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Abstract: The purpose of this paper is to present a framework based on text-mining techniques to
support teachers in their tasks of grading texts, compositions, or essays, which form the answers
to open-ended questions (OEQ). The approach assumes that OEQ must be used as a learning and
evaluation instrument with increasing frequency. Given the time-consuming grading process for
those questions, their large-scale use is only possible when computational tools can help the teacher.
This work assumes that the grading decision is entirely a teacher’s task responsibility, not the result
of an automatic grading process. In this context, the teacher is the author of questions to be included
in the tests, administration and results assessment, the entire cycle for this process being noticeably
short: a few days at most. An attempt is made to address this problem. The method is entirely
exploratory, descriptive and data-driven, the only data assumed as inputs being the texts of essays
and compositions created by the students when answering OEQ for a single test on a specific occasion.
Typically, the process involves exceedingly small data volumes measured by the power of current
home computers, but big data when compared with human capabilities. The general idea is to
use software to extract useful features from texts, perform lengthy and complex statistical analyses
and present the results to the teacher, who, it is believed, will combine this information with his
or her knowledge and experience to make decisions on mark allocation. A generic path model is
formulated to represent that specific context and the kind of decisions and tasks a teacher should
perform, the estimated results being synthesised using graphic displays. The method is illustrated by
analysing three corpora of 126 texts originating in three different real learning contexts, time periods,
educational levels and disciplines.

Keywords: essay scoring; essay accessing; open-ended questions; text mining

MSC: 62P25

1. Introduction

Open-ended questions (OEQ), also known as constructed-response (CR) questions,
allow the potential assessment of student latent features such as creativity, written and oral
expression skills or other important traits that are difficult or impossible to address using
closed multiple-choice answer questions [1,2].
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The purposeful answer to OEQ calls for an effort to mobilise significant personal
resources and skills, such as cognitive skills, which are not directly measurable. When
constructing the answers, texts, or other material, the student learns by doing and, simulta-
neously, the resulting texts reflect and manifest critical unobservable skills. For example,
skills implicit in creating suitable compositions and essays are associated with cognitive
processes such as comprehension and understanding of topics. The generalisation capa-
bility and coherence in organising written material [3] explain why tests based on OEQ
are, simultaneously, both learning and evaluation tools. Moreover, William et al. (2004) [4]
highlights the importance of OEQ in formative testing and the teacher’s role in developing
learning assessments.

This paper proposes a text mining (exploratory, descriptive text statistics)-based
method to support the teachers’ work [5–7]. The purpose of the suggested method is
not to automate the scoring process for OEQ answer texts, by replacing the teacher, but,
instead, to extract objective, relevant, reliable and valid features from those texts, allowing
the teacher to construct, in real time, informed, unbiased and fact-based assessments.

A topic that has been overlooked in current literature is the activity of the isolated
teacher who, with almost no institutional or methodological support, is supposed to create
and apply tests, evaluate student answers and supply the grades in short time intervals. In
this context, there is no place to apply the elaborated methodologies designed to formulate
OEQ or the sophisticated process for its calibration (McClellan, 2010) [2]. The teachers must
come up with their own decisions exclusively based on the small number of texts supplied
by their students at a specific time. New tools are needed to support their work.

The structure of this paper comprises, in addition to this introduction, the following
sections: Section 2 presents related work; data, methods and model formulation are pre-
sented in Section 3; Section 4 discusses the data analysis; reliability and validity issues are
discussed in Section 5. Section 6 presents a discussion of the results, and, finally, Section 7
presents the conclusions and future work.

2. Related Work

This section seeks to identify concepts and methodologies relevant to the develop-
ment of ideas investigated in the paper, but which cannot be directly applied, given the
characteristics of the classroom context: small data sets, small timeframe, other resources
and regulatory constraints. This is the case in automatic essay scoring (AES) whose basic
ideas are important and relevant for the analysis of small texts but whose machine learning
algorithms are inapplicable directly to the classroom context given the need for big data
sets to train the predictive algorithms. This is the case also in research by Page leading to
the first AES system. It is also the case in latent semantic analysis (LSA) that directly links,
as shown by Landauer and co-workers [8–11], important aspects of cognitive psychology to
the development of geometric representation algorithms for psychologic concepts that were
the basis for this and other important techniques. See below a discussion of the concept of
semantic space and the problem of learning new concepts by children. In this section, we
are also looking to identify new trends that may have a great impact on the development
of systems with objectives such as the present one. This is the case, also, in the increasing
use of natural language with the progressive weakening of the BOW (Bag of Words) model
associated with LSA. According to Shermis et al. (2008) [12], automated essay scoring
(AES) is the evaluation of written work with computers. All methods developed for AES
are, in principle, relevant for the activity of assessment of OEQ answers in the classroom
context (Ke & Ng, 2019; Perin & Lauterbach, 2018) [13,14]. In this context, a significant
fraction of teachers are constrained by laws and other rules governing the creation of tests
and questions, virtually without methodological support, the evaluation of answers and
feedback to students and management being due within short time frames.

The primary motivation for developing AES was the cost of manually scoring large
volumes of tests, specifically in national exams.
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The origin of AES and the possibility of essay scoring based on a computer program
can be traced to Page [15–19]. The first program (Project Essay Grade—PEG) already
contained a set of key characteristics also present in almost all its successors, such as
the Intelligent Essay Assessor, Deerwester, Landauer, andDumais [8,9,11,20], the E-Rater,
developed in ETS, and Intellimetric, Dikli [21]. A theoretical overview of AES, covering
both historical and statistical aspects of validity and reliability, can be found in Shermis
(Shermis et al., 2008) [12].

One landmark reference in the development of models for automatic scoring systems
is the work of Landauer & Dumais, (1997) [9] concerning the so-called solution of the Plato
problem, relative to the extraordinary pace of language acquisition by children, given the
small volumes of information they obtained.

According to these authors, the psychological “similarity” between concepts and
meanings in the human mind can be validly expressed by a geometric distance in an
appropriate metric space. Representing concepts by points in an “appropriate” metric
space, the distances between those points can then be validly used to represent distinctions
of psychological meaning, obtaining a “semantic space”.

The knowledge available about some domains is expressed by a rectangular matrix
in which rows represent texts, with columns representing terms or words, and on the
crossing of rows and columns, frequencies are found. One semantic space can be obtained
by performing the singular value decomposition of that matrix. Both concepts representing
texts and terms can then be mapped out as points in a common metric space built with the
results of such decomposition as in [9,11,22,23].

The text representation paradigm associated with latent spaces analysis (LSA) con-
struction is the bag of words (BOW). In BOW, the terms are used only through the frequency
of their occurrence and their isolated meanings, forgetting all syntactic aspects related to
their relative position in the text.

One LSA limitation is its difficulty in capturing the semantic components encoded in
the syntactic structure expressed by the order of words in the text.

In contrast, the experience accumulated with LSA in the analysis of large volumes
of text suggests that most of the semantics of the texts are captured by the meaning of
isolated words (Landauer et al., 1997) [10]. Recent work on text analysis (Li et al., 2018; Liu
et al., 2020; Kerkhof, 2020) [3,24,25] stresses the need to include greater natural language
processing (NLP) techniques in the development of more powerful systems, which neces-
sarily implies addressing the relative position of the terms in the text, the semantic aspects
codified by syntax and, consequently, by word order in texts to be analysed.

The expeditious performance and low cost of statistical text analysis, essential for the
automation of scoring tasks, is now possible with relatively cheap or almost free resources
such as open software expressed in R and Python languages (Feinerer et al., 2008) [5].

These languages have great importance in the recent development of methodologies to
identify and estimate the topics underpinning the creation and generation of a text (Pietsch
& Lessmann, 2018; Roberts et al., 2014) [26,27]. In particular, the latent Dirichlet allocation
(LDA) methodology included in R packages such as “QuanteDa”, allows the estimation of
a predefined number of subjacent topics that can explain the generation of texts belonging
to the corpus under analysis (Benoit et al., 2018) [28]. In this context, it is relatively easy
and intuitive to use as a modelling element the concept of topic, interpreted as a latent
variable that can influence or explain the content and form of texts produced by students.

Recent research in topic estimation in the context of open-ended questions (OEQ) has
revealed that short texts covering not only responses to OEQ, but also huge volumes of
text involved in interactions with social networks and the language of business stressed the
need to develop specific algorithms for this class of texts (Burrows et al., 2015; Galhardi &
Brancher, 2018; Paalman et al., 2019; Poulimenou et al., 2016; Zhang et al., 2019) [29–33].

This means that the research in the present classroom context can benefit from research
results obtained in more general domains.
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Page (1966) [15] defines automatic scoring as a replacement of human scoring with the
scores supplied by an automatic system. This definition raises the problem of the validity
of these automatic scores since the machine cannot know the meaning of “trins” (from
intrinsic)—latent or non-observable variables whose meaning is accessible only to humans
but crucial in the assessment of human skills.

Even for the initial systems (Shermis et al., 2008; Williamson et al., 2012) [12,34], these
questions were operationalised by comparing the results obtained with automatic systems
with the results obtained by human correctors of the same texts.

It is routine to observe correlations above 0.8 and even 0.9 between automatic and
human scores of the same texts (Shermis et al., 2008) [12]. This replacement of human
judgment and decision in human skills assessment is leading to significant criticism that
can be seen as part of a general reaction against human replacement by artificial intelligence
(IA) applications (Feathers, 2019; Lott-Lavigna, 2020) [35,36].

Rico-Juan et al. (2018) [37] addressing the problem of intractable workload inherent to
manual correction by the teacher, present a new methodology in which the students act
as correctors in a peer review context. The teacher’s role is reduced to a verification agent
instead of an assessment agent. The teacher intervention is only episodic in the case of
automatic detection of frauds and other distortions.

3. Materials and Methods
3.1. Available Data

The present study is based on real observational data formed by three data sets or
corpora, resulting from three classes of students’ answers to tests with open questions in
Portuguese schools during the years 2008, 2017 and 2020 (See Table 1).

Table 1. Synthesis of features of data sets used for data analysis.

Data Set
Name Corpus Level Use Subject

Matter Context Date

Data Set 1 61 texts Sec (12th year) Summative Portuguese
Literature

Official
Examinations 2008

Data Set 2 24 texts Sec (12th year) Formative Sociology In the class 2017

Data Set 3 41 texts University Formative Economy In the class 2020
Legend—“Sec” means Secondary level of education.

Each data set originated in a specific educational level, in independent and unrelated
schools belonging to different educational systems (public school pre-university, private
vocational secondary level, and first-year public-school university). This means that data
sets are entirely independent and unrelated.

The first data set resulted from official examinations in the Portuguese educational
public system’s pre-university year (12th year) and was elaborated and manually rated
by teachers hired by the Portuguese public educational system according to previously
specified rules.

The second and third data sets were both elaborated and manually rated by the teacher
using a holistic approach. Data were organised in small corpora, formed by independent
text files (one text file for each answer). In this work, corpora were stored as Excel sheets—
each row corresponding to a student’s answer, and the answer text is entirely contained in
a single sheet cell.

3.2. Methods: General View

Figure 1 shows the sequence of global steps leading from students’ texts to the graphi-
cal synthesis supporting teacher decision buildup.

(1) Reading texts. Textual data sets containing the students’ answers are read. Generally,
these texts are stored as separate text files (one file per text/student answer) forming
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a corpus, or the whole set of texts is stored as a sheet of an EXCEL book, one row per
student/text, with an entire text stored in a single cell.

(2) Textual data-mining tasks are performed with R packages—such as QuanteDa, LDA,
LSA, PLS-PM and SemPLS (Ahadi et al., 2022) [38]. This analysis aims to obtain
relevant information about students’ use of language in text construction. For example,
token extraction (words, forms, sentences, pairs of words and their frequencies).
Estimating topics subjacent to text construction is also considered using the LDA
package (Chang, 2015) [39]. A theoretical model relating latent students’ skills in text
and content construction with students’ competence in the subject matter is modelled
using path modelling.

(3) This step leads to the characterisation of each text by a set of feature values resulting
from the previous text-mining analysis. Specific features are used to create partial
reports to be used when a deeper analysis is necessary—to break ties, for example—
and in the construction of global graphical and numeric synthesis.

(4) Current Data Synthesis (CDS)—As a result of previous steps, a synthesis table data
set is built. Its rows correspond to students/texts, and its columns represent relevant
features used to construct multivariant graphical displays helping teachers in the
decision process.

(5) Graphical and Textual Synthesis—The main outputs from the system are biplots
and classification trees involving texts and other supplementary information about
students—such as results obtained in previous tests or other observational annotations.
Thus, it is believed that a teacher must combine, closely supported by the framework,
his/her previous knowledge about students, specific domain knowledge and teaching
experience with scoring.
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3.3. Model Formulation Using Structural Equations Modelling (SEM)

Beliefs about the relations between texts and students’ latent skills are modelled using
structural equations modelling (SEM)/path analysis. The main belief here is that a student’s
latent skills explain the final form and content of composition texts and that the student’s
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latent competence level (lCLV) in a specific domain is predictable from the manifestations
in that text of those constructs.

The idea of using latent variables to relate composition texts with latent intrinsic stu-
dents’ skills—“trins”—goes back to Page [15–17] and is associated with the development of
the first program of automatic essay scoring (Automatic Essay Assessor). The assumptions
adopted in the present work are:

Assumption 1. Assessment and the choice of performing instruments are the teacher’s responsibil-
ity. In this context, the objective of text descriptive statistics to be supplied to teachers is to provide
reliable and valid summaries and graphical descriptions of these texts so that teachers can reliably
build their own decision by combining those syntheses with their previous knowledge and beliefs.

Assumption 2. The teacher aims to be able to detect or recognise within the student text the
manifestation or evidence of certain intrinsic, intangible or latent traits that are relevant to the
formation of his scoring decision.

Assumption 3. For large subject matters in which natural language and text production have a
dominant role, common skills and a global competence level matter for assessment. The general idea
is that a student’s competence level (lCLV) in the subject matter can be assessed by two minimum
sets of latent variables: a set of variables explaining the text form and a set of variables expressing
its content (competence in organising ideas and the content of expressed ideas). It is assumed
that language richness, structuring skills and content knowledge are the main intangible causes
contributing to students’ competence level for that subject matter.

There are several models for SEM, the main distinction in relation to their estimation
being the distinction between covariance based/normal distribution assumptions (such
as the Joreskog approach) and those that are variance-based, such as those estimated by
PLS (Partial Least Squares), and distribution free. In this work, the last family of models
is adopted.

The model in Figure 2 was, mainly, empirically grounded on the authors’ teaching
experiences in the described classroom context. The inclusion of topics as latent variables
to address text content and their relations with other latent variables in the structural
model resulted from authors’ beliefs, grounded in that practical experience. From the
theoretical point of view, the ideas expressed in Olson et al. (1991) [40] and in Page (1966,
1967, 1968) [15–17] were a strong source of inspiration. Referring to Figure 2, presenting a
rough first model for these ideas, the meaning of the used symbols is:
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lLXD—Latent variable Lexical Diversity LXD (student language richness or diversity).
lSTR—Latent variable Structuring Skill STR (student capability in structuring texts).
lCLV—Latent variable CLV (student level of competence in the subject matter).
lTOPj—Latent variables lTOP1 to lTOPt (student capability to use specific Topics)

(j = 1 . . . t) in text construction.
In a reflective way, the manifest variables associated with those LVs are grouped in

the following rectangular observation blocks in Figure 2:
Block 1—(See Figure 2—rectangles on the top side).
Formed by the manifest variables associated with latent lLXD.
In the expressions that follow, borrowed from Michalke (2020) [41] “V” is the number

of types occurring among the total number of tokens (N).

TTR¯Type/Token Ratio (TTR =
V
N
). (1)

C¯Hedran′s C (C =
log(V)

log(N)
). (2)

S¯Summer Index (S =
log(log(V))

log(log(N))
). (3)

U¯Dugast′s Uber Index (u =
(log(N)∗∗2)

(log(N)− log(V))
). (4)

Block 2—(See Figure 2—rectangles on the bottom side).
Formed by the manifest variables associated with latent lSTR.
The following manifests are borrowed from Kearney & Hvitfeldt (2019)’s R package

Text Features [42]:
n-words—Number of words in the composition text.
n-caps—Number of words in the composition text.
n-commas—Number of commas.
n-periods—Number of periods.
n-digits—Number of digits.
n-prepositions—Number of prepositions.
Block 3—(See Figure 2—rectangles on the right-hand side).
Formed by the manifest variables associated with the latent higher-order variable lCLV;

in this work, these manifest variables are c1, c2, . . . ck, the first principal components from
the other blocks (Sanchez, 2013) [43]. See also Sarstedt et al. (2019) [44] for other methods.

Block j (j = 4 . . . 4 + t)—(See Figure 2—rectangles on the left-hand side).
Formed by the manifest variables corresponding to each one of the t latent topics

lTOPj (j = 1 . . . t)—For example, for lTOPj, the corresponding manifests are labelled TjW1,
TjW2, . . . TjWnj. Those manifest variables are lists of words that indicate the presence or
influence, in an observed composition text, of a specific latent topic lTOPj (j = 1 . . . t).

In this work, lTOPi (i = 1 . . . t) are latent variables that contribute significantly or
explain the text’s formation. These lists can be short or long, depending on the concept
whose influence is to be accounted for. For example, in the first data set, relative to
Portuguese Literature and specifically to Saramago’s book Memorial do Convento, the teacher
may be interested in knowing if the topic “love” is relevant to the meaning of a specific
student text. This can be detected by the presence of lists of words such as “Baltazar,
Blimunda, love” in that text.

Figure 2 accounts for the hypothesis that latent topics lTOPICj (j = 1 . . . t) influence
both lLXD and lSTR. The following arguments can justify these assumptions: If a specific
latent topic has an important place in the student’s mind, this will affect both the observed
resulting text structure and the variety of words used in its construction, eventually re-
ducing word variety. On the other hand, if the reverse was true (latent topic with weak
relevance in the student’s mind), this would lead to a weak influence of this topic in the
structuring of texts and to more lexical variety, now less conditioned by that specific latent
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topic. In this context, two hypotheses emerge (see Figure 2): H1—A strongly influent
latent topic weakens the influence of lLXD, leading, counter-intuitively, to an expected
negative correlation amongst those variables; H2—A strongly influent latent topic strength-
ens the influence of structuring skill lSTR in the production of observed texts (expected
positive correlation).

Figure 2 expresses a dynamic schema with a varying structure, dependent on current
teacher choices of number, content and meaning of latent topics. This means that Figure 2,
more than a specific static model, represents a general family of models or modelling
frameworks to be adapted to specific needs. To include a new topic in this framework is
equivalent to asking some new specific question concerning students’ behaviour, whose
answer is manifested in the frequency of occurrence of words associated with that new
topic. The specific topics to be included in the model depend on the teacher’s experience,
subject matter, school contingencies, discipline, teaching process time and questions whose
answers the teacher is seeking. This means that specific topic inclusion allows some kind
of “experimentation” with the available observational text data. This fact also results from
the exogenous nature of these variables in the model, depending entirely on the teacher’s
choices, in contrast with other latent variables whose presence expresses scientific and
stable theories. In the analysis of all three data sets, it is assumed that the teacher was
interested in knowing if three specific topics (t = 3), each one to be manifested in three
(nj = 3) distinct lists of words, were present at the time of the creation of those texts.

3.4. Methods: Text Mining Summarising of Data Sets

Beliefs about the relations between texts and students’ latent skills are modelled using
structural equations modelling (SEM)/path analysis.

One important resource of R text mining packages is the so-called document by
features matrix (dfm), containing, for each text in the corpus and each word in the text, the
frequency of that word in the text. This is the starting point for a rich set of possible reports
and studies that can be adapted to the teacher’s needs (for the second data set, this matrix
has 41 rows (texts) and 1498 columns or words).

Statistical text summarisation is an important input for teacher grading decisions. For
example, Tables 2 and 3 below present illustrations of summaries that can be helpful in the
case of the R package QuanteDa (Benoit et al., 2018) [28].

Table 2. The ten most frequent words in data set 3.

Feature Frequency Rank Docfreq

1 economy 205 1 38

2 is 160 2 33

3 definition 129 3 27

4 science 108 4 37

5 object 74 5 30

6 study 71 6 32

7 social 60 7 27

8 to be 56 8 24

9 human 55 9 25

10 production 54 10 28

Table 3 shows, for the set of 41 texts of data set 3, the 10 most frequent words. Note
that if syntax errors were not corrected, as in this case, this list shows all words, including
the wrong ones.
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Table 3. Partial view of tokens, types and sentences of 41 texts of the dataset, sorted by decreasing
order of types.

Text Types Tokens Sentences

6 text6 51 72 1

11 text11 54 77 2

27 text27 68 105 5

39 text39 70 110 4

33 text33 84 129 5

12 text12 85 134 4

23 text23 87 173 7

9 text9 89 222 5

26 text26 98 167 3

40 text40 100 199 8

3.5. Methods: Graphical Methods

The three main classes of graphs selected to build the interface with teachers are:
1-Parallel coordinates plots, 2-Classification trees and 3-Biplots.
These graphs were chosen by the relevance of their properties to the tasks of comparing

texts, identifying text patterns and relating texts with other variables relevant to scoring
tasks. These aspects are illustrated as follows:

a—Parallel Coordinates Plots (Schloerke et al., 2020; Wickham, 2014; Venables & Ripley,
2002; Wegman, 1990) [45–48].

This kind of plot is illustrated in Figures 3–6, obtained with the R package GGally
(Schloerke et al., 2020) [45] with results from the analysis of data set 3. In each figure,
a text is represented by a trajectory defined by the estimated values it assumes for each
defined latent variable (lLXD, lSTR, lCLV, lTOPIC1, lTOPIC2, lTOPIC3). This allows, by
interactive visual inspection, to compare the observed texts using those estimated values,
easily detecting the main differences and their causes.
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With this kind of plot, it is possible to address the following questions: if texts are
sorted using the values of a specific variable—for example, variable lCLV—are there other
variables that lead to similar orders for those texts? For example, Figures 3–6 suggest that
if texts are grouped by the quartiles of lCLV, those texts appear also, approximately, sorted
on the quartiles of the other variables.

This graph also allows the study of specific groups of texts obtained by cluster analysis
or by an arbitrary text selection in which the teacher is interested.

b—Classification Trees. Cluster Analysis
Figure 7 shows the hierarchical classification tree for 41 texts of data set 3 (university,

economics). The vertical axis expresses a dissimilarity index (the higher the level, the more
distinct the texts are). This tree was built using the R package Tree (Ripley, 2019) [49].
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Here the trees, once built, can be cut at a level chosen by the user, allowing him or
her to see if the internal homogeneity (similarity of student’s texts) is enough for his/her
decision and to experiment with another in case of unacceptable variability calculated by
the algorithms and compared with the teacher’s prior knowledge of students. This means
that, as a purely exploratory method, there is no prior specification of the number of classes
or other hyperparameters.

Bisecting this tree by an arbitrary horizontal line at a specific dissimilarity in the left
vertical axis, the whole set of texts is divided into a specific number of clusters. For example,
by bisecting at a level of 8, three clusters emerge. Reading Figure 7 from left to right, the
first cluster includes all texts from the sequence {6, 11, 39, . . . 29}, the second one includes
the texts {26, 13, 28, . . . 30} and the third, texts {8, 15, 39, . . . 20}. This means that, at a
level of dissimilarity of 8, it is not possible to distinguish the texts within each one of these
clusters; this suggests that, from the point of view of the six variables mentioned, it makes
sense to roughly allocate the same mark to all. To distinguish the texts within each cluster, it
would be necessary to bisect the tree at a lower level, corresponding to a lower dissimilarity,
and consequently, to a higher mutual similarity. At the lowest level (0), all texts are distinct
from all the others. Given a specific level, a good way to observe what separates a cluster
from the other is to calculate basic statistics for all those six variables or relevant external
variables and see what separates one group from the other.

c—Biplots
Given their general interpretability characteristics, biplots were selected as the main

interaction method with the user (the teacher). For the classroom context, the number of
observations is the number of students in the class (frequently below 100 texts), with biplots
being used here to summarise the results of structural equations pls estimations. This
means that the number of variables involved—the number of latent variables estimations
in the model—is always small; 6, in the examples. In this specific context, the combined
effect of these facts is that biplots always represent a very large percentage of information
from data to be plotted: frequently above 80%, which guarantees reliable interpretations
(Gabriel, 1971; Galindo-Villardón, 1986) [50,51].

4. Results of Data Analysis

A synthesis comparing data analysis results from data sets 1, 2 and 3, using the
proposed methodology, is presented. Although the data sets have very distinct origins,
corresponding to distinct teaching levels, and refer to distinct knowledge domains, the
results (in what relates to performance and structure) are similar. This encourages further
development and tests, including an operational test using software to be developed.
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4.1. PLS Path Model Estimation Using PLS

In this work, the R package SemPLS was used for PLS estimation of structural equa-
tions in models of Figure 2. (Monecke & Leisch, 2012; Sanchez, 2013; Sarstedt et al.,
2019) [43,44,52].

Table 4 contains indicator loadings estimation for the measurement model and path
coefficients estimations for the structural model shown in Figure 2 for data sets 1, 2 and 3.

Table 4. Measurement model weights and structural model path coefficients estimates for the
model in Figure 2 and for the data sets 1, 2 and 3. Using the bootstrap method with 500 pseudo-
samples to obtain pseudo-confidence intervals, the symbol “ns” for some of the cells means that the
corresponding values were considered non-significative at level 0.01.

Measurement Model
(Figure 2) Data Set 1 Data Set 2 Data Set 3

TOP 1 ® T1W1 0.911 0.928 0.855
TOP 1 ® T1W2 0.676 ns (0.01) 0.801
TOP 1 ® T1W3 0.571 0.779 0.729

TOP 2 ® T2W1 0.940 0.863 0.894
TOP 2 ® T2W2 0.922 0.912 0.820
TOP 2 ® T2W3 0.597 ns (0.01) 0.647

TOP 3 ® T3W1 0.924 0.949 0.885
TOP 3 ® T3W2 0.784 0.571 0.768
TOP 3 ® T3W3 0.642 0.685 0.582

LXD ® C 0.995 0.995 0.998
LXD ® S ns (0.01) 0.875 0.967
LXD ® TTR 0.972 0.958 0.972
LXD ® U 0.915 0.932 0.978

STR ® ncaps 0.86 0.856 0.840
STR ® ncomm 0.832 0.854 0.851
STR ® ndig 0.788 0.427 ns (0.01)
STR ® nperiod 0.948 0.852 0.664
STR ® nprop ns (0.01) 0.380 0.548
STR ® nwords 0.938 0.944 0.793

CLV ® C2 ns (0.01) −0.670 −0.578
CLV ® C3 0.806 0.768 0.739
CLV ® C4 0.970 0.944 0.949
CLV ® C5 0.970 0.878 0.939
CLV ® C6 0.959 0.922 0.937

Structural Model (Figure 2)

TOP 1 ® LXD ns −0.596 −0.690
TOP 2 ® LXD ns ns 0.059
TOP 3 ® LXD ns ns Ns
TOP 1 ® STR ns 0.276 Ns
TOP 2 ® STR ns ns 0.355
TOP 3 ® STR ns 1.088 Ns
TOP 1 ® CLV ns 0.242 0.294
TOP 2 ® CLV 0.493 ns 0.301
TOP 3 ® CLV ns 0.411 0.191
LXD ® CLV −0.226 −0.183 −0.165
STR ® CLV ns 0.182 0.166

Table 5 shows global performance measures for that model, such as R2, Goldstein
index, communality, and goodness of fit (Monecke & Leisch, 2012; Sanchez, 2013; Sarst-
edt et al., 2019) [43,44,52].
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Table 5. Model estimation; performance measures (Sarstedt et al., 2019) [44]. The number of indicators
for each latent variable is mentioned in the second column in between parentheses. In this table
“3/4 3/4” means missing value.

Performance
Measures
(Figure 2)

Data Set 1 Data Set 2 Data Set 3

R2

TOP 1 (3) 3/4 3/4 3/4 3/4 3/4 3/4

TOP 2 (3) 3/4 3/4 3/4 3/4 3/4 3/4

TOP 3 (3) 3/4 3/4 3/4 3/4 3/4 3/4

LXD (4) 0.51 0.41 1.43
STR (6) 0.55 0.63 0.51
CLV (5) 0.98 0.96 0.98

GOLDSTEIN

TOP 1 (3) 0.77 0.76 0.84
TOP 2 (3) 0.87 0.76 0.83
TOP 3 (3) 0.83 0.79 0.79
LXD (4) 0.92 0.97 0.99
STR (6) 0.91 0.88 0.84
CLV (5) 0.89 0.86 0.86

COMMUNALITY

TOP 1 (3) 0.54 0.54 0.63
TOP 2 (3) 0.70 0.56 0.63
TOP 3 (3) 0.63 0.57 0.57
LXD (4) 0.75 0.89 0.96
STR (6) 0.66 0.57 0.96
CLV (5) 0.75 0.68 0.71

REDUNDANCY

TOP 1 (3) 3/4 3/4 3/4 3/4 3/4 3/4

TOP 2 (3) 3/4 3/4 3/4 3/4 3/4 3/4

TOP 3 (3) 3/4 3/4 3/4 3/4 3/4 3/4

LXD (4) 0.38 0.41 0.41
STR (6) 0.36 0.63 0.24
CLV (5) 0.74 0.96 0.69

GOODNESS of
FIT

AVG R2 0.68 0.67 0.64
AVG COMM 0.68 0.64 0.66

GOF 0.68 0.65 0.65

As previously mentioned, those three data sets were obtained in a fully independent
way: unrelated observers obtained them in entirely separate school years (2008, 2017,
2020) for distinct subject matters (Portuguese literature, sociology, economics) and different
school systems and places. It must also be stressed that lTOPi (i = 1 . . . t) latent variables
have meanings and indicator lists of r words which are completely distinct and unrelated.

As seen from Tables 5 and 6, the estimation results are very similar for the three data
sets and coherent; also, see below that the topology of biplots synthesising these results is
almost identical.

Table 6. Correlations between human classifications and lCLV values for data set 1. HIR means
“hired”; Sig. means “significance”; N means “number of texts”.

OFFICIAL HIR ICLV

OFFICIAL
Pearson Correlation 1 0.462 ** 0.345 **

Sig. (2-tailed) 0.000 0.007
N 61 61 61

HIR
Pearson Correlation 1 0.433 **

Sig. (2-tailed) 0.000
N 61 61

ICLV
Pearson Correlation 1

Sig. (2-tailed)
N 61

“**” means significant at level 0.01.
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To sum up, all these findings, supported by the available data, suggest that the present
method addresses or is sensitive to some subjacent invariant reality clearly related to the
aims of this work.

4.2. Text Comparisons Using Biplots

PLS estimations of six latent variables (p = 6) involved in Figure 2 are collected in three
intermediate data sets with dimensions 61 × 6, 24 × 6 and 41 × 6, corresponding to each
one of the datasets described in Table 1. These three data sets are transformations of the
original data sets through the path model and its estimation using PLS. These transformed
data sets are summarised using HJ-Biplots plotted in Figures 8–10 (Galindo-Villardón,
1986) [51]. See Figure 1 (4) Data Synthesis and (5) Graphical and Textual Synthesis.
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As explained before, in this context, 2D biplots explain almost all the variance of those
data sets since, at most, the biplot dimension is max (n rows, p columns).

Figure 8 shows one possible interactive implementation of these ideas, using the
BiplotsPMD program (Vairinhos, 2003) [53], working with data set 2. In future imple-
mentations of the framework, the user will be allowed to define the model that best suits
local needs and previous experience gained with specific student populations. This means
specifying the model’s variants in Figure 2 with latent topics and the lists of words that
form its manifest variables.

The model estimated parameters are included in the so-called current data synthe-
sis (CDS), Figure 1, (5). The study to suggest marks to texts can now proceed, namely,
through the production of biplots, other graphics and tables in response to questions issued
according to the teacher’s needs. Figure 1, (5)—Graphical and Textual Synthesis.

Figures 8–10 display biplots produced to summarise the transformed data set 2
(24 texts from vocational-technical students), data set 1 (61 texts from the 12th year of
the official system, literature) and data set 3 (41 texts of a first-year university management
course, subject: economics).

Projecting the texts orthogonally on the direction of variable lCLV, a text ordination is
obtained that can be supplied to the teacher as a first crude clue for text marks. This makes
sense given the small percentage of variance not explained by those biplots (about 10%).

In the case of data set 2 (Figure 8) the suggested order for the texts is, from right to left
in Figure 8: 14 (worst) < 18 < 4 < 22 < 16 < 6 < 12 < 3 < 21 < 7 < 1 < 2 < . . . . . . < 13 < 23 < 19
< 5 < 8 < 11 (best).

Figures 9 and 10 show, for data sets 1 and 3, the corresponding suggestions for
text ordinations.

Those figures present, also, the convex polygons corresponding to the quartiles of
lCLV values, numbered from right to left by quartile number 1, 2, 3, 4.

Despite the diversity of texts used, obtained in completely different learning envi-
ronments, addressing very different subject matter (sociology, economics, literature) and
corresponding to very distinct time frames, the topology of obtained biplots is, surpris-
ingly, similar. Specifically: the percentage of information explained both by the whole
biplots and the horizontal and vertical axis is almost the same for the three data sets:
~90% = 80% + 10%. In the three cases, lSTR and lLXD are almost orthogonal (suggesting
that the lexical richness is independent of structuring text capability). Moreover, the topics
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are highly correlated, for the three studies, presenting a negative correlation with lLXD
(lexical richness), which is coherent with the assumptions used for model 2.

In the three studies, the estimated lCLV latent variable forms a very small angle with
the horizontal axis (first principal component), meaning that the contrast left-right is highly
meaningful in explaining differences in text quality (measured by lCLV).

5. Reliability and Validity Issues

This work proposes a framework, based on text mining, to help teachers score OEQ
answer texts in a classroom context. This means that the objective is not to obtain automatic
classifications but to present to the teacher, in real time, a faithful synthesis of those texts,
allowing him or her to supply the text’s marks with a minimum workload.

Also, reliability and validity issues associated with this framework must address
problems of efficiency and effectiveness related to teacher time economy more than the
question of showing that the marks allocated in this way have a high correlation with “true”
(unknown and unobservable) student skills. This is because the final marks result from a
decision of the teacher, built from the clues, statistical facts and summarisations suggested
by the system.

A true validity and reliability study of this framework can only be performed in the
context of experiences with its use in real schools, using supporting software implementing
the framework, in a real teaching context, with real students, during a large enough time
interval. This kind of experience is only possible with the help of educational system
authorities and the participation of several schools.

When true scores by a teacher are available, it is important to compare them with the
suggested ordinations of texts obtained using the present framework. In this case, latent
variable lCLV (Competence Level) is, by construction, explained by content lTOPi (i = 1 . . .
t) and intrinsic characteristics (lLXD and lSTR). It is natural that its estimated values are
used to suggest rough clues about the value of the texts, as explained.

Specifically, in the present investigation, for data set 1 (official examinations, secondary
studies, Portuguese literature) and data set 3 (formative testing, economics, first year), final
scores allocated by teachers were available. This allowed us to compare these scores with
the rough clues suggested using variable lCLV estimations and obtain the correlations,
for each data set, between those human-made marks and the suggested clues obtained
from lCLV estimations. For data set 1, an additional set of scores obtained from a hired
Portuguese teacher was available (HIR).

For data set 1, correlations among available human correctors classifications (OFFI-
CIAL and HIR) and values of lCLV can be seen in Table 6.

Surprisingly, the correlation between scores allocated by the official human correctors
and those obtained by a Portuguese teacher hired by the second author is not only low
(0.462) but of the same magnitude as those obtained between those human correctors and
the estimations of lCLV. This same pattern occurs with data set 3 in a distinct learning
setting (subject matter, very distinct learning level and time interval between observations
of some years); for data set 3, the correlation between teacher scores and estimations of
latent variable lCLV is 0.497.

For data set 3, the correlation between teacher classifications and variable lCLV estima-
tion was coherent with those obtained for data set 1.

Text classifications for data set 2 were not available. However, the teacher has informed
the authors of this work that the ordination obtained with the framework coincided—up to
two differences—with the true teacher scores.

Figure 11a,b show, for data sets 1 and 3, a comparison between standardised distri-
butions of marks supplied by human teachers and lCLV. In both cases, the hypothesis of
equal distributions was not rejected by the Kolmogorov–Smirnov test at the 0.01 level. For
data set 1, correlation = 0.433; Kolmogorov–Smirnov Test p value = 0.125. For data set
3 correlation = 0.497; Kolmogorov–Smirnov Test p value = 0.772.
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Figure 11. (a,b)—Obtained with R package ggplot2. (a) Data set 1: Kolmogorov test for teacher and 

lCLV standardised classifications distributions; (b) Data set 3: Kolmogorov test for HIP (hired 

teacher) and lCLV standardised classifications. 

6. Discussion 

The proposed framework is the result of an exploratory effort to respond to a well-

known problem: the potential of open-ended questions (OEQ) as teaching and learning 

Figure 11. (a,b)—Obtained with R package ggplot2. (a) Data set 1: Kolmogorov test for teacher and
lCLV standardised classifications distributions; (b) Data set 3: Kolmogorov test for HIP (hired teacher)
and lCLV standardised classifications.

6. Discussion

The proposed framework is the result of an exploratory effort to respond to a well-
known problem: the potential of open-ended questions (OEQ) as teaching and learning
tools is enormous, but the possibility of its routine use is contradicted and even hindered
by the enormous effort to evaluate the texts.

When trying to formulate a preliminary model for this problem, a basic perception
is that, when the teacher tries to score texts, what he or she seeks is, basically, to detect
in the texts produced by the students, signs of certain hidden skills. Does a certain text
“signal” that the student sought to convey a certain idea relevant to the learning process?
Was the student sensitive to a certain concept considered important by the teacher? Does
the text suggest that the student has a good ability to organise ideas or even to generate
lexical innovations?

In other words: the two basic questions that emerge when scoring texts are whether,
yes or no, there are traces of certain concepts or certain general skills, such as the presence
of specific concepts, the ability to structure ideas or the mastery of language, which is in
line with the work of Grover et al. (2015) [54] and Yeung (2018) [55]. The methodology of
structural equations occurs in this context as an adequate modelling instrument, linking the
observed texts to the latent capacities whose traits are being sought to detect. In particular,
the concept of “topic”, modelled as a latent variable characterising text content, has proved
to be very flexible since it allows adapting the model to diverse disciplines with a common
teaching language, such as English, history, sociology, and psychology. The framework
is the same, but the number and meaning of the topics to use in the model vary with the
specific modelling needs.

In this context, more than specialised literature, the experience and beliefs of the au-
thors resulting from many years of experience in the classroom were decisive in structuring
this tentative model.

Once the estimates of the latent variables, topics, and others, have been obtained from
available texts, it is necessary to present the results to the teacher (Munroe, 2015) [56], so
that it is easy for him or her to capture the essence and combine this evidence with his or
her own knowledge and perceptions about of the students and the environment (Hamit,
2018) [57]. For this, graphical methods of multivariate data synthesis, such as biplots,
classification trees and others were the preferred method.
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According to our results, the estimates of the structural model and performance
indicators are coherent for the three available data sets, obtained in schools of different
levels, at different times and with very different students.

The same happens with the picture displayed in Figures 8–10 representing the texts
on biplots relating those texts (students) with the latent variables (topics and other) used
in the model: the structure of those biplots (defined by angles between latent variables)
are very similar despite the heterogeneity of available texts, suggesting that there is some
invariant subjacent to these results.

The results obtained are exploratory and observational in nature, not experimental
data, meaning that, at this stage of the project, it is too soon to draw final conclusions.
However, the results obtained encourage future research in this direction, namely, to
develop software that can support a large-scale experience, covering several schools for at
least a full academic year.

7. Conclusions and the Future Work

It is assumed that teachers are responsible for teaching and evaluating in the context
of a classroom and formative evaluation. It is also assumed that teachers are entitled to
choose the methods and tools they feel better using, in order to accomplish their duties.

This choice may eventually include automatic classification systems. This means
that, from this perspective, the “replacement” of teachers with computers is not an option.
This does not eliminate the need for some degree of administrative uniformity or teacher
advice in choosing those instruments and procedures. In this context, the paper suggests a
framework, based on the OEQ texts’ descriptive statistics, aiming to reduce the teachers’
grading effort and, consequently, increase the use of OEQs as much as possible.

The framework must be adapted for each specific subject, including the choice of
appropriate numbers and topics and their meaning.

It was observed that when the suggested method was applied to texts obtained in
diverse settings (learning system, subject matter, type of evaluation, academic year), the
results are similar. In particular, the topology of biplots obtained was almost identical.
A full-scale future validation will only be possible as part of an experiment involving
enough schools during a school year, using an interactive software implementation of the
framework; meanwhile, the results obtained show encouraging signs of feasibility for the
proposed framework.

It was found that the correlation between official classifications of texts available and
those assigned by a Portuguese teacher hired by this project was of the same magnitude as
the correlations obtained between those teachers and results obtained with the framework.
It was also found that the distributions of standardised results obtained by the teachers
and suggested by the framework were not significantly distinct.

The main limitations of the present work are the small size of corpora available and
the need to perform a full-scale experiment, involving several schools during an academic
year, supported by a software implementation of presented ideas.
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