

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2023-02-07

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Gil, P. & Nunes, L. (2013). Hierarchical reinforcement learning using path clustering. In 2013 8th
Iberian Conference on Information Systems and Technologies (CISTI). Lisboa: IEEE.

Further information on publisher's website:
https://ieeexplore.ieee.org/xpl/conhome/6589039/proceeding

Publisher's copyright statement:
This is the peer reviewed version of the following article: Gil, P. & Nunes, L. (2013). Hierarchical
reinforcement learning using path clustering. In 2013 8th Iberian Conference on Information Systems
and Technologies (CISTI). Lisboa: IEEE.. This article may be used for non-commercial purposes in
accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://ieeexplore.ieee.org/xpl/conhome/6589039/proceeding

Hierarchical reinforcement learning using path

clustering

Paulo Gil

Instituto de Telecomunicações,

ISCTE-IUL – University Institute of Lisbon

Lisbon, Portugal

paulo.diniz.gil@ieee.org

Luís Nunes

Instituto de Telecomunicações,

ISCTE-IUL – University Institute of Lisbon

Lisbon, Portugal

luis.nunes@iscte.pt

Abstract— In this paper we intend to study the possibility to

improve the performance of the Q-Learning algorithm, by

automatically finding subgoals and making better use of the

acquired knowledge. This research explores a method that allows

an agent to gather information about sequences of states that lead

to a goal, detect classes of common sequences and introduce the

states at the end of these sequences as subgoals. We use the taxi-

problem (a standard in Hierarchical Reinforcement Learning

literature) and conclude that, even though this problem's scale is

relatively small, in most of the cases subgoals do improve the

learning speed, achieving relatively good results faster than

standard Q-Learning. We propose a specific iteration interval as

the most appropriate to insert subgoals in the learning process.

We also found that early adoption of subgoals may lead to

suboptimal learning. The extension to more challenging problems

is an interesting subject for future work.

Keywords-hierarchical reinforcement learning; Q-Learning;

performance; subgoals.

I. INTRODUCTION

Reinforcement Learning (RL) is a family of Machine
Learning methods where a sequence of actions that leads to a
goal is rewarded when the goal is achieved. The RL method
will learn by trial and error, which are the best actions at each
state to achieve the main goal and collect the best rewards. RL
algorithms change the way they respond to the same inputs
over time, improving the collected reward. Hierarchical
reinforcement learning decomposes a reinforcement learning
problem into a hierarchy of sub-problems (sub-tasks) such that
higher-level tasks invoke branch tasks as if they were
subroutines. This work aims to solve small/medium scale
discrete RL problems efficiently by using path clustering to
enable its hierarchical decomposition. Dietterich’s taxi problem
[1] is a standard in RL, especially in testing Hierarchical RL
solutions and it was chosen to serve as the instantiation of our
work. Originally this problem was solved using Q-Learning
(QL) [2]. This algorithm was subsequently extended to make
use of subgoals and options (QL+O) [3, 4] to maximize
learning performance and minimize the number of actions that
the agent takes to achieve its goal. We define the subgoals
informally, as bottlenecks, or doorways between state regions.
Options contain as a set of initial states (from which they can
start) a policy to reach a given subgoal.

A Policy is a mapping from states to actions. RL methods
specify how the agent changes its policy as a result of its
experience.

II. PREVIOUS WORK

Hierarchical Reinforcement Learning is the designation
given to RL methods that divide the problem into sub-
problems such that solving each of the sub-problems is more
efficient than solving the main problem directly. The most
important advantage of hierarchical decomposition is the
reduction in computational complexity of each sub-problem.
The overall problem can be represented more compactly and
sub-problems can be managed independently increasing its
reusability and allowing to speed-up the learning. The
implementation of subgoals discovery and options creation
mechanisms followed the works described in [3, 4, 5].
Subgoals enable the agent to learn and use partial policies.
Partial policies are comprised of consecutive actions that lead
the agent from the current state to the next relevant subgoal.
These sets of primitive actions are defined in [1] as temporally
abstract actions. In [3] authors present the theory that support
options and its benefits. Diverse Density is the method used in
[4] that enables the agent to discover subgoals based on
similarities between paths. Our work proposes an alternative
method of discovering subgoals by classifying and intersecting
paths. Taxi Problem was used to experiment the described
implementation. Different approaches to this problem can be
found in [1, 6, 7] and other interesting Hierarchical RL
approaches are described in [8, 9].

III. METHODOLOGY

The Taxi-Problem is one of the most explored problems on
Machine Learning. This problem’s environment is composed
of a five by five grid, containing walls between some specific
positions (shown in Fig.1). Walls limit the actions between
neighboring states, since the agent can’t transpose those walls.
The taxi-agent must pick-up a passenger and takes it to its final
destination. At the beginning of each episode, the passenger
and destination are randomly placed in or near the grid corners.
The taxi can be initially located at any position in the grid. An
episode starts with the unoccupied taxi. The taxi-agent must
move to the passenger’s position, execute a pick-up action,
move to the passenger’s destination and execute the drop-off
action. The episode ends when the occupied taxi reaches the

All the authors are with Instituto de Telecomunicações, IT-IUL - Edifício
II - Piso 0 Av. das Forças Armadas, 1649-026 Lisboa, Portugal and

ISCTE- IUL, Av. das Forças Armadas, 1649-026 Lisboa, Portugal

destination and drops-off the passenger successfully. Initially,
the taxi agent decides a percentage of its actions randomly,
using ε-greedy. Repeating episodes a considerable amount of
times, the agent should learn an action-choice policy that is
adequate to improve the collected reward for each episode of
this problem.

Figure 1. Example of a figure caption. (figure caption)

 Initially, the agent is able to perform six distinct actions,
i.e., moving actions, referring to move to any of the adjacent
positions, pick-up and drop-off actions. This six are referred to
as primitive actions. Upon reaching the state where the
passenger is located, the taxi agent must perform the pick-up
action in order to take it. In the same way, when the taxi agent
has the passenger and reaches the state where the agent wants
to be left, the agent needs to perform the drop-off action.
Anytime the drop-off action is executed correctly, the main
goal is reached and the episode ends, this is the condition of
success that the agent seeks. A substantial reward is given to
the agent only in case of success, and small negative rewards
are given at each step. To speed-up the look-up of states a one-
to-one hashing function was devised to translate state
descriptions to integers.

A. General Q-Learning Process

QL is one of the most explored approaches to implement
RL algorithms. The agent must initially interact with the
environment through exploratory actions to promote its
learning process. Using ε-greedy a part of the initial actions is
random, enabling the agent to explore a large number of states
and preventing the initially explored states to have an
advantage and keep being selected as best paths to the goal. As
the number of iterations increases the agent will have more
information and choose better actions. The ε factor, that
controls the exploration rate, is decreased during training,
increasing the number of times the agent chooses the best
action according to the current policy.

Briefly the QL algorithm will update a table containing the
quality of each available action for each state. After each
action, the agent should receive a reward that depends on the
consequences of that action. Each state-action pair (s, a) is
characterized by a quality. The quality of a specific (s, a) pair

is proportional to its contribution to reach the main goal. The
quality of the last (s, a) pair preformed, Q(s,a), will be updated
by [2] :

 Q(s,a) = (1- α) Q(s,a) + α(rs,a + γmaxa
t
 Q (st,at)). (1)

Our implementation follows the classic QL to calculate the
quality of a specific (s, a) the following simulation parameters
were used: Learning rate α = 0.9, and the discount factor γ =
0.125. These simulation parameters are the same as the ones
used in [5] that achieved good results in a similar sized
problem. Following the reward values described in [1], we
used rs,a = 20, when s = main goal state and a = drop-off action

(final action that takes the agent to its main goal), rs,a = −10
every time agent attempts to perform illegal pick-up or drop-off
actions and rs,a = −1 otherwise. Note that invalid actions are
not executed but they are given negative reinforcement.

B. Subgoals

Subgoals can be described as important states between the
agent’s current state and the main goal. Comparing it to a real
world situation, a subgoal could be seen as a bridge between
two towns, the Taxi is located in town A and the passenger is
waiting for the taxi in town B. The Taxi needs to cross it to
reach the passenger’s location.

Some classes of paths may include more subgoals than
others. It depends on which side of the environment the
passenger is located and which side he wants to be dropped-
off. Our method to discover and use subgoals follows the ones
described in [1, 4, 5, 10]. First of all we need concise data
referring to the paths covered by the agent. As mentioned
above, paths are lists of states. A path contains the states
covered in single episode, excluding looping states and the
main goal state. Every time the agent reaches a new state, a
process verifies if it is already contained in the current list of
covered states. If this condition is true, all states contained
within the loop path are eliminated from the list. Paths are
classified and intersected to discover mandatory states that will
be subgoal candidates. Since it is likely that there are different
subgoals between the initial state and the main goal, paths are
classified in different classes. In this problem, path
classification is easily solved because the class of each path
depends only on passenger’s initial and goal locations. There
are however, techniques described in [5] to decide the class of
a path in other problems where the class of a path cannot be
determined by state characteristics alone.

1) Classes of Paths: One of the most decisive factors for

the discovery of subgoals is the differentiation between classes

of paths. Considering two episodes, in which the passenger’s

initial or goal location is different, even if all other parameters

are the same, the states in the path will never be the same

because these locations are part of the state. Thus, there are 16

classes of paths that should be identified and each path must

be compared and intercepted only paths in the same class.

These 16 different classes are the 16 possible combinations of

the 4 different positions where the passenger can be initially

located and the four different positions where it wants to be

dropped-off. The following condition is used to group

different paths in classes: two paths having at least one state in

common belong to the same class. It’s verifiable that however

different two paths may be, if they belong to the same class,

they have, at least, one state in common, the state where the

passenger is taken.

2) Path Intersection: Having distinguished and grouped

the different classes of paths, it’s possible to discover subgoals

by intersecting those paths. The result of the interception

process between all paths in the same class is a list of

candidate subgoals. Depending on the exploration of the

problem-state so far false positive subgoals may appear. False

positive subgoals are states that could be present in all the

paths of the same class however they are not mandatory states

to reach the main goal. Its emergence is related to insufficient

exploration performed until the moment the intersection

process is triggered. If the exploration performed is sufficient

to cover most of the environment states, no false positive

subgoal should appear in this problem. Thus, it is extremely

important to determine the subgoal discovery activation point.

An example of a true subgoal is coordinate (3, 3) for

passenger’s start and goal positions in opposite parts of the

map, when the taxi is holding the passenger.

C. Options

Options can be generically described as abstract and
complex actions that can be executed by the agent, leading it
directly to a subgoal, provided that the option contains the
current state in its initial set. Having stored all paths relating to
every class and their respective interceptions, which are
actually the subgoals, we have all the necessary information to
implement options. This implementation is divided in four
important phases. Initially we need to create specific learning
structures for each subgoal containing all states that report to it.
These structures are composed of an initial set (states which
lead to a given subgoal, i.e., the set of states for which the
nearest subgoal is the same). The stop condition in this case
was simplified to be true only when the subgoal is reached. We
also need to add the option’s initial quality to the main Q-
Learning structure. Thereby the agent may trigger complex
abstract actions over every state where one is available. Some
states might not have abstract complex actions, for example,
states located in loop areas or states that have not yet been
covered by the exploration process.

1) Option’s Learning Structure: The option’s learning

structure is identical to the original learning structure. Initially

it is necessary to add states in the initial set to an option. For

each subgoal a single Q-learning structure is created,

containing the corresponding states and the qualities of theirs

actions. These qualities are directly copied from the original

Q-Learning structure. At the end of this process the specific

learning structures associated to each subgoal are no more

than general learning structure subsets. From now on these

specific learning structures will evolve autonomously, i.e.,

each learns its own policy. We also created a correspondence

method that labels the relation between states and

correspondent specific learning structure, to expedite the

option’s matching process.

2) General Learning Structure Update Process: This

process aims to update the states in the general learning

structure for which new non-primitive actions are now

available. Abstract complex actions are added to all states

identified as being in the option’s initial set. For a state, x, and

its correspondent subgoal state, y, the x state option’s quality

is calculated by the arithmetic average of all maximum

qualities from all states in the initial set of the option that leads

to y. This option’s quality calculation process allows the agent

to reach subgoals quickly when starting from states far from

the subgoal. This happens because the option’s quality is often

the highest for all possible actions in state x when the subgoal

is far. In states close to the subgoal, the quality of the best

primitive action will be superior to the option’s quality, thus

primitive actions will be preferred when the agent is close to

the subgoal. This process of updating the option’s quality is

performed not only when the options are inserted in the

learning mechanism but every time an option is executed.

3) Specific Q-learning Process: In general terms this

process is identical to III-A and has the same quality

assignment method. However there are some differences in the

reward values attributed and the reinforcement conditions. As

already explained, the final states of specific learning

structures are subgoals. So for the rewards we used a moderate

positive reward, rs,a = 10 for the final action, that takes the

agent to the correspondent subgoal state and rs,a = −1

otherwise. It’s not necessary to give strong negative rewards

since there are no impossible actions included in these specific

learning structures.

4) Complex Q-learning Process: When subgoals

discovery is activated, options are included in the learning

mechanism. With this approach the choice of actions should

include one more action for all states where options are

available. As before, when random actions or primitive actions

are chosen, only the General Q-leaning Structure is updated.

Every time an option is chosen to be executed the learning

mechanism must keep the precise option’s entry state.

Entering the option, actions are chosen based on the Specific

Q-learning Structure until the subgoal is reached. Following a

Specific Q-learning Structure, the agent’s temporary main

goal is to reach the subgoal state. Following the same

reasoning, General Q-learning Structure and the specific one

are updated as described in III-A and III-C3. When the

subgoal state is reached, positive reward is attributed to the

last (s, a) pair relative to the specific Q-learning structure, as

described in III-C3. A neutral reward is attributed to the

same pair in the General Q-learning Structure as described

in III-A and the state where the option was started is also

updated in the General Q-learning structure with the new

quality value for the (s, a) pair, s corresponding to the option’s

entry state and a corresponding to the option itself. This

update follows the process described in III-C2. The main

objective of Complex Q-learning Process implementation is

the achievement of a better learning performance compared to

the General Q-learning Process. Moreover we want to

investigate the learning process efficiency improvement of the

Complex Q-learning Process in comparison with the General

Q-learning Process.

IV. RESULTS

As a first experimental approach the number of
environment states was limited to easily analyze the subgoal
discovery results. So, the first experiments were limited to
episodes which the taxi is initially located at (1, 1) coordinate,
the passenger at (5, 5) and the ultimate goal at (5, 1). This
limitation forces all paths collected to belong to the same class.
This specific class was chosen for the first experiment because
it is one of the most complexes. An initial exploration rate of
0.9 was used for these experiments and the subgoals discovery
activation point was set for iteration number 100. The subgoals
discovery results can be seen in Table 1.

TABLE I. SUBGOALS DISCOVERED WITH INITIAL EXPLORATION RATE

OF 0.9 AND SUBGOALS DISCOVERY MECHANISM TRIGGERED AT THE 100TH

ITERATION

Subgoal coordinate Passenger Taken Passenger’s state Main Goal

(3, 2) False (5, 5) (5, 1)

(3, 3) False (5, 5) (5, 1)

(5, 5) False (5, 5) (5, 1)

(3, 3) True (5, 5) (5, 1)

(3, 2) True (5, 5) (5, 1)

(3, 1) True (5, 5) (5, 1)

(4, 1) True (5, 5) (5, 1)

These results are exactly what we were expecting. This

experiment’s purpose was to obtain all subgoals of a specific
class, avoiding non-relevant states. In some experiments there
is a trend for the appearance of superfluous states that can be
seen as False-Positives. This occurs when a low exploration
rate is used or when the subgoals discovery process is
prematurely triggered. True subgoals, when discovered, will
always prevail, no matter how many iterations or path
interceptions are made. It is relevant to understand that every
class of paths has at least one subgoal, the state where the taxi
takes the passenger. This peculiar state serves as a passage
between the first 25 environment states and the other 25
remaining states. Without exceptions the agent must walk
through this passage to reach the main goal. When this point is
reached we can assume that half of the path was traveled and
the agent knows that he already has the passenger. From this
point on, the states that the agent will cover, having the same
coordinates, are different from the ones already covered in this
episode because currently the agent has the passenger. In this
manner, when the agent passes through this special state it
arrives in a different environment which is complementary to
the previous one.

The proper composition of general Q-learning and specific
Q-learning structures also deserved special attention. Extensive
conformity experiments were performed. From this point
onwards all experiments were executed with no environment
limitations or restrictions. This way the combined study of all
classes of paths and all possible episodes for the classic Taxi-
Problem is ensured. Performing experiments with all classes of

paths makes it impossible to guarantee a concise environment
exploration, so that the appropriate subgoals can be discovered.
Another concern is how to decide the best subgoal discovery
activation point. It is therefore important that these mechanisms
might be triggered in time to help maximize the learning
process. This research work objectives are not restricted to
demonstrate that our extension accelerates the learning process
but we also search for the combination of factors that produce
the best results. With this in mind we decided to investigate
the General Q-learning mechanism results and its behavior
differences using distinct exploration rate values.

It is observable in Fig. 2 that lower exploration rates are
recommended to quickly achieve a good performance. Results
show that for low exploration rates, the agent tends to start
using its learned actions at an early stage. This induces a very
significant decrease in the number of iterations to reach the
main goal at this stage. As the number of iterations increases,
the optimization process continues and at the 1000th iteration
the lower exploration rates already have near values to the best
verified in this experiment. Good performance for higher
exploration rates is time consuming and the optimum values
are only reached after 10000 iterations and they are worse than
the ones achieved by lower exploration values.

This experiment demonstrates that for relatively small scale
problems and considering only the general QL method, a better
learning performance is achieved making use of low
exploration rates.

Figure 2. Example of a figure caption. Example Monte Carlo simulation

with 30 runs for General Q-Learning with diverse exploration rates,

exploration rate discount factor = 0.9, reducing the exploration rate each 1000

iterations.

Reaching the crucial phase of our experiments we tried to
assert the extension of the benefits of QL+O. We consider that
an entirely optimized learning process must be fast to obtain a
good performance and tend towards the best performance. In
real-time applications, the initial training delay is often
intolerable. As referred above, since there are only 50 states
within any single class a reduced number of iterations is
necessary to visit all states in a class. However, to visit all
states of all classes of paths in the Taxi Problem at least 16
iterations are necessary. So, some classes could be visited for
the first time in advanced iterations. This fact considerably
restricts the efficient subgoal discovery at early iterations. Each
of these experiments was repeated 30 times. The subgoal
discovery activation point was the most difficult parameter to

configure in these new experiments. Results in Fig. 3 indicate a
performance improvement granted by the activation of the
extension. However, different activation points result in
different performance improvement characteristics.

Figure 3. Monte Carlo simulation with 30 runs for each learning mechanism,

exploration rate = 0.3, exploration rate discount factor = 0.9, reducing the

exploration rate each 1000 iterations.

 The effects triggered in the learning process for options at
the 16th iteration (16QL+O) are very promising at first,
however as the number of iterations increases the benefits fade.
This is largely because it is almost impossible to cover all 16

classes of paths at the16th iteration, P ≈ 1
−6

 and the subgoals
discovered referring to the classes of paths covered may not be
the best ones. These subgoals discovery and options activation
initially accelerate the agent’s performance, however long term
performance will be affected due to its premature activation.

The performance improvement triggered by the options
inclusion at the 50th (50QL+0) and 100th (100QL+O)
iterations are much more interesting. These two performance
lines present identical characteristics however there are subtle
differences between the two.

For 50QL+O, the performance gain starts earlier, this way
it reaches a good performance faster. For 100QL+O, the
performance gain starts later but it converges faster to an
almost perfect performance.

After testing many different activation points and their
results we conclude that the optimum point to activate should
be between the 50th and 100th iteration. From now on we
decided to compare the performance differences between
general QL, referenced as No Options, and QL+O activated at
optimum points. As we can observe in Fig. 4 the lines referring
to QL+O present a better performance than general QL.

Figure 4. Monte Carlo simulation with 30 runs for each learning mechanism,

exploration rate = 0.3, exploration rate discount factor = 0.9, reducing the

exploration rate each 1000 iterations, version 2.

Inspecting the different performances at the 150th iteration
there is a visible average gain around 72% for 50QL+O and
75% for 100QL+O. Performance differences at the 300th
iteration are almost identical. Standard deviation differences
between the QL+O and the general QL are also interesting to
observe. At the 150th iteration, the standard deviation
maximum point for 50QL+O is equal to general QL standard
deviation minimal point. In its turn standard deviation
maximum point for 100QL+O is even lower. It’s common to
verify disjoint intervals for iterations near the options’
activation point. These results demonstrate the initial boost of
performance triggered by QL+O.

As the number of iterations increases the performance gains
become less noticeable, nevertheless at the 1000th iteration the
performance of general QL is still worse than the QL+O’s
performance. Another important fact is related to the point
where different implementations reach a near-optimal average
number of actions. Considering 25 the near-optimal average
number, it is interesting to note that the QL+O lines reach this
point around iteration 300. In turn, general QL reaches the
same point at the 1000th iteration. So there is a gap of 700
iterations between these implementations’ performance.

V. CONCLUSIONS

In this paper we intended to improve the performance
of the Q-Learning algorithm, by making use of subgoals and
options. We expected to speed up the agent’s learning process
over the discreet environment of taxi-problem. We considered
that an optimized learning process must be fast to obtain a
good performance and tend towards the best performance. In
real-time applications, the initial training delay is often
intolerable. So, we also searched for the combination of
factors, as learning parameters and subgoal discovery
activation point, which produce the best results.

Initially more attention was given to the discovery of
subgoals that could efficiently optimize our learning effort.
Actions learned through interaction within a specific class of
paths are meaningless to the remaining classes. So, simple
learning transfer between classes is not a valid solution. There
are a total of 800 different states distributed among 16 classes
of paths. True subgoals when discovered will never disappear

due to the action of subgoals discovery process. False-Positive
subgoals may appear due to insufficient exploration performed
at subgoals discovery activation point.

Regarding to option’s creation process, some states may not
acquire abstract actions, i.e., options. In accordance with this
restriction, those states aren’t represented in any specific
learning structure. This is explained by the fact that those states
are located in looping areas, not being considered for option’s
creation. For (s, a) qualities of a random specific learning
structure, the action with higher quality value within a random
state is the one who brings the agent closer to its specific
subgoal. It is interesting that during the creation of specific
learning structures, the quality values of some (s, a) pairs are
discarded. Those pairs are relative to invalid actions. It is also
important to mention that we used different reward values and
reinforcement conditions for specific learning structures. So
each specific learning structure will evolve autonomously.

Inspecting the results, our options enable the agent to
improve their performance. However the options optimization
depends, initially, on the exploration level attained when the
subgoal discovery is triggered, i.e., the quality of the subgoals
discovered. We can conclude that the quality and effectiveness
of the subgoals and options are intrinsically related to the
amount of different states that the agent already covered. So it
is clear that the quality of subgoals and options is somehow
relative, as it must be balanced with the accurate point to
trigger the subgoal discovery, under penalty of not bringing
significant benefits to the learning process. Furthermore,
triggering the extension at early stages implies that subgoals
and options used are not the best, which leads to some
immediate improvement that may not last long.

Performing intensive experiments, we pointed out the
optimum iteration range to trigger the options mechanism in
this problem. It’s important to remember that this iteration
range is relative to a set of parameters that granted the best
results. Other simulation parameters may result in different
optimum points to trigger the options mechanism.

In conclusion the key issue for the effectiveness of the
extension is the ideal point to include it in the learning process.
Adjusting the exploration rate and the extension’s activation
point, in order to get the best performance, we were able to
achieve an initial learning improvement around 75%. It is
important to notice that this experiment’s parameters allow the

extension to still get the most optimized solution. The achieved
results are the same order as [4].

As future work, we intend to extend our method to larger
size discrete problems and to the continuous domain.

ACKNOWLEDGMENT

The authors wish to thank Dr. Luís Ducla Soares, Dr. Pedro
Sebastião and Dr. Rui Lopes of ISCTE-IUL for valuable
comments and discussion.

REFERENCES

[1] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq
value function decomposition,” J. Artif. Intell. Res. (JAIR), vol. 13, pp.
227–303, 2000. [Online]. Available: http://www.informatik.uni-
trier.de/~{}ley/db/ journals/jair/jair13.html#Dietterich00

[2] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine
Learning, vol. 8, no. 3, pp. 279–292, May 1992. [Online]. Available:
http://dx.doi.org/10.1023/A: 1022676722315

[3] R. S. Sutton, D. Precup, and S. P. Singh, “Between mdps and semi-
MDPs: A framework for temporal abstraction in reinforcement
learning,” Artificial Intelligence, vol. 112, no. 1-2, pp. 181–211,
1999. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.45.5531

[4] A. Mcgovern and A. G. Barto, “Automatic discovery of subgoals in
reinforcement learning using diverse density,” in ICML, C. E.
Brodley, A. P. Danyluk, C. E. Brodley, and A. P. Danyluk, Eds.
Morgan Kaufmann, 2001, pp. 361–368. [Online]. Available:
http://dblp.uni-trier.de/rec/bibtex/conf/icml/McGovernB01

[5] D. F. Jardim, “Hierarchical reinforcement learning: Learning sub-
goals and state-abstraction,” Master’s thesis, ISCTE- University Institute
of Lisbon, 2010.

[6] B. Hengst, “Generating hierarchical structure in reinforcement learning
from state variables,” in Lecture Notes in Artificial Intelligence.
Springer, 2000..

[7] F. Mirzazadeh, B. Behsaz, and H. Beigy, “A new learning algorithm for
the maxq hierarchical reinforcement learning method,” in Information
and Communication Technology, 2007. ICICT ’07. International
Conference on, march 2007, pp. 105 –108.

[8] A. G. Barto and S. Mahadevan. (2003) Recent advances in hierarchical
reinforcement learning. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.4.6238

[9] O. Simsek, A. P. Wolfe, and A. G. Barto, “Identifying useful subgoals in
reinforcement learning by local graph partitioning,” in Proceedings of
the 22nd international conference on Machine learning, ser. ICML ’05.
New York, NY, USA: ACM, 2005, pp. 816–823. [Online]. Available:
http://doi.acm.org/10.1145/1102351.1102454

[10] R. Parr and S. Russell, “Reinforcement learning with hierarchies of
machines,” in Advances in Neural Information Processing Systems, M.
I. Jordan, M. J. Kearns, and S. A. Solla, Eds., vol. 10. The MIT Press,
1997. [Online]. Available: http://citeseer.ist.psu.
edu/parr97reinforcement.html

