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Abstract—Testing and debugging real hardware is a time
consuming task, in particular for the case of aquatic robots, for
which it is necessary to transport and deploy the robots on the
water. Performing waterborne and airborne field experiments
with expensive hardware embedded in not yet fully functional
prototypes is a highly risky endeavour. In this sense, physics-
based 3D simulators are key for a fast paced and affordable
development of such robotic systems. This paper contributes with
a modular, open-source, and soon to be freely online available,
ROS-based multi-robot simulator specially focused for aerial and
water surface vehicles. This simulator is being developed as part
of the RIVERWATCH experiment in the ECHORD european FP7
project. This experiment aims at demonstrating a multi-robot
system for remote monitoring of riverine environments.

Index Terms—Physics-Based Simulation, Multi-Robots, Un-
manned Surface Vehicles, Unmanned Aerial Vehicles, ROS

I. INTRODUCTION

Field robotics is rapidly expanding into the aerial [15], [19],
[22] and the aquatic [1], [3], [5], [11], [17], [23] domains. A
great deal of the current success of Unmanned Aerial Vehicles
(UAV) comes from the adoption of multi-rotor configurations,
which allow vertical take-off and landing, high stability and
maneuverability. These characteristics are considerably useful
for tasks like environmental monitoring, wild life tracking, and
search & rescue missions. The limited energetic autonomy of
multi-robot UAVs makes them of limited reach in the aquatic
domain. Conversely, Unmanned Surface Vehicles (USV) are
able to provide long lasting operation in the aquatic domain
(refer to [2] for a survey on USVs). This complementary
nature of UAVs and USVs can be exploited in the context
of heterogeneous robots teamwork [12], [16], [18]

Although appealing, field robotics, in particular aquatic
and aerial, suffers from a rather challenging development
process, mostly due to the remoteness and harshness of the
environments in which these robots are to operate. In addition
to the involving and time consuming process of taking the
hardware out to the field, there is also the risk of damaging
expensive equipment throughout the debugging process. The
use simulation environments is key to mitigate these problems.
Moreover, simulators allow testing and tuning the system to
perform in exceptional situations, i.e., situations that are barely
replicated in actual field trials. Testing in exceptional situations
means checking how the system responds to hardware failures,
power shortage, or extremely odd environment configurations.

Fig. 1. Snapshots of some environments simulated with Kelpie.

Another key advantage of simulations in multi-robot systems
is the ability to assess the scalability and robustness of the
system in the face of varying team members cardinality.

Simulation tools for USV-UAV teams require physics-based
3D modelling, advanced rendering capabilities, real-time ca-
pabilities, flexibility, ability to running on a set of distributed
computational units, and seamless integration with the robot
control system. The last requirement grants a rapidly and
interchangeably linking between the control system and either
the simulated or the physical devices (e.g., sensors, actuators).
To our knowledge, no previous simulator has managed to
cope with all these requirements simultaneously. Conversely,
this paper presents Kelpie, a novel open source, soon to be
online, multi-robot simulator capable of coping with all these
requirements (see Fig. 1). Kelpie is being developed for the
RIVERWATCH experiment in the ECHORD1 european FP7
project. This experiment aims at demonstrating a multi-robot
system for remote monitoring of riverine environments.

This paper is organised as follows. Section II surveys
previous simulators for aerial and aquatic robotics. Then,
Section III describes the Kelpie simulator architecture. Several
application cases for the simulator are presented in Section IV.
Finally, some conclusions and future work avenues are drawn
in Section V.

1ECHORD homepage: http://www.echord.info/



II. RELATED WORK

Most simulators used as research tools perform numerical
simulation and generate visualisation data mostly in the form
of 2D or 3D plots (e.g., Simulink R©). While this kind of
simulators are useful to support the design and development
of low-level control architectures, they fail to scale towards
3D physics-based simulation with photo-realistic rendering
capabilities.

Good rendering capabilities are essential to enable the
simulation of vision and other perceptual stimuli upon which
perceptual algorithms can be reasonably debugged and vali-
dated. As a result, simulators based on advanced 3D computer
graphics engines are preferable to support the development of
high-level functionalities in robotic systems, such as: object
detection and tracking, environmental exploration and interac-
tion, path planning and obstacle avoidance. An emerging trend
in this direction is to build simulators from existing rendering
engines, such as game engines [7].

Previous simulators for aquatic robots are split into two
main categories: underwater robots and surface robots. The
vast majority of simulators, such as the open source SubSim
[4], Neptune [20], IGW [6], MVS [10], and the commercial
DeepWorks [8], lies on the underwater category. These simula-
tors include hydrodynamic models and implement some useful
sensors, such as underwater sonars and vision cameras. As a
representative of surface robot simulators there is WaveSim
[21], which is also able to simulate underwater vehicles. A
limitation of WaveSim is that it relies on basic geometric
primitives as approximations to represent vehicles and object
models in the physics engine. For instance, surface vehicles
are represented as boxes and underwater robots as cylinders.

Kelpie, the simulator herein presented shares some of the
concepts underlying WaveSim and goes beyond in several
directions. First, Kelpie is fully compliant with the Robot Oper-
ating System (ROS), which is a free and open source software
framework that is becoming a de facto standard in robotics.
ROS provides standard operating system services such as hard-
ware abstraction, low-level device control, message-passing
between processes and commonly used functionalities, en-
abling a distributed computing development framework. Sec-
ond, Kelpie provides more accurate physics simulation and
rendering quality by using the geometric meshes of the vehicle
models instead of simple geometric shapes. Finally, Kelpie also
allows the simulation of UAVs.

Kelpie’s core architecture is based on Gazebo [9], a robotics
simulator distributed with ROS. However, Kelpie distinguishes
from Gazebo by supporting the rendering of water regions and
the simulation of vessel dynamics (e.g., drag forces caused by
water resistance and buoyancy), as well as, flight dynamics
for airborne vehicles. Note that Kelpie is not necessarily
constrained to these two type of vehicles, as it also supports
the simulation of terrestrial and underwater robots.

Please refer to [7] for a survey on unmanned vehicles
simulators and to [14] for the specific case of underwater
robotics.

III. THE KELPIE SIMULATOR

The Kelpie simulator is able to account for several aerial,
surface, underwater, and ground virtual robots and their typical
sensors. In Kelpie, these robots are simulated according to the
laws of physics and immersed on high quality rendered 3D
heterogeneous environments (e.g., water and terrain regions).
To ensure full integration with contemporary autonomous
robots control systems, Kelpie is fully compliant with ROS.
Each of these properties of Kelpie is dissected next.

A. System Architecture

In the ROS framework, nodes interact to each other through
a publish-subscribe messaging and service mechanism. Mes-
sages are associated to topics, which are containers with unique
identifiers to and from messages are push and pulled. In a
ROS network, Kelpie is just a node with reconfigurable set
of interfaces, i.e., topics. Hence, several other ROS nodes are
able to interact with Kelpie, i.e., virtual robots actuators and
sensors, as if they would be interacting with the actual robots.
Other ROS nodes may be collecting data from the simulation
and storing them to offline analysis or setting simulation
control parameters, such as those required to change time,
season, or weather.

Fig. 2 illustrates the major components of the ROS node
responsible for Kelpie: a ROS interface, a computer graphics
renderer, a physics engine, and a XML parser.

Fig. 2. System architecture.

The ROS client interface provides access to core function-
alities and implements the concept of topic-based commu-
nications, providing the compliance needed to integrate the
simulator with the ROS framework. For instance, the simulator
uses the ROS client interface to store and make publicly
available some simulation parameters (e.g., direction and speed
of water currents) in the ROS system-wise parameter shared
server. These simulation parameters can then be modified at
run-time by other ROS nodes.

Kelpie also exploits the ROS diagnostic toolchain, via its
client interface, to ease the development of diagnostic nodes
for robotic systems. This toolchain provides the means for
collecting, publishing, troubleshooting and viewing diagnostic-
related data. For instance, Kelpie can publish diagnostic mes-



sages related to several robot model’s parameters (e.g., battery
level and actuator’s temperature).

Real-time computer graphics rendering is managed by
OpenSceneGraph (OSG)2, which is an open source graphics
toolkit based on the scene graph concept and it is written in
standard C++ and OpenGL3. Furthermore, the open source
osgOcean library4 is used to generate the above and below
water rendering effects, as depicted in Fig. 3.

Fig. 3. Water effects in Kelpie, as seen from above (left) and from below
(right) the surface.

The physics simulation is supported by the BulletPhysics
library5, which is an open source physics engine featuring
3D discrete and continuous collision detection with diverse
collision shapes, as well as soft and rigid body dynamics. To
integrate the BulletPhysics engine into OSG-based models, the
osgBullet6 library is used. Concretely, this library maps the
state of a BulletPhysics dynamical model to the parameters of
the corresponding OSG geometric model of the object, given
external stimuli (e.g., forces and torques).

Finally, a XML parser is used to save and load Simulation
Description Format (SDF) files describing the scene, the virtual
robots and their sensors. This gives the ability for Kelpie to
import existing Gazebo SDF world files.

B. Buoyancy Simulation

Kelpie uses the Archimedes’ principle to simulate buoyancy
in water. Briefly, this law of physics states that a fluid exerts
an upward force (i.e., buoyant force) that equals the weight
of the fluid displaced by an immersed body. For instance, the
surface vehicle depicted in Fig. 4 suffers a buoyant force Fb

from the surrounding water. This force is directed upward and
has a magnitude equal to the weight of the water displaced by
the submerged hull. Formally, the magnitude of the buoyant
force vector Fb is given by

||Fb|| = ρ · vf · g, (1)

where g is the gravitational acceleration constant, ρ is the
water’s density and v is the volume of the water displaced.

When the surface vehicle is floating, the buoyant force, Fb,
and the gravitational force, Fg , share the same magnitude,
though opposite directions (see Fig. 4). If the buoyant force’s
magnitude gets lower than the magnitude of the gravitational

2OSG homepage: http://www.openscenegraph.org
3OpenGL homepage: http://www.opengl.org
4osgOcean homepage: code.google.com/p/osgocean/
5BulletPhysics homepage: http://bulletphysics.org/wordpress/
6osgBullet homepage: osgbullet.googlecode.com/

Fig. 4. Buoyancy simulation.

force, then the sinking occurs. Hence, to assess buoyancy, the
simulator needs to compute the buoyant and the gravitational
forces that the physics engine must exert on the vehicle at
each time step. The gravity force is easy to compute as it
only requires the vehicle’s mass to be known, which is given
a priori. The buoyant force is computed with Eq. 1 given the
water’s density, which is also known a priori, and the volume
of the displaced water, vf , which needs to be computed at each
simulation step. The volume of displaced water corresponds to
the volume of the vehicle’s immersed region, which is hard to
determine exactly. Currently, this quantity is approximated by
the volume of a bounding box.

C. Wind and Water Currents

The vehicle’s motion and attitude on the water’s surface
is a function of its propellers actuation and forces caused by
external factors, such as winds, water currents, and waves. In
its current version, Kelpie does not consider sailed vehicles.
Thus, wind forces are only considered indirectly via changes
applied to the amplitude and frequency of water waves. For
instance, if a surface vehicle receives lateral winds it will suffer
an oscillating roll torque (see Fig. 5), whereas a frontal wind
will cause an oscillating pitch torque.

Formally, Kelpie approximates the water-wind-vehicle in-
teraction dynamics by first computing the amplitude of waves
as a function of time t and wind amplitude ν, as follows:

h(ν, t) = hm(ν) · sin( ω(ν) t ), (2)

where hm(ν) and ω(ν) are the maximum amplitude of the
wave and its frequency, respectively, given the wind speed
ν. These two function were implemented according to the
Beaufort scale, which relates wind speed to observed con-
ditions at sea and land. This approximation disregards the
complex interactions among waves of different frequencies and
amplitudes, which are key for photorealistic simulation but of
little value to the purpose of debugging perceptual and control
algorithms of unmanned vehicles. The surface vehicle’s pitch
and roll angles, φpitch and φroll, are then modified as follows:

φpitch(p
y
m,pw, ν, t) = (py

m · pw) h(ν, t) αpitch; (3)

φroll(p
x
m,pw, ν, t) = (px

m · pw) h(ν, t) αroll; (4)

where the inner product is used to verify the alignment between
the vehicle’s directional vectors, px

m and py
m (see Fig. 6(a)),

and the wind directional vector, pw. For instance, if both
vectors are strictly parallel, the inner product returns 1.0 or



−1.0, either they yield the same direction or not, respectively.
If both vector are perpendicular, it returns zero. Otherwise the
returned value will range between zero and one. This allows
the surface vehicle’s attitude to change in its pitch and roll axis
according to the vehicle’s orientation in relation to the travel
direction of the water waves along the time. The proportional
factors, αpitch and αroll, are defined by the user according
to the vehicle’s kinodynamic properties. For instance, if the
vehicle is very lightweight its attitude can change in the full
range of the wave’s amplitude. Otherwise, if the surface vehicle
is heavy weighted then its attitude changes in a narrow range
of water wave amplitude.

(a) h(v, t) (b) h(v, t+ 1) (c) h(v, t+ 2)

Fig. 5. Roll torque applied by wind to a surface vehicle.

Concerning water currents, they can exert linear and ro-
tational forces (e.g., yaw torques) on the surface vehicle,
depending on its orientation relative them. Formally, the yaw
torque, τ , applied to the surface vehicle, given the current’s
force applied to the vehicle’s keel, Fc, is τ = r × Fc, where
r is the displacement vector from the point from which torque
is measured (vehicle’s center of mass) to the point where the
force is applied (see Fig. 6(b)).

(a) (b)

Fig. 6. (a) 2D directional vectors of the model, px
m and py

w , and hypothetical
wind vector pw (b) Effect of water current on vehicle’s yaw rotation
(represented by red arrow).

Aerial robots are also affected by wind forces, but in a
differently way compared to aquatic models. Aerial models do
not display an oscillating behaviour. Instead, a steady force
with magnitude and direction of wind is applied to them.
Depending on the direction of the aerial vehicle’s motion, this
force can behave as a thrust/drag force Fy and as a lateral
force Fx, as follows:

Fy (p
y
m,pw) = (py

m · pw)‖pw‖; (5)

Fx (px
m,pw) = (px

m · pw)‖pw‖; (6)

where ‖pw‖ is the magnitude of the wind force. Hence, if
both vectors are strictly parallel and share the same direction

(positive signal from the inner product), the aerial vehicle will
suffer a thrust force. Otherwise it will feel a drag force. For
the time being only this simple physics is implemented in the
simulator.

D. Simulated Sensory Data

Kelpie provides several sensor models, such as vision cam-
eras, underwater sonars, tilting laser scanners, inertial measure-
ment units (IMU) and global position systems (GPS). These
models generate sensory data in a compliant format ready to
be published in the ROS network (e.g., sensor msgs::Imu, sen-
sor msgs::LaserScan, sensor msgs::NavSatFix, etc.). There-
fore, changing from a simulated sensor to its real counterpart
is a seamless operation. To account for sensor noise (excluding
vision cameras), only a Gaussian model is currently being
used. Several ROS nodes can then access and process these
data in the context of high-level functionalities (e.g., surface
obstacle avoidance from laser scanners, bathymetric from
underwater sonars, navigation from positioning and attitude
sensors). Fig. 7 illustrates the output of the tilting underwater
sonar currently available in Kelpie. Sonar and laser beams
are simulated using the ray casting and ray-geometry collision
detection techniques available through OSG.

Fig. 7. Simulated underwater sonar beams.

IV. APPLICATION CASE

As mentioned, Kelpie is being developed for the RIVER-
WATCH experiment in the ECHORD european FP7 project.
This experiment aims at contributing with a multi-robot solu-
tion for the remote monitoring of riverine environments (e.g.,
assessing the water quality, find pollution sources, and tracking
underwater biodiversity). Concretely, one of robots is a an
Unmanned Surface Vehicle (USV), whereas the other is an
Unmanned Aerial Vehicle (UAV), a hexacopter. These inno-
vative multi-rotor flying platforms have significant advantages
over other types of aerial robots, namely capability of vertical
take-off and landing, high stability and manoeuvrability.

The two robots have complementary properties which can
only be fully exploited if coordinated. While the USV is able
to assess the water body, the UAV is able to visually inspect the
riverbanks. While the USV is able to transport a solar panel
to perform energy harvesting, the UAV is not and so must
recharge itself by docking in the USV. The higher speed of
the UAV means that the USV can move downriver while the
former is performing its associated inspection while its energy
supply allows it. Furthermore, the UAV can help the USV on
path planning by providing a better vantage point with its aerial



perspective. To speed up the analysis, these robotic pairs can
be multiplied, which in turn requires their coordination at both
USV and UAV levels.

To show the usefulness of Kelpie in the context of devel-
oping and debugging a project as RIVERWATCH, the follow-
ing sections present three application cases, namely, obstacle
detection and avoidance, UAV-USV cooperative environment
perception.

A. Obstacle Detection and Avoidance
The short-range obstacle detection in the USV rely on 3-D

data provided by a stereo vision head, a tilting laser scanner,
and an underwater tilting sonar. The data produced by these
sensors is integrated on a volumetric map, from which a bi-
dimensional cost map is produced. Cost is high in the presence
of objects on water’s surface and in the presence of low depth
bathymetry.

Fig. 8 illustrates the volumetric map generated with Kelpie’s
simulated tilting laser scanner. These data were gathered while
the simulated USV was moving on the water’s surface. The
registration of range data in a common volumetric data is done
using the Kelpie’s simulated GPS and IMU filtered with an
Extended Kalman Filter (EKF).

(a) (b)

Fig. 8. Set of virtual buoys in (a) and corresponding volumetric map in (b).

Fig. 9 depicts the successful autonomous behaviour of the
USV in an environment composed of natural obstacles when
asked to move towards a given waypoint. This time the cost
map is fed by the tilting laser scanner operating above the water
surface. To navigate safely, the USV uses a path planner on the
top of a local obstacle avoidance algorithm, both running on
the cost map. Again, the localisation of the USV is estimated
by filtering the GPS and IMU simulated sensors with an EKF.

(a) (b)

Fig. 9. Laser-based autonomous navigation among natural obstacles towards
a given waypoint. (a) Perspective over the simulated environment. (b) Cost
map built online with the tilting laser scanner. Green points correspond to
mapped obstacle points. The red lines in (a) and (b) correspond to the path
executed by the USV from its initial position to the goal waypoint.

B. USV-UAV Cooperation

To enable robust safe navigation in aquatic environments,
long-range water/land segmentation of the environment is
essential, which is considerably hampered by the low vantage
point of the USV. Alternatively, we can use the UAV high
vantage point to extend the perceptual range of the USV and,
consequently, enable truly long-range obstacle detection. For
instance, compare the perspective of the environment as seen
slightly above the water level and as seen from a considerably
high vantage point in Fig. 8(a) and Fig. 10, respectively. These
figures are representative of both USV and UAV perspectives
over the environment. This USV-UAV cooperation facilitates
considerably the hard problem of detecting sand banks and
distant shorelines, which are key for safe navigation and
difficult to detect from the USV’s perspective.

Fig. 10. Aerial perspective of the environment. The simulated UAV is
represented in the upper-left corner of the figure.

A key element in this cooperative process is the ability for
the UAV to register the images acquired with its downwards
looking camera in the USV’s frame of reference. One solution
to the problem is to detect the USV in the images themselves.
Fig. 11 presents a set of images acquired from the simulated
UAV’s onboard camera while approaching a simulated USV.
These images feed a ROS node responsible for actually de-
tecting the USV based on a computer vision algorithm tuned
to detect a H-shaped helipad (see Fig. 11(d)). This experiment
relies on the set of ROS nodes abstracting both USV and UAV
and on ROS messages for their interactions. These protocols
are exactly the same as the ones used in the real robotic
platforms, thus enabling a seamless transition from simulated
to real world experiments.

V. CONCLUSIONS AND FUTURE WORK

A ROS-based multi-robot simulator, entitled Kelpie, spe-
cially tuned to enable fast development and debugging of
systems composed of cooperating unmanned surface and aerial
vehicles was presented. A set of practical cases in remote
environmental monitoring were provided in order to demon-
strate the usefulness and reach of the simulator. These cases
were extracted from the requirements of the RIVERWATCH
experiment included in the EU-FP7 ECHORD project.

Kelpie being freely available and open sourced, is expected
to contribute towards affordable development of field robotics,
in particular in the context of environmental monitoring in
aquatic environments. Kelpie is deeply inspired by Gazebo
simulator, through standing out from it by being able to render



(a) (b)

(c) (d)

Fig. 11. (a)-(c) Images acquired from the simulated UAV’s onboard camera
as it approaches the USV. (d) Output of the USV detection and tracking ROS
node, given the input image in (c).

marine environments and providing context-related dynamics,
such as buoyancy and feedback from environmental forces
(e.g., winds and water currents).

Kelpie is under active development. Bugs are being fixed
and improved functionality being included. For instance,
Kelpie is being extended to include day-night cycles and
dynamic weather changes, which will help assessing the ro-
bustness of the control systems in extreme situations (e.g.,
assess the robot’s behaviour in context when vision-based
obstacle detection is hampered due to the presence of heavy
fog).

An interesting extension would be to include improved
wind models so that the simulation of sailing vessels would
be enabled, as well as the effects caused by wind in the
appearance of water waves. In particular, the addition of visual
effects in the water (e.g., density of white foam crests and
airborne spray) according to the Beaufort scale.

To increase the simulator efficiency in the simulation of
marine environments, a migration from the osgOcean library
to the faster and novel rendering method based on Graphics
Processing Units (GPUs) proposed in [13] is planned.

Finally, improvements to the graphical user interface will
be carried out. The interface will provide several features to
the user, such as: drag and drop mechanism for on-line mate-
rialisation of ready-to-use models (e.g., deployment of buoys
into the virtual environment as aquatic obstacles); point-and-
click way-point creation for navigation; mouse-based selection
of models for easy on-screen access of internal variables; and,
notifications of simulation events using the heads-up display
(HUD) system (e.g., successful docking procedure, collision
detected, etc.). This opens the door to Kelpie as front-end of
multi-robot teleoperation and diagnostic systems.
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