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Abstract

We propose and evaluate a novel approach called On-
line Distributed NeuroEvolution of Augmenting Topologies
(odNEAT). odNEAT is a completely distributed evolutionary
algorithm for online learning in groups of embodied agents
such as robots. While previous approaches to online dis-
tributed evolution of neural controllers have been limited to
the optimisation of weights, odNEAT evolves both weights
and network topology. We demonstrate odNEAT through a
series of simulation-based experiments in which a group of
e-puck-like robots must perform an aggregation task. Our re-
sults show that robots are capable of evolving effective ag-
gregation strategies and that sustainable behaviours evolve
quickly. We show that odNEAT approximates the perfor-
mance of rtNEAT, a similar but centralised method. We also
analyse the contribution of each algorithmic component on
the performance through a series of ablation studies.

Introduction
The traditional evolutionary computation algorithm works in
a discrete and centralised manner. An external component
creates an initial population and is responsible for selecting,
mutating and replacing individuals. Evolution is usually per-
formed offline even if the subject of optimisation or design
is an embodied agent such as a robot. Traditional evolution-
ary approaches have a number of shortcomings when evolv-
ing robotic controllers. Since evolution is typically con-
ducted offline, controllers need to be transferred to robots
post-evolution. Once deployed, the controllers are thus spe-
cialised to a particular task and environmental conditions.
They are fixed solutions and exhibit limited capacity to adapt
to environments and to tasks not seen during evolution.

In order for an evolutionary algorithm (EA) to give robots
the capacity to continuously adapt, it has to be run on the
robots themselves and execute as they perform their tasks,
i.e., evolution must be conducted online. The first attempt
at truly autonomous online evolution in multi-robot sys-
tems was proposed in (Watson et al., 1999) and denom-
inated embodied evolution (EE). EE addresses long-term
self-adaptation but relies on robots meeting and exchang-
ing genetic material. Frequent encounters between robots is

difficult to guarantee, especially in large and open environ-
ments. After EE, different approaches on online evolution
have been proposed (discussed in the next section). Notwith-
standing, in such contributions, neuroevolution is limited
to evolving weights in fixed-topology artificial neural net-
works (ANN).

In this paper, we introduce odNEAT, a novel online
and distributed version of NeuroEvolution of Augmenting
Topologies (NEAT) (Stanley and Miikkulainen, 2002; Stan-
ley, 2004). NEAT is a state-of-the-art neuroevolution (NE)
method that evolves the weights and the topology of an
ANN. odNEAT shares some features with rtNEAT, a real-
time enhancement of NEAT designed for video games (Stan-
ley, 2005). In rtNEAT, game characters are able to evolve
online while they are playing against humans. Both NEAT
and rtNEAT operate in a centralised manner. odNEAT, on
the other hand, is completely decentralised. In odNEAT,
robots adapt autonomously on the basis of local information.
The EA is distributed across multiple robots which have to
solve the same task, either individually or collectively. We
demonstrate odNEAT in a simulated experiment where a
group of e-puck-like robots (Mondada et al., 2009) running
an EA independently, online and onboard, must perform an
aggregation task. To the best of our knowledge, the contri-
bution presented here is novel in two aspects: (1) an online
and distributed version of NEAT has not been proposed and
studied prior to this work; (2) this is the first demonstration
of online and onboard evolution where both the weights and
the topology of the ANN controllers are under evolutionary
control.

Related Work
In this section, we review the background and related work
in the online evolution of ANN robotic controllers, as well
as the main characteristics of NEAT and rtNEAT.

Online Evolutionary Robotics
The first attempt at truly autonomous online evolution in
multi-robot systems, embodied evolution, was presented in
(Watson et al., 1999). In this approach, each robot carries
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only a single genotype and is controlled by the correspond-
ing phenotype — a fixed-topology neural network. Robots
probabilistically broadcast a part of their (mutated) genes
at a rate proportional to their fitness (Probabilistic Gene
Transfer Algorithm, PGTA). Robots that receive gene trans-
missions incorporate this genetic material in their genome
at a rate inversely proportional to their fitness. This way,
selection and variation (reproduction) operators are imple-
mented in a distributed manner through the interactions be-
tween robots. A variant of this scheme was implemented in
(Wischmann et al., 2007) in a predator-prey scenario. The
interplay of evolution and lifelong individual learning was
investigated as a mean of providing adaptability to novel en-
vironmental conditions. Each robot had a maturation period
during which no mating/replacement can take place. This
mechanism allowed robots to adapt using individual learn-
ing before being subjected to any selective pressure. How-
ever, within the authors’ experimental framework, the ef-
fects of learning were not significant. Considering both ap-
proaches mentioned above, the main disadvantage is the fact
that the embodied evolution was dependent on the exchange
of genetic information among the robots. In large environ-
ments, where such encounters may be rare, the evolutionary
process is therefore prone to stagnation.

A different approach, encapsulated evolution, overcomes
stagnation by using a time-sharing mechanism. To that end,
alternative controllers are executed sequentially and their
fitness is measured. Each robot maintains a population of
genotypes stored internally and run self-sufficient (and pos-
sibly different) EAs locally. Within this paradigm, the robots
individually adapt through evolution without the necessity
of interacting with other robots. Such approach has been
successfully applied to tasks of an individual nature such as
phototaxis or obstacle avoidance (Haasdijk et al., 2010; Bre-
deche et al., 2009).

The two methodologies, embodied evolution and encap-
sulated evolution, can be combined, leading to a hybrid sys-
tem similar to an island model (Tanese, 1989). In such a
system, each robot acts like an island with genetic infor-
mation being exchanged through intra-island variation and
inter-island migration. An example of such a method is the
one presented in (Elfwing et al., 2005). In that study, robots
have to gather batteries while maintaining a virtual energy
level that reflects their task performance. If a robot’s energy
level reaches 0, offspring is created by mating the current
controller with one of the genomes collected during life-
time. In (Usui and Arita, 2003), six Khepera robots evolved
an avoidance behaviour. Each physical robot ran an inde-
pendent EA for a sub-population of virtual agents, evaluated
by time sharing. Migrated genomes, broadcasted by other
robots, were re-evaluated by the receiving robot.

One of the limitations of existing approaches to online
evolution is that neuroevolution solely adjust the weights of
the ANN. Previous experimentation to determine a suitable

network topology is therefore necessary. Choosing an in-
appropriate topology affects the evolutionary process and,
consequently, the potential for adaptation. In odNEAT, on
the other hand, the network topology is a product of a con-
tinuous evolutionary process.

NeuroEvolution of Augmenting Topologies (NEAT)
The NEAT method, introduced by (Stanley and Miikku-
lainen, 2002) is one of the most prominent neuroevolu-
tion (NE) algorithms. The method is capable of optimis-
ing both the topology of the network and its connection
weights. NEAT acts with global and centralised informa-
tion like canonical GAs. It has been successfully applied to
highly complex problems, such as the double pole balanc-
ing, outperforming several methods that use fixed topolo-
gies (Stanley, 2004). The high performance of the algorithm
is due to three key features: tracking genes with histori-
cal markers to allow meaningful crossover between topolo-
gies, a niching scheme, and evolving topologies incremen-
tally from simple initial structures (complexification).

The network connectivity is represented through a flexi-
ble genetic encoding. Each genome contains of a list of con-
nection genes, each of these referring the two node genes
connected. Furthermore, a connection gene encompasses
the weight of the connection, a bit indicating if the connec-
tion gene is genetically expressed and a global innovation
number (IN), unique for each gene in the population. INs
represent a chronology of the genes introduced. With this
feature, the difficulty of matching different network topolo-
gies (an NP-hard problem) is avoided and crossover can
be performed without a priori topological analysis. Dur-
ing crossover, genes with the same historical markings are
aligned, to produce meaningful offspring. In terms of muta-
tions, NEAT allows for common connection weights pertur-
bations and structural changes that may lead to the insertion
of: (1) a connection gene between two previously uncon-
nected nodes or, (2) a node gene, splitting an old connection
into two new connections and disabling the former. Each
new gene inserted receives an innovation number. This way,
genomes representing networks of different topologies re-
main compatible throughout evolution because their origin
is known.

The niching scheme is composed of two building block:
speciation and fitness sharing. Speciation divides the popu-
lation into non-overlapping sets of similar individuals based
on a topological similarity measure. This mechanism pro-
tects new structural innovations by reducing competition be-
tween individuals representing differing structures and net-
work complexities. In this way, newer structures have time
to mature. If a species does not improve for a certain number
of generations, it is removed from the population. Explicit
fitness sharing dictates that individuals in the same species
share the fitness of their niche. The fitness scores of existing
members of a species are first adjusted, i.e., divided by the
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number of individuals in the species. Species then grow or
shrink depending on whether their average adjusted fitness
is above or below the population average.

The third reason why NEAT often outperforms other
NE approaches is the incremental exploration of the search
space. The algorithm starts with a uniform population of
simple networks with no hidden nodes as in SAGA (Harvey,
1993). Complexity is introduced incrementally as a result
of structural mutations. Since only structural mutations that
have proven to be fit survive, the exploration of the search
space is conducted in an incremental manner.

With the purpose of evolving increasingly complex ANNs
online, rtNEAT was introduced (Stanley, 2005). Essentially,
rtNEAT is a centralised real-time version of NEAT. rtNEAT
contains some differentiating characteristics. While NEAT
replaces the entire population at each generation, in rtNEAT
one offspring is produced at regular intervals, every n time
steps. The worst individual is removed and replaced with
a child of a parent chosen from among the best. Unlike
NEAT, rtNEAT attempts to keep the number of species con-
stant by adjusting a threshold Ct, which determines the topo-
logical compatibility of an individual with a species. When
there are too many species, Ct is increased to make species
more inclusive; when there are too few, Ct is decreased to
be stricter. rtNEAT has shown to preserve the dynamics of
NEAT, namely protection of innovation through speciation
and complexification (Stanley, 2004).

odNEAT: An Online and Distributed
Evolutionary Algorithm

odNEAT runs on a group of agents whose objective is to
evolve and adapt while operating in the environment. Each
agent is controlled by an artificial neural network that rep-
resents a candidate solution to a given task. The evolu-
tionary process takes place online and is an integral part of
the agents’ behaviour. The typical evolutionary operators
(evaluation, selection and reproduction) are carried out au-
tonomously by the agents in the environment without any
need for external intervention.

In odNEAT, agents maintain a virtual energy level reflect-
ing their individual performance in the task. The energy
level increases and decreases as a result of the agent’s be-
haviour, similarly to the work presented in (Elfwing et al.,
2005). If an agent’s energy reaches zero, its active chromo-
some (the genetic encoding of an ANN) is replaced. One
general problem, especially for highly complex tasks, is that
online evaluation is inherently noisy. Very dissimilar evalu-
ation conditions may be presented to different chromosomes
when they become active. Location of embodied agents and
the proximity to other agents are factors that directly influ-
ence an agent’s performance and behaviour. With the pur-
pose of obtaining a reliable fitness estimate, odNEAT distin-
guishes between the fitness value of an agent and its current
energy level. The fitness value is defined as the average of

the energy level, sampled at regular time intervals.
In odNEAT, each agent maintains a local set of chromo-

somes in an internal repository. The repository is a genetic
pool that stores a limited number of chromosomes and their
respective fitnesses. The stored chromosomes are arranged
into species based on the niching scheme of NEAT. The set
of chromosomes include the agent’s current and previous
active chromosomes and those received from other agents.
Each agent probabilistically broadcasts its active chromo-
some to agents in its immediate neighbourhood, an inter-
agent reproductive event, with a probability computed as
follows:

P (event) =
F̄k

F̄total
(1)

where F̄k is the average adjusted fitness of local species k to
which the chromosome belongs and F̄total is the sum of all
local species’ average adjusted fitnesses. Due to the broad-
cast of genetic information, the active chromosome of an
agent may be present in another agent’s repository. Such mi-
grations approximate in a distributed manner and over time
the reproduction dynamics of rtNEAT. This way, each repos-
itory is a local mirror of what happens in the population at
large, but no agent has a complete global view of the system.

Besides the internal repository, each agent also maintains
a local tabu list, a short-term memory which keeps track
of recent poor solutions: chromosomes removed from the
repository or that caused the robot to run out of energy.
Newly received chromosomes must first be accepted by tabu
list. The acceptance condition is only met if the received
chromosomes are topologically dissimilar from all chromo-
somes in the tabu list.

After the pre-evaluation by the tabu list and if the accep-
tance condition was met, a received chromosome becomes
part of the repository if it has a fitness score higher than
the worst local chromosome thus enabling a progressive im-
provement. Due to the fixed size of the repository, whenever
it is full, the insertion of a new chromosome is accompanied
by the pre-requisite of removing the chromosome with the
worst adjusted fitness. When a new chromosome is removed
or added, the corresponding species has one less or one more
element and therefore the adjusted fitness F̄ is recalculated.
Whenever an agent receives a copy C’ of a chromosome C
already contained in the repository (structurally the repos-
itory does not allow copies of the same chromosome), the
energy level of C’ is used to incrementally average the fit-
ness of the C and provide a more reliable indicator of its
value.

A particular characteristic of NEAT is the chronology of
the genes due global to innovation numbers, which are as-
signed sequentially. In order to allow a decentralised imple-
mentation, odNEAT uses local high-resolution timestamps
instead of innovation numbers. Each agent is responsible for
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assigning a timestamp to each local innovation, be it a con-
nection or a node. Using high-resolution timestamps for la-
bels practically guarantees uniqueness and allows odNEAT
to retain NEAT’s concept of chronology.

When an agent’s energy reaches zero (because it is inca-
pable of accomplishing the task), a new individual is created.
In this process - an intra-agent reproductive event - a parent
species is chosen with probability proportional to its average
fitness, as defined in Equation 1. Then, two parents are se-
lected from the species, each one via a tournament selection
of size 2. Offspring is then created based on NEAT’s genetic
operators: crossover of the parents’ genomes and mutation
of the new chromosome.

One important aspect regarding newly created individuals
is the importance of letting them act in the environment for
a minimum amount of time α. This time, denominated as
the maturation period, gives the new individuals a change to
spread their genome by mating with other agents and pro-
vides a habituation period. An individual can continue to be
active after it reaches α, if its energy is above 0. In Fig. 1,
we summarise odNEAT as executed independently by each
agent.

Figure 1: Pseudo-code of odNEAT that runs independently
on every agent (see text).

Experimental Methodology
To assess odNEAT, we applied the algorithm in a simulated
collective robotics experiment. The simulated robots are
modelled after the e-puck (Mondada et al., 2009), a small
(75 mm in diameter) differential drive robot capable of mov-
ing at a maximum speed of 13 cm/s. Each robot is equipped
with eight infrared sensors, capable of obstacle detection
and communication at a range of up to 25 cm between emit-

ter and receiver.1 Each infrared sensor is subjected to noise,
which is simulated by adding a random Gaussian component
within ± 5% of the sensor saturation value. Besides these
sensors, each robot has an internal energy level sensor and
a counter, which allow it to respectively perceive its current
virtual energy level and the number of distinct chromosomes
received during the most recent P control cycles.

The environment consists of a square arena surrounded by
walls. The size of the arena was chosen to be 3 x 3 meters.
At any time, a robot can thus sense less than 2.90% of the
environment. Each of the robots is controlled by an artificial
neural network produced by odNEAT. The input layer con-
sists of one neuron for each proximity sensor (detects walls
and other robots), one neuron for the energy sensor, and one
neuron for the counter. The output layer contains two neu-
rons, one for each wheel of the robot.

Since we are working with a process of continuous evo-
lution, experiments continue until all robots achieve sustain-
able energy levels or until a temporal upper bound of 100
hours of simulated time is reached, in which case the ex-
periment is considered to have failed. We are primarily in-
terested in: i) determining if odNEAT evolves controllers
capable of solving the specified task, ii) the elapsed time, to
measure the speed of the evolutionary process and, iii) the
quality of the solution and the behaviours evolved, that is,
how the robots search through the environment and locate
each other.

The Aggregation Task
In an aggregation task, dispersed agents must move close to
one another so that they form a cluster. Aggregation plays
an important role in many biological systems since it is the
basis for the emergence of various collective behaviours.
For instance, several social animals use aggregation to in-
crease their chances of survival, or as a pre-cursor of other
behaviours. In robotics, self-assembly and collective trans-
port of heavy objects require prior aggregation at the site of
interest. Due to the collective nature of the task, the topolog-
ical (and possible behavioural) heterogeneity of the evolved
controllers is an intriguing aspect.

Our experiments were conducted with a group of 5 robots
placed in initial random positions at a minimum distance of
1.5 meters between neighbours. At each control cycle, a
robot’s virtual energy level E is updated according to the
following equation:

∆E

∆t
= α(t) + γ(t) (2)

where α(t) is a reward proportional to the number of con-
trollers received in the last time period P (see Table 1). Since

1The original e-puck infrared range is 2-3 cm (Mondada
et al., 2009). In real e-pucks, the liblrcom library, available at
http://www.e-puck.org, allows to extend the range up to 25 cm and
multiplex infrared communication with proximity sensing.
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information is transmitted locally, this factor indicates the
presence of robots nearby. γ(t) is a factor related to the
quality of movement and rewards robots that are capable of
exploring the space in a relatively coordinated manner:

γ(t) =

{
-1 if vl(t) · vr(t) < 0

Ωs(t) · ωs(t) otherwise
(3)

where vl(t) and vr(t) are the left and right wheel speeds and
Ωs(t) is the ratio between the average and maximum speed
achievable. ωs(t) = 1 −

√
|vl(t) · vr(t)| rewards robots

for setting similar speeds on its two wheels, to avoid any
turning-on-the-spot behaviour.

The experimental configuration is presented in Table 1.
All parameters were fine-tuned through a trial-and-error pro-
cess. Regarding NEAT, we have used the default parameters
(as specified in Stanley (2005)) except for the crossover and
mutation rates. Such parameters take values significantly
lower than the default values (25% and 10%, respectively).

Parameter Values
Repository size 40 chromosomes

Energy (initial/max) 1000/2000 e.u.
α(t) 3 e.u. per chromosome

Time period P 10 cycles
Maturation period 500 cycles

Crossover rate 0.25
Mutation rate 0.1

Add node probability 0.03
Add connection probability 0.05
Weight mutation magnitude 0.5
Recurrent connection prob. 0.2
Maximum simulation time 100 hours

Table 1: Configuration for the aggregation experiments. Cy-
cles represent robots’ control cycles and e.u. denote energy
units. The parameters were fine-tuned through a trial-and-
error process.

Results and Discussion
In all 30 evolutionary runs performed, robots managed to
evolve behaviours that could effectively explore the environ-
ment and keep the energy level above 0. We observed that
aggregation into a single group was successfully achieved
in 22 of the 30 runs. In the remaining 8 runs, the 5 robots
formed two groups, one group of three robots and one group
of two robots. In spite of such final configuration, robots still
maintained self-sustainable energy levels. They evolve ade-
quate behaviours for searching, locating and joining other
robots in the environment. By analysing the details of
each experiment, we observed the emergence of two types
of strategies: group clustering (see Fig. 2) and individual
search (see Fig. 3) behaviours.

Group Clustering: As a group, robots frequently evolve
two distinct strategies (Fig. 2): a static and a dynamic clus-
tering behaviour. In the static category, robots meet in some
part of the environment and, by detecting one another, main-
tain their relative positions thus leading to a very stable be-
haviour. The other category, flocking or dynamic cluster-
ing creates loose and moving groups. In this case, robots
meet and start moving together to explore the environment.
The latter behaviour is less stable than the static clustering.
When robots decide to flock and then collide with walls,
it provokes a temporary de-synchronization of movement.
As a consequence, and due to their short range of sensors,
robots may lose sight of one another and will have to restart
their search behaviour.

Figure 2: Traces of the robots’ group clustering. Three
robots exhibit a flocking behaviour while the remaining two
form a static cluster, eventually leading to a single aggregate.

Figure 3: Traces of two of the most frequently evolved indi-
vidual search strategies. One searches near the walls while
the other presents a more circular trajectory thereby cover-
ing a larger area.

Individual Strategies: In terms of individual strategies
for searching the environment, the evolved behaviours fall in
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two categories (Fig. 3). The first one, navigating near walls,
consists of exploring the environment by moving along the
walls of the arena. In some instances of this behaviour, the
searching robot moves away from the walls from time to
time to explore. The second category consists of behaviours
exhibiting a circular trajectory. The searching robot moves
across the arena while rotating about itself. This way, the
robot is capable of covering a wider area than the walls-
based search strategy.

Figure 4 shows the time required to solve the task in each
evolutionary run. The highest value is 24.43 hours of simu-
lated time while the lowest is 1.10 hours. On average, each
group of 5 robots takes 6.22 ± 5.55 hours of simulated time
to aggregate.

Figure 4: Experimental Results. Simulated time required to
accomplish the task in each evolutionary run.

Measure Average Minimum Maximum
Sim. Time 6.22 ± 5.55 1.12 24.45
Evaluations 104 ± 81 25 313

Table 2: Summary of the experimental results with a group
of five robots. Time is listed in hours of simulated time.

Considering the average number of evaluations, i.e., con-
trollers per robot, each robot was governed by 104 ± 81 con-
trollers (see Table 2). The variance in the average time and
number of evaluations can be explained by the non-linearity
of the task. Robots have a short range of sensors and are
placed in a large environment. Each robot may be able to
search the environment very efficiently but, since it senses
less than 2.90% of the total area, the process of finding other
robots can be time consuming, especially if we consider that
different robots are likely to execute different behaviours for
exploring the environment, as happens with the individual
search strategies.

rtNEAT and odNEAT
In spite of odNEAT being intentionally distributed, an in-
teresting question is how the results of odNEAT compare
to rtNEAT (Stanley, 2005), which relies on traditional cen-
tralised evolution. With the purpose of comparing the per-
formance of odNEAT and rtNEAT and thus examine the
costs of distributing NEAT, we setup a new series of ex-
periments (with 30 independent runs) with a group of five
robots. In order to provide a basis for comparison between
the two EAs, two aspects of rtNEAT were altered. First,
the dynamic compatibility threshold was fixed, as it is in
odNEAT and NEAT. Second, offspring is not created based
on a time condition but instead when a robot’s energy level
reaches zero. In the experiments, rtNEAT operated with a
population size of 200 individuals, thus maintaining an av-
erage of 40 possible solutions per robot, as in odNEAT.

Method Sim. Time Evaluations
odNEAT 6.22 ± 5.55 104 ± 81
rtNEAT 4.44 ± 3.27 96 ± 60

Table 3: Performance comparison between odNEAT and rt-
NEAT, representing the costs of distributing NEAT. Time is
listed in hours of simulated time.

Experimental results are listed in Table 3 and demonstrate
the performance costs from distributing NEAT. In compari-
son with rtNEAT, odNEAT presents a slightly lower perfor-
mance by requiring each robot to test approximately 8 con-
trollers more (an equivalent to 8.33%). Notice that odNEAT,
due to its distributed nature, does not assess the group level
information from the global perspective. As a consequence,
odNEAT requires more time to evolve solutions. The num-
ber of evaluations suggest that odNEAT provides results
comparable to rtNEAT. The cost of operating solely based
on local information is relatively low. odNEAT has another
important advantage over the centralised EAs, namely the
lack of dependency on an external mechanism which makes
the approach resilient. If a robot fails, for instance, the group
can adapt to accommodate for the faulty unit.

Ablation Studies
In order to verify the contribution of each algorithmic com-
ponent in odNEAT, we performed a series of ablation stud-
ies considering the initial group of five robots. In particular,
we tested the system’s performance in three distinct exper-
imental configurations: (1) without the maturation period,
(2) with a minimal internal repository of size 2 and; (3) with-
out the tabu list. Results, present in Table 4, are averaged
over 30 independent evolutionary runs for each configura-
tion. Averages in this table exclude runs that failed to find
sustainable behaviours within 100 hours of simulated time.

The most critical algorithmic component of odNEAT is
the internal repository, an evidence supported by statisti-
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Method Sim. Time Evaluations Failure Rate
Min. Repository 16.38 ± 21.15 236 ± 214 26.67%

No-tabu 8.88 ± 12.19 134 ± 119 6.67%
No-maturation 13.86 ± 22.53 211 ± 286 3.33%
Full odNEAT 6.22 ± 5.55 104 ± 81 0

Table 4: odNEAT ablations summary. The table lists the
average simulation time (in hours), the average number of
evaluations and the failure rate of each method, in the ag-
gregation task. Each ablation leads to an inferior and less
efficient algorithm.

cal significance (ρ < 0.003, Student’s t-test). Since we are
dealing with a process of continuous evolution, the reposi-
tory maintains a local view of the system’s history and pro-
vides the genetic basis for evolution. With a minimal repos-
itory, evolution is limited to a small set of chromosomes
(in this case 2). In such scenario, the evolutionary pro-
cess is much slower and may even be incapable of explor-
ing enough of the solution space to find adequate solutions
hence the high failure rate, simulation time and number of
evaluations. Without the tabu list, odNEAT presents a fail-
ure rate of 6.67% but, when evolution is on the right track,
it finds solutions relatively fast. Arguably, this means the
tabu list keeps the evolutionary process from cycling around
in one neighbourhood of the solution space, which some-
times happens due to the fact that robots act based only on
local information. The tabu list promotes topological diver-
sity in the repository by rejecting chromosomes similar to
those that have already failed. The maturation period de-
fines a lower bound of activity in the environment, giving
the individuals a chance to spread their genome. If not for
this component, good solutions could potentially be lost for-
ever and evolution would be decelerated. Robots would still
be capable of solving the task most of the times. However,
they would not be able to and improve their behaviour iter-
atively through the exchange of genetic information unless
they were situated close to each other. Arguably, the most
important conclusion that can be drawn from the ablation
studies is that all of the parts of odNEAT are necessary to
guarantee its performance as an effective online distributed
EA.

Scalability Experiments
The impact of the group size on performance was analysed
by conducting 30 independent evolutionary runs for groups
of 5, 10, 15, 20, 25 and 30 robots. The area of the arena
was increased proportionally to the number of robots. No-
tice that if we maintained the same size of the environment,
the experimental setup would not be fair: with the increas-
ing density of robots in the environment, the task would be
easier to solve simply because robots would encounter each
other more frequently. Table 5 shows the area of the squared
arena in each experimental configuration.

Group Size Arena Area
5 9 m2

10 18 m2

15 27 m2

20 36 m2

25 45 m2

30 54 m2

Table 5: Environment size for each experimental configura-
tion.

Experimental results are listed in Table 6. The time re-
quired to accomplish the task increases approximately 36%
when the group size was increased from 5 to 10 robots.
However, the average number of evaluations, a natural mea-
sure of performance, is almost similar except for a higher
standard deviation. In fact, the increase in the time required
is mainly due to 4 runs, displayed in Table 7. In these cases,
robots managed to solve the task mainly by forming small
aggregates, of two or three robots. Since small groups are
difficult to detect by other robots, robots not belonging to
any aggregate required more time to find a group of robots
to join and to stabilise their behaviours.

Group Size Sim. Time Average Evaluations
5 6.22 ± 5.55 104 ± 81

10 8.49 ± 11.31 112 ± 117
15 3.71 ± 3.09 63 ± 44
20 3.49 ± 2.79 57 ± 37
25 3.33 ± 1.34 55 ± 22
30 3.78 ± 2.56 54 ± 28

Table 6: Summary of the scalability experiments. Time is
listed in hours of simulated time.

Run Sim. Time Average Evaluations
5 33.87 419
8 27.47 364.6

14 36.68 135
16 43 500

Table 7: Outliers within the 10 robots’ evolutionary runs.
Time is listed in hours of simulated time.

Further increasing the group size, we observe that the
performance improves substantially until it reaches a stable
level around a group size of 15 robots. Results show that, for
larger groups, the time required to accomplish the task and
evolve sustainable behaviours is relatively constant. With
the increase in the size of the environment, there is a larger
area to search and explore. In relative terms and in spite of
the group size increase, the robots sense a smaller portion
of the environment. In this scenario, the stable performance
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is, in fact, an argument in favour of odNEAT’s scalability;
the conditions for solving the task become more challenging
and the robots are still able to evolve successful behaviours
in the same amount of time.

Conclusions and Future Work
In this paper, we have introduced a novel approach called
odNEAT, a completely distributed evolutionary algorithm
for collective online learning in groups and swarms of em-
bodied agents. We demonstrated odNEAT through a se-
ries of simulation-based experiments in which a group of
e-puck-like robots evolved aggregation behaviours. Three
points are worth mentioning about the experimental results.
First, due to the asynchronous and distributed character of
odNEAT, robots displayed different strategies for aggregat-
ing. Second, the behaviours evolved, static and dynamic
clusters, as well as individual search strategies for explor-
ing the environment, were observed simultaneously in the
same group of robots. In spite of such behavioural diver-
sity, robots manage to collaborate effectively towards the
common goal. Finally, the comparison between rtNEAT
and odNEAT suggest that, in spite of being a distributed
EA, odNEAT provides results comparable to the standard
centralised rtNEAT. The scalability experiments revealed
that, for group sizes from 5 to 15 robots, odNEAT scales
well considering the time required to achieve sustainable be-
haviours. For larger groups, odNEAT maintains the perfor-
mance levels. Ablation studies show that the each of the
algorithmic components provide a useful contribution to the
performance of odNEAT, accelerating evolution and keeping
the evolutionary process from cycling around in one neigh-
bourhood of the solution space.

The immediate follow-up work will investigate a broader
class of collective tasks in evolutionary robotics. One of
the promising directions for odNEAT is to study to what ex-
tent agents are capable of continuously adapt in dynamically
changing environmental conditions. In the future, we also
intend to investigate the basic requirements for truly open-
ended evolution, in which the evolutionary process should
be capable of producing a large variety of different and novel
solutions to a given task.
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