

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2023-02-15

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Rendeiro, J. M. A., Marinheiro, R. N., Moura, J. A. & Silva, J. C. (2012). An adaptive management
proposal for optimizing the performance of a virtualized computing environment. In 2nd Mosharaka
International Conference on Communications and Signal Processing. Barcelona: Mosharaka for
Research and Studies.

Further information on publisher's website:
https://www.mosharaka.net/?Area=Conferences&Page=ConfSite&Conf=28

Publisher's copyright statement:
This is the peer reviewed version of the following article: Rendeiro, J. M. A., Marinheiro, R. N., Moura,
J. A. & Silva, J. C. (2012). An adaptive management proposal for optimizing the performance of a
virtualized computing environment. In 2nd Mosharaka International Conference on Communications
and Signal Processing. Barcelona: Mosharaka for Research and Studies.. This article may be used for
non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://www.mosharaka.net/?Area=Conferences&Page=ConfSite&Conf=28

AN ADAPTIVE MANAGEMENT PROPOSAL FOR OPTIMIZING THE PERFORMANCE OF A
VIRTUALIZED COMPUTING ENVIRONMENT

João Maria Azedo Rendeiro, Rui Neto Marinheiro, José André Moura, João Carlos Silva
rendeiro,joao@gmail.com; rui@marinheiro.org; jose.moura@iscte.pt; joao.silva@iscte.pt
ISCTE - Instituto Universitário de Lisboa (ISCTE-IUL), Instituto de Telecomunicações

Av. das Forcas Armadas, 1649-026 Lisboa, Portugal

ABSTRACT

The number of virtualized servers is overtaking, by a large
amount, the number of physical servers. One of the drawbacks of this
new scenario is a much more complex computing infrastructure to
manage. In this way, the current paper proposes an adaptive
management prototype that controls a virtualized environment. This
prototype guarantees an adaptive and automatic solution that
efficiently supervises and controls any virtualized environment,
without almost any human intervention. In addition, it manages the
relevant physical computing resources allocated to each virtual
machine, like memory and processing power. The results from our
prototype suggest that it is possible to balance memory among
various machines and perform an effective control of each machine’s
workload, with a simple and low cost solution for our initial
problem.1

Keywords- Adaptive optimization, dynamic optimization, Autonomic
computing, virtual machines, Virtualization.

I. INTRODUCTION
With the globalization of the world economy and the increasing

ecologic conscience, 97% of CIO2/CTO3 is discussing green IT
strategies and 45% had already implemented green IT strategies [1].
The increasing cost with power and cooling, as well as with
management and administration [2], forced IT entities to push
virtualization solutions and take advantage of its benefits.

The number of virtualized servers outgrew the physical servers
by 36%4 and by 2013 the forecast for the virtualized servers in the
Western Europe will be 22.6% higher than the physical servers and
will be over 2,500,000 units for virtualized servers against
approximately 1,900,00 units for physical servers [1]. The same
result was stated by a study [3], which indicates that the adoption of
x86 server virtualization can decrease both CAPEX5 and OPEX6 due
to the decreasing of maintenance contracts [4].

Due to the ease and speed at which virtual servers can be
provisioned, copied, moved, and modified, this highly dynamic
infrastructure can impose new challenges to IT Staff. Because a
single host can hold multiple virtual servers, there is a risk to damage

1 This work was supported by the FCT projects:
PTDC/EEA-TEL/120666/2010 and PEst-OE/EEI/LA0008/2011
2 Chief Information Officer
3 Chief Technology Officer
4 UK, Germany, France
5 Capital Expenses
6 Operational Expenses

the infrastructure, when performing host maintenance and
configuration activities, making it highly vulnerable to single point of
failure problems. Virtualization simplifies many administration
activities, but at the same time it has a disadvantage, since it adds a
technological hurdle to be managed by highly specialized staff [5].

The use of Virtualization introduces new operational problems
promptly identified by IT entities. A recent survey [3] identifies
some of the most relevant problems: capacity management and
planning.

The result is a fast growing divergence on maintenance cost
between physical server and virtual servers. Since 2006, the costs of
the maintenance of physical servers have been increasing slowly and
since 2008 have stabilized. Contrary to this, the maintenance cost of
virtual servers has increased tremendously. Staff cost is also rising: it
represents 31% of the annual budget for Portugal Datacenters; the
cost of staff per server remains expensive for small and midsize
business7 and became more appellative for large business8 [6].

The objective of the current paper is to create a model and
subsequently a prototype that allows a more efficient, autonomic and
adaptive control of virtual infrastructures, reducing the need of
technical interventions. This means that the infrastructure should be
able to monitor their surroundings, analyze them and, based in rules
and policies, change the virtual server resources9 in order to adapt
them to the dynamic computing requirements.

The article is organized in the following manner: section II
discusses related work; section III covers the description of the model
and how the individual components interact among each other;
section IV details the test conditions of the memory management test
and the results; section V details the test conditions of the CPU
management test and the results; and finally section VI presents the
final conclusions and some future work.

II. RELATED WORK
Virtualization is a concept known for a long time and has been

used in many area of expertise. One area of knowledge where the
concept is widely used is in Information Technologies. The concept
started to evolve in July 1959 when Christopher Strachey published
the article “Time Sharing in Large Fast Computers”, in New York at
the UNESCO conference “International Conference on Information
Processing” [7]. In fall of 1964, IBM started the “CP-40 Project”, a
research for a new Operating system, called CP-40, used on an IBM
360/40 mainframe. The system became operational in 1966. CP-40
was introduced in productive environments and had been

7 25 to 99 Servers
8 Above 500 servers
9 Memory, Disk, Network and Power consumption

continuously improved till 1970, when was possible to bootstrap a
CP-67 onto a System/370, which later, in august 2, 1972 was
announced as VM/370 operating system, among other operating
systems: DOS/VS10, OS/VS111, OS/VS212 [8].

From this point forward, virtualization has been evolving and
growing until 1999, when VMware Inc. created a product called
VMware Workstation 1.0 for Linux and Windows, for Desktop
Virtualization. Two years later VMware started to commercialize
VMware Server, opening the market to Server virtualization on x86
platforms and mid-size computers [9].

CP-40 and its successors were what later started to be known as
Hypervisor, also called VMM13. A hypervisor is a virtualization
platform that runs multiple operating systems on a single physical
computer called the host [10] and is classified in two types: Type1
which runs directly on the hardware; and Type 2 which runs on top
of a typical operating system.

Hypervisor from type 1 is also called Bare Metal, because it runs
on top of the host system’s physical hardware and the guest operating
systems run on top of the Hypervisor. In this category we can find
products like Microsoft Hyper-V, Citrix XenServer, VMware ESX
Server, Xen and Linux KVM [11]. Hypervisor from type 2 is also
called Hosted, because it runs on top of a conventional Operating
System. In this category we can find products similar to Microsoft
Virtual Server, Microsoft Virtual PC, VMware Server and HXEN14,
which can also run as a type 2 hypervisor [12,7,9]. The products that
rely on type 2 hypervisor have in general worst performances than
the products that use type 1 hypervisor.

To be called hypervisor, the Virtual Machine Monitor must
provide at least three properties to the generic programs under its
control: efficiency, resource control, and equivalence. Efficiency
means that all harmless instructions are executed by the hardware
directly, with no intervention from the control program. Resource
control means that it must be impossible for an arbitrary program to
affect system resources. Equivalence means that any program
running inside a virtual machine is equivalent to running the same
program outside the virtual machine [13].

The most common approaches to virtualization are: full
virtualization, para-virtualization and hardware-assisted
virtualization. With full virtualization the hypervisor can simulate the
server physical hardware, thus allowing the virtual machines to run
unmodified guests with flexibility and efficiency. Full virtualization
is frequently implemented by the combination of binary translation
and direct execution.

Para-Virtualization or OS assisted virtualization uses a
completely different approach from full virtualization. Instead of
running an unmodified operating system with the burden of problem
for solving some issues associated to the x86 architecture, e.g. Ring
Compression, Ring Aliasing and Non-Privileged Sensitive
Instructions [14]; alternatively, the Para-Virtualization changes the
guest operating system by modifying the privileged instructions with
hyper-calls to communicate directly with the hypervisor.

10 Virtual storage version of DOS
11 Virtual storage version of MFT
12 Virtual storage version of MVT
13 Virtual Machine Monitor
14 Hosted Xen Hypervisor

Hardware-assisted virtualization is the hardware vendors’
contribution to enhance virtualization. Some hardware extensions
have been proposed to simplify virtualization. Intel and AMD
implemented similar technologies named respectively Intel-VT and
AMD-V. Both added a new operating mode to the processor called
guest mode which runs in ring 0 and keeping the already existent
host mode but shifting it to a new ring below ring 0, called ring -1.
IN this way, when the guest OS performs a privileged operation, it
automatically traps the hypervisor and the guest state is stored in
Virtual Machine Control Structures15 or Virtual Machine Control
Blocks16 [9].

III. THE MODEL
When provisioning virtual machines, IT technicians usually
configure them with pre-established resources17, taking into
consideration the function of the guest. Because of the administrative
burden of configuring the virtual machine every time it is needed, it
is usual to change the configuration only when the function of the
VM changes or when additional functions are added. This situation
is, at best a potential waste in resources mainly because IT
technicians tend to overestimate the needed resources. Efficiency
would improve substantially if the resources provided to virtual
machines could adapt according to the business needs and the user
demands.

The hybrid model presented aims the automation of resource
allocation and is based on the dual control theory. The the proposed
model has implementation both on host, showed on Figure I and on
the guest showed on Figure II.

Figure I – Model, Host Control

15 Used by VT-x
16 Used by AMD-V
17 CPU, Memory, Disk, Network

On the host, the model is composed of a monitor and a controller
and uses a Multiplicative-Increase / Multiplicative-Decrease – MIMD
variant algorithm to control the memory.

A MIMD based algorithm was chosen to control the memory,
since it’s a combination of an exponential growth when there’s no
resource starvation with an exponential reduction when starvation
takes place, enabling a fast and efficient usage of the resource. Due
to the way Xen manages the memory, the multiplicative factor of the
MIMD is applied not to the total memory but to the used memory,
hence explaining the variant approach.

On the host, as showed on Figure I, the monitor is implemented
with Nagios and is responsible for gathering performance
information from the host, guest virtual machine and other
environment parameters18 and deposits this information on the
OpenJMS Queue.

On the host controller, the constraint evaluator feeds on the
OpenJMS Queue and is responsible to decide if the host system and
the virtual machine are performing efficiently, based on pre-define
rules, and if not triggers the necessary actions. The Analysis and Plan
component is responsible for the analysis and planning of the
adequate change needed, and pass this information to the resource
controller to act. The resource controller is responsible to translate
the changes needed into actions onto the virtual machine, thru the use
of the multiplicative factor strategy of MIMD applied to the memory.

Figure II – Model, Guest Control

18 Network activity, Disk space, Power consumption

As shown in Figure II, in each guest there is a different controller
and uses an Additive-Increase / Multiplicative-Decrease – AIMD
algorithm to control the CPU.

The AIMD algorithm was chosen to control the CPU, since its
allocation is done in a distributed manner. Here, the combination of
linear growth when there’s no resource starvation, with an
exponential reduction when starvation takes place, enables a fairer
usage of the resource.

On the virtual machines has showed on Figure II, the load
controller monitors the workload and adjusts the CPU time allocated
to processes, thru the use of an AIMD algorithm.

A. Memory Managment
Regarding memory management, Nagios Server collects data

every minute from the two virtual machine’s Linux A and Linux B
and feeds the OpenJMS queue. The constraint evaluator selects the
relevant data from the queue and passes it to the next stage to analyze
and plan the actions needed. When the decided action is defined, it is
then passed to the resource controller to be carried out.

The constraint evaluator listens to the queue and when the used
memory is above 85%, the controller borrows memory from the
virtual machine Linux B and grants the same amount to Linux A. If
the used memory is between 80% and 85% the multiplicative factor
of MIMD (1.33) is used to compute the new total memory of Linux
A. If the used memory is below 70% then the multiplicative factor of
MIMD (1.33) is used again to compute the new total memory of
Linux A, but in this case the previously borrowed memory is
returned to Linux B.

B. CPU Managment
Regarding CPU management, the controller checks the load of

the virtual machine every 30 seconds analyzes and plan the actions
needed. When the decided action is defined, it is then passed to the
resource controller to be carried out.

The constraint evaluator collects the load of the virtual machine
and if it is greater than 119, selects the processes that are at the top 3
of CPU usage and decreases them, changing the CPU usage to 5%.
Once the load of the virtual machine goes below 1, a 5% of CPU
usage is added to the previously limited processes, in both cases, the
changes are made using a tool called Cpulimit20. The Linux Load is a
measure of work of the CPU and in this case because the host is like
a single-core CPU, a value of 1 means that the CPU is at capacity.

IV. MEMORY MANAGEMENT
In order to verify the ability of the model in dealing with more

than one virtual machine and managing the memory of virtual
machines simultaneously, a test has been made where two virtual
machine were used, Linux A and Linux B, respectively with 256 Mb
and 512 Mb of RAM. Also included was the OpenJMS Server with
one queue, the stress program and the controller program to manage
the memory.

For the program we considered two upper limits of 80% and 85%
to avoid machine unavailability, for the same reason a range between
256 Mb and 1024 Mb of RAM is imposed on every virtual machine.
Because memory is a valuable resource and must be managed

19 http://www.linuxjournal.com/article/9001
20 http://cpulimit.sourceforge.net/

efficiently, we considered a 70% lower memory limit, but any other
value would also be adequate, although less efficient.

To generate the desired memory workload, the stress program is
parameterized with the following: “stress –m x –vm-bytes 16M”21.
Where x is a number representing the memory multiplication factor
and 16 is the amount of memory to be factored. The values used are:
2, 3, and 5, approximately at minutes 04:28, 09:18 and 11:50; these
values were chosen in order not to exceed the available memory and
still surpass the pre-defined limits.

Figure III and Figure IV show the memory usage of respectively
Linux A and Linux B, which are changing according to the memory
load of Linux A.

Figure III – Linux A memory usage

It is possible to see that the model was able to collect the memory
parameters from Linux A, analyze it against the defined criteria, and
change the memory using the scale factor (1.33), maintaining the
used memory between 70% and 80% additionally when the 85%
upper limit is exceeded. The model is able to borrow memory from
Linux B, use it on Linux A and give it back when the 70% lower
limit is reached.

Figure IV – Linux B memory usage

21 For the manual please check:
http://www.stresslinux.org/sl/wiki/Software

V. CPU MANAGEMENT
The load controller is responsible for the management of the

workload within the virtual machine. To verify that the load
controller can effectively manage the virtual CPU of the virtual
machine, a test has been performed with a virtual machine (Linux A),
with 512 Mb of RAM, the load controller, the stress program and a
program called cpulimit22 to manage the CPU usage of the processes.

The CPU usage limitation is performed by cpulimit using the
following parameters: “cpulimit –p pid –l x –z”, where pid and x, are
the process id and the CPU usage to be applied to the process,
expressed by a percentage. The workload used is generated with the
stress program, with the following parameters: “stress –c x”, where x
is the CPU value index.

Figure V represents the load of the virtual machine. This means
the work of the CPU and, in this case, a value of 1 (100%) means
that the CPU is at capacity23, i.e., the CPU supports the system
workload24.

Figure V – Linux A, CPU Load

When the program is started there is no load generated. At the
minute 4:32, the load was generated and the program started to
control the workload. After minute 23:16 the load generation was
stopped.

In Table I, we can see that the mean is 0.99 and that the minimum
and maximum values are respectively 0.37 and 3.47. Although the
average load lies below 1, there is a load peak at 16:41 in Figure V.

22 http://cpulimit.sourceforge.net/
23 http://blog.scoutapp.com/articles/2009/07/31/understanding-
load-averages
24 Above 1, the system slows down

182	

227	
 204	
 236	

156	

0	

100	

200	

300	

400	

500	

600	

M
em

or
y	

(M

b)
	

Time	
 (m:s)	

Total	
 Used	
 Free	

535	

255	

535	

0	

100	

200	

300	

400	

500	

600	

M
em

or
y	

(M

b)
	

Time	
 (m:s)	

Total	
 Used	
 Free	

0.77	

1.65	

0.63	

0.75	

3.47	

4.04	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

00
:0
1	

02
:0
2	

04
:0
2	

06
:0
3	

08
:0
4	

10
:0
5	

12
:0
7	

14
:0
9	

16
:1
1	

18
:1
3	

20
:1
4	

22
:1
6	

24
:1
6	

26
:1
6	

28
:1
6	

Lo
ad

	

Time	
 (m:s)	

Table I - Data Load Analysis

Load
Mean 0,9989474
Standard Error 0,0929199
Median 0,875
Mode 0,66
Standard Deviation 0,5727968
Sample Variance 0,3280962
Range 3,1
Minimum 0,37
Maximum 3,47
Sum 37,96
Count 38
Confidence Level (95%) 0,1882736

Based on the last results, the controller can manage the CPU load
of the virtual machine during the most part of the time. The average
load is 0.99 with a minimum of 0.37 and a maximum of 3.1.

VI. CONCLUSION
With the increased complexity of virtual/ physical systems, it’s

imperative to create autonomic and adaptive systems to prevent the
increase on administrative IT work. Rather than focusing only on a
Host (Hypervisor) or client (virtual client) approach, the presented
model, focuses on both ends simultaneously. In this way, the results
of the current work suggest that it is possible to have a hybrid, i.e.
centralized & distributed solution to manage a virtualized computing
environment.

In some specific cases, the prototype controls the computing
resources in a sub-efficient way. These situations must be addressed
in future work, alongside a study of the scalability of the proposed
solution.

REFERENCES

[1] Symantec. (2009) www.symantec.com. [Online].
http://www.symantec.com/content/en/us/about/media/Gr
een_Data_Center_Survey_Press_Presentation.pdf

[2] Stelios Charalambakis, "Virtualization Adoption & The Next
Generation of Virtualization," Greece, Cyprus & Malta, 2009.

[3] Forrester Consulting. (2010) www.ca.com. [Online].
http://www.ca.com/files/IndustryAnalystReports/virtual_m
gmt_trends_jan2010_227748.pdf

[4] Bob Laliberte. (2009) bladenetwork.net. [Online].
http://bladenetwork.net/userfiles/file/ESG-Brief-BLADE-
VMready-Mar-09_FINAL.pdf

[5] IT Process Institute. www.ca.com. [Online].
http://www.ca.com/files/industryresearch/itpi-
virtualization_213801.pdf

[6] Timóteo Figueiró, "Infra-estruturas Convergentes: Como a
Integraçãoo Tecnológica pode Reduzir Custos e Aumentar a
Capacidade de Resposta do Negócio?," Lisbon, 2009.

[7] Melinda Varian. (1997) www.princeton.edu. [Online].
http://web.me.com/melinda.varian/Site/Melinda_Varians
_Home_Page_files/neuvm.pdf

[8] R. J. Creasy, "The Origin of the VM/370 Time-sharing
System," vol. 25, no. 5, 1981, In: IBM Journal of Research
and Development.

[9] VMware. (2006) www.vmware.com. [Online].
http://www.vmware.com/files/pdf/VMware_paravirtualizat
ion.pdf

[10] Mitch Tulloch. (2010) download.microsoft.com. [Online].
http://download.microsoft.com/download/5/B/4/5B46A83
8-67BB-4F7C-92CB-EABCA285DFDD/693821ebook.pdf

[11] Xen.org. What is Xen Hypervisor. [Online].
http://www.xen.org/files/Marketing/WhatisXen.pdf

[12] Xen.org. www.xen.org. [Online].
http://www.xen.org/products/projects.html

[13] Gerald J. Popek, "Formal Requirements for Virtualizable
Third Generation Architectures," Communications of the
ACM, vol. 17, no. 7, pp. 412 - 421, July 1974.

[14] John Fisher-Ogden. (2011, January) cseweb.ucsd.edu.
[Online].
http://cseweb.ucsd.edu/~jfisherogden/hardwareVirt.pdf

[15] H. Unbehauen, "Adaptive dual control systems: a survey," ,
Lake Louise, Alta. , Canada, 2000.

