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Abstract

There are some interesting, centralized solutions for managing smart buildings, whether opensource

or not. However, there is the need for some of these functions to be decentralized. Decentralization

calls for consideration of security and trust standards that enable a coordinated approach. This dis-

sertation aims to fill the knowledge and research gaps that still exist in this field.

As such, the objective of this dissertation is to integrate smart contracts with an IoT platform for

distributed control in smart buildings. The proposed solution aims to grant control of a function or the

monitoring data in a given smart building to an external entity that can manage this service.

To achieve the goal of this dissertation, an integration was proposed with opensource technologies.

Two of these technologies are Daml and OpenHAB, and the created SCIApp application enables their

communication.

Functional tests, confirm that it is possible to achieve the proposed integration. Response time in the

order of seconds was obtained, with an average value of 4061ms. Performance tests, allow to verify

the response time for different loads. Results confirm that response time remains constant when new

contracts are created every 20s. For the remaining frequencies, the response time increases.

This dissertation leads to the conclusion that it is feasible to integrate smart contracts with IoT to

control and manage functions of intelligent buildings. By analyzing the tests conducted on the devel-

oped system, it was observed that the control is possible for operations that do not require a real-time

response time.

Keywords: Smart contracts; internet of things; home automation.
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Resumo

Existem algumas soluções centralizadas interessantes para a gestão de edifícios inteligentes, sejam

elas open-source ou não. Contudo, existe a necessidade de algumas destas funções serem descentral-

izadas. A descentralização exige a consideração de normas de segurança e confiança que permitam

uma abordagem coordenada. Esta dissertação visa preencher as lacunas de projectos existentes neste

campo.

Como tal, o objectivo desta dissertação é integrar contratos inteligentes com uma plataforma IoT

para controlo distribuído em edifícios inteligentes. A solução proposta visa conceder o controlo de

uma função ou monitorização de dados num determinado edifício inteligente a uma entidade externa

que possa gerir este serviço.

Para atingir o objectivo desta dissertação, foi proposta uma integração com tecnologias de código

aberto. Duas destas tecnologias são Daml e OpenHAB, e a aplicação SCIApp criada permite a sua co-

municação.

Testes funcionais, confirmam que é possível alcançar a integração pretendida. Foram obtidos resulta-

dos com a duração de vários segundos, sendo a duração média típica dos testes de 4061 ms. Os testes

de desempenho, permitem verificar o tempo de resposta. Os resultados confirmam que o tempo de

resposta com a frequência de 20s é constante. Para as restantes frequências, o tempo de resposta

aumenta.

Esta dissertação leva à conclusão de que é viável integrar contratos inteligentes com IoT para controlar

e gerir funções de edifícios inteligentes. Ao analisar os testes realizados no sistema, observou-se que

o controlo é possível para operações que não requerem um tempo de resposta em tempo real.

Palavras-chave: Contratos inteligentes; internet das coisa; domótica.
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CHAPTER 1

Introduction

1.1. Context

Nowadays, with all the environmental concerns, related to climate change, it is increasingly important

to use renewable energy and minimize energy waste [1]. New technologies arise to make energy use

more efficient. Current and old buildings, all over the world, are adopting new technologies in order

to make them more energy efficient and beyond [2]. A structure that uses automated processes to

automatically control the building’s operations [1] is called a smart building. This intelligent structure

relies on sensors, controllers and actuators [3], to efficiently automate the building. After a sensor

collects essential data, the controller analyses it, and commands the actuator to act [3]. The network

that connects all these smart devices is called the Internet of Things (IoT) and it is one of the most

important technologies of this century [4].

With IoT, a network of sensors and interconnected devices, data can be collected and shared to

provide more comfort, safety, and efficiency for human beings on smart buildings, roadways, health-

care, industry [5], and in many other areas. IoT technology has grown a lot in the last years and ac-

cording to recent reports, 17.3 billion IoT devices will be connected in 2023 [6]. Nowadays, buildings

architecture plans are made to optimize its operations efficiency, aiming to reduce energy consump-

tion and increase the comfort of its residents [3]. To achieve this goal in smart buildings, the devices

interconnected by IoT must be well managed.

Traditionally the management and control of several smart building functions, including energy

management, are centralized [7]. There has been a need for more of these functions to have their

management delegated to external entities. Regarding distributed management of electricity pro-

duction and consumption, the delegation of management functions has not been easy. This happens

because each building usually has an autonomous and centralized control. It is required to create a sys-

tem to trust external entities to manage the functions of a smart building. Smart Contracts technology

allows anonymous transacting parties to trust each other without intermediaries [8].

A Smart Contract is a script, programmed by a developer and deployed across a distributed system

[9]. Smart Contracts are simple immutable contracts written in code that are executed when certain

conditions are met [9]. The contract auto executes itself when the terms of the contract, agreed upon

two parties, are achieved [10]. They are commonly used to automate the execution of an agreement,

without the need for an intermediary intervention [10]. There are several smart contract languages
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such as Daml1 and Solidity2. Depending on the language, smart contracts can be stored in blockchains

or databases. As databases and blockchains can be integrated with Daml, smart contracts written in

Daml can be stored in both of these types of storage. Solidity-based smart contracts, on the other

hand, can only be stored in blockchains.

The Blockchain (BC) technology is a “decentralized, shared, and immutable database ledger” that

stores a registry of assets, transactions, contracts, and events across a peer-to-peer (P2P) network

[11].This Distributed Ledger Technology (DLT) was firstly introduced by cryptocurrencies [4] and has

been promising in several scenarios including energy trading in smart buildings [12]. In other words,

blockchain consists in a chain of blocks, linked together, called ledger [4], that is stored across a

P2P network. A block contains a several number of transactions, occurred in the network, between

two distinct parties [11]. A BC system eliminates the need of trusting a centralized authority, i.e.,

a third-party, to execute a transaction between two parties on a network [13]. A way of automat-

ing transactions on a blockchain is through codified rules integrated into a Smart Contract. Food

supply chain management, energy market management and cryptocurrencies are examples of such

applications of the integration of BC with Smart Contracts where data distribution and sharing among

decentralized infrastructures is required [14].

Although blockchain is one of the most popular approaches today, databases can be used to store

developed smart contracts in situations where the issue of trust is not as problematic. Despite smart

contracts can be stored in databases, blockchain provides a more secure solution.

Thus, creating a system that integrates Smart Contract technology with IoT can be beneficial to

solve trust and security problems [15] and allows the automated functioning of IoT processes in smart

buildings [15]. This system is supposed to solve the problem of trust in the delegation of building

control functions.

1.2. Motivation

As known, the building sector has a major contribution to the energy consumed worldwide [2]. With

IoT technology, smart buildings were created assisting the need for energy efficiency, automated

processes, improving comfort, and the simplification of building management [16]. Normally, the

management and control of various functions in a smart building, related to electricity production

and consumption, is centralized. Sometimes these functions are delegated to external entities, with

the objective of making them more efficient. However, a trust-related problem arises, linked to the

delegation of these functions to external entities.

Therefore, it is necessary to create a system that controls and verifies the transactions of the

control functions, in order to solve the delegation trust in external entities. A Smart Contract-based

system offers a solution able to overcome this obstacle, because of its specificity. This issue can

be overcome with this technology because of its tamper-proof, security, reliability, automation, and

1https://daml.com/
2https://docs.soliditylang.org/en/v0.8.17/
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trustworthiness characteristics [17]. As a result, there is no longer a need for a system operator or an

intermediary because Smart Contracts allow anonymous transacting parties to trust each other [17].

Negotiations and contracting between the parties have the potential to be automated and acceler-

ated [17]. Thus, ”Smart contracts offer a virtual means of reaching and enforcing a credible binding

agreement and/or transaction” [17].

1.3. Research Questions

Many smart buildings already use IoT with the goal of making energy consumption more efficient.

However, in the vast majority of buildings, the delegation of control functions is centralised, and

Smart Contract technology is seen as a mechanism to solve this problem. The main question that this

work intends to answer is:

• Is it feasible to integrate Smart Contract in order to achieve decentralised control of smart

buildings, regarding energy management?

The following questions may answer the feasibility of this work:

• Is the response time too excessive, in a system that integrates Smart Contract technology with

IoT, especially in the control of electricity production and consumption in smart buildings?

• Is it possible to implement functionalities that require interactivity in this system without

worrying about the delay?

• Is this type of integration viable in small single-board computers with the complexity and

processing that this system requires?

1.4. Objectives

The major objective of this work is to integrate Smart Contract technology with an IoT platform for

distributed control in smart buildings. The purpose of this integration aims to address the problem of

trust in the delegation of building control functions in an open way to control and verify management

function transactions.

1.5. Proposal

In the solution proposed by this work, the Smart Contracts Application Daml will be integrated with

the IoT platform OpenHAB in order to grant the control of a smart building to external entities. It will

be demonstrated how the entity in charge of the smart building will delegate control to the external

entity. To this end, functional and performance tests will be carried out. When the entity that

manages the smart building grants control, the external entity will be allowed to change the condition

of a light in the smart building.

Functional tests were carried out to determine whether it was possible to integrate smart contracts

with IoT for distributed control of intelligent buildings. After running the tests, we come to the

conclusion that this integration is feasible. It was also concluded from these tests that the proposed

system is appropriate for functions that do not require an immediate response, such as turning on
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a washing machine or determining the status of an item. However, for functionalities that require

immediate response or feedback, such as turning on and off a light, the response time is too long for

a user to wait for the light to change. As a result, interactive features cannot be implemented.

Performance tests were also conducted, and the results revealed that the response time is very

high when a large number of contracts are created with a predetermined time frequency. It is also

possible to conclude that the system is not scalable as the response time increases.

The main contributions of this dissertation are:

• The integration of smart contracts in building control using a database.

• The management through this kind of integration for functionalities that don’t require real

time responses.

• The possibility of implementing this type of solution using open source platforms such as Daml

and OpenHAB.

The current work is organized as follows:

• Chapter 2 is divided in 3 sections and presents a literature review on the coexistence of

IoT with buildings, regarding the delegation of control of building functions, as well as the

integration of smart contracts to rely on external entity control. In the first section, the IoT

and its special application in smart buildings are studied, along with open source platforms.

The second section studies the smart contract technology and a few programming languages

that are employed. The third section studies the combination of Smart Contracts with IoT.

• Chapter 3 describes this work proposed solution and it is divided in three sections. The first

section defines the stakeholders. The second section presents the overall architecture. The

third section explains where the data is stored.

• Chapter 4 presents the implementation for the proposed solution. It is divided in four sec-

tions. These include the installation of the operating system on the virtual machines chosen;

setting up the OpenHAB platform, API and Daml application; implementing the methods to

integrate these three systems.

• in Chapter 5 is described the tests and validations for this system’s design and implementa-

tion.

• Chapter 6 addresses conclusions and some relevant future work aligned with the current

proposal.

1.6. Research Methodology

The research methodology used for the problem-solving in this project is Design Science Research (DSR)

[18]. This methodology is composed by the following six activities represented in figure 1:

Problem Identification: The problem detected was that generally, each smart building has an

autonomous and centralised control, which makes it difficult to delegate management functions.
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Define objectives of a solution: The main goal of this dissertation is to develop a decentralized

management system for smart buildings, to solve the problem of trust in the delegation of building

control functions, regarding the production and consumption of electricity.

Design and Development: Create a decentralized, trusted, and tamper-proof system that pro-

vides irrefutable mechanisms to control and verify management function transactions. It can be ac-

complished using Smart Contract technology integrated with an smart building management platform.

Demonstration: The first implementation of this system will be a prototype, to connect the Smart

Contract application with a smart building management platform and it will have the purpose of turning

on and off a light in a room of the smart building.

Evaluation: After the implementation, some results can be concluded about the efficiency and

viability of the system.

Communication: The last activity will be the presentation of the obtained results in a dissertation

and an article.

Figure 1. Design science research methodology [18].
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CHAPTER 2

Literature Review

This chapter covers the state of art of how to integrate smart contract technology with an IoT platform

for a distributed control of smart buildings. Section 2.1 discusses the topic of Internet of Things relating

to smart buildings and IoT platforms. The topic of smart contracts is covered in section 2.2. In section

2.3 is addressed the combination of IoT with smart contracts.

2.1. Internet of Things

Although IoT technology is widely used nowadays, its concept has been around for a while. In the late

1970s, the idea of connecting computers and networks to control and monitor devices was firstly in-

troduced by monitoring the meter, on an electric grid, via telephone lines [19]. As a natural evolution

of the Internet [4], IoT can be defined as a network of intelligent devices called “things” that commu-

nicate with each other, via wired or wireless connection [19]. These devices, which contain sensors

and/or actuators, collect, analyse, and share data with other devices, programs, and platforms [20].

This data can be used to monitor and interact with various equipment, as well as to provide better

planning, control and coordination of a system [20]. These connected things can improve autonomy,

communication and facilitate knowledge sharing [20] which helps to create smart solutions. This leads

to greater efficiency in the performance and productivity of various systems that enhance the quality

of life. IoT has emerged as a critical technology, and any smart system must incorporate connected

intelligent devices [16]. Some of its applications are represented in figure 2 [21].

Figure 2. IoT application domains.

In Figure 2, Smart Homes, Healthcare, Smart Vehicles, and Agriculture are the most important

and relevant applications. This dissertation falls under the category of smart homes. In addition to
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the applications shown in figure 2, the Internet of Things has a significant impact on smart grids and

smart cities.

2.1.1. Smart Buildings

Smart buildings are one of the many applications of IoT. The general public defines this concept as the

idea of automating processes performed in a building [1]. An smart building can control its operations

automatically with the help of sensors, controllers, and actuators [1]. Supported by automated con-

trol, a building that integrates smart things can help to reduce energy consumption, improve resident

comfort and safety, control air conditioning automatically, which increases the building’s efficiency

and leads to cost savings [3]. Some researchers define a smart building as a “multidisciplinary effort to

integrate and optimize the building structures, systems, services and management in order to create

a productive, cost-effective and environmentally approved environment for the building occupants”

[22]. As the building sector represents 40% of the total energy consumed in developed countries,

energy efficiency is one of the most important research topics, and not only in the development of

smart buildings [16]. Therefore, controlling and monitoring an smart building with integrated devices

is efficient, useful, profitable, and reliable [3].

The system created in [1] has the purpose of reducing energy wastage in smart buildings. To

accomplish this goal an energy consumption predictive model was developed. In [23] a solution is pre-

sented regarding smart buildings for implementing an energy consumption monitoring system using an

open-source IoT infrastructure, aiming specifically for educational buildings. The model introduced in

[24] presents a form for improving energy sustainability in smart buildings. This solution provides an

integrated optimisation model for conventional heating and HVAC systems to achieve energy-balance

requirements. This model demonstrates the effectiveness of the smart BEMS (Building Energy Manage-

ment Systems) by comparing it to the conventional BEMS.

Another problem is to reuse an old building to implement smart solutions. The authors of [3]

propose an approach for smart retrofit of buildings. Old buildings, containing obsolete or even absent

equipment, are a challenging scenario to deploy IoT networks and devices. This solution aims to

ensure interoperability between different IoT devices in retrofit environments and to adopt efficiency

measures.

Typically, the management and control of the operations in an smart building are centralised,

which implies the existence of a single point of failure. There has been an increasing need for the

management of these operations to be delegated to external entities.

An example is a distributedmanagement of electricity production and consumption in self-sustainable

communities [12]. The problem of trust, in the delegation of building management functions arises.

In order to solve this problem, it is necessary to create a system that provides irrefutable mechanisms

to control and verify the transactions of the management functions/operations in an smart build. A

new technology known as Smart Contracts provides the tools required to overcome the issue of trust

in external entities.
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In [25] it is proposed to use smart contracts and blockchain technology to create a secure and au-

tomated decentralized renewable energy trading platform within the microgrid for Smart Homes. The

microgrid is made up of nodes that represent smart homes, and each node is an energy consumer and/or

producer. This system trades energy using pre-programmed smart contracts on a private blockchain.

In [26], a decentralized framework for managing electrical consumption in a community of Smart

Buildings is presented. Through a series of local optimization processes, Smart Contracts technol-

ogy enabled participants to collaboratively decide on a planning profile that minimizes the overall

aggregated cost.

A distributed demand side management system among multiple homes in a community microgrid,

with the integration of an IoT smart meter and the presence of renewable energy sources is described

in [27]. The proposed scheme is distributed on blockchain, which provides a trusted communication

medium between the participants. It enforces the autonomous monitoring of smart appliances and

the smart contract-based charging of electricity use. To enable transaction execution in the smart

community without the intervention of a third party, Solidity smart contracts are used. The adoption

of smart contracts and blockchain technology allows participants to exchange energy and build trust

among users or organizations. The presented results show that the total cost of energy consumption

for the entire community, as well as the individual cost for each user, is reduced. The management

and control of smart buildings cannot be possible without the use of an IoT platform.

2.1.2. Open-Source Software for IoT

Open-source software is usually easy to adopt for implementing IoT solutions [28]. Because it is li-

censed as open and free, it can be used without restrictions to monitor devices and automate actions in

an IoT environment [28]. Open-source software usually, has its own documentation, and with practice,

it is possible to create solutions to daily problems [28]. If there is an extensive community behind an

open-source software, it usually supports everyone with any issue and provides an answer, which helps

to accelerate the resolution of a problem [28]. This does not apply if there is no large community.

In order to choose the best open-source software for IoT, the following parameters should be consid-

ered: cost effective, system security, sufficient clear documentation, and restrictions [28].There are

many different IoT platforms adapted for automation in Smart Home and Smart Building applications.

Some examples include OpenHAB3, Home Assistant4 [29], IBM Maximo Application Suite5, which may

be useful to integrate with Smart Contracts in an energy management system. On table 1 all the rel-

evant IoT platforms found where summarized, from the analyzes that has been made for the present

dissertation.

So, for this work, the decision to be taken was between OpenHAB and Home Assistant . OpenHAB

is an open-source solution and stands for “Open Home Automation Bus”. It is a mature software

3https://www.openhab.org/
4https://www.home-assistant.io/
5https://www.ibm.com/products/maximo
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Table 1. Comparison between IoT platforms.

OpenHAB Home Assistant IBM Maximo Application Suite

Open-Source Yes Yes No

Interoperability among devices Yes Yes Yes

Web-Based GUI Yes Yes Yes

Community Large Large Medium

that is extremely stable, packed with functionality and offers a lot of features. In April of 2010, the

first build was released [30]. Because of its age and the number of developers who have worked on

it, OpenHAB has high quality and complete documentation [30]. Due to the constant migration of

developers and users to newer software, the OpenHAB community is relatively stagnant [30]. Because

OpenHAB has such extensive and rich documentation, users rarely need to seek assistance. However,

if a problem not described in the documentation arises, the community is still available to assist

[30]. This platform allows to support multiple protocols of communications and ensures connectivity

between things from different manufacturers [29]. As an independent home automation platform,

OpenHAB allows to integrate intelligent devices and other automating systems in one user-friendly

interface easy to understand [29]. It provides a flexible solution and automation rules for the desired

system [29]. This platform delivers an IoT-based infrastructure [23] that will help to monitor the

energy consumed and produced, and manage the functions of smart buildings, among many other

things.

Home Assistant is an open-source home automation software that prioritizes local control and

privacy. The first build was released in January 2014 [30]. At the beginning of the dissertation it was

noticed that this software lacks complete and detailed documentation due to its early development

stage, but today, this is not true. As a direct consequence, users may have difficulty understanding

some concepts and must often rely on a hit-and-trial approach to achieve their goals [30]. Due to

its early development stage, Home Assistant, currently, has a growing and active community, which

compensates for the lack of documentation. Because the community is so active, users can get help

quickly if they have any problems [30]. When the two IoT platforms are compared, it is clear that

OpenHAB has more documentation and features to explore, making it more appealing to implement. As

a result, OpenHAB was chosen as the smart building management platform for this dissertation. When

the dissertation began, the home assistant solution was not as stable or mature as OpenHab. Today,

Home Assistant would be an equally viable alternative to OpenHAB. The next paragraph demonstrates

an example of OpenHAB’s usability.

The authors of [28] propose an energy monitoring system using an open-source IoT platform and

a Raspberry Pi 3. This project intends to measure the energy consumed in one month in a school

building. OpenHAB platform allows to connect the things, used to measure the energy consumed, to

each other and to the platform, in order to manage them. Through a user interface it is possible to

add new things, monitor, and control them.
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The system proposed in [29] intends to improve interoperability between devices that make up the

IoT, in a smart building environment. OpenHAB provides a solution that allows multiple protocols of

communications and ensures connectivity between objects from different manufacturers. This system

enables remote control of connected objects via a voice assistant or a Web application and also has a

view of the status of each connected object via a web application.

OpenHAB platform is used as a communication and integration technology for monitoring systems.

The OpenHAB project aims to provide a universal integration platform for all things home automation

[31]. Figure 3 depicts the OpenHAB platform’s communication architecture.

Figure 3. OpenHAB Architecture [31].

Bindings can be used to implement the interaction of OpenHAB with various actuators or systems.

Bindings are optional packages that can be utilized to extend OpenHAB’s functionality [31]. Bindings

allow devices to communicate with OpenHAB. Because bindings may be created for each device’s com-

munication method, we can say that OpenHAB is scalable. Figure 4 illustrates the OpenHAB protocols

implemented in this dissertation.

The HTTP bindings can be used to communicate with end stations. This binding can also control the

conditions and status of items in OpenHAB [31]. OpenHAB uses the Rest API (Representational State

Transfer Application Programming Interface) mainly for system communication. It allows to access

required information or status updates, but also to send the commands to remote nodes [31]. The

OpenHAB runtime uses REST API to communicate via HTTP protocol.

11



Figure 4. OpenHAB Communication Protocols Architecture.

The MQTT binding does not provide a broker. Mosquitto was the broker chosen for this work.

The Broker was configured in a particular ip and port and authentication was included for security

reasons. This binding was used to communicate the status of the items in OpenHAB. The OpenHAB

runtime uses Mosquitto Broker to communicate via MQTT protocol. These are just two possible ways

of communication, OpenHAB is flexible enough to use other approaches.

2.2. Smart Contracts

The concept of ”using computer code in order to automate legal contracts while using cryptography to

make them secure and tamper-proof” was firstly introduced by Nick Nazbo in 1994 [17]. This technol-

ogy consists of programmable and self-executed scripts [10] that control transactions under particular

conditions [32]. The terms and conditions of the smart contract are written into lines of code [10]. The

execution of the contract is controlled by the code, and transactions are trackable and irreversible.

The smart contract auto executes itself when the terms of the contract, agreed upon two parties,

are achieved [10]. Smart Contracts, ”a computerized transaction protocol that executes the terms

of a contract,” aim to reduce the necessity of trusted middlemen between transacting parties and

the occurrence of malicious or unintentional exceptions [10]. The current trend of decentralization is

motivating the search for cutting-edge solutions that enable reliable and tamper-proof data and en-

ergy exchange to boost self-consumption in local energy communities and assist the implementation of

more distributed control solutions [17]. These challenges might be handled by smart contracts. When

deployed to a blockchain, this technology enables trusted transactions between anonymous parties

without the need for a central authority. Some of its applications scenarios are represented in figure

5.

The authors of [33] propose an autonomous decentralized framework for managing electrical con-

sumption in smart building clusters. Smart contracts enabled the collaborative decision-making of

participating nodes. This solution can autonomously allow the sharing of residue power in the smart

building cluster and reduce the cost of distributed energy.

A decentralized framework to manage the daily energy exchanges within a Smart Building com-

munity is described in [26]. Through a series of local optimization processes, Smart Contracts enabled

participants to collaboratively decide on a planning profile that minimizes the overall aggregated cost.
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Figure 5. Smart Contracts Use Cases.

In [10] the topic of blockchains and smart contracts for the IoT is addressed. It is discussed

some advantages and issues of this integration. The continued integration will result in significant

transformations across several industries, create new business models and review the implementation

of existing systems and processes.

In [2] the potential of integration between blockchain and digital building twins for performance-

based smart contracts is demonstrated. It investigates how this integration could support a transition

to a more performance-oriented built environment.

The system proposed in [34] aims to enhance and integrate hospital healthcare applications with

blockchain technologies and smart contracts to provide immutable secure storage.

Programming Language

There are many different Smart Contract Languages adapted for automation in Smart Building appli-

cations. On table 2 some relevant Smart Contract languages where summarized.

Table 2. Comparison between Smart Contract Languages.

Solidity6 Vyper7 Yul8 Daml9

Level of Programming High High Low High

Blockchain Portability Yes No No Yes

Database Integration No No No Yes

Community Large Small Small Large

Open-Source Yes Yes Yes Yes

Solidity is an object-oriented, high-level programming language used to implement smart con-

tracts. The most noticeable use of Solidity has been in the development of Ethereum smart contracts.

6https://docs.soliditylang.org/en/v0.8.17/
7https://vyper.readthedocs.io/en/stable/
8https://docs.soliditylang.org/en/latest/yul.html
9https://daml.com/
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[35]. Solidity, as a curly-bracket language, is heavily influenced by other languages such as JavaScript,

C++, and Python [35]. One of the benefits for smart contract developers is the similarity of Solidity to

modern programming languages [35]. Another one of its key advantages is that Solidity smart contracts

can be easily transferred to other blockchain networks [35].

Vyper is a Python-influenced programming language designed specifically for smart contract devel-

opment. Vyper’s three fundamental design principles and goals lay the groundwork for its efficiency in

smart contract development [35]. Auditability ensures that the code is human readable and that mali-

cious code is difficult to write. Simplicity implies that the compiler implementation is straightforward

and simple to comprehend and the last one Security.

Yul is a programming language used as an intermediate language in the compilation of Ethereum

smart contracts written in Solidity [35]. Programs written in Yul can be read even if the code was

produced by a Solidity compiler. High-level structures like loops, function calls, and if and switch

expressions are available in Yul [36].

Another top contender among blockchain smart contract languages is Daml (Digital Asset Modelling

Language). Daml is the leading platform for developing, deploying, and managing complex multi-party

applications. It is an open-source programming language used to create distributed applications [35].

Daml is a private, secure, and scalable language for DLT, Blockchain, and Databases. It is supported by

a growing number of platforms like Corda, VMWare, PostgreSQL, Hyperledger Fabric, Amazon Aurora

and many others.

Daml 2.0, which now includes Canton Ledger, makes it possible for multi-party applications to

synchronize with conventional IT systems and different blockchains. This new version guarantees the

privacy needed by organizations to safeguard sensitive data and comply to laws like the GDPR.

First, a quick summary of Canton is provided. A single virtual global ledger can be created by

connecting many Daml Ledgers together using the Canton Daml Ledger interoperability protocol [37].

Participant nodes and domain nodes, each of which has a private contract store, make up a Canton

network. Each participant node is associated with one or more synchronization domains, which enables

it to communicate with all other parties whose participants are also associated with a certain domain

[37]. A party may be a physical person, a legal entity, or just one of several accounts for a person or

business. Using Daml smart contracts and the Canton protocol, parties hosted on several participant

nodes can conduct transactions [37].

Canton complies faithfully with the authorization and privacy standards set by Daml for its trans-

actions. Workflows can be composed on a virtual global ledger created by this infrastructure. These

visibility and authorization guidelines are upheld by the Canton synchronization protocol, ensuring

that data is transmitted securely and dependably even when malicious actors are present [37].

The Canton network is easily expandable, allowing for the inclusion of additional parties, ledgers,

and applications that build upon existing ones. Extensions don’t require a global network consensus

or a centralized controlling entity [37].

14



Programmers use Daml to explain the contract formation, involved parties, and parties who autho-

rized the contract formation [35]. Daml allows developers to focus on the business logic rather than

how to convert ideas into code. This language expresses all parties, contracts, obligations, rights, and

authorization directly [35].

All languages are open source, but only Daml supports database integration. Daml is the language

selected for writing smart contracts in this work, due to its compatibility with open-source databases.

2.3. Combination of IoT and Smart Contracts

IoT has been gaining a lot of popularity due to the wide range of its application domains. It is ex-

pected that billions of intelligent devices will be connected in emerging industries [8]. Automation

and security for smart devices will be crucial for IoT networks in the future, which will require com-

plex solutions. As a result of their inherent automated and decentralized character, smart contracts

will address many of these challenges in future IoT systems [8]. More specifically, IoT concepts are

being applied more frequently in the energy sector for monitoring and controlling remote assets and

smart cities [17]. There is growing concern about the security and control of the data collected by IoT

devices, particularly when these are centrally controlled by a single system [17]. Many of the secu-

rity concerns of the IoT context can be satisfied via smart contracts [8]. Some of the Smart Contract

applications in IoT context are presented in figure 6 and summarized below.

Figure 6. Smart Contract applications in Internet of Things.

Smart contracts for scalable resource sharing of IoT

In the IoT network, resource sharing is essential. The resource-constrained infrastructure requires

optimal resource-sharing service. This service cannot be a resource intensive process because it will

add another overhead to the system, increasing network traffic and computing costs [8]. Peer-to-peer

resource sharing, which is ideal in terms of computation and network traffic, will be made possible by
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smart contracts. As a result, smart contracts have the potential to be the next-generation resource

sharing approach in the IoT context.

In [38] the SmartEdge, an Ethereum-based smart contract for edge computing, is introduced as

a low-cost and low-overhead tool for compute-resource management. The smart contract has five

different states that can be transitioned through during its lifetime. The solution enables nodes to

offload computation in a verifiable manner to edge computing devices owned by third parties in ex-

change for payment.

Smart contracts for the enforcement of IoT security

In the context of IoT, security is a vital requirement. It is very difficult to enforce security by increasing

key sizes with many cryptographic operations on devices with limited resources [8]. The devices are

limited in terms of memory and processing capacity. As a result, IoT devices will raise costs when using

public-key certificates [8]. It would increase the network traffic due to verification requests from PKI

systems to the cloud servers [8]. The centralized servers access control and privilege definition will

be open to attack [8]. In general, the blockchain enables the stakeholders to decentrally install

smart contracts with access control policies embedded in them. In contrast to the cloud computing

environment, the code is immutable and permanent. When security is implemented, no extensive

network traffic is generated due to the decentralized operation.

In [39] it is illustrated how IoT devices and data will become a trading commodity in the near future,

as well as the infeasibility of a centralized trading platform. According to the authors, blockchain-

based smart contracts will eliminate the need for a trusted third party. It is also demonstrated the

use of smart contracts and blockchain to establish trust and enable end-to-end trading.

Smart Cities

Smart cities are a significant IoT innovation that will be applied in the future construction of cities

and countries infrastructures and also improve the quality of life [8]. The scalability of the operating

platforms is a major concern because smart cities contain thousands of connected devices. Addition-

ally, centralization will come with additional risks and high overhead costs. Future smart cities will

heavily rely on blockchain technology and smart contracts [8]. With guaranteed service availability,

the decentralized model’s operational capability of smart contracts will be more valuable. Smart

contracts’ peer-to-peer functionality will cut down on the need for network resources consumption,

increase network efficiency, and decrease latency [8].

In [40] a security framework is presented to provide a secure communication platform in a smart

city. This solution integrates the blockchain technology with smart devices.

A contract-based energy blockchain is suggested in [41] for the smart community’s electric vehicle

charging. The authors used smart contracts to implement secure charging services once the necessary
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trading conditions were met, as well as for cryptocurrency exchanges.

Smart contracts in energy trading

The blockchain-based smart contracts have a lot to offer to the energy sector. The important char-

acteristics of smart contracts, such as accuracy, autonomous execution, and peer-to-peer operations,

enable the energy market to support peer-to-peer energy trading, smart metering, effective renew-

able energy production, etc [8]. The applications of smart contracts in the context of smart energy,

highlight the adaptability of blockchain-based smart contracts for the energy business [8].

The conceptual design, as well as the energy grid prototype and control layer running on the

Ethereum platform, are presented in [42]. A middleware application that connects the grid and the

smart contract was suggested by the authors as a way to simplify communication between two parties.

The framework proposed in [43] is based on blockchain technology and includes pricing methods,

the architecture of the power transaction system, and a few modules in the energy trading system.

When there is a lack of trust between trading entities, smart contracts are incorporated to enable the

system for decentralized trading.

Smart Home and Energy systems

Home energy management systems (HEMS) are currently using smart contracts to coordinate variable

loads and assets, such as scheduling heating and cooling in homes [17]. In order to reduce costs and

minimise the user’s carbon footprint, household appliances are coordinated with the help of smart

contracts because of their security [17]. Smart contracts are used in Smart Home applications to

coordinate assets, to automatically perform control decisions (turn appliances on or off) based on the

state of particular variables, and to ensure the communication channel is secure [17].

In [44] is proposed a system that uses three different types of smart contracts to enable access

control, assess asset misbehavior, and register new access control policies in a Smart Home.

A decentralized system for controlling electrical usage in a group of Smart Buildings is presented

in [26]. Participants can choose a planning profile that reduces the total aggregated cost through the

use of smart contracts.

This dissertation fits in this last application and it will be possible to design an architecture that

allows this combination, while also addressing the trust and energy problems identified in section 2.1.

In this manner, an architecture will be suggested and discussed in the following chapter.
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CHAPTER 3

Proposed Architecture

The main goal of the current work is to solve the problem of trust in the delegation of building man-

agement functions. A system for distributed management in smart buildings has been developed as

a solution to this problem. A distributed system may lead to more efficient management of smart

buildings, including other benefits such as energy management. This section intends to explain the

proposed design of that system. This chapter is structured as follows, section 3.1 presents in detail

the architecture of the system proposed, the section 3.2 explains the smart contract life-cycle and

the storage of the system, and the section 3.3 illustrates the architecture flow control.

3.1. Architecture Building Block

The problem that this work intends to solve encompasses on two main entities, that for clarity of

explanation we refer as Bob, the entity that manages the smart building, and Alice, the external

entity that will control part or parts of Bob’s smart building. There must be a communication between

these two entities so that one can give control to the other. A smart building has several control and

management functions that can be assigned to an external entity. Thus, there may exist several

external entities that can control certain functions of an smart building. Therefore, there must be a

communication between the Bob and any off the existing external entities. Figure 7 represents the

bidirectional communication between stakeholders.

Figure 7. Communication between stakeholders.

The proposed system architecture is based on two nodes, one for each entity. Therefore, one

node represents Bob and the other one represents Alice. These two nodes will communicate with each

other. In order for Bob to provide control of certain functions of its smart building to Alice, the external
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entity, it will have to create a smart contract and then share it with Alice. This technology enables

trusted negotiations between unknown entities. Each entity has a private identifier that enables

identification. The contract shall contain the entities interested in the exchange of services. The smart

contract created by Bob must include Alice’s id as well as his own. To control the functions that Bob has

provided, Alice will have to execute the contract. For instance, a functionality could be Bob granting

Alice the ability to control a light, depending on its present state. As a result, when Bob provides

control over an off light, Alice can only turn it on. This control is not of course limited to control only

one light. Other options for potential controls will be discussed later. The domain node will enable

the communication between the two nodes. The domain node represents the architecture component

controls and ensures coordination of the distributed system. The domain node is responsible for tasks

such as connecting all smart contract storage and allow them to be reconciled. Either a database

or a blockchain might be used to achieve its goals. Some of the characteristics/requirements of the

domain node are referred bellow:

• Synchronization: The domain must facilitate the synchronization of the shared ledger among

participants.

• Transparency: The domain must inform the designated participants timely on changes to the

shared ledger.

• Finality: The domain must facilitate the synchronization of the shared ledger in an append-

only fashion.

Figure 8 illustrates the proposed architecture based on all the above described nodes. The next

paragraphs provide a description of the components and requirements that constitute this architec-

ture.

Figure 8. Architecture proposal.
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Both Bob and Alice will have a control interface contained in an IoT platform. This interface will

serve to visualize and control the smart building and to execute external entity operations. This IoT

platform shows the items that are available to be controlled in the smart building and in the external

entity. Here it is possible to check the state of an item and change it, as well as other functionalities

regarding other items. Some system requirements are listed below:

• The item that can be controlled by Alice will only be visible if Bob has first created a specific

smart contract. This contract specifies the item to be controlled and which external entity

is intended for. The IoT platform interface of Alice will not display any potential controls if

no smart contract has been created.

• An external entity can only control the item in the smart building once. If further control is

required, a smart contract must be created again. If the external entity agrees to control

the smart building, the necessary controls will be visible on the IoT platform of the external

entity. When it performs a control, such as changing the state of a light, the new state

should be updated first on the IoT platform of the external entity, then on the smart building

entity’s IoT platform, and finally on the light itself, which is in the smart building. Some

system requirements are listed below:

In order to achieve this solution it is necessary to consider a Smart Contract Integration Application

(SCIApp) in each node. The several applications that make up this solution will be able to connect

with one another thanks to this SCIApp. It will act as a link between the Smart Contracts application

and the IoT platform.

The two operational flows in this architecture are upstream and downstream. In the Upstream

connection, starting in Bob’s node, sensors and actuators send data to the IoT platform. The platform

forwards data to the SCIApp for processing, which creates the Smart Contracts through the Smart

Contract Application. Via domain node, Alice has access to the smart contract created. The data is

transmitted to SCIApp by the Smart Contract Application at Alice’s node. Based on the data obtained

from SCIApp, OpenHAB then updates the sensors and actuators.

In Downstream, the flow is the opposite of upstream. In the Downstream connection, starting on

Alice’s node, it is performed a control in the IoT platform. This information is then sent to SCIApp

for processing. Next, SCIApp sends the information received from IoT platform to the Smart Contract

Application. The contract is exercised, and this information is transmitted to Bob’s node via domain

node. The information that the contract was exercised is sent to the SCIApp for processing by the

Smart Contract Application. The SCIApp then transmits the contract data to the IoT platform and it

updates the sensors and actuators.

Bob grants the control of a specific function to Alice via this IoT platform. The IoT platform

receives the states and changes of the items. The controls that are performed here will be sent to the

SCIApp for processing.
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The SCIApp provides connectivity between the IoT platform and the Smart Contract Application.

It sends the information received from IoT platform to the Smart Contract Application. The SCIApp

also processes the contract data and sends it to the IoT platform.

Along with creating the contracts, the smart contracts application will also store them. It sends

the contract information to the external entity and transmits the contract information to the SCIApp.

3.2. Smart Contract Integration

In this system, the smart contracts can be created by Bob and Alice’s nodes. The contract creation/ex-

ercise process is automated, i.e. when a user, such as Bob or Alice, interacts with the IoT platform,

a contract is created. Figure 9 shows the contract formation cycle in detail and is described in the

following paragraphs.

First, when Bob gives Alice permission, to control an item in the building, via the IoT platform, a

contract will be created. The permission will be granted by clicking a button on the IoT platform of

Bob’s node (1).

Once permission to control an item is granted to Alice, its IoT platform will update its own UI with

a new control functionality. After Alice controls the item, it will exercise the contract, previously

created by Bob (2). The contract exercise will be triggered by a click of a button on Alice’s IoT

platform.

Finally, after the contract has been exercised, it will be archived, and a new contract will be

created automatically by Alice’s node, and shared with Bob (3).

Figure 9. Smart Contract life-cycle.

The contract serves to transfer control of an smart building item to an external entity. The con-

tracts created can be deployed on both blockchain and database platforms. This system could support

a wide variety of contracts.
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Some of the following contracts could be created, depending on the goals of the entity in charge

of managing the smart building:

• Checking the state of a certain light.

• Checking the state of a certain temperature sensor.

• Interactive control of a light. (ON/OFF, Color, Intensity, etc)

• Interactive control of an air conditioner. (ON/OFF, Temperature, etc)

• Interactive control of a power outlet.

In the Implementation Chapter, one of these contracts will be selected to be incorporated in the

system.

The smart contracts used in this solution must be stored. Each entity involved in a control ne-

gotiation contains its own storage. If the control of a smart building is transferred to a external

entity, the corresponding smart contract is retained in each entity’s storage. In order to manage

contracts among the different participants, a number of methods are possible, including blockchain

and databases. When a control negotiation occurs between two entities, the storage of these entities

becomes reconciled after communication between their nodes. The dotted line connecting the two

entities’ storage represents exactly that. Figure 10 depicts the storage architecture and how nodes

communicate with one another.

Figure 10. Database architecture.

3.3. Architecture Flow Control

The interaction between the two nodes of the suggested solution is shown in figure 11. This com-

munication shows how to delegate the control of an smart building light, to an external entity. It is

also demonstrated that just after this control assignment, the external entity changed the state of the

light. This action leads to an update of the light status in the smart building. As previously mentioned,

the nodes communicate via a domain node.

The upstream flow represents the transfer of control of an item to Alice, as well as all of the

processes involved. Bob is the one who triggers this flow. In the case of the downstream flow, it is

Alice who triggers it by changing the state of the item granted by Bob. In this flow all the steps are
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Figure 11. Interaction between the two nodes.

specified until the item is updated in the smart building. The item chosen for this interaction was a

light.

In the upstream flow, it is possible to see Bob’s node granting control of a light to Alice (1). This

control is carried out in the IoT Platform, which sends this data to the SCIApp (2). The SCIApp then

processes this data and sends it to the Smart Contract Application in order to create a smart contract

(3). Finally, this contract is stored on Bob’s node and transmitted to Alice’s node via the domain node

(4)(5)(6).

As soon as Alice’s node notices that a new contract has been created, the Smart Contract Appli-

cation notifies its storage and also communicates with the SCIApp to process the data of the smart

contract (7)(8). After receiving the data from the SCIApp, the IoT Platform will show a switch in its

interface along with the current state of the light (9)(10).
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After illustrating the upstream flow, downstream flow will now be discussed. The control button

is now visible. Alice will change the state of the light by pressing the control button (11). The SCIApp

will communicate to the SCIApp the new state of the light and that the control was executed (12).

The IoT Platform will make the control button invisible (13). When the SCIApp has finished processing

the data, the Smart Contract Application will be notified (14). It will create a new contract, store it,

and communicate with Bob’s node via domain node (15)(16)(17).

Finally, the last step of the communication occurs in Bob’s node. The Smart Contract Application

contacts the storage and the SCIApp as soon as it learns about a new contract (18)(19). The SCIApp

will receive this data and process it. After that, using the information obtained from the SCIApp, the

IoT platform will update the light state (20).
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CHAPTER 4

Implementation

This chapter covers all of the technological options that were considered, as well as the steps for

implementing the solution. Whenever possible, open-source solutions were used in the system’s im-

plementation. Section 4.1 discusses the choices for the Virtual Machines (VM), Operating System and

their Synchronization as well as the specification assigned to the host and the virtual machines. The

action cycle of the implemented contract is covered in section 4.2. Section 4.3 introduces the smart

contract language and storage that were chosen, as well as how this application was developed and

how it connects to a storage. The SCIApp’s methods for integrating the IoT platform and the Smart

Contract Application are described in section 4.4. The IoT platform and the procedures that must

be established on it for the implementation of the solution are presented in section 4.5. Section 4.6

contains a description of the communication protocols that are used to transmit information in the

system. Section 4.7 discusses the steps to be taken in order to implement other controls.

Figure 12 depicts the major technological options chosen to implement the solution as well as the

protocols that can be used between the connections. It serves as an introduction to the themes that

will be discussed in greater depth in the following sections. This figure also indicates the sections in

which each system component is described.

4.1. Testbed Setup

Choosing the virtual machine software to use was the first step in putting the solution into practice.

It was essential to select an open-source option in order to keep the cost of the solution low. VMware

Workstation Player was chosen after considering several options and taking into account that it had

previously been used during the academic life. It’s simplicity makes it an ideal tool for develop-

ment and testing. The virtual machines have been configured in NAT (Network Address Translation)

mode. Regarding the system hardware, table 3 indicates the specifications of the host and the virtual

machines.

Table 3. Specifications of Host and Virtual Machines.

Node Type Virtualization Platform CPU Cores RAM Storage OS

Host - Intel(R) Core(TM) i7-8565U CPU 2.00GHz 4 16GB 512GB Windows 11

Bob Node VMware Intel(R) Core(TM) i7-8565U CPU 2.00GHz 4 5GB 80.1GB Kali Linux

Domain Node VMware Intel(R) Core(TM) i7-8565U CPU 2.00GHz 4 2GB 80.1GB Kali Linux

Alice Node VMware Intel(R) Core(TM) i7-8565U CPU 2.00GHz 4 5GB 80.1GB Kali Linux

Regarding the operating system, Linux was chosen in order to maintain the same open-source

approach. It is known for being a more stable and secure system and consumes very little resources
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Figure 12. Technological Options of the Implementation.

and space unlike Windows. Although there are many Linux distributions, Kali Linux10, a distribution

focused on cyber-security and penetration testing attacks, was the one selected to carry out this

solution. Not only is Kali Linux better suited for development, but it is also open-source, secure,

reliable, customizable and has continued support from developers and the community.

The virtual machines must be synchronized with the same clock in order to later run performance

tests in the system. As reaction and response times will be measured, if the clocks of the virtual

machines are not synchronized, the times will not be coherent. The Network Time Protocol (NTP),

a networking protocol for clock synchronization, was set up on the three VMs in order to accomplish

this. The Domain VM was configured as an NTP server, while the other two VMs were configured as NTP

clients. Appendix A contains the instructions on how to configure the NTP in each VM. It was possible

to check whether the NTP Clients are synchronized with the NTP Server by conducting fifty tests that

involved getting the time of each virtual machine. These results allow to conclude that the difference

between the acquired times is very small, i.e. the results of the performance and functional tests will

be reliable. Table 4 displays the medium delays between the clients and the server.

10https://www.kali.org/
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Table 4. Delay time between VMs.

Bob VM Alice VM

Domain VM 7.37 ms 7.48 ms

Standard deviation 1.92 ms 1.23 ms

4.2. Smart Contracts

The contract selected for this system implementation consists on the iterative control of a light and

it is described in figure 13. This contract was one of the contracts mentioned in the Architecture

section. If a different type of smart contract had been chosen for this implementation, it would have

to be reprogrammed to achieve the characteristics of this new solution. The contract selected will be

composed of two parties: the entity that created the contract, i.e. Bob, and the entity to whom Bob

wishes to delegate control, i.e. Alice. This agreement will also specify the reference in the building

of the light which is intended to grant the control, as well as its current state at the time the control

is given. The contract’s structure is depicted in Figure 13.

Figure 13. Smart Contract Architecture.

Each new contract is given a unique contract id that is assigned at random (a). Contracts are

created from blueprint called template. In other words it corresponds to the id of the written code

(b). The signatories of a contract are specified by the signatory keyword. These are the parties who

must have authority to create or archive the contract, just like in a real contract (c). At least one
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signatory is required for every contract. Signatories of a contract are guaranteed to see the creation

and archival of that contract. An observer is a contract party. Being an observer allows them to see

that instance and all the information about it (d). They do not have to consent to the creation. The

contract is also visible to the observers because they are additional stakeholders. In this system, Bob

is the signatory because he created the contract, and Alice is the observer because Bob determined

so.

In the contract details section, the asker field designates the entity that decides to grant control

(e), and the answerer field indicates the entity to which the asker grants control (f). In this system,

the asker is defined as Bob, while the answerer is Alice. The reference and current state of the

light, respectively, are represented by the fields place and currentState, respectively (g)(h). In this

implementation the place field corresponds to the reference of the item light, but could be altered

for the name of the item instead.

When the observer Alice receives this contract, it may then be executed by her. Given the example

that the light was OFF when Bob grants control, Alice can only control the light by turning it to ON.

Alice by changing the state of the light, will exercise a choice in the previous contract. This leads

to the creation of a new contract, turning Alice as Signatory of this new contract. As a result the

previously created contract will be archived. The new contract’s structure is depicted in Figure 14.

Figure 14. Smart Contract Architecture.

A new id is generated for this new contract, distinct from any others that have already been

created (a). The template remains unchanged (b). However, Alice joins Bob as a signatory because

she has exercised the previous contract (c). There is no change in the asker, answerer, or place
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(e)(f)(g). Alice’s updated state is now defined, replacing the current state (g). This allows Bob to

process the data and modify the building’s light state. The newState field in this new contract is the

only modification to the previous contract details section (g). This field, which represents the new

state of the light defined by Alice, can never match currentState.

A scenario also possible to occur, after Bob delegates control of a light to Alice, would be for Bob,

to change the state of the light before Alice does so. There may be several options for dealing with

this situation in this particular case, such as:

• Bob’s control of the lamp is blocked;

• The contract is revoked when Bob modifies the light’s state;

• Do nothing, and Alice turns on what is already on.

The third option was selected for this solution implementation. However, this problem would not

have occurred if a contract to verify only the condition of a light had been implemented.

4.3. DAML

Daml11 was the Smart Contract language chosen for this solution’s implementation. Visual Studio Code

and JDK 11 or above must be previously installed in order to install the Daml SDK. In Appendix B is

described the installation of Daml SDK as well as VS Code once JAVA is already installed. Following the

installation, the smart contract code had to be written. Because Daml is a relatively new language

that needed to be studied, this phase took a long time. The code developed for the smart contract

can be accessed in the Git repository12. To connect the entities of this solution, a Canton network was

required. Daml employs this nomenclature to identify participants who communicate via the Canton

protocol. The Canton network’s setup will be described in the following paragraphs.

This solution will be implemented with three nodes: the Bob node, the Domain node, and the

Alice node. In Daml’s nomenclature, Bob will be participant1, Alice participant2, and the domain will

be assigned equally. Bob and Alice are represented by the participant nodes, while the domain is the

node that allows participants to communicate with one another. Figure 15 displays each node’s setup.

Figure 15. Canton Architecture.

11https://daml.com/
12https://github.com/bclse/dissertation/
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In terms of storage for the canton network, the only open source database that has integration with

daml is postgresql. Daml supports several blockchains, including Hyperledger Fabric and Ethereum,

but this integration is not open source. Therefore, postgresql was chosen as the synchronization

technology that will implement the ledger. The postgresql installation is detailed in Appendix C.

The steps to implement this solution are as follows:

• A - Create the configuration file; Used for each node, and the file for the Domain connection

for Bob and Alice.

• B - Generate the RSA key; Used for Authorization of Bob and Alice.

• C - Create a signed JWT Token; Used for Bob and Alice.

• D - Launch the canton network; Execute the commands on each node.

• E - Create a dar file; Used for Bob and Alice.

• F - Create the parties; Used for Bob and Alice.

• G - Lauch JSON API; Used for Bob and Alice.

A - Creation of the configuration files.

To configure each node, the release package v2.1.113 was downloaded and extracted and it contains

the scripts for running Canton. The configuration files for the three nodes were then created. These

files were inserted in a folder called Project placed inside the downloaded package. The configuration

file for Bob and Alice is illustrated in Figure 16. In the Project folder the source code for the smart

contract, was also placed, which comes in a .dar file.

The configuration file specifies the storage access, the participant APIs, the configuration of other

Canton network participants, and the authorization services, which will be discussed later. The con-

nection to PosgreSQL is established using a previously created user and password. The created con-

tracts will be stored in this local database. Each node’s configuration file contains a connection with

a unique user and password for that node. Each participant node exposes an Admin API and an Ledger

API. The IP address and port number assigned to these APIs are specified in the configuration file.

The Admin API allows the administrator to manage the participant node’s connections to domains,

add or remove parties to be hosted at the participant node, upload new Daml archives, configure the

operational data of the participant, such as cryptographic keys and run diagnostic commands. The

Ledger API enables each participant’s parties to access the Ledger. It is also possible to use the HTTP

JSON API Service to access the Ledger API. The developed SCIApp communicates with the ledger via

the HTTP JSON API. This service, at its core, provides a simplified view of the active contract set as

well as additional primitives for querying and exposing the contracts via a well-defined JSON-based

encoding over a standard HTTP connection.

The domain configuration file is shown in Figure 17. This file defines the database connection

and the configuration of the remote participants, previously described, as well as the tokens for

13https://github.com/digital-asset/canton/releases/tag/v2.1.1
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Figure 16. Configuration file for Participants 1 and 2.

each participant and the Domain’s Public and Admin API. The domain node provides a Public API that

participant nodes can use to communicate with the synchronization domain. This must be accessible

from where the participant nodes are hosted. A domain node, like a participant node, exposes an

Admin API for administration services. It can be used to manage keys, set domain parameters and

enable or disable participant nodes within a domain. The console provides access to the Admin APIs

of the configured participants and domains.

Furthermore, participant and domain nodes communicate with one another via the Public API. The

participants do not communicate with each other directly, but are free to connect to as many domains

as they desire. There is nothing in the configuration file that says participant1 and participant2 should

connect to domain. Canton connections are added dynamically rather than statically. To accomplish

this, at the start of each participant node, a file is executed to connect the participants to the domain.

Listing 1 displays the information in the participant 1 and participant 2 files.

part ic ipant1 .domains . connect (”mydomain” ,”http ://192.168.61.131:10018”)

part ic ipant2 .domains . connect (”mydomain” ,”http ://192.168.61.131:10018”)

Listing 1. Configuration files for connecting Participant 1 and 2 to Domain.
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Figure 17. Configuration file for Domain.

B - Generate the RSA keys.

Regarding the authorization services, these are configured in each participant node. In order to gen-

erate the RSA keys, each participant must run the following command in listing 2.

openssl req −nodes −new −x509 −keyout sandbox .key −out sandbox . crt

Listing 2. Generate the RSA keys.

Two files are created as a result of this command. The first file, sandbox.key, contains the private

key in PEM/DER/PKCS#1 format. The second file is sandbox.crt, which is a self-signed certificate in

PEM/DER/X.509 Certificate format that contains the public key. The sandbox.crt file is defined in

each participant’s node configuration, as seen in figure 16, and the private key contained within the
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sandbox.key file is used to sign the JWT token. This signed JWT Token is used to add authorization to

Ledger API requests. Figure 18 displays a signed JWT Token.

Figure 18. JWT Token.

C - Create a signed JWT Token.

The domain configuration file also defines the tokens used by each participant to access the Ledger

API. JSON Web Token14 (JWT) technology is used to generate these tokens. JWT is an open standard

(RFC 7519) that defines a compact and self-contained method for securely transmitting information

as a JSON object between parties. Because it is digitally signed, this information can be verified and

trusted. JWTs can be signed using a secret (HMAC) or a public/private key pair (RSA or ECDSA).

D - Launch the canton network.

Finally, in order to launch the Canton network, it is necessary to perform the following commands.

First the domain was launched with the command in listing 3, with the configuration file shown in

figure 17.

bin/canton −c examples/Project/domain . conf

Listing 3. Launch Domain Node.

14https://jwt.io/
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Next, the following command was executed in each participant node, using the files shown in

figure 16 and listing 1, respectively. The command in listing 4 is meant to launch the Bob’s node and

connect to the domain. For the launch of Alice’s node, it will be necessary to change the designation

of participant1 to participant2.

bin/canton −c examples/Project/part ic ipant1 . conf −−bootstrap examples/Project/ i n i t . canton

Listing 4. Launch Bob Node.

E - Create a dar file.

When a Daml project is compiled, the compiler produces a Daml archive. These are platform-independent

packages of compiled Daml code that can be uploaded to a Daml ledger or imported in other Daml

projects. To generate the.dar file that will be used to create smart contracts, it was executed the

following command. The command in listing 5 will generate the .dar file in the .daml/dist folder in

the project root folder. For example, running daml build in the folder Project, with version 0.0.1 will

result in the Daml archive .daml/dist/Project-0.0.1.dar.

daml build

Listing 5. Create .dar file.

F - Create the parties.

The next step was to create the Parties that each participant would use to access the Ledger. A script

was written within the smart contract code to accomplish this. Each participant ran the command in

listing 6 to create their own party, which will be saved in a text file (party1.json). Once more, to run

the command on Alice’s node would require changing the ip, the output file, and also the participant’s

name.

daml scr ip t −−dar .daml/ d i s t /Project −0.0.1. dar −− ledger −host 192.168.61.130 −− ledger −port

5011 −−output− f i l e party1 . json −− scr ipt −name Lights : i n i t i a l i zeUser −−access −token− f i l e

token_fi le

Listing 6. Create the party.

The token file refereed in the listing 7, contains the encoded User Access Token with the RSA key

created earlier. Figure 18 shows both encoded and decoded tokens, with the decoded token having

the following format:
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{ ”aud”: ” someParticipantId ” ,

”sub”: ”someUserId” ,

”exp”: 1300819380

”scope ”: ”daml_ledger_api” }

Listing 7. JWT token format.

G - Launch HTTP JSON API

To launch the HTTP JSON API Service, which will be the connection between Ledger API and the SCIApp,

the command in listing 8 was executed in each of the participants. Again, it is necessary to change the

ip to run this command in a different participant. This command specifies the JSON API port, which is

the port to which the SCIApp connects to send HTTP messages. The domain does not require a HTTP

JSON API because it only serves as a link between the two participants.

daml json −api −− ledger −host 192.168.61.130 −− ledger −port 5011 −−http −port 7575

Listing 8. Launch JSON API.

The SCIApp will send contract creation requests as HTTP messages to the JSON API in order to

interact with the Ledger via the Ledger API. If the Party from Participant 1 creates a contract that

includes the Party from Participant 2, that contract will be available in Participant 2’s Ledger. The

canton network enables a virtual global ledger in which contracts with both parties are visible in both

Participant Ledgers.

4.4. SCIApp

It was necessary to develop an SCIApp to connect the IoT platform to the Smart Contracts Application.

The programming language of choice was JAVA, which was already installed, and IntelliJ IDEA15 was

chosen as the integrated development environment (IDE) for the development of this SCIApp. The

IntelliJ installation procedure is described in Appendix D.

The upstream and downstream connections of Bob and Alice will be demonstrated. This demon-

stration is numbered in figure 12. Bob will create a contract that allows Alice to change the state of

a light in his smart building. Once Alice changes the state of the light, the new state will be updated

in Bob’s smart building. The focus of this example is on SCIApp in both Bob and Alice’s nodes.

Now, the connection between OpenHAB and the SCIApp of Bob’s node will be described. When Bob

clicks on the Control Button of the OpenHAB UI, he grants control of a light to Alice. This information

is published in the Broker, via the upstream connection, using MQTT protocol. Once it is published,

the SCIApp will receive this publication (2).

15https://www.jetbrains.com/idea/
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In order to further clarify the upstream connection, after the control is granted to Alice, it is the

responsibility of the SCIApp to provide this data to the Smart Contracts Application so that a contract

can be created. The HTTP protocol is used to submit the request for the contract generation(3). With

the help of the domain node the information that Bob has created a contract is transmitted to Alice

(4)(5).

Moving on to the Alice’s node upstream connection. The SCIApp of the Alice’s node is in a state

of passive waiting until the contract reaches the database, at which point the data will be processed

and sent to the OpenHAB. After receiving the notification that the contract has been created by an

HTTP message (6), the SCIApp of the Alice’s node updates the OpenHAB UI (7), also using the HTTP

protocol, allowing the control of the light.

The light can now be managed by Alice. The downstream connection starts when Alice modifies

the state of the light in OpenHAB. An MQTT message will be published in the Broker and received by

the SCIApp of the Alice’s node (10). This message will inform that the light state was changed by

Alice. The OpenHAB UI will be updated, denying a new control of the light. The SCIApp is responsible

for notifying the Smart Contracts Application once it receives notification that the light has changed

state (11). With the help of the domain node, the information that Alice has changed the state of the

light, creating a new contract and exercising the previous one in the process, is transmitted to Bob

(12)(13).

Moving on to the Bob’s node downstream connection. The Bob’s node will likewise be placed on

passive hold until the Alice’s contract is exercised. As soon as the contract exercised is received (14),

the SCIApp of the Bob’s node will update OpenHAB with the Alice’s node modified state of the light

(15), finishing the downstream connection.

Appendix E contains the libraries used to implement this system. All the code developed can be

accessed in the Git repository16

4.5. OpenHAB

OpenHAB17 was chosen as the IoT platform that will pass the data between the SCIApp and the items.

The decision was simple because I was already familiar with the platform and felt comfortable imple-

menting various features. This IoT platform is one of several home automation platforms available in

the market. It is open-source, highly customizable, and supports the integration of multiple technolo-

gies. JAVA18must initially be installed in order to run this application. Appendix F contains instructions

on how to install OpenHAB and Java.

User Interface

Once the installation was completed, a user interface was created for Bob and Alice, simulating the

various floors of a smart building, as well as some of the items in each floor. This interface has both

16https://github.com/bclse/dissertation/
17https://www.openhab.org/
18https://www.java.com/
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visualization and control purposes. Certain rules have been created that shape the user interface. An

example can be found in the transition from figure 20 to figure 21. The code developed for the UI is

available in the Git repository19 and in Appendix G.

Figure 19 demonstrates the Bob’s user interface. The item that will be controlled will be located

within the Conference Room in First Floor. There are two significant items in the Conference Room.

While the Lights item is the light itself, the Control Lights item is what gives control of the Light to

Alice. If Bob wishes to transfer control of a light in his building to Alice, he needs to click on the

”Control the Lights” button. This action will automatically trigger the creation of a contract.

Figure 19. Bob User Interface.

Figure 19 displays the Alice’s user interface. Aside from the divisions, this UI includes a control

section, as shown in Figure 20.

Figure 20. Alice User Interface Without Control.

If Bob wishes to transfer control of a light in his building to Alice, he must create a smart contract

that specifies the entity Alice. If a smart contract is created that assigns control of a specific light to

Alice, her Control Panel will be updated and the control functionality will be visible. Figure 21 depicts

how the UI responds to the delegation of control to Alice. A switch with the smart building’s light

state is set to visible, for Alice to control, while the previous item is made invisible.

If Alice wishes to control the light, she needs to click on the ”Lights Control (Enable)” button. This

action will automatically trigger the exercise of the previous contract, creating a new contract with

the required information, and archiving the old one.

19https://github.com/bclse/dissertation/
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Figure 21. Alice User Interface With Control Granted.

4.6. Communications

The communication protocols used between the various systems when implementing the solution ulti-

mately fall on HTTP and MQTT. The HTTP protocol was chosen to be used in the majority of the solution

because the smart contracts application uses it as its communication model. It is also quite simple

to create a HTTP request and read a HTTP response using the SCIApp. However, MQTT technology is

also used due to its uniqueness. It allows the SCIApp not to fall over an active wait until it receives

the message coming from the IoT platform. By doing this, this communication can be carried out with

fewer computational resources. The HTTP protocol could also be used for all system communications,

but that would force the SCIApp into active waiting for the IoT platform’s HTTP response, which would

consume more computational resources. Next, the various communication protocols used throughout

the system are discussed.

Smart Thing <-> OpenHAB

Regarding the connection between the IoT Platform and smart things, it can be achieved using differ-

ent protocols, depending on the characteristics of the device, the environment, etc. Protocols like

ZigBee, Z-Wave, Bluetooth and Wi-Fi can be used to perform this communication. In this system as

there were no physical objects to connect, these protocols will not be used.

OpenHAB <-> SCIApp

In order to transport upstream data from the IoT platform to the SCIApp (1), the MQTT protocol was

chosen. MQTT stands for Message Queuing Telemetry Transport, and it is one of the most popular

messaging protocol for the IoT. MQTT is used to send and receive messages and data between devices.

This protocol uses the publish/subscribe pattern to connect the devices (3)(4). Topics are used for

communication between the sender (Publisher) and the receiver (Subscriber), who are separated from

one another (2). The connection between them is handled by the MQTT Broker. The MQTT Broker

filters all incoming messages and distributes them correctly to the subscribers. Figure 22 presents the

MQTT connection between OpenHAB and the SCIApp.
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Figure 22. MQTT Connection.

The goal of the proposed solution was to change the ON/OFF state of a light between two entities

by means of a smart contract. An example of a different implementation, would be a contract to

check only the state of a light. In this case, a specific message containing the light’s state and other

information would probably be generated and published in the Broker by OpenHAB, where the SCIApp

would subscribe. This example could only be accomplished in this manner. A different approach

would also have to change the message sent by OpenHAB to the SCIApp. The configuration for such

implementation is described in the following paragraphs and pictures.

Installing a Broker is required before configuring an MQTT connection. The open-source nature of

the Mosquito20 Broker led to its selection. How the Broker was set up and authentication added are

described in Appendix H. Before adding the Broker to OpenHAB, the MQTT Binding, which is available

in the OpenHAB application, must be installed. Bindings integrate physical hardware, external systems

and web services in OpenHAB. The configuration of the MQTT Broker in OpenHAB is displayed in the

figure 23 and figure 24.

Figure 23. Configuration of the MQTT Broker in OpenHAB.

After the Broker has been set up, a Thing must be created, in this case an MQTT Thing, which

must also have its configurations set up as seen in figure 25. The physical layer of an OpenHAB system

is represented by Things. Things specify to OpenHAB which physical entities (devices, web services,

information sources, etc.) should be managed by the system from a configuration perspective. Things

20https://mosquitto.org/
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Figure 24. Configuration of the MQTT Broker in OpenHAB.

are connected to OpenHAB through bindings. Each Thing provides one or more Channels to access its

functionality. These Channels can be linked to items. Items are used to control Things and consume

their information. Ultimately, when Items are linked to Channels on a Thing, they become available

to the various user interfaces and to the rules engine.

Figure 25. Configuration of the MQTT Thing in OpenHAB.

An item must be connected to the previously created MQTT Thing in order for the SCIApp to be

able to subscribe to it. This connection is accomplished via a channel that must be properly configured

as demonstrated in figure 26.

The item FF_CF_CONTROL is the one that must be linked to the Channel Thing because it corre-

sponds to the state change that the SCIApp wishes to subscribe to. The item FF_CF_CONTROL could also

be identified in the field place, within the smart contract. This configuration is shown in figure 27. This

message exchange’s topic is referred to as TopicTest. Whenever the item FF_CF_CONTROL changes

its state to ON, the following message will be published in the Broker: ”ON:FF_CF_CONTROL:Confer-

ence_Room” if it is set to OFF, only the first argument will change, i.e. ”OFF:FF_CF_CONTROL:Con-

ference_Room”. The SCIApp will later subscribe to these messages.
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Figure 26. Configuration of the Item linked to the Thing.

Figure 27. Item linked to the Thing.

In order to transport downstream data from the SCIApp to the IoT platform, the HTTP protocol

was chosen. The purpose of this communication is to acquire the state of items on the IoT platform

as well as to update them. To that goal, SCIApp creates an HTTP message with a particular function.

SCIApp <-> DAML

As already mentioned, DAML uses the HTTP protocol as its communication model so it was used in the

communication between SCIApp and DAML. SCIApp generates HTTP messages to communicate with

DAML and also processes HTTP messages that DAML sends to SCIApp.

DAML <-> DAML

The communication between the various Daml applications on the three nodes is carried out via the

Canton Protocol. The Canton protocol is the technology which synchronizes participant nodes across

any Daml-enabled blockchain or database. The Canton protocol enables transactions between Daml
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applications as well as their portability between various underlying synchronization systems.

4.7. Control Modifications

To summarize, this implementation was a concrete case for controlling a light in a smart building, but

if other services for controlling or monitoring through smart contracts were necessary, several steps

would be required. The procedures listed below would need to be followed in order to build a new

control:

1. Bob’s OpenHAB: In the upstream connection, the MQTT message to be sent to SCIApp should

be restructured to include the information needed to create the contract. In the downstream

connection, it would be necessary to review the items that will be updated.

2. Bob’s SCIApp: In the upstream connection, the processing in SCIApp must be reviewed and

changed. SCIApp has a dedicated processing for the light control’s MQTT message. When

changing the MQTT message to implement a new control, the processing in SCIApp must also

be changed. The same thing happens in the downstream connection. The processing of

the HTTP message from DAML will need to be reviewed because a different contract with

different characteristics will be implemented.

3. Bob and Alice’s Daml: To accomplish the control’s goal, the contract’s structure needs to be

altered. This will necessarily require changing the contract code.

4. Alice’s SCIApp: In the upstream connection, the processing in SCIApp has to be revised.

The HTTP message coming from Daml will be different from what is implemented, so to

perform the updates correctly, the processing of the HTTP message, in SCIApp, will have to be

changed. In the downstream connection, the processing of the MQTT message will also need

to be changed. The MQTT message of the new control will differ from the one implemented.

In order to send the correct information to the Daml, to exercise the contract, the processing

of the MQTT message in SCIApp will need to be modified.

5. Alice’s OpenHAB: In the upstream connection review the items that will be updated. In the

downstream connection, the MQTT message to be sent to SCIApp must be restructured to

contain the necessary information to exercise the contract.
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CHAPTER 5

Results and Tests

The results gathered from the tests performed are presented and discussed in this chapter. This

chapter is organized as follows, section 5.1 presents the results of functional tests performed on

the proposed system. In section 5.2 the results of performance tests conducted on the system are

presented. The setup displayed in table 3, detailed in the previous chapter, was implemented for

running these tests.

5.1. Functional Test

This section presents the functional tests conducted on the proposed system. The goal of this test is to

determine if the proposed system is decentralized and if can implement interactivity functionalities.

In this test, Bob grants Alice the control over a light. Then, Alice changes the state of the light, which

is then updated in the smart building. Were extracted timestamps for all system applications since

the control of a light is given to Alice, until the new state defined by Alice is updated in the smart

building. The time instants of this test were collected in log files in the case of OpenHAB and DAML

and implemented in strategic places in the SCIApp code. Three different tests were performed: a

functional test (which has already been described), a performance test of the SCIApp connection to

OpenHAB, and a test in which the same functional test was run ten times with average times recorded.

Figure 28 illustrates the time spent on each system application, from the start to the end of the test.

An analysis of this figure will be discussed in the following paragraphs.

Validation of the integration with the time spent in each system block

The figure 28 illustrates the time spent on each application that runs in Bob’s node (in green), the

Domain node (in blue), Alice’s node (in orange). The upstream connection will now be discussed. The

first block of time in the test corresponds to OpenHAB and lasts 19 ms. Pressing the button that will

give the third entity control corresponds to the zero instant. The time when the button is pressed is

recorded in a text file after 19 ms.

The next period of time, known as the SCIApp, has a duration of 276 ms. This is where the infor-

mation is processed and forwarded to the DAML in order to create a smart contract. The information

that the control has been granted to a third entity, sent through the MQTT protocol, takes 32 ms to

reach the SCIApp. At 51 ms, the SCIApp receives the MQTT message containing the location of the light

in the smart building and the reference of the item represented in OpenHAB. These two parameters,

along with the current state of the light, are required to create the contract.
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Figure 28. Time spent in each system block.

276 ms after receiving the MQTT message, i.e. at instant 327 ms, SCIApp transmits the information

required to create the contract to DAML through HTTP. This process takes some time because the

SCIApp needs the current state of the light that the third entity will control to send this message.

To acquire this state, during this period, an HTTP message must be sent to OpenHAB which leads to

additional time spent on the SCIApp.

A Smart Contract is created at instant 444 ms, i.e, 117 ms after the SCIApp has sent the information

to the DAML via HTTP.

This information is delivered to the node of the domain 49 ms later, i.e. at time 493 ms through

the Canton Protocol.

Next, the node of the domain communicates the contract to Alice’s node, also through the Canton

Protocol, 74 ms later, i.e. at time 567 ms. The contract processing is not immediate. Figure 28 shows

exactly that, each node varies in the duration of processing the contract.

At time 1109 ms, the SCIApp of Alice’s node receives the information that a contract has been

created. It takes 175 ms to process the information coming from DAML, through HTTP, and to update

the corresponding items in OpenHAB also through an HTTP connection. This process ends at time 1257

ms.

After 87 ms, i.e. at time 1371 ms, OpenHAB receives the information to update its items, which

will then be visible to Alice to control the light. The next 16 ms elapsed in OpenHAB are due to the
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time it takes to write in a text file when the items were updated. The total time spent on the upstream

connection was 1387 ms.

The downstream connection will now be discussed. The user will now interact with the system

at this point. Alice can change the state of the light from the OpenHAB platform, once the control is

available. The button click that causes the controlled light to change its state corresponds to the zero

instant. The OpenHAB block of Alice’s node has a duration of 75 ms. It takes a little longer to complete

this process because in addition to communicating with the SCIApp via MQTT that the light state has

changed, this timestamp is also stored in the text file. Moreover, in addition these two actions, it is

also necessary to set the control buttons to invisible in order to remove the Alice’s control capability.

This last action is triggered by the SCIApp so it is expected that OpenHAB process will last longer than

the SCIApp one.

The SCIApp receives the data from OpenHAB over MQTT at instant 15 ms. SCIApp processing takes

46 ms, and, at instant 61 ms it sends the information, that Alice controlled the light, to DAML, via

HTTP. Additionally it requests an update of the item from OpenHAB, via HTTP, in order for it to become

invisible.

After 76 ms from the moment the SCIApp has sent the information to the DAML via HTTP, the

previous smart contract is archived and a new smart contract with new information will be created

from instant 137 ms.

This information is delivered to the node of the domain 82 ms later, i.e. at time 219 ms through

the Canton Protocol.

Next, the node of the domain communicates the contract to the Bob’s node also through the

Canton Protocol, 67 ms later, i.e. at time 286 ms. The contract processing is not immediate.

The SCIApp in Bob’s node learns that the contract was exercised at time 929 ms. This data is

processed and submitted to OpenHAB via HTTP after 89 ms, i.e at instant 1018. The light that has

been granted control will then be updated with the state defined by Alice, and the button that grants

this control will also be updated to OFF.

OpenHAB updates the desired items at time 1053 ms, i.e. 35 ms after the SCIApp has sent it this

information through HTTP. It takes 71 ms to update the two items and to write to a text file the instant

of this update. The total time spent on the downstream connection was 1124ms. The system’s total

processing time, which is calculated as the sum of the upstream and downstream connections, is 2511

ms.

The presented results demonstrate that the proposed system is decentralized, in other words, it

does not require an entity at the top of a hierarchy to give orders to everyone. Bob can give instructions

to Alice or to any other external entity, and the inverse can also occur. Regarding the interactivity

functionality, the system times suggest that to control devices like radiators, washing machines or

even the watering of a garden, i.e. devices that do not require immediate response, and feedback

to users, the system is acceptable. The 2511ms test duration serves this purpose. However if it is
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necessary to control devices that require immediate response, such as turning a light on or off, this

system is not appropriate. The system takes too long for this particular case, where delay only up to

a few hundred of milliseconds is tolerated.

A closer examination of the test leads to the conclusion that the Daml application times are in-

dependent and cannot be controlled. On the other hand, certain times that correspond to the SCIApp

block can be controlled. Then, two situations were verified to understand where more time was spent.

Two tests were performed ten times to determine how long it takes for the SCIApp to acquire the status

of an item to OpenHAB (in this case, the light) and, also how long it takes for an item to be updated

in OpenHAB by the SCIApp. In the first test (GET), it is necessary to acquire the time when the HTTP

message is sent to OpenHAB and when the SCIApp receives the HTTP message with the item state.

This situation occurs in Bob’s SCIApp when it is necessary to acquire the current state of the light, to

create a contract. In the second test (UPDATE), it is necessary to acquire the time when the SCIApp

sends the HTTP message to OpenHAB and when OpenHAB actually updates the state of the specified

item. This situation occurs in the Bob’s SCIApp and the Alice’s SCIApp when various items need to be

updated in the OpenHAB control interface. The tests results are displayed in Table 5.

Table 5. Average time of the UPDATE and GET test.

GET UPDATE

Average Time [ms] 37.6 32.7

After analyzing the results, a different approach to reducing these times could be considered for

future implementation.

Average time to reach next application

To further understand the average time it takes for the information to travel between applications,

this functional test was repeated ten times. The goal of this test is to determine if interactivity

functionalities can be implement and if the response time is too excessive for the control of electricity

production and consumption in smart buildings. This test is the same as the functional test shown in

figure 28, but it was performed more times and an average of the results was obtained. Now a different

view of the results is presented. The average amount of time it takes for the information to go from

one application to the next in the upstream and downstream message flow is shown in Figure 29.

When compared to other applications, the exchange of information from one to the next takes

longer during the communication between DAML and the SCIApp, in both Bob and Alice’s node. The

SCIApp is connected to the Ledger SCIApp passively waiting for a new contract to arrive which makes

this process time consuming. The exchange of information between the SCIApp and OpenHAB, also

in the two nodes mentioned above, is another time-consuming process for the system. Due to the

SCIApp’s requirement to update the OpenHAB items via HTTP, this process also takes a significant time.

Aside from these high delay when exchanging information between two applications, the remaining

delays are quite reasonable for an iterative system, and fall under 200ms.
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Figure 29. Average time to reach the next application.

The processing delay for each application was also collected by analyzing the results of the previous

test, as shown in table 6.

According to the table’s results, it is possible to conclude that the DAML applications are consuming

the majority of time across all nodes. This occurs as a result of the intrinsic characteristics of the DAML

application. In the first part of the test, it ranges from 360.1 ms to 892.2 ms, and in the second part,

it ranges from 498.6 ms to 707.8 ms. Due to the HTTP message that was sent to OpenHAB in order to

update the appropriate items, the times are longer in both the first and second parts of the test on

the third party SCIApp and the smart building SCIApp, respectively. Another time that is a bit longer

than expected and could be improved in a future work, is the smart building SCIApp in the first part

of the test. This is due to the need to acquire the current state of the light by HTTP.

The results of the ten functional tests performed will also provide information about the upstream

and downstream connection times. This information is illustrated in table 7.
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Table 6. Average time spent on each application.

Application Time Spent [ms] Standard Deviation

Bob Interaction − −
OpenHAB Bob 19.3 7.0
SCIApp Bob 138.5 50.6
DAML Bob 892.2 280.7
DAML Domain 672.1 155.1
DAML Alice 360.1 130.1
SCIApp Alice 328.4 149.7
OpenHAB Alice 8.5 5.7
Alice Interaction − −
OpenHAB Alice 90.9 41.5
SCIApp Alice 40.0 22.7
DAML Alice 707.8 249.4
DAML Domain 527.8 98.6
DAML Bob 498.6 105.2
SCIApp Bob 424.5 278.7
OpenHAB Bob 74.6 40.3

Table 7. Average time of upstream and downstream connections.

Connection Time Spent [ms] Standard Deviation

Upstream 1747.2 413.1

Downstream 2314.7 793.3

The presented results demonstrate that the proposed system is suitable for functionalities that

doesn’t require an immediate response like turning on a washing machine or determining the status

of an item. However, in the case of functionalities that demand fast reaction or feedback, such as

turning on and off a light, the response time is too long for a user to be waiting for the light to change.

One way to make the system more interactive is to decrease the time spent in the SCIApp by using

a more effective implementation. Regarding the response times, to operate an intelligent building’s

functions, specifically the electricity production and consumption, the response times of the system

are sufficient and adequate, where a reaction time of up to a few minutes is tolerated.

5.2. Performance Tests

This section contains the performance tests carried out in the system. The purpose of these tests

is to understand how the system responds to the creation of successive contracts. This test tries to

verify how scalable this solution is by observing if the response time degrades as more contracts are

created. First is described the stress tests without network delay and then the stress tests with delay

are presented.

Only the upstream connection will be tested in this test. In order to conduct this test it was

necessary to automate the process to which Bob grants control of a light to Alice. The button that

gives control to Alice is turned ON, at a specific time, according to a rule that was created in the

Bob’s OpenHAB. In this test, a contract was created for each guaranteed control. It was extracted
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the time in only two situations. The first, in Bob’s node, when the control of a light is given to Alice

in OpenHAB, i.e, the moment when the control button is pressed. The second, in Alice’s node, when

Alice updates its control panel also in OpenHAB, i.e, the instant when the control button is visible to

Alice control the light. The difference between the two instants will be measured.

Upstream Contract Creation Stress Tests without Network Delay

The purpose of these tests is to determine how the system reacts when an excessive number of con-

tracts appear at once. The following scenario was simulated for the performance tests: Bob will create

a smart contract giving control to Alice, and her control panel will be updated with the control option.

Four tests were conducted, with the only difference between them being the contract creation time.

Thus, fifty contracts will be created every 500ms, 1s, 2s and 20s. Figure 30 depicts the moving average

time difference of those fifty tests, between the Bob’s creation of a contract and the update of Alice’s

OpenHAB dashboard, over the last five executions. One sample contains five results.

Figure 30. The moving average of the time it takes for a contract to become available on Alice’s

node, for the last 5 contracts, without delay.

For this test, time intervals smaller than 500ms were also tested. However it was observed that

the contracts would not arrive with the right order, making it impossible to acquire coherent results.

Therefore, the smallest time interval chosen for the tests was 500ms. The orange, yellow, green and

brown colours represent the moving average time of the last five contracts when they are created

every 500ms, 1s, 2s and 20s respectively. In figure 30, the 2s line over passes the 1s line between

10<Sample<30. The standard deviation can be used to explain why this is not the expected situation.

The upstream connection’s standard deviation is high enough that the lines could potentially cross
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and overlap. This type of circumstance is possible due to the great variability of the results. Another

reason is the moving average’s sample size. Since there is a lot of variation in the results and there

are only 5 results in one samples, having a highly distinct result can change the average. In addition

to the reasons already mentioned, the fact that the 1s and 2s values are so near can also cause this

event. Figure 30 illustrates what it would be expected: as more contracts are created in less time,

information takes longer to get from one side to the other. This is due to the fact that more processing

is required in a shorter period of time. In the opposite case, when contracts are created every 20s,

the system has time to process all of the information because it is not overloaded. As a result, it takes

less time for information to travel between nodes, and the times remain constant throughout the test.

It is then concluded that the more contracts are created in a shorter time, the more time de-

grades, i.e. the reaction time becomes gradually longer. In a normal usage scenario it is not expected

that so many contracts would be created simultaneous, at least by Bob. Other tests, such as having

several Bobs creating contracts with Alice, could be performed in a future work.

Upstream Contract Creation Stress Tests with Network Delay

The purpose of these tests is to determine how the system reacts when an excessive number of con-

tracts appear at once. This test will provide a brief overview of the system’s behaviour in a real world

implementation. The added delay simulates how the system would operate in real life. The previous

scenario was also simulated for the delay tests. Four tests were also performed using the previous

times, however it was imposed to the domain node a 400ms delay. To be able to insert a certain delay

or latency it is necessary to configure the virtual machine. The VMware software allows to configure

this option very easily. Just go to Network Adapter Advanced Settings to configure this option. For

this specific test it was added a latency of 400 ms for the Outgoing Transfer in the domain node. For

future work it could also be configured other options like the percentage of lost packets. Figure 31a)

shows the available options to configure and figure 31b) depicts where the delay is imposed on the

domain node connections.

Figure 31. Delay Settings (a) and Delay Connections (b).
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Regarding the tests results, figure 32 demonstrates the moving average time difference of fifty

tests, between Bob’s creation of a contract and the update Alice’s OpenHAB dashboard, over the last

five executions.

Figure 32. The moving average of the time it takes for a contract to become available on Alice’s

node, for the last 5 contracts, with delay.

The orange, yellow, green and brown colours represent the moving average time of the last five

contracts created every 500ms, 1s, 2s and 20s respectively, with a 400ms delay in the domain node.

When compared to tests without delay, the same effect occurs: if more contracts are created in a

shorter period of time, the information takes longer to arrive from one side to the other. Also, when

the system is not overloaded, in the case of the 20s test, the time between the creation of the contract

and the update on the OpenHAB platform remains constant. However, because of the 400ms delay,

the information takes even longer to perform the upstream connection. This is demonstrated in the

figure 33, which compares the 500ms creation time of contracts with and without delay. Another test

was conducted with a 200ms delay as a comparison between no delay and 400ms delay.

The same conclusion can be drawn from the testing without delay, namely that the more contracts

that are created in a shorter time, the time degrades, resulting in longer reaction time. The only

difference in the delayed tests is that they still take longer because of the delay.

If the performance tests had been carried out using the downstream connection, the results would

not have led to very different conclusions. Additionally, the contracts implemented in this solution

are expected to be performed in small communities, and thus the presented scalability is adequate in

these scenarios.
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Figure 33. The moving average of the time it takes for a contract to become available on Alice’s

node, for the last 5 contracts, with and without delay.
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CHAPTER 6

Conclusion

The main research question of this dissertation was whether it was feasible to integrate Smart Con-

tracts in order to achieve decentralised management of smart buildings, regarding services such as

energy management. With the results obtained, it is possible to conclude that it is feasible to build a

system that integrates smart contracts with smart buildings, using open-source technologies, in order

to achieve decentralised management of smart buildings.

The developed system allows an entity in charge of a smart building to assign an external party

control over a specific component of the building, such as a smart light, through the use of smart

contracts.

This system demonstrates that smart contracts can be implemented to provide a third party control

over some smart building operations. The first test in section 5.1 clearly demonstrates that integrating

smart contracts with IoT for distributed control of a smart building is feasible. This conclusion is

supported by the results obtained in section 5.1 where the test duration time is 2511 ms.

The other research question was if the response time is too excessive, in a system that integrates

Smart Contract technology with IoT. In response to this question, it is concluded that, depending on

its application, the proposed system is either time excessive or not. When the various results are

analyzed, it is found that the system does not have excessive response times for applications with

response times between one and two seconds. However, this system won’t be suitable for a real-time

application. It is demonstrated in the tests carried out in section 5.2 that the response time grows

when an increasing number of contracts are created at a predetermined frequency of time.

The third research question was if it was possible to implement functionalities that require inter-

activity in this system without worrying about the delay. In the case of the implemented solution,

that aims to turn on and off an intelligent building light, the response times are a bit high. However,

in the context of intelligent building remote control, the time spent controlling a light is perfectly ac-

ceptable. The response times are perfectly adequate in other situations, such as turning on a washing

machine or an air conditioner. The control function is possible for operations that do not require a

real-time response time. For functionalities that require a real-time response time, this system will

not be the most suitable as it comes with a significant delay time. For distributed control of intelligent

buildings, immediate feedback is not so relevant, as controls are supposed to be carried out remotely.

This conclusion is supported by the results obtained in section 5.1 in table 7, where the average test

duration time is 4061 ms.
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The fourth and last research question was whether this type of integration is viable in small single-

board computers with the complexity and processing that this system requires. The system was not

implemented in small single board computers, but the virtual machines used for testing have properties

similar to small single board computers. The characteristics of each VM are described in table 3. It

is reasonable to assume that this system might work on small single board computers even without

testing, considering the characteristics of the VMs used.

After reviewing the tests results, it was determined that the solution could be used for a variety

of purposes other than granting control functionality. The proposed system, with appropriate changes

can serve to check the status of an item in the smart building, to change the status of other items like

air conditioner, power outlets etc. These system can improve item automation and trust in external

entities.

6.1. Future Work

The future work is organized in two suggestion: Upgrades to the system; Deployment of the solution

in a blockchain.

First, it is suggested how the system, more specifically the Application, might be optimized. Ac-

quiring the current state of the light that will be controlled is a time-consuming process. This proce-

dure involves sending an HTTP message to OpenHAB and waiting for an HTTP response indicating the

current state of the light. One way to improve this process is to include the current status of the light

in the previous MQTT message. Implementing this solution would result in shorter response times.

The goal of the final suggestion is to investigate the system’s behavior if it were integrated into a

blockchain rather than a database. In this manner, it would be possible to later compare the testing

times for the system using the two approaches.
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APPENDIX A

Synchronization Setup

The NTP protocol was used to synchronise the virtual machines that make up this system. The VM of

the Domain Controller will be the NTP Server while the Smart Building’s and Third Party’s VM will be

NTP Clients. The NTP Server configuration is demonstrated below.

sudo apt−get i n s t a l l ntp

For switching to an NTP server pool closest to your location, it is necessary to edit the ntp.conf

file with the chosen pools. The following command allows to edit the ntp.conf file.

sudo nano /etc/ntp . conf

Chosen pools :

server 0. pt . pool .ntp . org

server 1. pt . pool .ntp . org

server 2. pt . pool .ntp . org

server 3. pt . pool .ntp . org

Then it is required to restart the NTP service to apply the new settings.

sudo service ntp restart

The last step is to configure the firewall so that clients can access the NTP server.

sudo ufw allow from any to any port 123 proto udp

In the configuration of the NTP clients, it is necessary to install ntpdate, with the command below.

sudo apt−get i n s t a l l ntpdate

Then specify the IP and hostname of the NTP server in the host file with the following command.
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sudo nano /etc/hosts

IP : Hostname :

192.138.173.138 NTP−server −host

Next disable the systemd timesyncd service on the client.

sudo timedatectl set −ntp off

After that install NTP with the command below.

sudo apt−get i n s t a l l ntp

Next configure the /etc/ntp.conf file to add your NTP server as the new time server.

sudo nano /etc/ntp . conf

Add the l ine :

server NTP−server −host prefer iburst

Finally it is required to restart the NTP service to apply the new settings.

sudo service ntp restart
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APPENDIX B

Daml

B.1. Installation

The following commands are required to install VS Code. The VSCode .deb package is first downloaded

from the official website. Next, the editor is installed.

cd Downloads

sudo apt i n s t a l l ./code_amd64 .deb

The command below selects the version of the Daml SDK that should be installed. In this disserta-

tion it was installed the version 2.1.1.

curl −sSL https :// get .daml .com/ | sh /dev/ stdin $ {SDK_VERSION }

B.2. Smart Contract’s Code

The code developed for the smart contract can be found in the following link, in DAML CODE section:

https://github.com/bclse/dissertation.
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APPENDIX C

PostgreSQL Installation

The first command installs PostgreSQL and its dependencies. Once PostgreSQL has been installed, the

second command starts the PostgreSQL service.

sudo apt i n s t a l l postgresql −y

systemctl s ta r t postgresql

The first command opens a PostgreSQL work interface for creating a database and user. The fol-

lowing commands create a database, a user, and a password. The final command gives the user full

access to the database.

sudo su − postgres

CREATE USER user_example WITH PASSWORD ’password ’ ;

CREATE DATABASE db_example ;

GRANT ALL PRIVILEGES ON DATABASE db_example to user_example ;

67





APPENDIX D

IntelliJ Installation

The commands required to install IntelliJ IDEA are shown below.

Install required dependencies.

sudo apt i n s t a l l vim apt− transport −https curl wget software −properties −common

Install IntelliJ IDEA.

sudo apt i n s t a l l i n t e l l i j − idea −community −y
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APPENDIX E

SCIAPP Code

The code developed is presented in the following link, in SCIAPP section: https://github.com/b-

clse/dissertation.

The following libraries were used to create the code:

<dependency>

<groupId >org . ecl ipse .paho</groupId >

< ar t i f ac t Id >org . ecl ipse .paho . c l ient .mqttv3</ ar t i f ac t Id >

<version >1.1.0 </ version >

</dependency>

<dependency>

<groupId >com.daml . ledger </groupId >

< ar t i f ac t Id >bindings −rxjava </ ar t i f ac t Id >

<version >100.13.56 − snapshot .20200331.3729.0.b43b8d86</version >

</dependency>
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APPENDIX F

OpenHAB Installation

The two commands required to install JAVA are shown below, where the first command installs the

default Java Runtime Environment (JRE 11) and the second command installs the Java Development

Kit (JDK 11).

sudo apt i n s t a l l default − jre

sudo apt i n s t a l l default − jdk

Regarding OpenHAB, this program can only be installed when JAVA has been set up. First, it is

added the repository key.

curl − fsSL ”https ://openhab . j f rog . io/ ar t i fac tory /api/gpg/key/public” | gpg −−dearmor >

openhab . gpg

sudo mkdir /usr/share/keyrings

sudo mv openhab . gpg /usr/share/keyrings

sudo chmod u=rw , g=r ,o=r /usr/share/keyrings/openhab . gpg

Next, the HTTPS transport for APT is added.

sudo apt−get i n s t a l l apt− transport −https

Then it is added the repository.

echo ’deb [ signed −by=/usr/share/keyrings/openhab . gpg ] https ://openhab . j f rog . io/ ar t i fac tory /

openhab− l inuxpkg stable main ’ | sudo tee /etc/apt/sources . l i s t .d/openhab . l i s t

Finally the OpenHAB distribution package version 3.2.0 is installed.

sudo apt−get i n s t a l l openhab=3.2.0
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APPENDIX G

Basic UI Code

The UI code is divided into three files: demo.sitemap, demo.rules, and demo.items. Both Bob and

Alice have these three files. The demo.sitemap file contains what is intended to be displayed on the

UI. The items that can connect to real things, in this case the API, are contained in the demo.items

file. The demo.rules file contains predefined rules. The code developed is presented in the following

link, in OpenHAB section: https://github.com/bclse/dissertation

The script shown below, takes two arguments, which are the exact time when the switch was

pressed and this time in epochtime and writes them in a txt file. The script executed in the rules is

the same, it simply changes the name of the txt file to which it is written.

#!/ bin/bash

echo ”Generated timestamp !”

echo $1 $2 >> /home/ ka l i /Desktop/timestamp . txt
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APPENDIX H

Mosquitto Setup

The commands for installing the mosquitto broker are shown below.

sudo apt −y i n s t a l l mosquitto

To add authentication to the broker it is first necessary to create a file. This file is called pass-

word.conf and has the format shown below.

allow_anonymous fa l se

password_file /home/bob/mos/passwords . txt

The following commands must be entered in order to create the password file. The configuration

file that was previously created is the first argument. The flag -c indicates that an existing file will

be overwritten. The password file output is the second argument and the authentication username

is the third argument. After running the command, a password must be assigned to the username.

Then, after entering the password, the username and the encrypted password are both contained in

the passwords.txt file as shown bellow.

password . conf −c passwords . txt mqtt

Password : mqtt

Reenter password : mqtt

cat passwords . txt

mqtt :$7$101$hiP1+p7hFtOgeCcm$1A9n7Nt1RHS77Yivc+

cxIWFRAdtgNUCbTb3jpqJigiAMd6mAii2rCbUPTeWJxF5xztvPy/X5+W1YrlAO1xrtXw==
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Abstract—There are some interesting, centralized solutions for
managing smart buildings, whether open-source or not. However,
there is a need for some of these functions to be decentralized.
Decentralization calls for consideration of security and trust
standards that enable a coordinated approach. This paper aims
to fill the knowledge and research gaps that still exist in this
field. As such, this paper intends to integrate smart contracts
with an IoT platform for distributed control in smart buildings.
The proposed integration aims the ability to grant control of
functions or monitoring of data, in a given smart building, to
an external entity that can remotely manage services. To achieve
the goal of this paper, an integration was proposed with open-
source technologies. Two of these technologies are Daml and
OpenHAB, and the created SCIApp application enables their
communication. Functional tests, confirm that it is possible to
achieve the proposed integration. Response time in the order
of seconds was obtained, with an average value of 4061ms.
Performance tests allowed to verify response time for different
loads. Results confirm that response time remains constant
when new contracts are created every 20s. For the remaining
frequencies, the response time increases. This paper leads to the
conclusion that it is feasible to integrate smart contracts with
IoT to control and manage functions of intelligent buildings. By
analyzing the tests conducted on the developed system, it was
observed that the control is possible for operations that do not
require a real-time response time.

Index Terms—smart contracts, internet of things, home au-
tomation.
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