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Abstract

In the last few years the number of systems and devices that use
voice based interaction has grown significantly. For a continued
use of these systems the interface must be reliable and pleasant
in order to provide an optimal user experience. However there
are currently very few studies that try to evaluate how good is a
voice when the application is a speech based interface. In this
paper we present a new automatic voice pleasantness classifi-
cation system based on prosodic and acoustic patterns of voice
preference. Our study is based on a multi-language database
composed by female voices. In the objective performance eval-
uation the system achieved a 7.3% error rate.

Index Terms: Speech analysis, Speech synthesis, Human voice

1. Introduction

In recent years the speech synthesis technology has been widely
improved and has reached a maturity level that leveraged their
inclusion on systems and devices for daily use. GPSs, PDAs,
e-learning systems or reading assistants are just a few exam-
ples. Most mainstream operating systems, for desktop and mo-
bile devices, are also providing text to speech (TTS) systems
that can work alone or can be easily integrated with other appli-
cations. The quality of these systems can be very good, with flu-
ent speech, high intelligibility rates and even emotions in some
cases. However there are still users who don’t feel completely
satisfied and try several voices (when available) with the pur-
pose of finding the one that best suits their needs and personal
tastes. These additional demands are related with subjective
speech characteristics and, as far as the authors’ knowledge,
there are no studies that embrace the user’s reaction to a given
speech utterance or that evaluate the suitability of a voice for a
given task. With the purpose of building new TTS voice fonts
we explored several subjective voice features and speech inter-
action use cases. For this paper we have focused specifically on
the concept of pleasantness according with the definitions found
in [1] where “Pleasantness is the feeling caused by agreeable
stimuli.” and in [2] where pleasantness is what gives “’a sense of
happy satisfaction or enjoyment”. This concept is distinct from
the concept of attractiveness (“appealing to the senses”, “’sex-
uvally alluring” [2]) which was also evaluated but is out of the
scope of this work. The concept of voice pleasantness, in a con-
text of very frequent interaction, may be subject to cultural and
individual variations but the obtained results pointed to seve-
ral inter-cultural patterns and evidenced a substantial agreement
among listeners preferences.
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Figure 1: System’s architecture

In this paper our goal is to objectively assess a voice and
to demonstrate that it is possible to build an automatic pleas-
antness classification system using prosodic and acoustic pat-
terns of voice preference. Our work is organized as follows: in
the next section we present a description of the used method-
ology starting with an overview of the system’s architecture
which will then be detailed in the ensuing sub-sections. We will
thoroughly cover the construction of our database, the followed
pipeline for feature selection and the classifier development and
tuning. Finally we will present the main results and conclusions
as well as some envisioned developments.

2. Methodology

The methodology that was used for the development of the sys-
tem is depicted in figure 1 with function blocks representing the
main tasks sets.

2.1. Database

The database that supported the development of this work is
exclusively composed by female voices. These voices belong
to professional speakers and were recorded during voice tal-
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ent selection processes, in the framework of for the develop-
ment of new TTS systems. The related methodology as well as
the quality requirements that were imposed during those pro-
cesses have been previously published [3] and for this work we
will only mention the relevant features. Our database covers
6 languages (Catalan, Danish, Finnish, Portuguese, Portuguese
(Brazil) and Spanish) and on a previous study [4] we identi-
fied inter language trends that allowed us to homogenously con-
sider the whole record set (for example we observed that voices
whose pitch values fell between a given range usually received
more listeners’ preferences than others). For each language we
have recordings for 5 different speakers and each one recorded
around 3 minutes of speech from a common language depen-
dent script containing phonetically and prosodically rich sen-
tences that allowed the expression of emotions. For every lan-
guage we conducted a survey where each utterance was rated
according to pleasantness using a 5 points scale. The survey
received an average of 60 responses per language, from male
and female listeners, native and non-native speakers, in an age
range from 23 to 60 years old. The database records were di-
vided in two classes, one composed by the two best classified
voices from each language and other with the remaining voices.

2.2. Features

Since we had no prior knowledge about the features that could
efficiently contribute to define pleasantness we decided to build
an initial prototype vector using scientifically proved features
commonly used in areas that seek similar objectives, such as
speech/speaker recognition, emotion recognition and clinical
voice analysis. Additionally we considered the recommenda-
tions of Wolf [5] who advocates that the variables should oc-
cur naturally and frequently in normal speech, be easily mea-
surable, have high variability between speakers, be consistent
for each speaker, not change over time or be affected by the
speaker’s health. Our prototype vector encompassed a broad
range of signal aspects, covering intra- and inter-period char-
acteristics, time and frequency domains contents and several
statistics that could complement the raw information. It was
organized in four groups: acoustic features, signal features, pe-
riodicity features and phonation speed features.

In the first group we considered the fundamental fre-
quency (fo) envelope and its first (A fo) and second derivatives
(AAfy). From these we calculated four first order statistics,
namely average (Av), standard deviation (Std), skewness (Sk)
and kurtosis (Kt), and extracted the maximum (M ax) and min-
imum (Min) values of the envelope (minimum was obtained
excluding zeros). For four vowels, common to all the languages
(in the phonetic sense), we have extracted the first four formants
and their related bandwidth ([V]; represents the frequency of
formant ¢ for vowel [V]) and also calculated the four above
mentioned first order statistics, maximum and minimum. The
second group included the instantaneous power (FP) obtained
by following a similar procedure to the one described for fj.
A possible voice quality factor is the stability and cross period
coherence of the signal in voiced sounds. To address this hy-
pothesis we have included a third feature vector group, where
we have considered jitter (J), shimmer (S) and harmonic to
noise ratio (HNR). We calculated jitter J (k) (local) in period k
as the average absolute difference between consecutive periods
T; divided by the average period:
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Table 1: Prototype Feature Vector.

Group Feat. Stat. #
Acoustic  fo, Afo, AAfo  Av, Std, Kt, Sk, Min, 18
Max
4xVow.: 4Fmt Av, Std, Kt, Sk, Min, 96
Max
4xVow.: 4Bw Av, Std, Kt, Sk, Min, 96
Max
Signal P P,P” Av, Std, Kt, Sk, Min, 18
Max
Periodicity Jitter - 4
Shimmer - 6
HNR, HNRdb - 2
Phonation WR, SR, PR - 3
Speed

The equation is based on an underlying source-filter model,
where a given excitation p(k), centred at instant &k, composed
by a sum of consecutive pulses with amplitude A;, separated by
a period 7" and with an admissible variation AT for the period
1 is described by:

p(k) = > Aid(k —iT — AT,) 2)

Besides local jitter (Jloc) we have also included other sim-
ilar metrics (that can provide non-redundant information): Ab-
solute jitter (Jabs), relative average perturbation (Jrap), period
perturbation quotient and periodic difference (Jddp). The pe-
riodicity feature group also comprises shimmer whose calcula-
tion is identical to jitter but focused on the amplitudes (A4;). We
accounted for six varieties of shimmer: local (Sloc), local in dB
(SdB), periodic difference (Sddp) and three amplitude perturba-
tion quotients (Sapqn (k)), calculated for 3, 5 and 11 points.

1 N 1 Q

N Zi:1 A — 2Q+1 ZquQ Ai-‘rq
1 N
N Zi:1 Ai

In equation 3, the variable IV represents the number of used
pulses in the calculation and Q = (N — 1)/2. All jitter and
shimmer varieties were calculated according to Praat’s [6] de-
scription. The relation between harmonic and noise signal com-
ponents was also considered. We have used an harmonic to
noise ratio (HNR) based on the spectral energy as shown in
equation 4 and the same value in dB (HNRdB).

Zw |H(W)Har1nonic|2
Zw |H(W)N0ixe|2

Finally, the last feature group composed by phonation speed
metrics, includes the word rate (WR), as words/s, speaking rate
(SR), as phonemes/s, and pause rate (PR), as the relation be-
tween pause time and total speaking time. The final prototype
vector composition is shown in table 1.

Besides the described features, we have also created a
speaker model using 16 Mel-frequency cepstral coefficients
(MFCC) from 20ms windows with Sms overlaps, considering
4 Gaussian mixtures.

Saqu('If) 3)
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“

2.3. Feature Selection

The prototype feature vector described in the previous section
is composed by 243 dimensions. This number brings and in-



creased complexity for the development of the classifier and
some of the components may provide little or redundant infor-
mation for the classification task. In order to identify the most
discriminant feature sub-set we used the following steps. First,
considering that the values on each dimension followed a Gaus-
sian distribution, we have normalized the feature components
by calculating their Z-values. This procedure centred the points
in the origin and equalized the range of values preventing the
domination of attributes that vary in higher numeric ranges. We
have then defined as outliers all the points that exceed in value
two standard deviations, in any vector dimension, and removed
them (this allows to keep around 95% of the values around the
mean value). A variation of the Kolmogorov-Smirnov test [7]
was used to verify the initial assumption that the values on each
dimension followed a normal distribution. Then a t-test, with
a 90% confidence interval, was used to analyse if a given fea-
ture could be useful to discriminate between two classes. The
features that have not passed these tests where discarded. Then,
we have ranked the features using a metric based on the inter-
section of the normal cumulative distribution functions of each
Frank = |:k1«67"f <u2 L

class, between the mean values:
3
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where 1 and o represent respectively the mean and standard de-
viation of a given dimension for classes 1 and 2 and the Gaus-
sian error function is defined as erf(z) = % [ e’ dt. The
variables (k1, k2) take the values (1,-1) or (-1,1) according with
m1 > mg or mg > my respectively. This metric provides nat-
urally range limited values which is an advantage over other
metrics (like the Fischer discriminatory ratio), since we will
combine it (using weights) with other variables. In figure 2 we
can see the data behaviour for local jitter, one of the best ranked
features. This figure shows top views of Gaussian distributions
estimated for absolute rank positions (the distributions between
the integer values are obtained by linear interpolation for giving
a better view of the data trends). We can observe that the jit-
ter values for the best ranked voices are concentrated in a very
narrow range, while for the worst ranks, there is a wider data
dispersion and a distinct mean value.

Using the ranked feature list sorted in descending order, we
have built a new feature list where we took into account the
inter-feature correlation. We proceeded as follows:

1. The best ranked feature f; is the top-ranked in the Frank
ranked list. The next feature f5 is obtained by
2 .

f2 :m]ax {wlFrankj _w2pf1,j}7] #fl (6)
where Frank; is the feature’s Frank value, py, ; represents
the cross-correlation between the feature in analysis and
the remaining features and w; and ws are user defined
weights that allow to adjust the contribution of each

criteria to the overall feature ranking (a linear search
pointed to w1 = 0.3 and w2 = 0.7).

2. The next feature is selected using an analogous formu-
lation but now considering the average correlations with
all the previously selected features:

k—1
w
fk :InjaX{UHFrankj - k_lepf‘raj} (7)
r=1
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Figure 2: Jitter distribution according to listeners’ preference.
Horizontal axis shows continuous candidate ranking (1 is bet-
ter) and vertical axis shows jitter values in percentage.

withk =3,4,...,m,j# frandr=1,2,... k — 1.

This allows to obtain a feature list where the best ranked
features maximize the discriminative power and minimize the
redundancy. From this multi-criteria ranked feature list we have
selected the 12 highest ranked features and have performed an
exhaustive search for combinations of 6 features using scatter
matrices [8]. This number of features was chosen to ensure
a good generalization performance of the classifier, since we
have a reduced number of points. As cost function for class
separability measurement we used the J3 criteria defined as:

J3 = trace {s;lsb} ®)
where S, is the intraclass scatter matrix, defined as:
c
Sw = Z B;S; O]
c=1

where P; is the probability of each class c and S; is the related
covariance matrix. Still in equation 8, S, represents the inter-
class scatter matrix,

c
Sy = Pi(pi — po)(ps — po)” (10)
i=1
where p; is the class mean vector and o is the mean vector
considering all classes. Using an exhaustive search, we com-
bined sets of 6 features from the 12 previously selected and re-
tained the one that maximized the J3 criterion. The features

that composed our final optimized vector were Jrap, A foMax,
A foSk, AEAv, Sapq3and foAv.

2.4. Classification

We have used two distinct classification schemes: one based on
Support Vector Machines (SVMs) for the optimized feature vec-
tor described in section 2.3 and another based on the Bayes de-
cision theory for the Gaussian Mixture Models (GMM). The use
of a SVM classifier, whose training relies on the optimization of
a cost function, was preferred to the multilayer perceptron ap-
proach, an initial option, due to a guaranteed convergence to a
global optimum and due to the simple hyperplane based model.
SVMs can also provide better models in the presence of reduced
data sets, which is our case. Since our data is unbalanced, the
SVM problem was adapted in order to include penalties for ad-
justing the relative weight of each class.

The speaker model based on GMMs was trained using the
Expectation-Maximization algorithm (EM)[9].

In both cases the classifier training was performed using
80% of the database records, randomly selected, and the re-
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Figure 3: SVM classification error according to feature vector
dimension. Horizontal axis shows error in percentage and ver-
tical axis shows vector dimension.

Table 2: Voice preference classification error for a 90% con-
fidence interval using different kernel types with a SVM based
classifier. (Two classes outlier free dataset, error within a 90%
confidence interval.)

RBF
11.1£2.4%

Linear

18.1+£4.1%

Quadratic
12.94+1.8%

Sigmoid
22.74+2.9%

maining 20% were kept for testing. A 20 fold cross validation
allowed to obtain statistically meaningful results.

A late fusion based on a weighted voting scheme
(40%GMM+60%SVM, adjusted by calculating the relative
number of true positives for each classifier against the total
number of true positives) allowed to reach the final category
estimation. The estimation accuracy could be further enhanced
if the process is repeated using distinct models, trained with dis-
tinct data, and averaging the final decision.

3. Evaluation and Results

The feature selection process allowed us to obtain a ranked fea-
ture list from which we have extracted a fixed number of fea-
tures. In figure 3 we show how the classification error varies
with the number of selected features and we can observe that the
best results are obtained for a 6 dimension vector (as stated be-
fore). In order to find an optimal classifier we have assessed the
system’s performance when varying the type of kernel function
and the related parameters. Table 2 shows the best results for
each kernel type considering the SVM classifier alone. We can
observe that the RBF kernel performed better, but very closely
followed by the quadratic polynomial kernel (despite the much
longer training time required by the last). Additionally, we also
evaluated how the feature selection process and how the inclu-
sion of a second classifier (GMM) helped us to improve the re-
sults. In table 3, we can observe the improvements introduced
by each block of the pipeline using as a reference the results
obtained with a RBF kernel (since it performed better) and con-
sidering all the available objective features. The final system,
with the components arranged as depicted in figure 1, achieved
an error rate of 7.3 + 2.2% for a 90% confidence interval.

4. Conclusions

In this paper we have presented a new automatic voice talent
classification system based on prosodic and acoustic patterns of
voice preference. We started by introducing the motivations for
this study and clearly defined the pleasantness concept that has
a central role in our work. After showing an overview of the
methodology we described the database on which we relied to
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Table 3: Cumulative error reduction introduced by each com-
ponent of the classification system. (Error within a 90% confi-
dence interval.)

All Independent ~ Composite Composite
feat. feat. sel. feat. sel. classification
(baseline) -14.74+3.1% -19.2+19%  -23.8£2.2%

develop our system. We have focused on the main components
and provided references that fully cover it’s development. Then
we thoroughly explained the procedure that was followed to ob-
tain an optimal feature vector for achieving improved results.
‘We have started by exploring a broad range of dimensions, cov-
ering acoustic, signal, periodicity and phonation speed aspects
and successively selected the best features by maximizing their
class discriminatory power and by reducing the inter-feature re-
dundancy. We have also proposed a new metric for the pur-
pose of composite feature selection. For classification we used
a combined SVM/GMM technique with a late fusion scheme.
We have performed a wide evaluation of the system while vary-
ing the most important parameters and we presented how each
pipeline block contributed to improve the performance. Our
system achieved a final classification error rate of 7.3 + 2.2%
for a 90% confidence interval. We believe that this novel tool
can be useful for reducing voice talent selection costs, therefore
enhancing TTS systems, and we further think that there is a po-
tential for the introduction and exploitation of this technology
in real life applications.
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