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Abstract
This paper presents a number of experiments focusing the performance of different machine
learning methods on the identification of disfluencies and their distinct structural regions over
speech data. Reported experiments are based on audio segmentation and prosodic features
calculated from a corpus of university lectures in European Portuguese, containing about 24h
of speech and about 7.5% of disfluencies. The set of features automatically extracted from the
forced alignment corpus proved to be discriminant of the regions contained in the production of
a disfluency. Several machine learning methods have been applied, namely Naive Bayes, Logistic
Regression, Classification and Regression Trees (CARTs), and Multilayer Perceptron. Since the
aim of the task is to perform a discriminative identification of the structural disfluent regions,
CARTs outperform the others methods due to the very informed selection of the main features for
each region. This work shows that using fully automatic prosodic features and CARTs disfluency
structural regions can be reliably/suitably identified. The best results achieved using CARTs
correspond to 83.6% precision, 32.5% recall, and 46.8 F-measure. All structural regions are
being identified, but the best results concern the detection of the interregnum, followed by the
detection of the interruption point.
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(reparandum) * < interregnum > repair

disfluency fluentIP

Figure 1 Different regions related to a disfluent sequence.

1 Introduction

Disfluencies are linguistic mechanism used to on-line editing of a message. Disfluencies
encompass several distinct types, namely, filled pauses, prolongations, repetitions, deletions,
substitutions, fragments, editing expressions, insertions or complex sequences (more than
one category uttered) [22]. Those events have been studied from different perspectives,
in Psycholinguistics, in Linguistics, in Text-to-speech, in Automatic Speech Recognition
(ASR). The latter will be the focus of our study, since it is well known that disfluencies
are a challenging structure for ASR systems, mainly due to the fact that they are not well
recognized and the adjacent words are also influenced and may be erroneously identified.

Automatic speech recognition systems (ASR) have recently been conquering their place
in the information society, and are now being applied for well-known tasks, like automatic
subtitling, speech translation, speech summarization, and production of multimedia content.
However, speech is a rich source of information, from which a vast number of structural
phenomena can be extracted. Enriching the ASR output with such structural phenomena
is crucial for improving the human readability, for further automatic processing tasks, and
also opens new horizons to possible application. Disfluencies characterize play a special role
as a structural phenomena in speech [7, 3]. Considering them becomes indispensable in the
development of a robust and natural ASR systems, because: i) they may trigger readability
issues caused by an interruption of the normal flow of an intended message, ii) they provide
crucial clues for characterizing the speaker, the speaking styles and iii) also in combination
with segmentation tasks, they provide better sentence-like units detection.

This paper analyses the performance of different machine learning methods on the
prediction of disfluent sequences and their distinct regions in a corpus of university lectures
in European Portuguese. This paper complements the analysis performed in the scope of
the work described in[13], where for the first this results for portuguese university lectures
were presented. The specific domain is very challenging, mainly due to the fact that we are
dealing with quite informal lectures, contrasting with other data already collected of more
formal seminars.

This paper is organized as follows: Section 2 overviews the literature concerning the
detection of disfluencies and corresponding methods. Section 3 describes the data used in
our experiments. Section 4 describes the features used. Section 5 describes the performance
metrics that have been adopted for the evaluation. Section 6 presents details concerning
each one of the experiments. Section 7 points out the major conclusions and presents the
future work.

2 Related work

Disfluent sequences have a structure composed of several possible regions: a region to be
auto-corrected, the reparandum; a moment where the speaker interrupts his/her production,
known as the interruption point (IP); an optional editing phase or interregnum, filled with
expressions such as “uh” or “you know”; and a repair region, where speech fluency is
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recovered [6, 22, 18]. Figure 1 illustrate such structure. Determining such structural elements
is not a trivial task [18], but it is known that speakers signal different cues in those regions [5]
and several studies have found combinations of cues that can be used to identify disfluencies
and repairs with reasonable success [18, 23]. According to [18, 23, 24], based on the analysis of
several disfluent types, those cues may relate to segment duration, intonation characteristics,
word completion, voice quality alternations, vowel quality and pattern coarticulations [24].
According to [30, 31] fragments can be problematic for recognition if not considered and fairly
identified. In a different perspective they are also referred to as important cues to disfluent
regions identifiable throughout prosodic features. Even thought fragments are common in
human speech, [2] shows that they can present different significant characteristics across
languages. Filled pauses are also problematic since they can be confused and recognized as
small words, usually resulting in fragment-like structures that decrease the ASR performance.

For European Portuguese, only a recent and a reduced number of studies on characterizing
disfluencies have been found in the literature. [29] analyze the acoustic characteristics of filled
pauses vs. segmental prolongations in a corpus of Portuguese broadcast news, using prosodic
and spectral features to discriminate between both categories. Slight pitch descendent
patterns and temporal characteristics are pointed out as the best cues for detecting these two
categories. [17, 16] use the same university lectures corpus subset also used in the present
study and concluded that the best features to identify if a disfluency should be rated as
either a fluent or a disfluent are: prosodic phrasing, contour shape, and presence/absence
of silent pauses. Recently, [15] analyze the prosodic behavior of the different regions of a
disfluency sequence, pointing out to prosodic contrast strategy (pitch and energy increases)
between the reparandum and the repair. The authors evidenced that although prosodic
contrast marking between those regions is a cross speaker and cross category strategy, there
are degrees in doing so, meaning, filled pauses exhibit the highest f0 increase and repetitions
the highest energy one. Regarding temporal patterns, [14] show that the disfluency is the
longest event, the silent pause between the disfluency and the following word is longer in
average than the previous one, and that the first word of a repair equals the silent pause
before a disfluency, being the shortest events.

Different methods have been proposed for similar tasks in the literature, either generative
or discriminative. The scientific community often assumes the CARTs produce good results,
therefore being the preferred choice [18, 25, 8]. In contrast to single model usage multi-method
classifications as well as multi-knowledge sources usually result in better predictions [9, 27,
11, 26].

3 Data

This work is based on Lectra, a speech corpus of university lectures in European Portuguese,
originally created for multimedia content production and to support hearing-impaired students
[28]. The corpus contains records from seven 1-semester courses, where most of the classes
are 60-90 minutes long, and consist of spontaneous speech mostly. It has been recently
extended, now containing about 32h of manual orthographic transcripts [21]. Experiments
here described use about 24h of the corpus, corresponding to about 78% of the whole corpus.
Table 1 presents overall statistics about this subset.

Besides the manual transcripts we also have available force-aligned transcripts, automat-
ically produced by the in-house ASR Audimus [19]. The ASR used in this study was trained
for the Broadcast News domain, therefore unsuitable for the university lectures domain.
The scarcity of text materials in our language to train language models for this domain has
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Time (h) 24:28
Number of sentences 10576
Number of disfluencies 7382
Number of words (including filled pauses and fragments) 191210
Number of elements inside a disfluency 14357
Percentage of elements inside disfluencies 7.5%

Table 1 Properties of the Lectra training subset.

motivated the decision of using the ASR in a forced alignment mode, in order not to bias
the study with the poor results obtained with an out-of-domain recognizer. The corpus is
available as self-contained XML files [1] that includes not only all the information provided
by the speech recognition, but also the manually annotated information like punctuation
marks, disfluencies, inspirations, etc. Information related to pitch, energy, duration, and that
is enriched in terms of structural metadata. Each XML also includes information related
to pitch, energy, duration that comes from the speech signal and that has been assigned to
different units of analysis, such as words, syllables and phones.

4 Feature set

All features were extracted or calculated from the above mentioned XML files by means
of a parser, specially created for this purpose. The following pre-calculated features were
produced either for the current word (cw) or for the following word (fw): confcw, conffw

(ASR confidence scores), durcw, durfw (word durations), phonescw, phonesfw (number of
phones), sylcw, sylfw (number of syllables), pslopecw, pslopefw (pitch slopes), eslopecw,
eslopefw (energy slopes), [pmaxcw, pmincw, pmedcw (pitch maximum, minimum, and me-
dian)], emaxcw , emincw, emedcw (energy maximum, minimum and median), bsilcw, bsilfw

(silences before the word). The following features involving two consecutive word were
calculated: equalspw,cw, equalscw,fw (binary features indicating equal words), sil.cmpcw,fw

(silence comparison), dur.cmpcw,fw (duration comparison), pslopescw,fw (shape of the pitch
slopes), eslopescw,fw (shape of the energy slopes), pdifpw,cw, pdifcw,fw, edifpw,cw, edifcw,fw

(pitch and energy differences), dur.ratiocw,fw (words duration ratio), bsil.ratiocw,fw (ratio
of silence before each word), pmed.ratiocw,fw, emed.ratiocw,fw (ratios of pitch and energy
medians). Features expressed in brackets were used only in preliminary tests, but their
contribution was not substantial and therefore were not used in subsequent experiments for
simplification. Some of the information contained in those features may be already encoded
by the remaining features, such as slopes, shapes, and differences.

Pitch slopes were calculated based on semitones rather than frequency values. Slopes in
general were calculated using linear regression. Silence and duration comparisons assume 3
possible values, expanding to 3 binary features: > (greater than), = (equal), or < (less than).
The pitch and energy shapes expand to 9 binary features, assuming one of the following values
{RR, R−, RF,−R,−−,−F, FR, F−, FF}, where F = Fall, − = stationary, R = Rise, and
the ith letter corresponds to the word i. The ratios assume values between 0 and 1, indicating
whether the second value is greater than the first. All the above features are based on audio
segmentation and prosodic features, except for the feature that compares two consecutive
words at the lexical level. In future experiments, we plan to replace it by an acoustic-based
feature that compares two segments of speech on the acoustic level.

Apart from the previous automatic features, some experiments use two additional features
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that indicate the presence of fragments (FRG) and filled pauses (FP). We are currently using
the manual classifications of those categories, but we also aim at verifying the impact of our
set of features in the automatic identification of those categories. It is important to notice
that while the automatic identification of fragments is still an active research area [9, 32],
the automatic identification of filled pauses in spontaneous speech has been performed with
an acceptable performance [20, 4].

5 Evaluation Metrics

The following widely used performance evaluation metrics will be applied along the paper:
Precision, Recall, F-measure, Slot Error Rate (SER) [12]. All these metrics are based on
slots, which correspond to the elements that we aim at classifying. For example, for the task
of classifying words as being part of a disfluency, a slot correspond to a word marked as being
part of a disfluency. Most of the results presented in the scope of this paper include the
standard metrics: Precision, Recall, and F-measure. However, F-measure is a way of having
a single value for measuring the precision and the recall simultaneously and, as reported
by [12], “this measure implicitly discounts the overall error rate, making the systems look
like they are much better than they really are”. For that reason, the preferred performance
metric for performance evaluation will be the SER, which also corresponds to the NIST error
rate used in their RT (Rich Transcription) evaluation campaigns. Notice, however, that SER
as an error metric assumes values greater than 100% whenever the number of errors are
greater than the number of slots in the reference.

The ROC (Receiver Operating Characteristic) is another performance metric, based
on performance curves, that can also be used for more adequate analysis [10]. It consists
of plotting the false alarm rate on the horizontal axis, while the correct detection rate is
plotted on vertical. Most experiments reported in this paper also include a ROC value that
corresponds to the area under the ROC curve.

6 Experiments and Results

Experiments here described were conducted using Weka 1, a collection of open source machine
learning algorithms and a collection of tools for data pre-processing and visualization. All
experiences use 80% of the data for training while the remaining 20% are used for evaluation.
For each tested algorithm initial parameters where left untouched. Different classification
algorithms were tested, namely: Naive Bayes, Logistic Regression, Multilayer Perceptron,
and CARTs.

The remainder of this section presents two experiments concerning the automatic detection
of disfluencies and their structural elements, where the focus lies on comparing the results
achieved with different methods. The first experiment describes a binary classification
experiment that aims at automatically identifying which words belong to a disfluent sequence.
The second experiment consists of a multiclass classification that aims at distinguishing
between five different regions related with disfluencies: IP, interregnum, any other position
in a disfluency, repair, any other position outside a disfluency. Concerning the multiclass
classification, details relative to distinct disfluent zone classification performance will be
presented. The best results, achieved using CARTs, will also be presented in detail.

1 Weka version 3-6-8. http://www.cs.waikato.ac.nz/ml/weka
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ZeroR NB LR CART MLP

Time taken to build the model (seconds) 0.1 211.2 33.8 1813.4 3364.8
Time taken to test the model (seconds) 0.3 2.0 0.5 0.2 3.3
Correctly classified instances (percentage) 92.5 90.7 95.4 95.5 94.8
Kappa 0.000 0.383 0.563 0.562 0.544

Table 2 High level performance analysis for predicting words that belong to disfluencies.

Method Cor Del Ins Precision Recall F SER ROC

Naive Bayes 1374 2090 1499 39.7 47.8 43.4 124.9 0.78
Logistic Regression 1234 118 1639 91.3 43.0 58.4 61.2 0.83
CART 1212 78 1661 94.0 42.2 58.2 60.5 -
MultiLayer Perceptron 1333 467 1540 74.1 46.4 57.1 69.9 0.80
Table 3 Detailed performance analysis on predicting words that belong to disfluencies.

6.1 Detecting elements belonging to disfluent sequences
This set of experiments aim at automatically identifying words that belong to a disfluency.
Table 2 summarizes the overall results achieved for binary predicting whether a word belongs
or not to a disfluent sequence. Each column represents results for a distinct algorithm, namely:
simply selecting the most common prediction (ZeroR), Naive Bayes (NB), Logistic Regression
(LR), CART, and MultiLayer Perceptron (MLP). The percentage of Correctly Classified
Instances takes into account all the elements that are being classified. The baseline achieved
using ZeroR (92.5%) corresponds to marking all words as being outside of a disfluency, since
only 7.5% of all the elements in the corpus belong to disfluencies (vide Table 1). The value
referred as Kappa indicates whether a classifier is doing better than chance. The two lines of
the table reveal that both Logistic Regression and CARTs are the most promising approaches.
The time taken to build the model is considerable less for logistic regression, when compared
with the other methods. In fact Logistic Regression is approximately 100 times faster when
compared to MultiLayer Perceptron.

Table 3 presents performance details for each method based on slots, where each slot
corresponds to words marked as being part of a disfluency. The first 3 columns report the
actual counts for Correct, Deleted (marked in the reference but not correctly classified), and
Inserts slots (not marked in the reference). Values presented for Precision, Recall, F-measure
and Slot Error Rate represent percentages. Because CARTs are not probabilistic classifiers,
the ROC value can not be fairly computed, and for that reason it was not presented. CART
and Logistic Regression present the best performance values, and while CART achieved a
better precision, Logistic Regression achieved a better recall. It is interesting to notice that
while the F-measure is better for the Logistic Regression, the SER assumes the best value
for the CART.

6.2 Distinguishing between all the structural elements
This set of experiments aim at identifying 5 structural elements related to disfluencies, and
Table 4 summarizes the overall results. The time taken to build the model is considerable
less for Naive Bayes, but also for Logistic Regression, when compared with the other two
methods. However, such difference is now less notorious than before. The most promising
approaches seem to be CARTs, Logistic Regression, and Multilayer Perceptron, based on the
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ZeroR NB LR CART MLP

Time taken to build the model (seconds) 0.1 326.5 636.3 4362.0 4267.3
Time taken to test the model (seconds) 0.2 6.5 0.7 0.3 3.5
Correctly classified instances (percentage) 89.9 76.9 92.8 92.9 92.7
Kappa 0.000 0.217 0.468 0.476 0.476

Table 4 High level performance analysis for a multiclass prediction.

Method Cor Del Ins Precision Recall F-measure SER

Naive Bayes 1467 7070 2432 17.2 37.6 23.6 243.7
Logistic Regression 1233 287 2666 81.1 31.6 45.5 75.7
CART 1268 248 2631 83.6 32.5 46.8 73.8
MultiLayer Perceptron 1282 386 2617 76.9 32.9 46.1 77.0

Table 5 Detailed performance analysis for a multiclass prediction.

values presented in the last two rows.
Table 5 presents detailed performance values for each one of the approaches, revealing

that CART should be the best choice for this type of problem. It is also interesting to notice
that while the best precision is achieved using a CART, the best recall is achieved using the
Multilayer Perceptron. For this experiment, Logistic Regression presents the second best
performance, but all metrics reflect this difference coherently.

6.2.1 Detailed CART Results
Taking into account the results previously presented, the following results are achieved using
CARTs. Table 6 presents the best results achieved for automatically identifying each one of
the structural elements that are related with disfluencies. The table reveals that, from all the
structural elements related with a disfluency, the interregnum is by far the easiest to detect.
However, that is due to the fact that information about filled pauses and fragments is being
provided as a feature. All the presented results reveal a good precision when compared to
recall. The second best results considering both the F-measure and se SER are achieved for
the detection of the IP. That is also not surprising, because the interruption point is often
followed by filled pauses and sometimes preceded by fragments, for which our feature set
includes information. The IP region is often referred as containing good clues for detecting
disfluencies because the surrounding regions present high and characteristic contrasts in
terms of feature values. Detecting the repair zone can also be performed at a considerably

Cor Del Ins Precision Recall F-measure SER

IP 379 145 600 72.3 38.7 50.4 76.1
interregnum 684 7 0 99.0 100.0 99.5 1.0
other word inside disfluency 42 35 1168 54.5 3.5 6.5 99.4
repair 163 61 863 72.8 15.9 26.1 90.1
outside disfluency 34425 2492 109 93.2 99.7 96.4 7.5
Overall performance 35693 2740 2740 92.9 92.9 92.9 14.3
Table 6 Zone discrimination CART results.
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Classified as → IP interregnum in-disf repair outside disf
IP 379 0 15 8 577

interregnum 0 684 0 0 0
other word inside disfluency 95 0 42 16 1057

repair 2 0 3 163 858
outside disfluency 48 7 17 37 34425

Table 7 Cart confusion matrix.

high precision, contrasting with the corresponding recall. A more deep word context analysis
is needed to improve the recall performance on this classification. The worst classification
refers to words that are marked as being part of a disfluent sequence, but not being neither
the IP not the interregnum, which correspond to words that most of the times are in fact
fluent. The previous analysis can also be complemented by also taking into consideration the
corresponding confusion matrix, which is presented in Table 7. The matrix reveals that most
of the elements are being classified as being “outside of a disfluency”, the most common
situation in the corpus.

7 Conclusions

Different machine learning methods have been tested on the prediction of disfluent sequences
and their distinct regions in a corpus of university lectures in European Portuguese. Our
experiments on the automatic identification of disfluent sequences suggest that similar results
can be achieved using either CARTs and Logistic Regression. While CARTs tend to favor
a better precision, Logistic Regression conducts to a better recall. Our experiments that
distinguish between structural elements related to disfluencies suggest that CARTs are
consistently better than the other tested approaches. In terms of computational effort,
Logistic Regression is the best choice, being more than 10 times faster than Naive Bayes and
around 100 times faster than Multilayer Perceptron.

This paper complements the first studies that have been performed on detecting disfluen-
cies and disfluency related regions for portuguese University Lectures [13]. For the future, we
are planning a similar work for distinguishing between disfluency locations and punctuation
marks.
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