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Abstract— In this paper we intend to study the possibility to 

improve the performance of the Q-Learning algorithm, by 

automatically finding subgoals and making better use of the 

acquired knowledge. This research explores a method that allows 

an agent to gather information about sequences of states that lead 

to a goal, detect classes of common sequences and introduce the 

states at the end of these sequences as subgoals. We use the taxi-

problem (a standard in Hierarchical Reinforcement Learning 

literature) and conclude that, even though this problem's scale is 

relatively small, in most of the cases subgoals do improve the 

learning speed, achieving relatively good results faster than 

standard Q-Learning. We propose a specific iteration interval as 

the most appropriate to insert subgoals in the learning process. 

We also found that early adoption of subgoals may lead to 

suboptimal learning. The extension to more challenging problems 

is an interesting subject for future work. 

Keywords-hierarchical reinforcement learning; Q-Learning; 

performance; subgoals. 

I.  INTRODUCTION 

Reinforcement Learning (RL) is a family of Machine 
Learning methods where a sequence of actions that leads to a 
goal is rewarded when the goal is achieved. The RL method 
will learn by trial and error, which are the best actions at each 
state to achieve the main goal and collect the best rewards. RL 
algorithms change the way they respond to the same inputs 
over time, improving the collected reward. Hierarchical 
reinforcement learning decomposes a reinforcement learning 
problem into a hierarchy of sub-problems (sub-tasks) such that 
higher-level tasks invoke branch tasks as if they were 
subroutines. This work aims to solve small/medium scale 
discrete RL problems efficiently by using path clustering to 
enable its hierarchical decomposition. Dietterich’s taxi problem 
[1] is a standard in RL, especially in testing Hierarchical RL 
solutions and it was chosen to serve as the instantiation of our 
work. Originally this problem was solved using Q-Learning 
(QL) [2]. This algorithm was subsequently extended to make 
use of subgoals and options (QL+O) [3, 4] to maximize 
learning performance and minimize the number of actions that 
the agent takes to achieve its goal. We define the subgoals 
informally, as bottlenecks, or doorways between state regions. 
Options contain as a set of initial states (from which they can 
start) a policy to reach a given subgoal.  

A Policy is a mapping from states to actions. RL methods 
specify how the agent changes its policy as a result of its 
experience. 

II. PREVIOUS WORK 

Hierarchical Reinforcement Learning is the designation 
given   to   RL   methods   that   divide   the   problem into sub-
problems such that solving each of the sub-problems is more 
efficient than solving the main problem directly. The most 
important advantage of hierarchical decomposition is the 
reduction in computational complexity of each sub-problem. 
The overall problem can be represented more compactly and 
sub-problems can be managed independently increasing its 
reusability and allowing to speed-up the learning. The 
implementation of subgoals discovery and options creation 
mechanisms followed the works described in [3, 4, 5]. 
Subgoals enable the agent to learn and use partial policies. 
Partial policies are comprised of consecutive actions that lead 
the agent from the current state to the next relevant subgoal. 
These sets of primitive actions are defined in [1] as temporally 
abstract actions. In [3] authors present the theory that support 
options and its benefits. Diverse Density is the method used in 
[4] that enables the agent to discover subgoals based on 
similarities between paths. Our work proposes an alternative 
method of discovering subgoals by classifying and intersecting 
paths. Taxi Problem was used to experiment the described 
implementation. Different approaches to this problem can be 
found in [1, 6, 7] and other interesting Hierarchical RL 
approaches are described in [8, 9].  

III. METHODOLOGY 

The Taxi-Problem is one of the most explored problems on 
Machine Learning. This problem’s environment is composed 
of a five by five grid, containing walls between some specific 
positions (shown in Fig.1). Walls limit the actions between 
neighboring states, since the agent can’t transpose those walls. 
The taxi-agent must pick-up a passenger and takes it to its final 
destination. At the beginning of each episode, the passenger 
and destination are randomly placed in or near the grid corners. 
The taxi can be initially located at any position in the grid. An 
episode starts with the unoccupied taxi. The taxi-agent must 
move to the passenger’s position, execute a pick-up action, 
move to the passenger’s destination and execute the drop-off 
action. The episode ends when the occupied taxi reaches the 
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destination and drops-off the passenger successfully. Initially, 
the taxi agent decides a percentage of its actions randomly, 
using ε-greedy. Repeating episodes a considerable amount of 
times, the agent should learn an action-choice policy that is 
adequate to improve the collected reward for each episode of 
this problem.  

Figure 1.  Example of a figure caption. (figure caption) 

 Initially, the agent is able to perform six distinct actions, 
i.e., moving actions, referring to move to any of the adjacent 
positions, pick-up and drop-off actions. This six are referred to 
as primitive actions. Upon reaching the state where the 
passenger is located, the taxi agent must perform the pick-up 
action in order to take it. In the same way, when the taxi agent 
has the passenger and reaches the state where the agent wants 
to be left, the agent needs to perform the drop-off action. 
Anytime the drop-off action is executed correctly, the main 
goal is reached and the episode ends, this is the condition of 
success that the agent seeks. A substantial reward is given to 
the agent only in case of success, and small negative rewards 
are given at each step. To speed-up the look-up of states a one-
to-one hashing function was devised to translate state 
descriptions to integers. 

A. General Q-Learning Process 

QL is one of the most explored approaches to implement 
RL algorithms. The agent must initially interact with the 
environment through exploratory actions to promote its 
learning process. Using ε-greedy a part of the initial actions is 
random, enabling the agent to explore a large number of states 
and preventing the initially explored states to have an 
advantage and keep being selected as best paths to the goal. As 
the number of iterations increases the agent will have more 
information and choose better actions.  The ε factor, that 
controls the exploration rate, is decreased during training, 
increasing the number of times the agent chooses the best 
action according to the current policy. 

Briefly the QL algorithm will update a table containing the 
quality of each available action for each state. After each 
action, the agent should receive a reward that depends on the 
consequences of that action. Each state-action pair (s, a) is 
characterized by a quality. The quality of a specific (s, a) pair 

is proportional to its contribution to reach the main goal. The 
quality of the last (s, a) pair preformed, Q(s,a), will be updated 
by [2] : 

 Q(s,a) = (1- α) Q(s,a) + α(rs,a + γmaxa
t
 Q (st,at)). (1) 

Our implementation follows the classic QL to calculate the 
quality of a specific (s, a) the following simulation parameters 
were used: Learning rate α = 0.9, and the discount factor γ = 
0.125. These simulation parameters are the same as the ones 
used in [5] that achieved good results in a similar sized 
problem. Following the reward values described in [1], we 
used rs,a = 20, when s = main goal state and a = drop-off action 

(final action that takes the agent to its main goal), rs,a = −10 
every time agent attempts to perform illegal pick-up or drop-off 
actions and rs,a = −1 otherwise. Note that invalid actions are 
not executed but they are given negative reinforcement. 

B. Subgoals 

Subgoals can be described as important states between the 
agent’s current state and the main goal. Comparing it to a real 
world situation, a subgoal could be seen as a bridge between 
two towns, the Taxi is located in town A and the passenger is 
waiting for the taxi in town B. The Taxi needs to cross it to 
reach the passenger’s location.  

Some classes of paths may include more subgoals than 
others. It depends on which side of the environment the 
passenger is located and which side he wants to be dropped-
off. Our method to discover and use subgoals follows the ones 
described in [1, 4, 5, 10]. First of all we need concise data 
referring to the paths covered by the agent. As mentioned 
above, paths are lists of states. A path contains the states 
covered in single episode, excluding looping states and the 
main goal state. Every time the agent reaches a new state, a 
process verifies if it is already contained in the current list of 
covered states. If this condition is true, all states contained 
within the loop path are eliminated from the list. Paths are 
classified and intersected to discover mandatory states that will 
be subgoal candidates. Since it is likely that there are different 
subgoals between the initial state and the main goal, paths are 
classified in different classes. In this problem, path 
classification is easily solved because the class of each path 
depends only on passenger’s initial and goal locations. There 
are however, techniques described in [5] to decide the class of 
a path in other problems where the class of a path cannot be 
determined by state characteristics alone. 

1) Classes of Paths: One of the most decisive factors for 

the discovery of subgoals is the differentiation between classes 

of paths. Considering two episodes, in which the passenger’s 

initial or goal location is different, even if all other parameters 

are the same, the states in the path will never be the same 

because these locations are part of the state. Thus, there are 16 

classes of paths that should be identified and each path must 

be compared and intercepted only paths in the same class. 

These 16 different classes are the 16 possible combinations of 

the 4 different positions where the passenger can be initially 

located and the four different positions where it wants to be 

dropped-off. The following condition is used to group 



different paths in classes: two paths having at least one state in 

common belong to the same class. It’s verifiable that however 

different two paths may be, if they belong to the same class, 

they have, at least, one state in common, the state where the 

passenger is taken. 

2) Path Intersection: Having distinguished and grouped 

the different classes of paths, it’s possible to discover subgoals 

by intersecting those paths. The result of the interception 

process between all paths in the same class is a list of 

candidate subgoals. Depending on the exploration of the 

problem-state so far false positive subgoals may appear. False 

positive subgoals are states that could be present in all the 

paths of the same class however they are not mandatory states 

to reach the main goal. Its emergence is related to insufficient 

exploration performed until the moment the intersection 

process is triggered. If the exploration performed is sufficient 

to cover most of the environment states, no false positive 

subgoal should appear in this problem. Thus, it is extremely 

important to determine the subgoal discovery activation point. 

An example of a true subgoal is coordinate (3, 3) for 

passenger’s start and goal positions in opposite parts of the 

map, when the taxi is holding the passenger. 

C. Options 

Options can be generically described as abstract and 
complex actions that can be executed by the agent, leading it 
directly to a subgoal, provided that the option contains the 
current state in its initial set. Having stored all paths relating to 
every class and their respective interceptions, which are 
actually the subgoals, we have all the necessary information to 
implement options. This implementation is divided in four 
important phases. Initially we need to create specific learning 
structures for each subgoal containing all states that report to it. 
These structures are composed of an initial set (states which 
lead to a given subgoal, i.e., the set of states for which the 
nearest subgoal is the same). The stop condition in this case 
was simplified to be true only when the subgoal is reached. We 
also need to add the option’s initial quality to the main Q-
Learning structure. Thereby the agent may trigger complex 
abstract actions over every state where one is available. Some 
states might not have abstract complex actions, for example, 
states located in loop areas or states that have not yet been 
covered by the exploration process. 

1) Option’s Learning Structure: The option’s learning 

structure is identical to the original learning structure. Initially 

it is necessary to add states in the initial set to an option. For 

each subgoal a single Q-learning structure is created, 

containing the corresponding states and the qualities of theirs 

actions. These qualities are directly copied from the original 

Q-Learning structure. At the end of this process the specific 

learning structures associated to each subgoal are no more 

than general learning structure subsets. From now on these 

specific learning structures will evolve autonomously, i.e., 

each learns its own policy. We also created a correspondence 

method that labels the relation between states and 

correspondent specific learning structure, to expedite the 

option’s matching process. 

2) General Learning Structure Update Process: This 

process aims to update the states in the general learning 

structure for which new non-primitive actions are now 

available. Abstract complex actions are added to all states 

identified as being in the option’s initial set. For a state, x, and 

its correspondent subgoal state, y, the x state option’s quality 

is calculated by the arithmetic average of all maximum 

qualities from all states in the initial set of the option that leads 

to y. This option’s quality calculation process allows the agent 

to reach subgoals quickly when starting from states far from 

the subgoal. This happens because the option’s quality is often 

the highest for all possible actions in state x when the subgoal 

is far. In states close to the subgoal, the quality of the best 

primitive action will be superior to the option’s quality, thus 

primitive actions will be preferred when the agent is close to 

the subgoal. This process of updating the option’s quality is 

performed not only when the options are inserted in the 

learning mechanism but every time an option is executed. 

3) Specific Q-learning Process: In general terms this 

process is identical to III-A and has the same quality 

assignment method. However there are some differences in the 

reward values attributed and the reinforcement conditions. As 

already explained, the final states of specific learning 

structures are subgoals. So for the rewards we used a moderate 

positive reward, rs,a = 10 for the final action, that takes the 

agent to the correspondent subgoal state and rs,a = −1 

otherwise. It’s not necessary to give strong negative rewards 

since there are no impossible actions included in these specific 

learning structures. 

4) Complex Q-learning Process: When subgoals 

discovery is activated, options are included in the learning 

mechanism. With this approach the choice of actions should 

include one more action for all states where options are 

available. As before, when random actions or primitive actions 

are chosen, only the General Q-leaning Structure is updated. 

Every time an option is chosen to be executed the learning 

mechanism must keep the precise option’s entry state. 

Entering the option, actions are chosen based on the Specific 

Q-learning Structure until the subgoal is reached. Following a 

Specific Q-learning Structure, the agent’s temporary main 

goal is to reach the subgoal state. Following the same 

reasoning, General Q-learning Structure and the specific one 

are updated as described in III-A and III-C3. When the 

subgoal state is reached, positive reward is attributed to the 

last (s, a) pair relative to the specific Q-learning structure, as 

described in III-C3. A neutral reward is  attributed  to  the  

same  pair  in the General  Q-learning  Structure  as  described  

in  III-A  and the state where the option was started is also 

updated in the General Q-learning structure with the new 

quality value for the (s, a) pair, s corresponding to the option’s 

entry state and a corresponding to the option itself. This 

update follows the process described in III-C2. The main 

objective of Complex Q-learning Process implementation is 



the achievement of a better learning performance compared to 

the General Q-learning Process. Moreover we want to 

investigate the learning process efficiency improvement of the 

Complex Q-learning Process in comparison with the General 

Q-learning Process.  

IV. RESULTS 

As a first experimental approach the number of 
environment states was limited to easily analyze the subgoal 
discovery results. So, the first experiments were limited to 
episodes which the taxi is initially located at (1, 1) coordinate, 
the passenger at (5, 5) and the ultimate goal at (5, 1). This 
limitation forces all paths collected to belong to the same class. 
This specific class was chosen for the first experiment because 
it is one of the most complexes. An initial exploration rate of 
0.9 was used for these experiments and the subgoals discovery 
activation point was set for iteration number 100. The subgoals 
discovery results can be seen in Table 1. 

TABLE I.  SUBGOALS DISCOVERED WITH INITIAL EXPLORATION RATE 

OF 0.9 AND SUBGOALS DISCOVERY MECHANISM TRIGGERED AT THE 100TH
 

ITERATION 

Subgoal coordinate Passenger Taken Passenger’s state Main Goal 

(3, 2) False (5, 5) (5, 1) 

(3, 3) False (5, 5) (5, 1) 

(5, 5) False (5, 5) (5, 1) 

(3, 3) True (5, 5) (5, 1) 

(3, 2) True (5, 5) (5, 1) 

(3, 1) True (5, 5) (5, 1) 

(4, 1) True (5, 5) (5, 1) 

 
These results are exactly what we were expecting. This 

experiment’s purpose was to obtain all subgoals of a specific 
class, avoiding non-relevant states. In some experiments there 
is a trend for the appearance of superfluous states that can be 
seen as False-Positives. This occurs when a low exploration 
rate is used or when the subgoals discovery process is 
prematurely triggered. True subgoals, when discovered, will 
always prevail, no matter how many iterations or path 
interceptions are made. It is relevant to understand that every 
class of paths has at least one subgoal, the state where the taxi 
takes the passenger. This peculiar state serves as a passage 
between the first 25 environment states and the other 25 
remaining states. Without exceptions the agent must walk 
through this passage to reach the main goal. When this point is 
reached we can assume that half of the path was traveled and 
the agent knows that he already has the passenger. From this 
point on, the states that the agent will cover, having the same 
coordinates, are different from the ones already covered in this 
episode because currently the agent has the passenger. In this 
manner, when the agent passes through this special state it 
arrives in a different environment which is complementary to 
the previous one. 

The proper composition of general Q-learning and specific 
Q-learning structures also deserved special attention. Extensive 
conformity experiments were performed. From this point 
onwards all experiments were executed with no environment 
limitations or restrictions.  This way the combined study of all 
classes of paths and all possible episodes for the classic Taxi-
Problem is ensured. Performing experiments with all classes of 

paths makes it impossible to guarantee a concise environment 
exploration, so that the appropriate subgoals can be discovered. 
Another concern is how to decide the best subgoal discovery 
activation point. It is therefore important that these mechanisms 
might be triggered in time to help maximize the learning 
process. This research work objectives are not restricted to 
demonstrate that our extension accelerates the learning process 
but we also search for the combination of factors that produce 
the best results.  With this in mind we decided to investigate 
the General Q-learning mechanism results and its behavior 
differences using distinct exploration rate values. 

It is observable in Fig. 2 that lower exploration rates are 
recommended to quickly achieve a good performance. Results 
show that for low exploration rates, the agent tends to start 
using its learned actions at an early stage. This induces a very 
significant decrease in the number of iterations to reach the 
main goal at this stage. As the number of iterations increases, 
the optimization process continues and at the 1000th iteration 
the lower exploration rates already have near values to the best 
verified in this experiment. Good performance for higher 
exploration rates is time consuming and the optimum values 
are only reached after 10000 iterations and they are worse than 
the ones achieved by lower exploration values. 

This experiment demonstrates that for relatively small scale 
problems and considering only the general QL method, a better 
learning performance is achieved making use of low 
exploration rates. 

Figure 2.  Example of a figure caption. Example Monte Carlo simulation 

with 30 runs for General Q-Learning with diverse exploration rates, 

exploration rate discount factor = 0.9, reducing the exploration rate each 1000 

iterations. 

Reaching the crucial phase of our experiments we tried to 
assert the extension of the benefits of QL+O. We consider that 
an entirely optimized learning process must be fast to obtain a 
good performance and tend towards the best performance. In 
real-time applications, the initial training delay is often 
intolerable. As referred above, since there are only 50 states 
within any single class a reduced number of iterations is 
necessary to visit all states in a class.  However, to visit all 
states of all classes of paths in the Taxi Problem at least 16 
iterations are necessary. So, some classes could be visited for 
the first time in advanced iterations. This fact considerably 
restricts the efficient subgoal discovery at early iterations. Each 
of these experiments was repeated 30 times. The subgoal 
discovery activation point was the most difficult parameter to 



 

 

configure in these new experiments. Results in Fig. 3 indicate a 
performance improvement granted by the activation of the 
extension. However, different activation points result in 
different performance improvement characteristics. 

 

Figure 3.  Monte Carlo simulation with 30 runs for each learning mechanism, 

exploration rate = 0.3, exploration rate discount factor = 0.9, reducing the 

exploration rate each 1000 iterations.  

 The effects triggered in the learning process for options at 
the 16th iteration (16QL+O) are very promising at first, 
however as the number of iterations increases the benefits fade. 
This is largely because it is almost impossible to cover all 16 

classes of paths at the16th iteration, P ≈ 1
−6

 and the subgoals 
discovered referring to the classes of paths covered may not be 
the best ones. These subgoals discovery and options activation 
initially accelerate the agent’s performance, however long term 
performance will be affected due to its premature activation. 

The performance improvement triggered by the options 
inclusion at the 50th (50QL+0) and 100th (100QL+O) 
iterations are much more interesting. These two performance 
lines present identical characteristics however there are subtle 
differences between the two.  

For 50QL+O, the performance gain starts earlier, this way 
it reaches a good performance faster. For 100QL+O, the 
performance gain starts later but it converges faster to an 
almost perfect performance. 

After testing many different activation points and their 
results we conclude that the optimum point to activate should 
be between the 50th and 100th iteration. From now on we 
decided to compare the performance differences between 
general QL, referenced as No Options, and QL+O activated at 
optimum points. As we can observe in Fig. 4 the lines referring 
to QL+O present a better performance than general QL. 

 

 

 

 

 

 

 

 

Figure 4.  Monte Carlo simulation with 30 runs for each learning mechanism, 

exploration rate = 0.3, exploration rate discount factor = 0.9, reducing the 

exploration rate each 1000 iterations, version 2. 

Inspecting the different performances at the 150th iteration 
there is a visible average gain around 72% for 50QL+O and 
75% for 100QL+O. Performance differences at the 300th 
iteration are almost identical. Standard deviation differences 
between the QL+O and the general QL are also interesting to 
observe. At the 150th iteration, the standard deviation 
maximum point for 50QL+O is equal to general QL standard 
deviation minimal point. In its turn standard deviation 
maximum point for 100QL+O is even lower.  It’s common to 
verify disjoint intervals for iterations near the options’ 
activation point. These results demonstrate the initial boost of 
performance triggered by QL+O. 

As the number of iterations increases the performance gains 
become less noticeable, nevertheless at the 1000th iteration the 
performance of general QL is still worse than the QL+O’s 
performance. Another important fact is related to the point 
where different implementations reach a near-optimal average 
number of actions. Considering 25 the near-optimal average 
number, it is interesting to note that the QL+O lines reach this 
point around iteration 300. In turn, general QL reaches the 
same point at the 1000th iteration. So there is a gap of 700 
iterations between these implementations’ performance. 

V. CONCLUSIONS 

In this paper  we  intended  to  improve  the  performance 
of the Q-Learning algorithm, by making  use  of  subgoals and 
options. We expected to speed up the agent’s learning process 
over the discreet environment of taxi-problem. We considered 
that an optimized learning process must be fast to obtain a 
good performance and tend towards the best performance. In 
real-time applications, the initial training delay is often 
intolerable. So, we also searched for the combination of 
factors, as learning parameters and subgoal discovery 
activation point, which produce the best results. 

Initially more attention was given to the discovery of 
subgoals that could efficiently optimize our learning effort. 
Actions learned through interaction within a specific class of 
paths are meaningless to the remaining classes. So, simple 
learning transfer between classes is not a valid solution. There 
are a total of 800 different states distributed among 16 classes 
of paths. True subgoals when discovered will never disappear 



due to the action of subgoals discovery process. False-Positive 
subgoals may appear due to insufficient exploration performed 
at subgoals discovery activation point. 

Regarding to option’s creation process, some states may not 
acquire abstract actions, i.e., options. In accordance with this 
restriction, those states aren’t represented in any specific 
learning structure. This is explained by the fact that those states 
are located in looping areas, not being considered for option’s 
creation. For (s, a) qualities of a random specific learning 
structure, the action with higher quality value within a random 
state is the one who brings the agent closer to its specific 
subgoal. It is interesting that during the creation of specific 
learning structures, the quality values of some (s, a) pairs are 
discarded. Those pairs are relative to invalid actions. It is also 
important to mention that we used different reward values and 
reinforcement conditions for specific learning structures. So 
each specific learning structure will evolve autonomously. 

Inspecting the results, our options enable the agent to 
improve their performance. However the options optimization 
depends, initially, on the exploration level attained when the 
subgoal discovery is triggered, i.e., the quality of the subgoals 
discovered. We can conclude that the quality and effectiveness 
of the subgoals and options are intrinsically related to the 
amount of different states that the agent already covered. So it 
is clear that the quality of subgoals and options is somehow 
relative, as it must be balanced with the accurate point to 
trigger the subgoal discovery, under penalty of not bringing 
significant benefits to the learning process. Furthermore, 
triggering the extension at early stages implies that subgoals 
and options used are not the best, which leads to some 
immediate improvement that may not last long. 

Performing intensive experiments, we pointed out the 
optimum iteration range to trigger the options mechanism in 
this problem. It’s important to remember that this iteration 
range is relative to a set of parameters that granted the best 
results. Other simulation parameters may result in different 
optimum points to trigger the options mechanism.  

In conclusion the key issue for the effectiveness of the 
extension is the ideal point to include it in the learning process. 
Adjusting the exploration rate and the extension’s activation 
point, in order to get the best performance, we were able to 
achieve an initial learning improvement around 75%. It is 
important to notice that this experiment’s parameters allow the 

extension to still get the most optimized solution. The achieved 
results are the same order as [4].  

As future work, we intend to extend our method to larger 
size discrete problems and to the continuous domain. 
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