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Abstract
This paper focuses on the identification of disfluent sequences
and their distinct structural regions, based on acoustic and
prosodic features. Reported experiments are based on a cor-
pus of university lectures in European Portuguese, with roughly
32h, and a relatively high percentage of disfluencies (7.6%).
The set of features automatically extracted from the corpus
proved to be discriminant of the regions contained in the pro-
duction of a disfluency. Several machine learning methods have
been applied, but the best results were achieved using Clas-
sification and Regression Trees (CART). The set of features
which was most informative for cross-region identification en-
compasses word duration ratios, word confidence score, silent
ratios, and pitch and energy slopes. Features such as the num-
ber of phones and syllables per word proved to be more useful
for the identification of the interregnum, whereas energy slopes
were most suited for identifying the interruption point.
Index Terms: prosodic features, automatic disfluency detec-
tion, corpus of university lectures, machine learning.

1. Introduction
Automatic speech recognition systems (ASR) have recently
been conquering their place in the information society, and are
now being applied for well-known tasks, like automatic subti-
tling, speech translation, speech summarization and production
of multimedia content. However, speech is a rich source of in-
formation, from which a vast number of structural phenomena
can be extracted. Enriching the ASR output with such structural
phenomena is crucial for improving the human readability, for
further automatic processing tasks, and also opens new hori-
zons to possible application. Disfluencies characterize speech
and play a special role as a structural phenomena. Consider-
ing them becomes indispensable in the development of a robust
transcription system, because: i) they may trigger readability
issues caused by an interruption of the normal flow of an in-
tended message, ii) they provide crucial clues for characteriz-
ing the speaker and speaking styles, and iii) they are also rele-
vant to disambiguate possible locations of sentence-like units in
speech.

This paper focuses on the prediction of disfluent sequences
in a corpus of university lectures in European Portuguese (EP)
and on the characterization of the distinct disfluent regions con-
tained in a disfluent sequence. The specific domain is very chal-
lenging, mainly because we are dealing with quite informal lec-

tures, contrasting with other corpus already collected of more
formal seminars. This is the first work conducted for EP that
aims at predicting all categories of disfluent events based exclu-
sively on the automatic audio-segmentation and prosodic fea-
tures, using distinct classification methods to evaluate the best
performance achieved. Moreover, it is also a step-forward in
automatically characterizing all the regions of a disfluent se-
quence.

2. Related work
Disfluent sequences have a structure composed of several pos-
sible regions: a region to be auto-corrected, the reparandum; a
moment where the speaker interrupts his/her production, known
as the interruption point (IP); an optional editing phase or inter-
regnum, filled with expressions such as aa/“uh” or vocês sabem,
percebem/“you know”; and a repair region, where speech flu-
ency is recovered [1, 2, 3]. Determining such structural ele-
ments is not a trivial task [3], but it is known that speakers sig-
nal different cues in those regions [4] and several studies have
found combinations of cues that can be used to identify dis-
fluencies and repairs with reasonable success [3, 5]. Accord-
ing to [3, 5, 6], based on the analysis of several disfluent types,
those cues may relate to segment duration, intonation character-
istics, word completion, voice quality alternations, and pattern
coarticulations [6]. According to [7, 8] fragments can be prob-
lematic for recognition if not considered and fairly identified.
In a different perspective they are also referred to as important
cues to disfluent regions identifiable throughout prosodic fea-
tures. Even thought fragments are common in human speech,
[9] shows that they can present different significant characteris-
tics across languages. Filled pauses are also problematic since
they can be confused and recognized as small functional words,
resulting in structures that decrease the ASR performance.

For European Portuguese, only recently a reduced number
of studies on characterizing disfluencies have been conducted.
[10] analyze the acoustic characteristics of filled pauses vs. seg-
mental prolongations in a corpus of Portuguese broadcast news,
using prosodic and spectral features to discriminate between
both categories. [11, 12] use the same university lectures cor-
pus subset also used in the present study and concluded that the
best features to identify whether an element should be rated as
fluent or disfluent are: prosodic phrasing, contour shape, and
presence/absence of silent pauses. Recently, [13] analyze the
prosodic behavior of the different regions of a disfluency se-
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Corpus subset→ train+dev test
Time (h) 28:00 3:24
number of disfluent sequences 8390 950
number of words + filled pauses 216435 24516
number of elements in a disfluency 16360 2043
elements in disfluencies (%) 7.6 8.3
filled pauses in disfluencies (%) 23.5 18.0
fragments in disfluencies (%) 10.9 11.3
disfluencies containing IP (%) 34.9 35.2
disfluencies with interregnum (%) 23.5 18.0
disfluencies followed by repair (%) 34.7 35.2

Table 1: Properties of the Lectra training subset.

quence, pointing out to prosodic contrast strategy (pitch and en-
ergy increases) between the reparandum and the repair. The
authors evidenced that, although prosodic contrast marking be-
tween those regions is a cross speaker and cross category strat-
egy, there are degrees in doing so, namely: filled pauses exhibit
the highest f0 increase, and repetitions exhibit the highest en-
ergy. Regarding temporal patterns, [14] show that the disfluency
is the longest event, the silent pause between the disfluency and
the following word is longer in average than the previous one,
and that the first word of a repair equals the silent pause before
a disfluency, being the shortest events.

Different methods have been proposed for the classifica-
tion of disfluent regions, but the use of Classification and Re-
gression Trees (CART) is usually considered to be a good
choice [3, 15, 16]. In contrast to single model usage multi-
method classifications as well as multi-knowledge sources usu-
ally result in better predictions [7, 17, 18, 19].

3. Corpus

This work is based on Lectra, a speech corpus of university
lectures in European Portuguese, originally created for multi-
media content production and to support hearing-impaired stu-
dents [20]. The corpus contains records from seven 1-semester
courses, where most of the classes are 60-90 minutes long, and
consist of spontaneous speech mostly.Due to a recent exten-
sion, its current version contains about 32h of manual ortho-
graphic transcripts and was split into 2 different subsets (train-
ing+development and test) [21]. Overall statistics about this
corpus are presented in Table 1.

Along with the manual transcripts we also have available
force aligned and automatic transcripts, produced by the in-
house ASR Audimus [22]. The ASR was trained for the Broad-
cast News domain and for that reason it presents a word error
rate (WER) of about 50%. The high WER and the scarcity of
text materials in our language to train language models for the
university lectures domain has motivated the decision of using
the ASR also in a forced alignment mode, in order not to bias the
study with the poor results obtained with an out-of-domain rec-
ognizer. For sake of comparison, all the results will be reported
for both force aligned and automatic transcripts. The corpus
is available as self-contained XML files [23]. Each XML cor-
responds to a transcript integrating both manual and automatic
synchronized transcripts, enriched with additional prosodic in-
formation related to pitch, energy, duration, and other structural
metadata (punctuation, disfluencies, paralinguistic annotation,
etc.).

4. Feature set
In order to use the XML files, a parser was created that
allows not only to extract pre-stored information, but also
to compute more complex features. The following features
were used either for the current word (cw) or for the follow-
ing word (fw): confcw, conffw (ASR confidence scores),
durcw, durfw (word durations), phonescw, phonesfw (num-
ber of phones), sylcw, sylfw (number of syllables), pslopecw,
pslopefw (pitch slopes), eslopecw, eslopefw (energy slopes),
[pmaxcw, pmincw, pmedcw (pitch maximum, minimum, and
median)], emaxcw , emincw, emedcw (energy maximum,
minimum and median), bsilcw, bsilfw (silences before the
word). The following features involving two consecutive
words were calculated: equalspw,cw, equalscw,fw (binary
features indicating equal words), sil.cmpcw,fw (silence com-
parison), dur.cmpcw,fw (duration comparison), pslopescw,fw

(shape of the pitch slopes), eslopescw,fw (shape of the en-
ergy slopes), pdifpw,cw, pdifcw,fw, edifpw,cw, edifcw,fw

(pitch and energy differences), dur.ratiocw,fw (words dura-
tion ratio), bsil.ratiocw,fw (ratio of silence before each word),
pmed.ratiocw,fw, emed.ratiocw,fw (ratios of pitch and en-
ergy medians). Features within square brackets were used only
in preliminary tests, but their contribution was not substantial
and therefore were not used in subsequent experiments for sim-
plification. In fact, some of the information contained in those
features may be already encoded by the remaining features,
such as slopes, shapes, and differences.

Pitch slopes were calculated based on semitones rather than
frequency values. Slopes in general were calculated using linear
regression. Silence and duration comparisons assume 3 possi-
ble values, expanding to 3 binary features: > (greater than),
= (equal), or < (less than). The pitch and energy shapes ex-
pand to 9 binary features, assuming one of the following val-
ues {RR,R−, RF,−R,−−,−F, FR, F−, FF}, where F =
Fall, − = stationary, R = Rise, and the ith letter corre-
sponds to the word i. The ratios assume values between 0 and
1, indicating whether the second value is greater than the first.

None of the above mentioned features uses lexical informa-
tion, except for the feature that compares two words between
them. However, this could also be replaced by an acoustic fea-
ture, since comparing two segments of speech can be performed
fairly well on the acoustic level.

Apart from the previous automatic features, some experi-
ments use two additional features that indicate the presence of
fragments (FRG) and filled pauses (FP). We are currently using
the manual classifications of those categories, but we also aim
at verifying the impact of our set of features in the automatic
identification of those categories. It is important to notice that
while the automatic identification of fragments is still an ac-
tive research area [16, 8], the automatic identification of filled
pauses in spontaneous speech currently achieves an acceptable
performance [24, 25].

5. Experiments and Results
This section presents four main experiments concerning the au-
tomatic detection of disfluencies and their structural elements.
The first experiment aims at automatically identifying which
words belong to a disfluent sequence. The second experiment
aims at automatically identifying the IP (Interruption Point) of
a disfluency, supported by findings that suggest that the IP is the
major key in identifying the disfluent region [18]. A third and a
fourth experiment identify the interregnum and the repair. A fi-
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Conditions Prec. Rec. F SER
Align with FP&FRG 91.2 36.9 52.5 66.7
Align without FP&FRG 66.3 20.3 31.0 90.0
ASR 71.2 13.7 23.0 91.8

Table 2: Predicting elements that belong to disfluent sequences.

nal experiment distinguishes between five different regions: IP,
interregnum, any other position in a disfluency, repair, or words
outside a disfluency.

The evaluation is performed using standard performance
metrics: Precision, Recall, F-measure and SER (Slot Error
Rate) [26], which corresponds to the NIST error rate, used in
the NIST Rich Transcription evaluations. Only elements that
we aim at identifying are considered as slots and used by these
metrics. Hence, for example, for the task of detecting the in-
terruption point, the SER is computed by dividing the number
of IP errors (misses and false alarms) by the number of IPs in
the reference. Experiments here described were conducted us-
ing Weka1, a collection of open source of machine learning al-
gorithms and a collection of tools for data pre-processing and
visualization. All experiments use 80% of the data for train-
ing while the remaining 20% are used for evaluation. Differ-
ent classification algorithms were tested, namely: Naive Bayes,
Logistic Regression, Multilayer Perceptron, and CART. All re-
ported results were achieved using CARTs, which consistently
achieved the best performance.

5.1. Detecting disfluent sequences

This set of experiments aims at automatically identifying words
that belong to a disfluent sequence. Table 2 summarizes the re-
sults achieved by CARTs, using the set of features described
above. The first two rows refer to experiments based on forced
alignments, either including manual information about frag-
ments (FRG) and filled pauses (FP), or not, respectively. The
last row refers to results achieved for automatic speech tran-
scripts. The performance is measured in terms of (Prec)ision,
(Rec)all, (F)-measure, and SER, where each slot corresponds
to elements marked as belonging to disfluent sequences. It is
known that the initial words of a disfluency may be in fact flu-
ent, since there are no cues at the onset of a reparandum, which
contributes to making this task even more difficult. Not know-
ing whether the current element is a fragment or a filled pause
may have a strong impact in the results. This can be seen in the
first two rows of the results, which correspond to a reduction
of the number of correctly classified elements belonging to a
disfluency from 754 to 414. These two features are consensu-
ally described in the literature as having a major impact in the
identification of the different disfluent regions. For instance, [3]
states that in telephone conversations fragments occur in 60% of
the regions to repair, and are therefore a reliable cue to identify
the end of a reparandum. In our corpus, the percentage of frag-
ments is much lower (10.9%), but they do have an impact on the
results. The percentage of filled pauses (22.9%) is the largest of
all disfluency types. [3] reports 89% precision and 78% for a
similar task of detecting disfluencies in telephone conversations
using a subset of our features (except for whether the current
word is accented), but results apply to a different corpus and
to a different language. Our results concerning automatic tran-
scripts are mostly affected by the lower achieved recall.

1Weka version 3-6-8. http://www.cs.waikato.ac.nz/ml/weka

Conditions Prec. Rec. F SER
Align with FP&FRG 77.6 36.7 49.8 73.9
Align without FP&FRG 71.4 11.8 20.3 92.9
ASR 73.9 2.4 4.7 98.4

Table 3: Predicting the Interruption Point.

Conditions Prec. Rec. F SER
Align with FP&FRG 96.8 99.7 98.3 3.5
Align without FP&FRG 69.2 42.2 52.5 76.6
ASR 76.8 80.6 78.7 43.7

Table 4: Predicting the Interregnum.

5.2. Detecting the Interruption Point

In our corpus, about 35% of the disfluent sequences account for
the existence of an IP. Table 3 shows the performance achieved
for task also using CARTs, revealing a significantly lower per-
formance when comparing with the previous task. Results in-
dicate that fragments and filled pauses are crucial for the iden-
tification of IPs, affecting specially the recall since most IPs
are followed by filled pauses. This task is often reported in the
literature as being performed in a multi-pass fashion, where a
first pass corresponds to identifying fragments and filled pauses,
and the second pass uses previous identification results as well
as lexical matches between the reparandum and the repair for
identifying the IP and for segmenting the reparandum and the
repair properly [27, 18].

5.3. Detecting the Interregnum

This task aims at identifying which elements in a corpus match
the interregnum of a disfluency, which roughly corresponds to
finding the filled pauses that occur at the final positions of a
disfluent sequence. In our corpus, interregnum accounts almost
exclusively for filled pauses. Editing expressions (quer dizer/“I
mean”) correspond to only 12 cases in the whole corpus, and
there is a strong tendency for the non co-occurence of discourse
markers (pronto, portanto/“so”, portanto/“like”, vocês sabem,
percebem/“you know”, etc.) with filled pauses. Therefore,
knowing the location of filled pauses yields a performance close
to 100% for this task. Table 4 presents the results. When no
information about filled pauses and fragments is given, the per-
formance is strongly affected. Results for automatic transcripts
are surprisingly good, despite the high WER, which suggests
that cues about filled pauses can still be found in the data.

5.4. Detecting the repair

The repair is of particular interest, because it is often difficult to
distinguish from a punctuation mark or from a sentence bound-
ary. Table 5 shows the achieved results, revealing a poor recall
performance, specially in the automatic transcripts where only
13 of the 720 possible repairs were correctly identified.

Conditions Prec. Rec. F SER
Align with FP&FRG 70.1 12.4 21.0 92.9
Align without FP&FRG 69.2 11.3 19.4 93.8
ASR 61.9 1.9 3.6 99.3

Table 5: Predicting the repair region.
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Conditions Prec. Rec. F SER
Align with FP&FRG 81.5 27.6 41.2 75.0
Align without FP&FRG 58.6 15.0 23.9 90.7
ASR 64.6 9.9 17.2 94.0

Table 6: Predicting all the distinct elements.

Conditions Prec. Rec. F SER
inDisf 38.7 1.3 2.4 100.7
IP 53.4 15.1 23.6 98.1
interregnum 61.2 51.5 55.9 81.2
repair 64.2 14.4 23.6 93.6

Table 7: Individual performance results per task.

5.5. Distinguishing between all the structural elements

This final set of experiments consist of a multiclass detection
that distinguishes between all the above-mentioned structural.
Table 6 shows the corresponding overall results. Details on the
performance achieved for each task are also presented in Ta-
ble 7 and in the confusion matrix from Table 8, which consider
forced alignments without information about filled pauses and
fragments. inDisf corresponds to words inside the disfluency
that do not match the IP or the interregnum. The performance
for each of the individual structures is even better than perform-
ing each one separately, but the confusion matrix reveals that
the results are still much influenced by the number of deletions.
The overall performance is affected by the low detection perfor-
mance for inDisf words, because most of such words are in fact
fluent and thus difficult to distinguish from words outside of a
disfluency [3, 6].

5.6. Feature Analysis

To conclude this study, we have analyzed the impact of each fea-
ture in each of the previously described tasks. Table 9 shows the
20 most informative features for forced alignment where filled
pauses and fragments were not used as features. While features
like previous and current words being equal (2), duration ratio
(5), and word confidence score (6) have a strong impact for all
the tasks, features like the number of syllables (1), the current
and following words being equal (2), and the number of phones
(4) do have more impact in specific tasks. Shape of the pitch
and energy slopes, and silence and duration comparisons (12-
27) turned out to be very informative features. The remaining
features, not shown in the table, also have an impact on the re-
sults even thought they are not represented. Filled pauses and
fragments become the most relevant features when included as
features, which confirms our expectations [3]. In addition, we
have observed that the order of the most informative features is
not significantly affected when such information is provided.

Classified as→ inDisf IP int repair Del.
inDisf 12 30 13 12 889

IP 10 109 23 4 574
interregnum 1 13 189 10 154

repair 1 3 16 104 596
Insertions 7 49 68 32

Table 8: Confusion matrix without filled pauses and fragments.

Feature inDisf IP int. repair All
1 sylcw ��� ����� �����
2 dur.ratiocw,fw ����� ����� ����� ����� �����
3 equalscw,fw ����� ����� ����� ����
4 bsil.ratiocw,fw ����� ����� ����� �����
5 pmed.ratiocw,fw ���� �� ����� ���� �����
6 confcw ����� ���� ���� ���� ���
7 equalspw,cw ����� ���� ��� ����� ����
8 emed.ratiocw,fw ���� ��� ���� �� ����
9 phonescw ���� �� ���� ����

10 eslopes : RRcw,fw ��� ����� � �� ��
11 sil.cmp :>cw,fw ��� ���� ���� ��� ���
12 conffw �� � ���� ����
13 sil.cmp :<cw,fw ���� ��� ���� �� ���
14 eslopes : FFcw,fw ��� ���� �� ���� �
15 pslopes : R−cw,fw ��� � ��� ���� ���
16 sil.cmp :=cw,fw ���� ���� ��� �� ��
17 pslopes : FRcw,fw �� �� ��� � ���
18 pslopes : RFcw,fw � � �� ��� ��
19 eslopes : RFcw,fw � ��� � � �
20 eslopes : R−cw,fw ���

Table 9: Top 20 most influent features, not considering frag-
ments and filled pauses.

6. Conclusions
This paper presents a number of experiments focusing on the
automatic identification of disfluent sequences, and on distin-
guishing between their structural elements. To the best of our
knowledge this is the first work that automatically identifies dis-
fluencies and their structural elements for a Portuguese corpus,
and represents an important step in the development of this kind
of systems for our language. The performance achieved for de-
tecting words inside of disfluent sequences is about 91% Preci-
sion and 37% Recall, when filled pauses and fragments are used
as a feature. Presented results confirm that knowledge about
filled pauses and fragments has a strong impact on the perfor-
mance. Without it, the performance decays to 66% Precision
and 20% Recall. Results also suggest that the interregnum is the
easiest structural element to identify, even when no filled pauses
and fragments are used as features. That was also observed
on automatic transcripts, created by an out-of-domain speech
recognition. The proposed features were able to detect the IP
and the repair at a reasonable precision (53% and 64%, respec-
tively), but the overall performance is affected by a low recall.
The relevance of individual features for each of the tasks has
been analyzed, showing that word confidence scores, word du-
ration ratio, and knowing when words are equal, have an overall
strong impact, while features, such as number of syllables, and
number of phones have more impact in specific tasks. More-
over, shapes of the pitch and energy slopes, and silence and
duration comparisons proved to be very informative.

Future experiments will focus on performing similar exper-
iments with two existent Portuguese corpora (broadcast news
and map-task), complementing the on-going cross-domain anal-
ysis.
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