal 
Electric (E) and Magnetic (B) field structure of the radiation emit-
ted by a charged particle according to the Liénard-Wiechert for-
mulas is given by:

E(x, tdet) = e

[
n − β

γ 2
p (1 − β · n)3 R2

]
ret

+ e

c

[
n × [(n − β) × β̇)]

(1 − β · n)3 R

]
ret

,

B(x, tdet) = [n × E]ret,

(1)

with γp = 1/
√

1 − β2. In Equation (1), the subscript ret denotes 
calculations using values at the retarded time, n is the unit vector 
2

Fig. 1. Illustration of the geometry of the radiation emission process and relevant 
quantities.

oriented from the particle position to the region in space where we 
are interested in capturing the emitted radiation. The virtual region 
in space-time where radiation is deposited is henceforth denoted 
as the detector and will be described in more detail in Section 3. In 
addition, β = v/c and β̇ = v̇/c are respectively, the particle velocity 
normalized to the speed of light, c and the corresponding accelera-
tion. Here the dot represents the time derivative. The direction of β
and β̇ with respect to the virtual detector and n are schematically 
represented in Fig. 1. Moreover e is the electron charge and the 
quantity R is the distance from the particle to the detector. For the 
purpose of determining the radiated fields, the first term in Equa-
tion (1) can be dropped if Rγ 2

p β̇/c � 1. This condition is usually 
satisfied in the far field (R � c/β̇) for sufficiently relativistic par-
ticles (γp � 1). The second term in Equation (1) thus corresponds 
to emission of propagating electromagnetic waves, describing the 
so-called acceleration fields.

Equation (1) describes the emitted electric, E, and magnetic, B, 
fields at a given position, x and time t , calculated from quantities 
obtained at the retarded time tret. For a given light ray that reaches 
the detector at a time tdet, tret is the instant of time when emission 
has occurred. The time of arrival tdet is given by:

tdet = tret + |rpart − Rcellncell|/c, (2)

where rpart is the position of the particle and Rcellncell is the po-
sition of the detector’s cell. In order to enhance computational 
performance, it is useful and possible to simplify Equation (2) in 
the far field, which gives [15]:

tdet = tret + Rcell/c − rpart · ncell/c, (3)

Supplemented by the additional conditions given by Equa-
tions (2)-(3), Equation (1) can thus be used to retrieve the full 
set of spatiotemporal degrees of freedom of the radiation emit-
ted by accelerated charges. By mapping the emitted radiation at 
each timestep in the particle trajectory to the corresponding time 
of arrival at the detector, the actual temporal resolution of the rel-
ativistic particle trajectory can be much coarser than the required 
one to describe the radiated fields.

An estimate of the maximum resolution that can be accurately 
obtained using Equations (2)-(3) can be found using the simplified 
picture shown in Fig. 2: The particle located at x0 emits a photon 
1 at t = t0. As the photon travels at c, in the next time step it 
will have travelled an extra dt(c − v p) than the particle, which 
emits a second photon at t = t1. Considering that a particle emits 
a photon at every time-step, the time interval between the arrival 
of two consecutive photons at the detector, provided that they are 
emitted by a relativistic particle, is given by Equation (4):

dtrad = dt(1 − v p/c) � dt/
(

2γ 2
p

)
, (4)

with dt being the temporal distance between emissions and the 
temporal resolution of the simulation providing for the particle tra-
jectory.

Therefore, we are able to capture radiation with frequencies up 
to 2γ 2

p times larger than the ones used to sample the particle’s 
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Fig. 2. Illustration of radiation emission.

Fig. 3. Spherical (a) and cartesian (b) detectors. The darker spherical grid has a 
higher radius than the lighter one. All spherical grids are centered in the origin 
of the coordinate system.

motion, as our detector time grid can be as fine as dtdet = dt/2γ 2
p . 

By consequence, the simulation time step can be much larger than 
the typical period of the emitted radiation. It is also important to 
note that the resolution in the detector should not be increased 
indefinitely as resolving time grids finer than dt/2γ 2

p could gener-
ate non-physical information. A thorough analysis of these limits 
can be found in the Supplementary Material. The next section 
describes our implementation of the radiation algorithm and il-
lustrates the reasons behind the different limits in resolution.

3. Algorithm and implementation

The calculations of Equation (1) can be fully integrated either 
into a pre-existing code that computes the trajectories of charged 
particles (e.g. the PIC scheme) or be used as a post-processing tool 
that computes Equation (1) on a set of pre-calculated trajectories. 
The algorithm consists of two main parts: calculating and obtain-
ing the radiated fields and depositing them in a discretized grid. In 
this section we discuss the general steps and approach to incorpo-
rate the radiation algorithm considering these two components.

3.1. Radiation calculation algorithm

The virtual detector is a key feature of the radiation diagnos-
tic. It is the region of space where radiation is tracked during a 
given time period. We consider two geometries of the virtual de-
tector, (i) a spherical one [Fig. 3 a)], where the grid is defined using 
spherical coordinates (eθ , eφ, er) and (ii) a cartesian one [Fig. 3 b)], 
where the grid is defined using cartesian coordinates (ex, ey, ez). 
RaDiO has the capability to compute the radiation in both types of 
geometries.

In order to track the emitted radiation at each time step of the 
trajectory we need to evaluate Equation (1) in every cell of the 
virtual detector. The radiation emitted at each time step of a given 
trajectory lies on a spherical shell that expands from the position 
of the particle at the time of emission, tret , at the speed of light. 
The intersection of the radiation shell with the detector consists of 
a circumference, whose radius increases with tdet. Fig. 4 illustrates 
this picture, by showing the intersection of the radiation shell with 
a cartesian detector. The top of Fig. 4 shows the detector at three 
different tdet. The bottom of Fig. 4 shows the radiation arriving at 
each one of the highlighted cells as a function of tdet , which can 
be calculated using Equation (2) or Equation (3).
3

Fig. 4. Visual representation of the arrival of radiation emitted by a single particle 
in a single time step of the simulation at a detector cartesian detector. Top panel: 
expansion of the intersection between the radiation shell and the detector (in or-
ange). Bottom panel: Time of detection for three distinct cells of the detector. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

The illustration of Fig. 4 suggests a clear approach to track the 
radiation reaching the detector from the emission of one particle at 
a given time step tret: Loop through each spatial cell of the detec-
tor and to compute tdet at which radiation arrives. All the required 
quantities to compute Equation (1) are known or can be easily cal-
culated (see additional details below). This approach features the 
quality of avoiding loops through the temporal cells in the detec-
tor. Thus, radiation computing time becomes independent from the 
temporal resolution of the detector and the total computing time 
is proportional to the number of time steps in the PIC simulation, 
Nt_PIC multiplied by the number of particles, Npart multiplied by 
the number of spatial cells in the detector, Nsp_cell .

This approach is summarized in Algorithm 1. It comprises two 
different loops: one through the particles that emit radiation (de-
noted as radiative particles) and another through the detector spa-
tial cells. The quantities t, R, n, β , β̇ and tdet are required in order 
to evaluate Equation (1). All of these quantities are either readily 
available or can be directly calculated from other quantities that 
are available in the simulation, such as the position of the particle 
(xpart), the momentum of the particle (p) and the time of emis-
sion t , as well as quantities that are part of the radiation module, 
such as the position of each detector cell xcell or the previous ve-
locity of the particle βprev . These calculations are also shown in 
Algorithm 1.

Because tdet can be computed at each time of emission, tret , 
using Equation (2) or Equation (3), it is in principle possible to 
conceive a temporally gridless detector. This approach could pro-
vide a very accurate description of the radiated fields, particularly 
if complemented by a post-interpolation scheme with the goal of 
retaining the continuous nature of radiation emission. Such ap-
proach, however, would require storing as many spatial detector 
arrays as the number of steps in the particle trajectory, for every 
particle in the simulation (Nt_PIC × Npart × Nsp_cell). High memory 
consumption would thus be the main limitation of such algorithm. 
To face this issue, RaDiO deposits radiation in a grid detector with 
up to 3 dimensions (1 temporal dimension and up to 2 spatial di-
mensions) with the spatial cells being distributed according to a 
spherical or cartesian geometry, and uses a temporal interpolation 
scheme to mimic continuous radiation emission between two con-
secutive PIC time-steps for every particle in the simulation.
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Algorithm 1 Radiation calculation and depositing.
1: procedure RadiationCalculator

2: for all particle in simulation do
3: β = velocity(particle) = p/

√|p|2 + 1
4: β̇ = acceleration(particle) = (β − βprev )/dt
5: for all cell in detector do
6: R = distance(particle, cell) = |xpart − xcell|
7: n = direction(particle, cell) = (xpart − xcell)/R
8: tdet = R/c + t
9: tdet,prev = Rprev/c + t − dt

10: if tdetmin < tdet < tdetmax then
11: RadiationInterpolator(E(n, β, β̇), tdet, tdet,prev)

The implementation shown in Algorithm 1 can be applied to 
both post-processing diagnostics, which calculates the radiation 
given a set of pre-calculated trajectories, and to run-time diagnos-
tics, in which the radiation calculations are performed at run time 
during the trajectory calculation. In the latter scenario, the calcu-
lation and deposition of the emitted radiation can take place in 
a sub-step of the particle push loop, created specifically for that 
purpose. This sub-step comes right after pushing the particles, 
in such a way that the newly calculated positions and momenta 
can be used, in conjunction with the corresponding stored values 
from the previous iteration, to compute the required quantities to 
determine the radiated fields. In the post-processing version, all 
required quantities can be readily calculated by considering the 
positions and momenta from consecutive time-steps.

3.2. Deposition of the radiated fields in a virtual detector

According to Eqs. (2) and (3), each PIC simulation timestep cor-
responds to a given detector time. In general, consecutive time 
steps in the trajectory will deposit radiation in non-consecutive 
detector time cells. A simple prescription that only deposits the 
radiated fields in the temporal cells that are closest to the pre-
dictions given by Eqs. (2) and (3) will therefore generate noisy 
radiation patterns that are non-physical because particles emit ra-
diation continuously. To re-gain the continuous character of ra-
diation emission, and remove the artificial noise induced by the 
discretization of the trajectories in time, RaDiO interpolates the 
fields emitted by each particle between every two consecutive PIC 
time steps.

The interpolation scheme in RaDiO assumes that particles radi-
ate constant fields between each consecutive PIC timestep. In order 
to deposit the fields across different temporal cells, we weigh the 
contribution of each deposition by the time until the next deposi-
tion. In fact, the value of the radiation in a time slot is the integral 
of the radiation in the interval delimited by two consecutive detec-
tor time-steps. Incidentally, real-life applications often employ an 
integrator detector, which takes the information about radiation ar-
riving in-between detector time steps into account. This deposition 
scheme can be implemented by following Algorithm 2, below.

Algorithm 2 Radiation interpolation.
1: procedure RadiationInterpolator

2: nslot = slot(tarray, tdet)

3: nslot,prev = slot(tarray, tdet,prev)

4: nitr = tslot,prev
5: ttmp = tdet,prev
6: while nitr < nslot do
7: scale_factor = (tarray[nitr+1] − ttmp)/dtdet
8: E(cell, nitr) = E(n, β, β̇) · scale_factor
9: nitr = nitr + 1

10: ttmp = tarray[nitr]
11: scale_factor = (tdet − tarray[nslot])/dtdet
12: E(cell, nitr) = E(n, β, β̇) · scale_factor
4

Fig. 5. Integrator detector: radiation is scaled by the time until the next deposition. 
ti refers to the detector’s time grid and t′

i to the different deposition times.

Each variable in Algorithm 2 is calculated at each PIC time-step 
and for each particle. Here, slot(...) is a function that returns the in-
dex of the slot in the detector’s time-array (tarray) where tdet falls, 
tdet is the time of the current deposition and nslot is the corre-
sponding time-slot position in the detector array. In addition, nitr
is an iterator that runs from nslot,prev, the detector time slot where 
particle deposited radiation in the previous PIC time-step, until 
nslot. The quantity ttmp is an auxiliary variable for the calculation 
of the time difference between depositions. It runs from, tdet,prev, 
the time of the previous deposition, to t[nitr], the time for the ac-
tual deposition.

Fig. 5 shows an example case that clarifies this deposition 
scheme. Each of these depositions correspond to radiation emitted 
at a different PIC time step by a single particle. This interpolation 
can be performed while the simulation is running, as it only re-
quires information about the radiated field in the previous time 
step. In fact, for the example present in Fig. 5 the deposition algo-
rithm would go as follows:

1) At PIC iteration 4, radiation arrives at the detector at tdet =
t′

4.
2) nitr is set to 2, the slot of the previous deposition, at t′

3, 
ttmp is set to t′

3, the time of the previous deposition, we enter 
the loop, the scale factor is calculated: (t3 − ttmp)/dtdet, with 
tarray[nitr + 1] = t3 and E(t′

3)(t3 − t′
3)/dtdet is deposited in the 

second time slot, t2.
3) nitr is incremented to 3, ttmp is set to t3, the time of 
the previous deposition, the scale factor is calculated: (t4 −
t3)/dtdet, with tarray[nitr + 1] = t4 and E(t′

3)(t4 − t3)/dtdet is 
deposited in the third time slot, t3.

4) nitr is incremented to 4, ttmp is set to t4, we exit the loop, 
the scale factor is calculated: (tdet − t4)/dtdet and E(t′

3)(t
′
4 −

t4)/dtdet is deposited in the time slot t4.

Using this approach, radiation can be computed and deposited 
using only the information from the current and the previous time 
steps. This algorithm interpolates radiation coming from a single 
particle, but can be repeated for all particles in the simulation, 
as stated in Algorithm 1, in order to capture radiation from all 
particles.

3.3. Practical example: helical trajectory

Here we look at a practical example, in which an electron with 
γp = 57.3 undergoes a helical motion with amplitude 0.014 c/ωp

and frequency ω0 = ωp , corresponding to a K parameter of K =
0.8, K is a trajectory parameter that can be taken as a scaled pitch 
angle the maximum angle of the particle trajectory, normalized 
to the Lorentz factor γp and given by K = γpr0ω0/c. The helical 
motion was described by the PIC algorithm with a temporal reso-
lution of 0.1 ω−1

p . Here, ωp , is an arbitrary normalizing frequency. 
The radiation generated by a particle undergoing such trajectory 
has a distinctive, expanding spiral spatiotemporal signature. This is 
shown in Fig. 6, which represents the radiated electric field along 
the y direction deposited onto a spherical 2D detector with an 
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Fig. 6. Spatiotemporal signature of the radiation emitted by a particle undergoing a 
helical trajectory.

angular aperture of 0.1 rad placed in the direction of the longitu-
dinal motion of the particles (x axis), with radius R = 106 c/ωp . 
The temporal resolution of the detector was 1.33 × 10−5 ω−2

p and 
the spatial resolution was 58 μrad. Fig. 6 shows a snapshot of the 
detector at four different temporal positions. The starting point 
of the spiral follows the circular motion of the particle in the 
y − z plane. Between each snapshot the radiation spiral makes two 
turns, thus the temporal distance between each snapshot is ap-
proximately equal to two periods of the emitted radiation. Given 
the trajectory parameters, the radiation period was expected to be 
of about ∼ 2 × 10−3 ω−1

p , about 10 times smaller than the smaller 
period that could be resolved using only the PIC algorithm.

4. Benchmarking

In order to benchmark our algorithm, we consider the example 
of a single relativistic particle emitting synchrotron radiation. Syn-
chrotrons have a magnetic field structure that imposes a sinusoidal 
trajectory to relativistic electrons that go through the device, thus 
leading to the emission of high frequency photon beams in the X-
UV or X-ray regions of the spectrum. The trajectory of the particle 
would then be given by:

y(t) = rβ cos (ωβt) (5)

x(t) = βx0

[
t − r2

β

8γx0

(
t − cos(2ωβt)

2

)]
(6)

where βx0 is the initial velocity of the particle along the longitudi-
nal x direction, γx0 = (1 − β2

x0)
−1/2 its longitudinal Lorentz factor, 

rβ the amplitude of the sinusoidal trajectory, and ωβ its frequency.
As far as we are aware, the only explicit analytical formulas 

capturing the spatiotemporal radiation profile of synchrotron radi-
ation are found in [16], which gives a semi-analytical model for 
the emitted field lines. However, direct quantitative comparisons 
between the visual depiction of field lines and the actual value of 
the emitted field in a region of space can be difficult (see Supple-
mentary Material for a qualitative comparison). On the other hand, 
the spectral properties of radiation are well documented [17,18], 
so we Fourier transformed the data in the virtual detector with 
respect to time and compared these spectra to the theoretical pre-
dictions. The corresponding intensity spectrum (I) with respect 
to the frequency ω and solid angle � of the emitted radiation, 
valid for ultra relativistic particles as an asymptotic limit expres-
sion (γp � 1) and assuming very large number of periods in the 
trajectory, [2], is given by:
5

Fig. 7. Spatiotemporal signature of the radiation emitted by a particle undergoing 
a sinusoidal motion in a transverse detector (a). The lineouts are shown on the 
bottom plot (b). Peaks located at smaller t arrive earlier at the detector.

d2 I

dωd�
= e2ω2γ 2

3π2cωβ K

(
1

γ 2
p

+ θ2

)2

×
[

θ2

γ −2
p + θ2

K 2
2/3(ϒ) + K 2

1/3(ϒ)

]
,

(7)

where, θ is the observation angle in the direction perpendic-
ular to the trajectories plane. In addition, Kn is the modified 
Bessel function and ϒ is a numerical parameter given by ϒ =
ωγp

3ωβ K

(
γ −2

p + θ2
)−3/2

, with K being the aforementioned K param-
eter.

Equation (7) can be integrated over all angles, returning the fre-
quency spectrum [2]:

dI

dω
= √

3
e2γpω

cωc

∞∫
ω/ωc

K5/3(x)dx, ωc = 3

2
Kγ 2

p ωβ (8)

We have benchmarked our algorithm against Equations (7)
and (8). The benchmarks were performed using the two dimen-
sional sinusoidal trajectory of a relativistic electron (γp = 50) with 
an amplitude of rβ = 2 c/ωp , kβ = 0.1 ωp/c (K = 10) in the trans-
verse x − y plane and dt = 0.01c/ωp , where ωp is a normalizing 
frequency. We simulated a line of a spherical detector, placed in 
the z − x plane, 105 c/ωp away from the axis origin with an angu-
lar aperture of 0.1 rad around the x axis. This detector had 512 
spatial cells and 131072 temporal cells, resulting in a temporal 
detector resolution of 2.98 × 10−5c/ωp The results are shown in 
Fig. 7 which features a plot of the detected electric field in the eφ

direction (perpendicular to the motion plane) for each spatiotem-
poral cell.

The radiation is composed of several periodically spaced peaks, 
whose shape can be observed in the lineout [Fig. 7 b)]. The short 
burst nature of the radiation (equivalent to a broad band spec-
trum), consistent with the large value of the K parameter, is clear 
from Fig. 7. Instead of displaying a purely sinusoidal profile with 
a single wavelength, the electric field consists of sharply peaked 
bursts containing many different wavelengths. Moreover, it is pos-
sible to observe that consecutive peaks have opposite sign. This is 
a direct result of the sinusoidal nature of the electron trajectory 
in which the acceleration β̇ switches sign between peaks. Further-
more, it is possible to note that for higher angles the radiation 
bursts arrive later, creating the parabola-like structures that can be 
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Fig. 8. (a) Comparison between the theoretical and simulated spectra. (b) Comparison between a lineout at �θ = 0.02 from both spectra. (c) Angle integrated spectra, both 
spectra are normalized to 1. The relative error (IRaDiO/Itheor − 1) is shown on the inset. (d) Frequency integrated spectra, both spectra are normalized to 1. The absolute error 
(IRaDiO − IJRad) is shown on the inset.
seen in the upper plot. This delay becomes more significant as the 
particle approaches the detector’s surface, resulting in a decrease 
of the curves’ aperture.

This result can also be understood in terms of the spatiotem-
poral reasoning regarding the estimation for the typical radia-
tion frequency presented in the previous section. However, in-
stead of depicting the emitted radiation parallel to the motion of 
the particle, we picture them emitted at an angle θ . The tempo-
ral distance between the emission and arrival of light ray emit-
ted at a given longitudinal position x is then given by: c�trad =√

R2 + x2 − 2xR cos θ , where all quantities are defined as in Equa-
tion (3). This expression shows that the time of arrival increases 
with θ and also that it is scaled by the longitudinal position x. 
Thus, as the particle approaches the detector and x grows larger, 
the parabolic structures left on the detector become tighter.

Fig. 7 b), which depicts lineouts of Eφ , also shows that the 
peaks become wider and less intense for larger angles. This is 
in concordance with the predictions for the spectrum [see Equa-
tion (7)], which features a decrease in the number of harmonics 
for larger angles, resulting in broader and less intense peaks off-
axis.

In order to further understand the angular dependent frequency 
spectra, Fig. 8 compares the theoretical result, given by Equa-
tion (7), with the simulated result, given by the Fourier transform 
over time of the field shown in Fig. 7 a). The spectrum is symmet-
ric with respect to θ = 0. Thus, the upper half of Fig. 8 a) (θ > 0) 
shows the simulated results and the bottom half (θ < 0) the the-
ory. As expected, the theoretical line, being the asymptotic limit 
of a continuous harmonic distribution with a very large number 
of oscillations in the trajectory [2], corresponds to the envelope of 
the numerical result, showing excellent agreement. This is evident 
from the lineout of the radiated spectra displayed in Fig. 8 b).

The simulated integrated spectrum over all angles, which yields 
the frequency distribution of the emitted radiation, can be bench-
marked against Equation (8). Fig. 8 shows excellent agreement be-
tween numerical and theoretical results, as the intensity of most 
peaks matches the expected result with small relative error which 
rises as frequency increases.
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To further confirm the validity of our numerical approach, we 
benchmarked the frequency integrated spectrum, dI/d� against 
the spectrum provided by the post-processing spectral code 
JRad [4], which computes the radiated fields using the spectral 
version of the Liénard-Wiechert potentials. The results of this com-
parison, shown in Fig. 8 d), are in excellent agreement.

4.1. Coherence tests

Because RaDiO captures the emitted fields in space and in time 
it can also naturally describe temporal and spacial interference ef-
fects. This feature is essential to accurately portrait temporal and 
spatial coherence, present in superradiant emission scenarios for 
example. This is an intrinsic feature of our spatiotemporal ap-
proach, which allows us to directly obtain the fields radiated by 
every simulation particle, including interference effects by design.

To test our ability to accurately model temporal and spatial 
coherence, we ran simulations using two particles with oppo-
site charges and sinusoidal trajectories, similar the one defined 
in Equations (5) and (6). The two particles, with particle 1 being 
positively charged and particle 2 being negatively charged under-
went this sinusoidal trajectory in perpendicular planes (particle 1 
in plane x − y and particle 2 in plane x − z) and the detector was 
the same as the one used in the previous section.

Fig. 9 shows the simulated radiated electric field profile as a 
function of θ and tdet for three different configurations: one with 
only particle 1 [Fig. 9 (a)], one with only particle 2 [Fig. 9 (b)] 
and other with both particles [Fig. 9 (c)]. As the two trajectories 
lie in different planes, the spatiotemporal signatures of the radia-
tion emitted by each particle are noticeably distinct because the 
detector plane lies on the plane of the trajectory of particle 2, 
then being perpendicular to the plane of particle 1. By compar-
ing Fig. 9 (a) with Fig. 9 (b), we can hence readily identify the 
radiation coming from each particle in Fig. 9 (c).

As both particles have opposite charges, the field on axis for a 
given particle will have the opposite sign as the on-axis field for 
the other particle. Thus, the radiation emitted by both particles 
will interfere destructively on-axis. This happens exactly at θ =
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Fig. 9. (a) Spatiotemporal profile of the radiation coming from particle 1 (trajectory perpendicular to the detector). (b) Spatiotemporal profile of the radiation coming from 
particle 2 (trajectory parallel to the detector). (c) Spatiotemporal profile of the radiation coming from both particles. The insets contain the time averaged squared field, 〈E2〉t .
π/2. Thus, if we look at the time averaged squared field (insets 
in each panel of Fig. 9), we see that although 〈E2〉t is maximum at 
θ = π/2 for the simulations with only one of the particles (insets 
of Fig. 9 [a] and Fig. 9 [b]), the opposite happens when we capture 
the fields radiated by both particles (inset of Fig. 9 [c]).

Our algorithm captures coherence effects of the simulation par-
ticles by default, but in a PIC code, each particle in the simulation 
represents a cloud of N real particles with a size close to cell size 
that follow the same dynamics, this is the so called macroparti-
cle approximation. In our code, however, we calculate the radi-
ation emitted by the macroparticles in the simulation as if they 
were point charges with charge equal to the total charge inside 
the macroparticle (Nq). This is in fact equivalent to assuming that 
each of the N particles inside the macroparticle radiates coher-
ently. The assumption that they all radiate coherently holds either 
for all wavelengths if N = 1, or for wavelengths larger than the 
cell size if N � 1. For wavelengths shorter than the cell size, in 
general, we cannot say it holds, as such an assumption depends 
on information about particles that are not being simulated. For 
example, if standard macroparticle approximation is still valid at 
scales smaller than the cell size, the emitted radiation should be 
incoherent for wavelengths shorter than the cell size and the re-
sult should be corrected with a filter function (see Supplementary 
Material for a deeper analysis).

The detailed study of the conditions that allow assuming that 
each of the N particles inside the macroparticle radiates coherently 
is out of the scope of this work. It will be up to the user to decide 
whether it holds or not. If this assumption does not hold, then re-
sults given by our code will be correct for wavelengths larger than 
the cell size, but could be overestimated for wavelengths smaller 
than the cell size. Nevertheless our code can, in general, accu-
rately predict the qualitative aspects of the emitted radiation for 
all wavelengths.

5. Example: radiation from a plasma mirror

When an electromagnetic wave collides with a target such as 
a metallic surface or an overdense plasma, it is unable to prop-
agate and gets reflected. The process of reflection has long been 
well understood and thoroughly explained at the macroscopic level 
by Maxwell’s laws and classical electrodynamics. In the plasma, 
the phenomenon is commonly explored using a fluid theory ap-
proach. Such description predicts the damping of the wave near 
the surface of the reflective material (it becomes an evanescent 
wave) and the appearance of a reflected wave. At the electron 
level, however, the phenomenon is not always trivial, in particular 
at relativistic laser intensities (with peak normalized vector poten-
tial a0 = e A0/(mec) = 1), which lead to High Harmonic Generation 
(HHG) in plasma mirrors [19,20]. Several theoretical frameworks 
have been proposed to describe the underlying mechanisms of 
HHG, each with different regimes of applicability (see e.g. [21,22])
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PIC simulations are commonly employed to deepen the under-
standing of the physical processes underlying laser reflection and 
harmonic generation in plasma mirrors. An accurate description 
of HHG in standard PIC simulations, for instance, is computation-
ally challenging because spatial and temporal PIC grids need to 
properly resolve the high harmonics. Thus, to accurately capture 
high harmonics up to the 10th or 100th order, PIC simulations re-
quire spatiotemporal resolution up to one-two orders of magnitude 
higher than one required to resolve the fundamental harmonic. The 
use of RaDiO may thus be computationally advantageous in HHG 
simulations, as it allows capturing high frequency harmonics with-
out increasing the PIC resolution.

In this section, we present 3D Osiris simulations of an HHG 
scenario where the laser propagates in the longitudinal x direction 
and is linearly polarized along the transverse z direction. The laser 
uses a sin2 temporal profile with 12 full periods (T0 = 8π ω−1

p , 
ω0 = ωp/4) and Gaussian perpendicular profile with spot-size 
(W0 = 2λ0, λ0 is the central laser wavelength). The plasma mir-
ror consists in an overdense plasma slab with plasma frequency 
ωp (and density np , 16 times larger than the critical density nc
for that laser pulse) with thickness 100 c/ωp , much higher than 
the non-relativistic plasma skin-depth (ls ∼ c/ωp in this case). 
As the laser gets reflected, we capture the reflected fields both 
in the PIC grid through Maxwell’s equations and in a virtual de-
tector through RaDiO. We chose to compute the radiation emit-
ted by all plasma electrons located within the plasma cylinder 
with a radius of three laser spot sizes around the focus. The 
virtual cartesian detector was located at x = −160 c/ωp , rang-
ing from y = −160 c/ωp to 160 c/ωp , with temporal resolution 
dtdet = 0.0384 ω−1

p , about five times smaller than the PIC tempo-

ral resolution dtPIC = 0.1792 ω−1
p . The PIC simulation box ranged 

from x = −288 c/ωp to x = 108 c/ωp , with a resolution dx =
0.96 c/ωp in the longitudinal direction and from y, z = −160 c/ωp
to y, z = 160 c/ωp with resolution dy, dz = 0.32 c/ωp in the trans-
verse direction. This PIC grid is able to resolve 26 points per laser 
wavelength. Each cell contains 16 simulation particles. A 2-D slice 
of the setup is shown in Fig. 10, the laser propagates from left to 
right.

We start by capturing the radiation in the absence of HHG, by 
using a non-relativistic laser intensity, with peak normalized vector 
potential a0 = 0.1. Fig. 11, top, shows the trajectories of a random 
sample of 512 plasma particles. The zoomed-in region clearly dis-
plays the typical figure-8-like motion induced in the plasma parti-
cles by the laser pulse. This motion originates the radiation, which 
is captured both in the PIC grid and in the virtual radiation de-
tector. By comparing the radiation in the detector to the reflected 
pulse in the PIC grid (Fig. 11, bottom), we show that the beam 
reflection is a direct result of the charged particles’ trajectories in-
duced by the incident beam.

Next to investigate a scenario with strong HHG, we used a 
high-intensity laser (a0 = 4.2) in a setup similar to the one shown 
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Fig. 10. Reflection radiation simulation setup. A tightly focused gaussian laser pulse 
propagates from left to right towards an overdense plasma target.

Fig. 11. Trajectories of a random sample of 512 plasma particles under the influence 
of a low intensity laser (a0 = 0.1). The zoomed-in region shows a particle perform-
ing the figure-8 motion induced by the incident laser (top). Comparison between 
the reflected laser profile given by the PIC grid (upper half) and by RaDiO (lower 
half) at x = −160 c/ωp . Comparison between incident and reflected beams as cap-
tured by the standard PIC algorithm and by RaDiO (bottom). The laser pulses are 
properly described in both situations with more than 20 points per wavelength.

on Fig. 10. In this case, we see the clear effect of the increased 
intensity on the trajectory of the sampled particles (Fig. 12, top), 
with a similar figure-8 motion for the first few laser periods, but 
with increased amplitude overall and stronger deviation from the 
standard figure-8 motion.

As a result of this more extreme motion, the reflected laser 
beam is noticeably different from the incident beam. This is made 
clear in the comparison shown at the bottom of Fig. 12. The dif-
ferences between incoming and reflected laser pulse electric field 
profile are due to the existence of high laser harmonics present 
in the reflected beam. The presence of the high harmonics is also 
clearly visible in the spectrum of Fig. 12. The frequency spectrum 
shows that the reflected laser captured by RaDiO contains at least 
13 harmonics, while the PIC algorithm, which only resolves the 
8

Fig. 12. Trajectories of a random sample of 512 plasma particles (a) after the re-
flection a low intensity laser (a0 = 4.2). The zoomed-in region shows a particle 
performing the figure-8 motion induced by the incident laser. Comparison between 
the reflected laser profile given by the PIC grid (upper half) and by RaDiO (lower 
half) x = −160 c/ωp . Spatiotemporal (b) and frequency spectrum (c) of the reflected 
high intensity laser beam.

plasma relevant scales correctly captures the emission of the first 
4 odd harmonics. The PIC grid is able to resolve the original har-
monic with 26 points per wavelength, but as the harmonic order 
increases, past the 7th order only RaDiO’s resolution can capture 
the signal correctly. In this case the RaDiO frequency spectrum 
captures frequencies at least 4 times higher than the OSIRIS PIC 
grid, being able to capture harmonics at least until the 25th order, 
as expected from the employed laser intensity (a0 = 4.2).

6. Conclusions

The radiation diagnostic for OSIRIS (RaDiO) was successfully im-
plemented, benchmarked and tested in several scenarios, including 
production runs. While not described here, it should also be noted 
that the algorithm was fully parallelized allowing for large sim-
ulations. RaDiO is a novel radiation diagnostic that captures the 
spatiotemporal features of high frequency radiation in PIC codes. 
A key aspect of our algorithm is the development of a temporal 
interpolation scheme for depositing radiation. This is essential to 
preserve the continuous character of radiation emission and to ob-
tain correct values for the amplitude of the radiated fields. The 
algorithm is general and only requires knowledge about the trajec-
tories of an arbitrarily large ensemble of charged particles (> 106) 
thus we can apply it to generally enhance the capabilities of any 
algorithm that predicts the trajectories of charged particles, apart 
from PIC codes. We described the implementation of RaDiO into 
OSIRIS and provided benchmarks with well established theoretical 
models for synchrotron emission. These comparisons showed ex-
cellent agreement, therefore adding a high level of confidence to 
future runs.

We also provided an illustration where we used RaDiO to probe 
the spatiotemporal features of radiation emitted in the context of 
laser reflection by a plasma mirror. At lower laser intensities, Ra-
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DiO fully recovers the PIC simulation result. This further confirms 
the validity of RaDiO in a setting where temporal and spatial co-
herence effects are critical. A simulation at higher laser intensity 
demonstrated the generation of high harmonics beyond the pre-
dictions of the PIC algorithm, showing that RaDiO allows for a 
complete characterization of the reflected beam along with all the 
harmonics, without increasing the overall PIC resolution, and effec-
tively demonstrating that RaDiO can be effectively used to predict 
high frequency radiation from PIC codes [14].

RaDiO is a flexible diagnostic tool that can be further expanded 
to include additional features such as higher order interpolation 
schemes, for example using an advanced particle pusher recently 
developed [23], the option to compute the electromagnetic field 
potentials in addition to the electromagnetic fields, or the capabil-
ity to convert radiation to/from relativistic Lorentz boosted frames. 
Although this diagnostic does not interact with the particles, it 
could also be employed together with a QED code that captures 
radiation reaction and affects the particle’s trajectories and cap-
ture radiation compatible with QED effects as long as the emission 
is purely classical. Because it captures the radiation in space and 
in time, RaDiO may also be useful in describing the production of 
spatiotemporally structured beams [24].
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