
A Hint Generation System for Introductory Programming Exercises in
Java

Jorge Alexandre da Silva Gonçalves

Master of Computer Engineering

Supervisor:
PhD, André Leal Santos, Assistant Professor
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:
PhD, Joana Martinho de Almeida Costa Pardal, Assistant Professor
Iscte - Instituto Universitário de Lisboa

November, 2022

Department of Information Sciences and Technologies

A Hint Generation System for Introductory Programming Exercises in
Java

Jorge Alexandre da Silva Gonçalves

Master of Computer Engineering

Supervisor:
PhD, André Leal Santos, Assistant Professor
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:
PhD, Joana Martinho de Almeida Costa Pardal, Assistant Professor
Iscte - Instituto Universitário de Lisboa

November, 2022

For the women who follow me on this journey,

my two daughters Carmo and Maria

and my wife Soraia.

Acknowledgements

I would like to thank Prof. André Santos Santos and Prof. Joana Pardal, for all

the support provided in this project. A special thanks to Prof. André Santos, for your

mentoring, and your guidance, and for every minute spent during the last year helping

me with this challenge.

Special thanks to my parents, their support, for raising me and giving me the best

guidance to achieve my goals and be the person I am today. To my sisters, thank you,

even far away, for all your support and for always being so happy with my achievement.

Finally, a very special thanks to my daughters Maria and Carmo, and my wife Soraia,

who were with me from the first minute, giving support, courage and unconditional

love. They are only people who really know how difficult this long journey has been,

and without them, this objective could not be achieved.

iii

Resumo

Ensinar e aprender programação é um verdadeiro desafio para professores e alunos.

É normal os alunos que começam a codificar pela primeira vez sentirem-se bloquea-

dos ao tentar resolver um exercício de programação, ficando dependentes de ajuda de

professores ou alguém mais experiente para progredir. Porém, o aluno que trabalha

de forma autónoma pode desenvolver uma atitude proativa em relação à sua educa-

ção. Com a atual evolução da tecnologia e os acontecimentos mundiais, o ambiente

remoto para educação é uma realidade, e logo, ferramentas que possam auxiliar os alu-

nos, orientando-os quando precisam, podem ser importantes para dar-lhes a autonomia

necessária. Esta dissertação propõe um sistema de recomendação que pode ser inte-

grado em qualquer plataforma de exercícios para reconhecer um código parcialmente

escrito e gerar dicas confiáveis e úteis (combinadas com feedback positivo) para ajudar

no progresso sempre que o aluno precisar de apoio. As dicas são geradas com base numa

solução previamente definida pelo professor. Esta dissertação descreve a implementa-

ção de tal sistema de recomendação, baseado em árvores de sintaxe abstrata e distância

de edição das mesmas. Foi desenvolvido um protótipo de sistema composto por uma API

REST e um frontend Web como materialização da abordagem proposta.

Palavras-chave: Introdução à programação, geração de dicas, sistemas de recomen-

dação, trabalho autónomo.

v

Abstract

Teaching and learning programming is a real challenge for teachers and students.

Students starting to code for the first time, feeling stuck when trying to solve a pro-

gramming exercise is normal, and teachers should support them in this case. The stu-

dent who works autonomously can create a proactive attitude towards his education.

With the current evolution of technology and world events, the remote environment for

education is a reality, so tools that can help students, guiding them when they need

it, can be important to give them the necessary autonomy.This dissertation proposes a

recommendation system that can be integrated into any exercise platform to recognize

a partially written code and generate reliable and useful tips (combined with positive

feedback) whenever the student needs support, based on a solution previously set by

the teacher. This dissertation describes the implementation of such a recommendation

system, based on abstract syntax trees and tree editing distance. A system prototype

composed of a REST API and a Web frontend was developed as a materialization of the

proposed approach.

Keywords: Introductory programming, hint generation, recommender systems, autonom-

ous work.

vii

Contents

Acknowledgements iii

Resumo v

Abstract vii

List of Figures xi

List of Tables xv

Code Listings xvi

Abbreviations xvii

Chapter 1. Introduction 1

1.1. Motivation 1

1.2. Context 2

1.3. Research Questions 3

1.4. Objectives 3

1.5. Research Methodology 3

Chapter 2. Literature Review 5

2.1. Four-Component Instructional Design (4C/ID) Model 5

2.2. Existing Solutions For Learning Tools 8

2.3. A Tool For Any Programming Exercise Platform 12

Chapter 3. Automated Hint Generation 13

3.1. Overview of the Approach 13

3.2. Solution Strategy 15

3.3. Abstract Syntax Tree 16

ix

3.4. Tree Edit Distance 18

3.5. Nodes Matching 20

3.6. Nodes Pairs Analysis And Hints Generation 22

3.7. Exercise Scenario Walkthrough 32

3.8. Limitations 37

Chapter 4. Prototype Design and Implementation 39

4.1. High Level System Architecture 39

4.2. User Interface 41

4.3. Exercise Hint API 42

Chapter 5. Conclusions and Future Work 53

Bibliography 55

x

List of Figures

1 Design Science Research (DSR) methodology process model [11] 4

2 Overview of 4C/ID model 6

3 Parsons Problem - A 2D Parsons problem with paired distractors [19] 8

4 Generated questions after a code submission. [21] 9

5 The framework offering recommendations using markers based on the best

matching target implementation. [22] 10

6 Javardise editor. Two placeholders (gray) yet to be filled with expressions. [23] 11

7 Trace Generator - Questions displayed tracing the code b = a * 2 [24] 12

8 Example of wrong solution to the maximum problem 14

9 Example of incomplete solution 14

10 Example of positive feedback provided for a solution 15

11 High Level of Hint Generation Process 15

12 Abstract Syntax Tree (AST) representation of Is Even Exercise (Listing 1). The

number on each element represents the root’s key. 16

13 AST representation of Is Even Wrong Solution (Listing 2). The number on each

element represents the root’s key. 17

14 Tree Edit Distance (TED) result after comparison the AST from code submitted

(Listing 2) versus solution (Listing 1). 19

15 Gale-Shapley algorithm applied to TED matrix 14 21

16 Hint message for a wrong operator 22

17 Types Currently Handled 23

xi

18 Combining Analysis 31

19 Exercise Setup Example 33

20 Sequence Diagram of Exercise Hint Platform 33

21 Code Correction Hint 34

22 Next-Step Hint 34

23 Hint Based in Variable Roles 35

24 Different semantics to correctly solve the same solution. 36

25 Test Data Results 36

26 Semantic equivalent of the solution considered wrong. 37

27 High Level System Architecture 40

28 Main Page 41

29 Exercise Code Editor 42

30 Exercise Hint API Architecture 43

31 Available Endpoints 44

32 Example of structure generated by Strudel for Is Even exercise (Listing 1) 51

xii

Code Listings

1 Is Even Exercise Example 16

2 Is Even Exercise Wrong Solution Example 17

3 Get All Exercises Request and Response 45

4 Get Exercise by identifier Request and Response 46

5 Execise compilation 46

6 Test solution with an unsuccessful execution 47

7 Solution compilation 48

8 Hints Request 48

9 Hints Response 49

10 HintGeneratorService method to generate hints (Kotlin) 50

xiii

List of Tables

1 Value type hints 23

2 Reference type hints 25

3 Return type hints 25

4 Hints based in the number of parameters/variables 26

5 Hints based in variable roles 27

6 Expressions Examples 28

7 Hints based in expressions 30

8 Examples of semantic equivalences 30

9 Some Example of Positive Feedback Provided 32

xv

Abbreviations

API: Application Programming Interface. 39, 41, 44, 54

AST: Abstract Syntax Tree. xi, 15–17, 19

CD: Continuous Delivery. 39, 40

CI: Continuous Integration. 39, 40

DDD: Domain Driven Design. 43

DSR: Design Science Research. xi, 3, 4

HTTPS: Hypertext Transfer Protocol Secure. 40

IDE: Integrated Development Environment. 2, 13

JSON: JavaScript Object Notation. 52

PaaS: Platform as a Service. 39

QLC: Questions about Learns’ Code. 9, 12

REST: Representational State Transfer. 41

TED: Tree Edit Distance. xi, 15, 18, 19, 21

UI: User Interface. 39, 41, 53

URL: Uniform Resource Locator. 45

xvii

CHAPTER 1

Introduction

1.1. Motivation

Programming is an essential skill that all computer science students must master.Teach-

ing and learning programming is a real challenge for teachers and students, respectively.

In introductory programming courses, students exhibit various difficulties in syntactic

knowledge, conceptual knowledge, and strategic knowledge [1].

Syntactic knowledge error is common in introductory programming courses. Some

studies based on Java programming have identified that the most frequent error is mis-

matched parentheses, brackets, or quotation marks [2], unsolvable symbols (e.g. failing

to declare variable before using it), missing semicolons and using illegal start of expres-

sions [3].

The conceptual knowledge is the misunderstanding of programming constructs or ma-

chine operation.Studies reveal that students may fail to understand that variables can

only hold one value at a time or that the order of statements assigning values to variable

is important [1], the students don’t understand where the data come from and how it is

stored in memory [4]. Conditionals and looping construct are another difficult concept.

Some students even mistakenly think that if the condition of an if-statement is false,

the execution of the whole program stops or what the scope of loop is, which the lines

will be repeated, how many times the code inside the loop will be executed, etc [5].

Strategic knowledge of programming, which is also labeled as conditional knowledge

in cognitive psychology, refers to expert-level knowledge about planning, writing, and

debugging programs for solving novel problems using syntactic and conceptual know-

ledge [1]. The term strategy is a generic term exemplified by problem solving ideas

such as plans, patterns, algorithms and other methodologies, together with means of

integrating these ideas to form a single solution [6]. Raadt concludes in his study that

1

“programming knowledge is a prerequisite for programming strategies” [6], therefore,

without adequate syntactical and conceptual knowledge, students will have difficulties,

for example to choose an appropriate loop construct in a specific context or to test and

debug programs.

Learning programming is a time-consuming and difficult process as it requires stu-

dents to master different cognitive skills, requires effort and dedication from beginners,

and can therefore make students feel frustrated and abandon their Computer Science

programs. Teachers of introductory programming courses try to discover strategies that

facilitate student learning, studies have been carried out on the most suitable language

for teaching computer programming, as well as the most suitable integrated develop-

ment environments (Integrated Development Environment (IDE)) [7], or solutions using

microworlds (e.g. LOGO, Alice Project or Scracth), created with the purpose of helping

and motivating students to learn programming [8].

1.2. Context

The first steps in learning to program can be difficult, in the courses for introduction

to programming taught by universities, teaching assistants are required to manually go

through each student submission and provide qualitative feedback outlining exactly what

is wrong and how to fix it. Novice students feeling stuck when trying to implement a

particular programming task is normal, and teachers should be supportive in this case,

but facing a classroom with students all asking different questions at the same time can

be overwhelming. Consequently, due to lack of time, teachers may fail to provide the

best guidance to new students.

There are a growing number of tools to generate data-driven hints, next-step hints

that suggest how students should edit their code to resolve errors and make progress.

The focus of these tools is be a system that can reliably provide hints to students and

how much data is necessary to do so [9]. The pioneering Hint Factory [10], for example,

relies on previously collected data to fill in possible pathways, giving help to students

based on what other students have done before them, this approach may be limited

as it cannot provide help for students in states that have not been seen before, and it

2

does not ensure that all students will always be able to get a hint.This dissertation is an

attempt to provide a prototype that can provide reliable hints to students with minimal

data, in this case the solution to exercises provided by the teacher.

1.3. Research Questions

Taking into consideration many misconceptions and other difficulties that students

have when learning programming, and the purpose of providing teachers with a tool

that facilitates learning programming, the research questions that motivate an in-depth

analysis are as follows:

• What kind of hints can be used to provide useful student guidance in introductory

programming exercises?

• How to compute reliable hints for assisting the process of solving programming

exercises based in a single template solution?

1.4. Objectives

The main purpose of this research is the design and implementation of a platform

that allows teachers/instructors to configure sequences of programming exercises that

provide an automated technique to provide hints to students, not only to help correct

almost finished programs, but also to help them when they have difficulty finding a good

starting point and provide feedback when a step in the exercise is correct, so that they

achieve the objectives proposed by the exercise.

1.5. Research Methodology

The research methodology used for reaching the objectives proposed for this project

is based on the Design Science Research (DSR) methodology process model that incor-

porates six activities in a nominal sequence (Figure 1) [11]. This methodology follows a

problem-centered approach, and is oriented to the creation of artifacts [12].

Adapting this model to the context of this dissertation, starting first with “Problem

Identification & Motivation”, activity described in the motivation section of this docu-

ment, where the existing problem that gave rise to the idea of this research is described.

3

Figure 1. DSR methodology process model [11]

Second, “Objectives of a Solution”, the research objectives were defined, and the pro-

posal of a solution is a configurable exercise tool that, following the 4C/ID principles,

will provide an efficient and effective programming teaching process in the acquisition

of different technical skills. Then we have the “Design & Development” activity, where

the functionality and architecture of the artifact are defined, as well as its implement-

ation. In the, “Demonstration” activity, the effectiveness of the generated artifact is

demonstrated to solve the problem, which consists of experimentation in a given context

[11][12]. The “Evaluation” is the activity that involves comparing the “Objectives of a

Solution” to actual observed results from use of the artifact in the “Demonstration”,

at the end of this activity based on results we can decide to iterate back to “Design

& Development” to try improve the effectiveness or to continue to the next activity

[11][12]. Finally, “Communication”, in this activity, the problem and its importance,

and the usefulness of the artifact are presented through the writing of the dissertation,

that is, when the work is published and/or presented [11][12].

4

CHAPTER 2

Literature Review

The strategy used to find relevant literature, as an alternative for searching data-

bases, was the snowball approach. Snowballing consists of defining an start set of rel-

evant articles and then identifying additional articles using the list of references and

citations for each article. It is a reliable and efficient way to carry out systematic liter-

ature studies [13]. The first step is to identify an initial set of articles on a topic [13], to

build it, literature was searched on the b-on platform 1 and Google Scholar 2 using the

keywords including “4C ID model” or “four components instructional design model”, “re-

commendation framework”, “hints”, “programming learning”, “learning evaluation”,

“education”, and the most relevant were selected. From the starter set, was used the

reference list to locate additional relevant articles.

2.1. Four-Component Instructional Design (4C/ID) Model

The 4C/ID is a instructional model suitable for teaching complex skills or professional

competencies [1]. It is composed of four components (Figure 2):

a) learning tasks, which are the core of instructional process, they are whole tasks

of increasing levels of difficulty, preferably based on real-world tasks/experi-

ences;

b) supportive tasks, consist of the knowledge prerequisite for performing tasks,

they help students by providing the link between what they already know and

what they need to know to perform the non-routine aspects of learning tasks;

c) procedural information, also called just-in-time information, provides to the

students ‘how-to’ instructions to perform the routine aspects of learning tasks;

1https://www.b-on.pt/
2https://scholar.google.com/

5

d) part-task practice, is required when the learning tasks do not provide the re-

quired amount of tasks, it allows students to practice skills that require a high

level of automaticity;

Figure 2. Overview of 4C/ID model a

ahttps://www.4cid.org/

The learning task consists of completing, preferentially, real-life based tasks that

focus on authentic, hands-on tasks such as project-based training, event methodology,

problem-based learning, and competency-based learning. It is what distinct this model

of others models, that in most cases, divide the overall learning tasks into sub-tasks

of easier achievement (e.g. Programmed Learning) [14]. Software developed following

these principles can serve to develop software skills such as learning, organization and

analytical thinking [15].

The use of the 4C/ID model has increased in several areas and contributed to the

improvement of online and face-to-face learning environments, there has been high

quality research on this model in several domains such as health and medical education,

6

problem-solving and higher education [16]. Task-centric ID models such as 4C/ID cre-

ate learners who are able to transfer their knowledge from learning to the professional

environment, provide educational programs that correspond to market demands, pro-

ducing students endowed with knowledge, skills (e.g. logical reasoning, problem solv-

ing, analytical thinking, etc.) and attitudes that perform high-performing tasks [17].

Technology-based instruction used without reference to instructional design principles

that flow from human cognition is likely to be haphazard in its effectiveness [18]. Due

to the complexity of this type of learning tasks, it is crucial to accurately manage the

cognitive load imposed on students. Cognitive load theory provides instructional recom-

mendations based on our knowledge of human cognition. To manage these types of

cognitive load imposed on students, generated by the complexity of learning tasks, the

4C/ID model suggests the following specific strategies in terms of task sequencing and

information presentation, summarized in a research that reviewed the use and effect on

performance of educational programs developed with the 4C/ID model [16]:

a) sequence the learning tasks from simple to complex, to avoid cognitive overload

for students, the first task should be the simplest and the complexity should

increase for each task. The last task should be the most complex, including

real-life tasks;

b) sequencing learning tasks with decreasing student support, another way to pre-

vent student cognitive overload is to decrease support for each task, from high

built-in support to conventional unsupported tasks;

c) sequence learning tasks in a variable order, research indicates that high variab-

ility of practice affects the development of schemata and promotes subsequent

learning transfer;

d) present supporting information before students start working on learning tasks

and make it accessible to students during practice;

e) present procedural information when students need it, to reduce ineffective

cognitive load;

7

2.2. Existing Solutions For Learning Tools

During the process of learning programming, many skills can be acquired such as lo-

gical thinking, algorithm training, problem solving skills and analytical thinking skills.

To avoid cognitive overload, in the 4C/ID model, students start from simple learning

tasks and, as their knowledge increases, they work on more complex tasks, support

and guidance will gradually decrease in a process known as “scaffolding” 3. We have re-

searched possible solutions that can be used in the implementation of exercises applying

the concept of “scaffolding”.

2.2.1. Parsons Problem

Parsons problems are a type of code completion practice problem in which the learner

must place blocks of mixed up program code in the correct order 3), that should have

a lower cognitive load than a problem that requires the student to write a code from

scratch [19].

Figure 3. Parsons Problem - A 2D Parsons problem with paired distractors
[19]

3https://www.4cid.org/

8

Parsons problems was design to following principles: maximising student engage-

ment, separating logic from syntax, providing immediate feedback, and modelling good

design [20].

2.2.2. Automatic Questions About Learners’ Code (Questions about Learns’ Code

(QLC)s) Generation

Automated QLCs are questions about program code that a student has written, gener-

ated automatically from an analysis of the code produced. QLCs can encourage students

to reflect on their code and their programming knowledge, and can also be valuable for

teachers to verify students’ programming knowledge [21].

Figure 4. Generated questions after a code submission. [21]

2.2.3. Automated Framework for Recommending Program Elements to Novices

Zimmerman and Rupakheti [22] created a Java framework to integrate with the Ec-

lipse IDE to recommend specific code edits relevant to students’ problems when they

9

are trying to solve a specific programming exercise. The framework offers recommend-

ations using markers based on the best match between the student’s solution and the

teacher’s suggested solution (Figure 5).

Figure 5. The framework offering recommendations using markers based
on the best matching target implementation. [22]

2.2.4. Structured Code Editor

The purpose of a structured code editor “is to constrain editing to syntactically valid

program code, that is, the modifications ensure that the source code always conforms to

grammar” [23]. For example, Javardise consists of a Java structured code editor whose

purpose is to aid programming pedagogy, the main purpose is to avoid the syntax barrier

in the early stages of introductory programming, students will focus on semantics and

not waste time with the syntax obstacles [23].

10

Figure 6. Javardise editor. Two placeholders (gray) yet to be filled with
expressions. [23]

2.2.5. Automated Code Tracing

The automated code tracing generates questions about the code executed by the

student. The questions are generated for the student to explain the code, data type,

execution result value or variable value (Figure 7). The main objective is to provide

students with the ability to read and understand code, which is a fundamental skill in

programming [24].

11

Figure 7. Trace Generator - Questions displayed tracing the code b = a * 2
[24]

2.3. A Tool For Any Programming Exercise Platform

Based on the research carried out, this dissertation focuses on the development of a

tool for platforms for introductory programming exercises, some of the tools and/or ideas

above can be used to apply the concept of “scaffolding”. parsons or a structured code

editor would be interesting solutions to implement exercises where the task complexity

is low, the automatic generation of QLCs or automated code tracing exercises would be

the most suitable solution for intermediate levels of complexity. An environment with

built-in hints that suggests what is needed to solve based on a basic solution, combined

with intermediate positive feedback when an exercise step is correct. It could be an

important tool to be part of a “scaffolding” process, so this dissertation will be based

on these two concepts to provide a prototype to be integrated into any platforms for

introductory programming exercises, regardless of the programming language, providing

guidance for students during their tasks to solve programming problems and also provid-

ing an computer-assisted feedback which is one of most effective forms of feedback

provide cues or reinforcement to learners [25].

12

CHAPTER 3

Automated Hint Generation

This chapter will present the basis for an automated hint generation system that im-

plements an approach that provides hints by structurally comparing the student’s solu-

tions with the solution model created/provided by the teacher. This comparison is made

for each element that can compose a program, for example, return type, parameters,

variables, statements like for-statement, if..else-statement, return-statement, etc.

This approach aims to guide students and help them when they feel stuck, providing

hints that can help them achieve their goal.

3.1. Overview of the Approach

To demonstrate what this approach consists of, let’s consider a simple problem to

find the maximum integer value contained in an array of integers. This problem teaches

concepts of conditionals and iteration over arrays. For this problem, of course, some

students struggled with many low-level Java semantic issues such as array indexing and

iteration limits. The IDEs have many time-saving features for developers, such as in-

telligent code completion and automated code generation, which eliminates the need

to type complete strings. IDEs analyze the code as it is written, so errors caused by

human error are identified in real time, but all these features will only help the student

to overcome some syntax difficulties, and thus, perhaps, focus on the problem.

In the example (Figure 8) the solution may be obvious, but it may also be a problem

that some students can only overcome with the help of the teacher. New programming

students can face many challenges when learning to program, in addition to syntax is-

sues, so the goal is to help newbies in their learning process by recommending specific

code edits relevant to their problems. In the example bellow (Figure 8) we exemplify a

solution that is almost correct, what if the student feels stuck at the beginning?

13

Figure 8. Example of wrong solution to the maximum problem

Among other relevant help, the application will provide students with some guidance

in designing the solutions (Figure 9). A student writes some code for a proposed prob-

lem, when he feels stuck he will press help button in the application. The application

will analyze his code, compare it with the professor’s proposed solution and recommend

the next step using alert markers. The reduced number of visible hints per request (one)

is important to reduce the cognitive load. That way, novices will work independently

while getting help overcoming their learning barriers, giving teachers more time that

can be spent providing better guidance on more complex tasks.

Figure 9. Example of incomplete solution

The tool also provides positive feedback for all lines that have been well formed (Fig-

ure 10), the combination of hints and feedback can improve students’ learning. Hattie

and Timperley [25] noted that targeted feedback at the right level can help students

14

Figure 10. Example of positive feedback provided for a solution

understand, engage, or develop effective strategies for processing the information they

are trying to learn.

3.2. Solution Strategy

Figure 11 gives us an overview of the approach to generating hints. The process

begins by parsing both solution versions to produce an AST (Section 3.3) of each code

solution. Each node in the generated AST represents one of twelve nodes type that we

have predefined to be parsed differently and to provide better accuracy when we try to

combine each node. To find a set of differences, we compare the two AST, obtaining

their TED matrix (Section 3.4), from the produced matrix a new matrix is produced which

contains the ”stable match” of each node and finally each pair will be compared based

on its own node type (there are no pairs with two different node types) to give hints

based on their differences.

Figure 11. High Level of Hint Generation Process

15

3.3. Abstract Syntax Tree

An Abstract Syntax Tree (AST) is a tree representations of code created by the com-

piler during the process of converting the program from text to binary code, they are a

fundamental part of the way a compiler works.

1 class Exercise {
2 static boolean isEven(int number)
3 {
4 boolean isEven = false;
5 if (number % 2 == 0)
6 isEven = true;
7 return isEven;
8 }
9 }

Listing 1. Is Even Exercise Example

Figure 12. AST representation of Is Even Exercise (Listing 1). The number
on each element represents the root’s key.

16

There are numerous uses of AST with application in compilers, as abstract syntax

trees are data structures widely used in compilers to represent the structure of program

code. Once the ASTs were stored as data structures, the tree’s edit distance can be used

to compare them directly.(Figure 12)

1 class Submission {
2 static boolean even(int number)
3 {
4 boolean e = false;
5 if (number / 2 == 0)
6 return true;
7 }
8 }

Listing 2. Is Even Exercise Wrong Solution Example

Figure 13. AST representation of Is Even Wrong Solution (Listing 2). The
number on each element represents the root’s key.

17

3.4. Tree Edit Distance

Tree Edit Distance (TED) refers to the minimum number of node insertions, node de-

letions, and node reclassifications required to transform a given tree T into a desired

target T ′. The tree edit distance problem can be comparable to the string edit dis-

tance.In the case of the string, if S1[i] S2[j], then the distance between S1[1..i − 1] and

S2[1..j − 1] is the same as between S1[1..i] and S2[1..j][26].

Algorithm 1 Tree Edit Distance - Zhang-Shasha Algorithm [26]

Require: Tree T1 and T2

Ensure: Preprocessing (to compute l(), LRkeyroots1 and LRkeyroots2)
for i← 1 to LRkeyroots(T1) do

for j ← 1 to LRkeyroots(T2) do
i← LRkeyroots1[i′]
j ← LRkeyroots2[j′]
forestdist(∅,∅)← 0
for i1 ← l(i) to i do

forestdist(T1[l(i)..i1],∅)← forestdist(T1[l(i)..i1 − 1],∅) + γ(T1[i1]→ Λ)
end for
for j1 ← l(j) to j do

forestdist(∅, T2[l(j)..j1])← forestdist(∅, T2[l(j)..j1 − 1]) + γ(Λ→ T2[j1])
end for
for i1 ← l(i) to i do

for j1 ← l(j) to j do
if l(i1) = l(i) and l(j1) = l(j) then

forestdist(T1[l(i)..i1], T2[l(j)..j1]) = min{
forestdist(T1[l(i)..i1 − 1], T2[l(j)..j1]) + γ(T1[i1]→ Λ)
forestdist(T1[l(i)..i1], T2[l(j)..j1 − 1]) + γ(Λ→ T2[j1])
forestdist(T1[l(i)..i1 − 1], T2[l(j)..j1 − 1]) + γ(T1[i1]→ T2[j1])}

treedist(i, j)← forestdist(T1[l(i)..i1], T2[l(j)..j1])
else

forestdist(T1[l(i)..i1], T2[l(j)..j1]) = min{
forestdist(T1[l(i)..i1 − 1], T2[l(j)..j1]) + γ(T1[i1]→ Λ)
forestdist(T1[l(i)..i1], T2[l(j)..j1 − 1]) + γ(Λ→ T2[j1])
forestdist(T1[l(i)..i1 − 1], T2[l(j)..j1 − 1]) + treedist(i, j)}

end if
end for

end for
end for

end for

18

In the case of the tree, the main difficulty is that preserving the ancestral relation-

ships in the mapping between the trees prevents the analogous implication from being

valid. Zhang and Shasha [26] presented a simple dynamic programming algorithm (Al-

gorithm 1) to find the edit distance between ordered labeled trees, with time complexity

O(n2·log2(n)) where n is the number of nodes in the larger of the two trees, has bet-

ter time and space complexity than others algorithms to solve the tree edit distance

problem and is generalizable with the same time complexity for approximating tree

matching problems.To demonstrate the TED algorithm, the code illustrated in Listing 1

and in Listing 2 are transformed into two different ASTs (T - Figure 12) and T ′ - Figure 13

respectively), after execute the algorithm to compute the tree edit distance between

the two ASTs produced, the final result is the matrix represented in Figure 14. The value

in the lower right corner of the matrix (Figure 14) is the distance between the T and the

T ′, it means that we need to do n operations (insertion or deletion) in the tree T to get

to the same tree represented by the T ′ tree.

Figure 14. TED result after comparison the AST from code submitted
(Listing 2) versus solution (Listing 1).

19

For the implementation of the algorithm, it was defined for each node its own cost

function, during the calculation the node types are checked, when the type is the same

the cost function is executed to verify more details of the nodes (for example, type of

data, roles of the variables, if it is inside or outside the loop, etc.) if all the character-

istics are equal, the cost is considered zero. The characteristics to check depend on the

node type, and what was defined in its cost function.

3.5. Nodes Matching

The matrix produced by the Zhang-Shasha algorithm (Figure 14) gives us similarities

between each nodex and nodey, nowwe need to prepare a list of the nodes to be analyzed,

the defined rule is that a nodex can only be paired with a single nodey and vice versa.

The pair created must be the best match between the nodes.

The Gale-Shapley Algorithm is an efficient algorithm that is used to solve the Stable

Matching problem, whose time complexity is O(n2) where n is the number of elements

involved. The stable correspondence problem, simplifying, of two different sets of equal

size (e.g., n men and n women, or n students and n universities), and the order of

preference of each element of the first set by for each element of the second set,

can find the stable match for all elements of both sets. The Gale-Shapley algorithm

guarantees to produce a stable match for all elements[27].

Algorithm 2 Stable Matching - Gale–Shapley Algorithm

Require: Initialize m ∈M and w ∈ W to free

while ∃free man m who has a woman w to propose to do
w ← first woman on m’s list to whom m has not yet proposed
if ∃ some pair (m′, w) then

if w prefers m to m′ then
m′ becomes free
(m,w) become engaged

end if
else

(m,w) become engaged

end if
end while

20

Applying this algorithm to the matrix obtained in the TED calculation, where each

column will be an element of a set A and each row will be an element of a set B, and

each value that composes each row or column corresponds to the preference value in the

element of the opposite set (where the lowest value corresponds to the most preferred

value), the best match for each node will be obtained.

Figure 15. Gale-Shapley algorithm applied to TED matrix 14

This algorithm also needs to be adapted to our context, as the algorithm assumes

that we are going to deal with two sets of the same size, which is not always true for

our process, as normally the trees will have different sizes. In the first example, the

resulting matrix is square, therefore ideal for the application of the algorithm. So,

consider that we need to produce a tip, when the student is writing his first lines and

he feels stuck, the resulting matrix with the TED calculation will not be square, so there

are no conditions to produce two sets with equal sizes using each row for produce one

set and each column to produce another set. The solution is to add the missing columns

or rows where all elements are represented by -1, and during the calculation assume

21

that the new row/column is not ready to “engage” as well as all remaining elements of

the opposite set when there are no free elements to match.The purpose of using this

algorithm is an efficient way to create the pairs to be compared and then produce hints

as the results of your comparison, the nodes that did not find a pair can be used to

generate next-step hints (see columns 12 and 15 in Figure 15).

3.6. Nodes Pairs Analysis And Hints Generation

The analysis of each node is different, the analysis of ReturnTypeNode consists only

in checking the data type being used, while LoopNode consists in checking several char-

acteristics, for example, the variable to initialize, the expression of the condition, if

there is or not an alternative statement, etc...). For each verified characteristic, a spe-

cific hint is provided, to try to help the student during his attempt to produce a solution

for the proposed exercise. Hints messages are suggestions of what the student can do,

not exactly what he should do, for example a wrong operator, the message informs that

the operator is wrong but does not say which is the right operator (Figure 16).

Figure 16. Hint message for a wrong operator

3.6.1. Type Analysis

Type analysis is the analysis done to the data type of a variable, parameter, or return

type. The data type specifies the different sizes and values that can be stored in vari-

ables (Figure 17). During node pairs analysis, some nodes need to compare their data

types (e.g. return type, variable, parameter), which can give rise to some of the hints

described below.

22

Figure 17. Types Currently Handled

Hint Type When Hint Message

Value Type A reference type was used,

but the solution is expect-

ing a value type.

The solution is not ex-

pecting a reference type

as (return type, or para-

meter, or variable).

Different Type The types (Value or Refer-

ence type) are the same,

but the data type is not.

You must use a differ-

ent type than {submis-

sion.type}.

Number Type A different number type

was used.

Very good, you are us-

ing a value type as (re-

turn type, or parameter,

or variable), but you can

use a different numeric

data type than {submis-

sion.type}.

Table 1. Value type hints

23

Hint Type When Hint Message

Reference Type A value type was used, but

the solution is expecting a

reference type.

The solution is not expect-

ing a value type as (re-

turn type, or parameter,

or variable).

Array Type An array is expected, but

another reference type

data type was used.

You must use an array as

(return type, or para-

meter, or variable).

Array Elements Value Type The solution is expecting

an array and the type of

its elements is of value

type, but a reference type

has been used for its ele-

ments.

To reach the objective,

the elements of array

should be specified as

value type.

Array Elements Reference

Type

The solution is expecting

an array and the type of

its elements is of refer-

ence type, but a value

type has been used for its

elements.

To reach the objective,

the elements of array

should be specified as

reference type.

Array Different Type The solution is expecting

an array whose elements

are of a different data

type than the given data

type.

You must use a data

type other than {sub-

mission.type}, for array

elements.

24

Array Number Type The solution expects an ar-

ray whose elements are of

a different number type

than the given data type.

Great job, you are using

a value type as data type

for array elements, but

you can use a different

number type than {sub-

mission.type}.

Array Dimensions The solution expects an ar-

ray whit different dimen-

sion that the dimension

used in submission.

Data type is OK, but now

you need to check the ar-

ray dimensions.

Table 2. Reference type hints

3.6.2. Return Type Analysis

The return type analysis basically consists of checking the defined return type (Table

1 and Table 2), but return type has a specific keyword (void) that is handled as a type,

and will provide specific hints when it is used in the student’s solution or in the teacher’s

solution (Table 3).

Hint Type When Hint Message

Void A type was used, but the

solution is expecting the

void keyword.

Your solution have been

specified to return a data

type, but is not expected

to return a value.

Type The void keyword was

used, but the solution is

expecting a type.

Your solution was spe-

cified not to return a

value, but you must define

a data type for the return

value.

Table 3. Return type hints

25

3.6.3. Parameter and Variable Analysis

Parameter node and Variable node analysis is a bit more complex than return node

type analysis, as in return type node analysis, the types are checked (Table 1 and Table

2) for both, but some hints are generated based on the number of expected parameters

and/or variables. Here starts the first next-step hints when the parameters or variables

are missing in the student solution (Table 4).

Hint Type When Hint Message

Unnecessary The number of (paramet-

ers, or variables) sent is

greater than the number

of (parameters, or vari-

ables) in the solution.

You can consider remove

this (parameter, or vari-

able).

Needs Parameters The submitted solution

does not contain any

parameters, but the exer-

cise expects at least one

parameter

You need to set some

parameters in your func-

tion.

Add More Parameters The submitted solution

does not contain the

number of parameters

expected.

The number of parameters

is not correct, try adding

one or more parameters to

your function.

Needs Variable The submitted solution

does not contain any

variable, but the exer-

cise expects at least one

variable

You will need to declare

some variables in your

solution.

Table 4. Hints based in the number of parameters/variables

26

Hint Type When Hint Message

Fixed Value The implemented variable

should receive a value that

then does not change for a

duration of a loop.

You should consider mak-

ing this variable’s role as

a fixed value.

Stepper The variable is expected

to move through an ar-

ray or other data struc-

ture, typically going to-

wards a fixed value and

looping through the ele-

ments in an array.

You should consider mak-

ing this variable’s role as

a stepper.

Gathered The student’s solution

must implement the vari-

able in such a way that it

accumulates or records a

set of data and inputs.

You should consider mak-

ing this variable’s role as

a gathered.

Most Wanted Holder The solution must have a

variable that tracks the

lowest or highest value in

a set of inputs.

You should consider mak-

ing this variable’s role as

a most wanted holder.

One-Way Flag The variable (boolean) is a

one-way flag when can ef-

fectively only be changed

once, although the new

value can be reassigned

multiple times.

You should consider mak-

ing this variable’s role as

a one-way flag.

Table 5. Hints based in variable roles

27

Variables also produce hints based on their roles, results from one study suggested

that knowledge about variable roles allows students to process information similarly to

good coders [28], so this type of hint can be very useful to help students (Table 5).

3.6.4. Expression Analysis

Expression Analysis consists of analyzing the expressions defined for an assignment,

loop statement, if-else statement, or return statement. The treated expressions are

described in Table 6. As with type analysis, during the pairs of nodes analysis, some nodes

need to compare their expressions, which can give rise to some of the tips described

below (Table 9).

Expression Example

Literal 1, ’a’, true

Variable Element x

Array Element array

Array Allocation array[expression]

Array Length array.length

Unary Expression NOT(a == b), -(1 + 2)

Binary Expression a + 2, a + b - c, a AND c

Table 6. Expressions Examples

Hint Type When Hint Message

Literal The exercise solution is us-

ing a literal expression but

the student solution is us-

ing a different expression.

For this (assignment,

or condition, or return

statement) is expected

to use a literal value

instead of a variable or an

expression.

28

Literal Value The exercise is expecting

a literal value different

from the one defined by

the student.

You should try to use a dif-

ferent literal value, it can

affect the result of your

solution.

Variable The exercise solution is us-

ing a variable expression

but the student solution is

using a different expres-

sion.

For this (assignment,

or condition, or return

statement) is expected

to use a variable value

instead of a literal value

or expression.

Array Element The exercise solution is us-

ing an value from an spe-

cific array element as ex-

pression but the student

solution not.

It is expected to (assign,

or use) a value of an ar-

ray element to this assign-

ment.

Array Allocation The exercise solution is al-

locating an array but the

student solution is using a

different expression.

It is expected to allocate

an array on this assign-

ment.

Array Length The exercise solution is us-

ing the attribute length

from an array in its expres-

sion but the student solu-

tion not.

You can use the the attrib-

ute length to determines

the length of an array.

Binary Expression The exercise solution is us-

ing a binary expression but

the student’s solution not.

You can use a expression

instead of a single vari-

able or literal value.

29

Operator The operator used by stu-

dent is not equal or equi-

valent to the solution’s op-

erator.

Please review the oper-

ator that you are using, it

can be wrong.

Table 7. Hints based in expressions

As syntactically different programs can behave in an equivalent way, the nodes that

can contain expressions are able to treat equivalent expressions as an equal expression,

avoiding incorrect classifications and producing hints that can lead the student to error.

Below are some examples of expressions that can be handled (Table 8).

Semantic Equivalences
a >= b b <= a ¬(a <= b) ¬(b >= a)
a <= b b >= a ¬(a >= b) ¬(b <= b)
a > b b < a ¬(a < b) ¬(b > a)
a < b b > a ¬(a > b) ¬(b < b)
a = b b = a ¬(a 6= b) ¬(b 6= a)
a 6= b b 6= a ¬(a = b) ¬(b = a)
a+ b b+ a

a ∗ b b ∗ a
a++ a = a+ 1 a = 1 + a

a−− a = a− 1

Table 8. Examples of semantic equivalences

3.6.5. Combining Analysis

For Assignment (Figure 18a), Loop (Figure 18b), Selection (Figure 18c) and Return

(Figure 18d) nodes, the application will combine the previous analyses. For example,

for Loop Analysis, the three parts that compose the loop-statement (initializer, condi-

tion and increment), will be analyzed separately. That is, for initializator the Variable

Analysis (Section 3.6.3) and Assignment Analysis (Figure 18a, which performs the Type

Analysis and Expression Analysis) will be performed, for condition the Expression Ana-

lysis (Section 3.6.4) will be executed, and finally, for increment will be the Assignment

Analysis.

30

Figure 18. Combining Analysis

3.6.6. Positive Feedback

In addition to generating hints, feedback is provided for each well-implemented ele-

ment (node). Positive feedback can help students stay focused on their goal [25], i.e.

solving the exercise. The messages provided are specific about what the student did

well so the student can understand them and what they should continue to do.

Type When Message

Parameter A parameter node was well

formed

Good, this parameter is

correct.

31

Return Type Return type node was well

formed

Great, return type is cor-

rect.

Variable Variable node was well

formed

Good, this variable is cor-

rect.

Assignment Assignment node was well

formed

Good, this variable assign-

ment is correct.

If..Else Statement Selection node condition

was well defined

Well done, the condition is

correct.

Loop Statement Loop node condition was

well defined

Good job, the condition is

well formed.

Return Statement Expression of return is

right

Well done, the return

statement is right.

Table 9. Some Example of Positive Feedback Provided

3.7. Exercise Scenario Walkthrough

This section describes a scenario where a teacher creates exercises, in order that

students will try to solve them with the support and guidance of our tool.

3.7.1. Teacher - Exercise Setup

The teacher needs to create one or more exercises in the platform. Each exercise

should contain a title, a description of what the purpose is (which may provide some

guidance to the student, e.g. expected data type, expected input parameter, etc.),

some input parameters and expected output for the exercise (which can be used by the

prototype to test the student’s solution), and a proposed solution (a template). (Figure

19).

32

Figure 19. Exercise Setup Example

3.7.2. Student - Solving Exercise

a) A student starts writing a few lines of code for a proposed problem posted on

the platform. When the student feels stuck, he will press the “Get Hint?” button

available on the platform. This action will send a request (which includes the

exercise id and the student’s code solution) to the API that will analyze the

code against the code related to the provided exercise ID, and then retrieves a

response to the platform (Figure 20).

Figure 20. Sequence Diagram of Exercise Hint Platform

b) The API response is handled by the platform and rendered, showing hints and/or

feedback for the student by adding markers to code. Figure 21 presents a hint,

suggesting the student to change the return type of his solution.

33

Figure 21. Code Correction Hint

c) Step b can be repeated until the student gets the solution right. For example,

the student follows the hint (or ignores it) and clicks the button to get a new

hint. Figure 22 shows a new hint that can be provided to the student, this time

it is not a correction hint, but rather a hint for the next step that suggests the

student to add a variable to his solution.

Figure 22. Next-Step Hint

34

d) The prototype also provides hints based on the roles of variables in the proposed

solution (Figure 23), the results of one study suggested that knowledge about

the roles of variables allows students to process information similarly to good

code connoisseurs [28].

Figure 23. Hint Based in Variable Roles

e) The prototype reduces to a canonical form some semantic equivalences, such as

handling all loops (simple for-loop Figure 24c, while-loop Figure 24b, enhanced

for-loop Figure 24a) in a normalized way and also normalizing the relational and

arithmetic operators (see some examples in Table 8).

35

Figure 24. Different semantics to correctly solve the same solution.

f) Finally, the prototype provides a button to test the student’s solution, using the

parameters previously configured by the teacher, in the configuration of the

exercise (Figure 25).

Figure 25. Test Data Results

36

3.8. Limitations

Although the prototype largely fulfills the proposed objectives, it has some identified

characteristics that can be explored (and/or added) in future works.

• The current prototype is performing an intraprocedural analysis, that is, it is

analyzing only one function (or method), implementing an interprocedural ana-

lysis (it covers several functions) is possible and can be an improvement. One

approach that can be followed is to convert the main block of each nested func-

tion as the main function block when the AST is built. This allows us to com-

pare several semantically equivalent solutions, even if they don’t contain nested

functions to be executed.

• Creating a set of solutions for the same exercise could improve the quality of the

hints provided, the TED could be calculated by comparing the solution provided

by the student with each solution in the set and using the solution that has the

smallest TED to provide hints.

• Strudel provides many features, an interesting feature is to run the solution after

deserialization, this allows us to provide hints for more complex exercises. For

example, an exercise requires a minimum of iterations within a loop. Strudel

can be also used for the following example:

Figure 26. Semantic equivalent of the solution considered wrong.

Figure 26 represents a different way of solving the sum exercise, but instead

of starting at the beginning of the array it starts at the end, but the solution is

37

semantically equivalent to the teacher’s solution. In this case, Strudel can be

used to check if the solution provides the expected result and considers it as a

valid solution and inhibits hints for code correction or next step.

38

CHAPTER 4

Prototype Design and Implementation

The main purpose of this application is to provide hints throughout the student prob-

lem solving process, this means that students should not only be given hints on how to

correct near-completed programs, but also students who struggle to find a good starting

point. However, from a more technical point of view, there was a concern to build an

application with an architecture that would allow its reuse and easy integration with

other systems. In addition, a development environment was also created with the Con-

tinuous Integration (CI)/Continuous Delivery (CD) method, which provides an automatic

way for deployments and ensures application quality by running existing unit tests before

deployment. In this chapter, the architecture of the system and the technologies used

for its implementation will be described, followed by how the core component of the

application (main focus of the dissertation), called Exercise Hint API, was implemented.

It then describes how the Exercise Hint API can be integrated into an User Interface (UI)

and how the user can interact with it. Finally, it will describe some challenges that arose

during the development of the prototype.

4.1. High Level System Architecture

The entire system (Figure 27) was built around the Exercise Hint API as it is the core

of the prototype. But to demonstrate how the API can be used, a UI was implemented

in a web environment, so that users have an interactive environment to try and test the

Application Programming Interface (API). The system was built following a Platform as

a Service (PaaS) (Platform as a Service) cloud model architecture, that is, it offers a

flexible and scalable cloud platform to develop, deploy, run and manage applications.

The cloud service provider (Google Cloud4) provides the necessary networks, servers,

and storage to host an application while the end user oversees software deployment and

4https://cloud.google.com/

39

configuration settings. A CI/CD pipeline was also set up which made it easier to maintain

the integrity of the deployment.

Figure 27. High Level System Architecture

In this environment, the code is written and uploaded to the source repository (Git-

Hub5), as soon as the code arrives in the repository, Cloud Build6 is triggered and runs

tests and security checks, builds a docker image and pushes it to the Container Registry7.

Then the produced containers are deployed on the production clusters (Cloud Run8), fi-

nally available to be accessed anywhere.Following a client-server architectural pattern,

applying the separation of concerns between the presentation layer (frontend) and the

business logic and/or physical logic (backend), the layers communicate with each other

through the Hypertext Transfer Protocol Secure (HTTPS) protocol.

5https://github.com/
6https://cloud.google.com/build
7https://cloud.google.com/container-registry/
8https://cloud.google.com/run/

40

The frontend was developed with JavaScript9 language using mainly the libraries, Re-

act10 and CodeMirror11. The backend is a Representational State Transfer (REST) API [29],

developed using Kotlin12 language, and Spring13 framework and Strudel library (which

provides a powerful tool to deserialize code in text format to an object). The API in-

cludes all the business logic, that is, all the core functionalities related to the suggested

approach for this dissertation.

4.2. User Interface

To allow interaction with the API and its implemented logic, a simple user interface

(UI) was developed. The main page contains some exercises that can be selected(Figure

28).

Figure 28. Main Page

9https://www.javascript.com/
10https://reactjs.org/
11https://codemirror.net/
12https://kotlinlang.org/
13https://spring.io/

41

After selecting the exercise, a new page will be displayed where the student can start

solving the exercise (Figure 29). The page is divided into three sections, on the right

side the exercise content (Figure 29a), which contains the description of the exercise

and the expected results for specific entries. The left side is divided into two parts, in

the upper part the code editor, where the student can start writing his solution (Figure

29b) and where two buttons are also available (Figure 29c), one to get tips and the

other to submit and test his solution and, finally, at the bottom, a third section where

the results of submitted solution and some error messages when something goes wrong

with the communication between the layers will be displayed (Figure 29d).

Figure 29. Exercise Code Editor

4.3. Exercise Hint API

As described earlier, the Exercise Hint API is a REST API that provides an endpoint,

which, upon receiving a request containing a code snippet and the exercise ID, will return

42

a list of tips and positive feedback based on the solution related to the given exercise

ID. In addition to the main endpoint, there is two more endpoint to support the frontend

with exercise data. There is an endpoint that can be accessed to get the API document-

ation (Document OpenApi14) that describes its elements.

Designed using a clean architecture [30], putting the business logic and application

model at the center of the application, rather than having the business logic dependent

on data access or other infrastructure issues, this dependence is reversed: the infra-

structure and implementation details depend on the application core. Following the

Dependency Inversion Principle [31], as well as Domain-Driven Design (Domain Driven

Design (DDD))[32] principles, this functionality is achieved by defining abstractions, or

interfaces, at the domain layer, which are then implemented by types defined at the

infrastructure layer (Figure 30).

Figure 30. Exercise Hint API Architecture

14https://spec.openapis.org/oas/latest.html

43

4.3.1. API Endpoints

The API exposes six endpoints that will support the entire flow defined for the pro-

totype to present the idealized approach to provide tips and feedback to students. Con-

trollers are responsible for controlling the way a user interacts with an application. A

controller contains the flow control logic and determines what response to send back to

a user when they make a request. The controllers are located in the API layer of the

application (Figure 30), and each controller is represented by one of the three available

resources (Exercises, Compiler and Hints) that will be described below.

Figure 31. Available Endpoints

44

4.3.1.1. Exercises This resource is responsible for providing, as the name implies,

the required exercise data to be displayed in the user interface for the student. There

are two endpoints available, one to get all available exercises (Listing 3) and another

to get a specific exercise by identifier, providing the identifier in the Uniform Resource

Locator (URL) (Listing 4).

1 Request:
2 GET /api/v1/exercises HTTP/1.1
3 Response:
4 [
5 {
6 "id": "f04e081b -c0e7 -4f04-a517 -89ccc322b054",
7 "name": "Exercise 4 - Linear Search",
8 "description": "Write a method that returns the index of ...",
9 "additionalDescription": "Assume that the index of the first ...",
10 "testData": [
11 {
12 "input": [
13 { "value": "5" },
14 { "value": "[1, 2, 3, 5, 8, 13]" }
15],
16 "output": { "value": "3" }
17 }
18]
19 }
20]

Listing 3. Get All Exercises Request and Response

The exercise data model contains id which is the exercise identifier, description that is

a short description of the exercise, additionalDescription is a more detailed description

of the exercise and testData which represents the expected result for the specific input

parameters.

45

1 Request:
2 GET /api/v1/exercises/6d959c20 -a370 -4e97-b448-a37a39a35328 HTTP/1.1
3 Response:
4 {
5 "id": "6d959c20 -a370 -4e97-b448-a37a39a35328",
6 "name": "Exercise 1 - Max",
7 "description": "Write a Java program that, given an array of integers...",
8 "additionalDescription": null,
9 "testData": [

10 {
11 "input": [{"value": "[0, 1, 2, 3, 5]" }],
12 "output": {"value": "5"}
13 }
14]
15 }

Listing 4. Get Exercise by identifier Request and Response

4.3.1.2. Compiler Resource responsible for compiling a previously created exercise

or executing a code snippet provided upon request. Three endpoints are available, one

to run a specific exercise by identifier using random parameters (Listing 5), a second to

run the provided solution also using random parameters (Listing 7).

1 Request:
2 GET /api/v1/compiler/6d959c20 -a370 -4e97-b448-a37a39a35328 HTTP/1.1
3 Response:
4 {
5 "id": "6d959c20 -a370 -4e97-b448-a37a39a35328",
6 "result": {
7 "input": ["[0, 6, 4, 2, 8, 5, 8, 2]"],
8 "output": "8",
9 "wasSuccessful": true,
10 "errors": [],
11 "hasPassed": true
12 }
13 }

Listing 5. Execise compilation

The latter is used to test the solution based on the parameters provided in the re-

quest (Listing 6). The request’s compiler data model contains an id for the solution

46

and the code that contains the code snippet to execute, for testing it is also necessary

the testData, which contains a list of input parameters and expected output.

1 Request:
2 POST /api/v1/compiler/6d959c20 -a370 -4e97-b448-a37a39a35328/test HTTP/1.1
3 {
4 "id": "6d959c20 -a370 -4e97-b448-a37a39a35328",
5 "code": "class Exercise1 { static int max(int[] array) { return 0; }}",
6 "testData": [
7 {
8 "input": [{ "value": "[0, 1, 2, 3, 5]" }],
9 "output": { "value": "5" }

10 }
11]
12 }
13 Response:
14 [
15 {
16 "id": "6d959c20 -a370 -4e97-b448-a37a39a35328",
17 "result": {
18 "input": ["[0, 1, 2, 3, 5]"],
19 "output": "null",
20 "wasSuccessful": false ,
21 "errors": ["variable not initialized"],
22 "hasPassed": false
23 }
24 }
25]

Listing 6. Test solution with an unsuccessful execution

The response data model is composed of the id of the solution, and the result, whose

data model contains the input parameters used to run the solution, the output after o

execution , an attribute that indicates whether the execution was successful (wasSuc-

cessful), a list of errors encountered during execution and whether the solution passed

(hasPassed) the tests, that is, is returning the expected result.

47

1 Request:
2 POST /api/v1/compiler
3 {
4 "id": "6d959c20 -a370 -4e97-b448-a37a39a35328",
5 "code": "class Exercise1 { static int max(int[] array) { return 0; }}"
6 }
7 Response:
8 {
9 "id": "6d959c20 -a370 -4e97-b448-a37a39a35328",

10 "result": {
11 "input": ["[0, 3, 4, 3, 1]"],
12 "output": "0",
13 "wasSuccessful": true,
14 "errors": [],
15 "hasPassed": false
16 }
17 }

Listing 7. Solution compilation

4.3.1.3. Hints It is the main resource, responsible for providing hints and positive

feedback on the code snippet (code) based on the exercise id (solutionId), both sent on

request body (Listing 8) .

1 Request:
2 POST /api/v1/hints HTTP/1.1
3 {
4 "solutionId":"6d959c20 -a370 -4e97-b448-a37a39a35328",
5 "submissionId":"6d959c20 -a370 -4e97-b448-a37a39a35328",
6 "code": "class Exercise1 { static int max(int[] array) { return m;}}"
7 }
8

Listing 8. Hints Request

48

1 Response:
2 {
3 "solutionId": "6d959c20 -a370 -4e97-b448-a37a39a35328",
4 "submissionId": "6d959c20 -a370 -4e97-b448-a37a39a35328",
5 "hints": [
6 {
7 "id": "m",
8 "location": {
9 "line": 3,

10 "start": 12,
11 "end": 27
12 },
13 "hint": {
14 "id": "HNT003001014",
15 "type": "VARIABLE",
16 "messageType": "EXPECTING_MOST_WANTED_HOLDER",
17 "message": "You should consider making this variable 's ...",
18 "complementaryMessage": "Remember , the role of ...",
19 "whenHint": "When the role of solution is most wanted ...",
20 "isPositiveFeedback": false
21 }
22 }
23]
24 }

Listing 9. Hints Response

The Hints response data model (Listing 9) contains the exercise id (solutionId), the

id that the service consumer gave to its request (submissionId), and a list of (hints).The

data model defined for each hint is composed of an id, which represents the parsed

element (for example, the name of the variable, or a loop (”Loop(depth)”), or a de-

claration of return(”Return(depth)”), etc.), the location in the code snippet sent on

request, which contains the line number and where the expression starts (start) and

where it ends (end). There is one more attribute (hint) which contains the hint object,

which contains the message and a complementary complementaryMessage message to

be displayed, and some more details about the hint, like the internal textitid, and the

hint type, type of message (messageType), when this message occurs (whenHint), and

whether it is a hint or positive feedback (isPositiveFeedback).

49

4.3.2. Hint Generator Service

The Hint Generator Service, located in application layer, is the component that con-

tains the flow described in our approach (Section 3.2). This component will execute

sequentially each task described in the flow.

1 fun generateHints(solutionsPair: Pair<Code,Code >):List<AnalysisResult > =
2 try{
3 solutionsPair
4 .parse()
5 .toAbstractSyntaxTree()
6 .getTreeEditDistance()
7 .getNodesMatching()
8 .generateHints()
9 } catch (e : SubmissionNotWellFormedException){

10 getHint(e.id, e.location , HintCode.SUBMISSION_NOT_WELL_FORMED)
11 } catch (e : SolutionNotWellFormedException){
12 getHint(e.id, e.location , HintCode.SOLUTION_NOT_WELL_FORMED)
13 }

Listing 10. HintGeneratorService method to generate hints (Kotlin)

4.3.2.1. parse It is the method responsible for deserializing the text code (Figure

32). It’s a simple method that uses the implementation of the Strudel library to perform

deserialization.

4.3.2.2. toAbstractSyntaxTree This method convert the object (IProcedure) created

by the parse method to a new object (ITree) that represents an abstract syntax tree

(Section 3.3).

4.3.2.3. getTreeEditDistance This method performs the implementation of the Zhang-

Shasha algorithm, to provide a matrix representing the tree-editing distance between

previously generated trees (Section 3.4).

4.3.2.4. getNodeMatching Based on Gale-Shapley algorithm (Section 3.5), this method

will provide a list of matched nodes based in the matrix generated by the method

getTreeEditDistance.

50

Figure 32. Example of structure generated by Strudel for Is Even exercise
(Listing 1)

4.3.2.5. generateHints Finally, this method will compare each pair from the previ-

ously created list, and based on the results of that comparison, it will give you tips or

positive feedback (if there are no hints) based on each generated pair.

4.3.3. Domain and Infrastructure Layers

The domain layer (Figure 30) contains all the entities, enums, exceptions, interfaces,

types and logic specific to this layer, it is the layer that should contain the business logic

of the application, and has no dependencies on anything external. The domain layer is

the layer where the data model used by the application was defined.

The infrastructure layer (Figure 30) should contain classes for accessing external

resources such as file systems, web services, and so on. These classes are based on

51

interfaces defined in the application layer. In this layer, data access was implemented,

implementing the repository pattern. For the prototype was decided to store the data

in two JavaScript Object Notation (JSON) files (exercise.json and hints.json), but with

the architecture defined, it can be easily replaced by technologies that allow persisting

new data for the available resources.

52

CHAPTER 5

Conclusions and Future Work

In this dissertation, the objective was to demonstrate the idea of a tool based on

a single model/exercise solution that can compare with a student’s code snippet and

then provide useful and reliable programming tips and positive feedback to the student,

aiming at providing some guidance and keep them motivated while solving the exercise.

One of the research questions was to find out what kind of hints can be useful for the stu-

dent’s guidance, it was concluded that hints including textual explanation can improve

the student’s immediate programming performance [33], and students who received this

type of hint perceived that the provided support is significantly more useful, relevant,

and interpretable, and had a better understanding of the provided hint than students

who only received code hints [34]. Another question to be answered, and important for

the construction of a possible solution, how to compute reliable hints for help the pro-

cess of solving programming exercises based on a single solution model, we conclude that

using abstract syntactic trees combined with an efficient algorithm to compare them is

a good start [22][35][36]. Combining this approach with a library (Strudel) that provides

important details about each code element, it is possible to overcome some of the lim-

itations found in previous works.

To demonstrate the idea, an API prototype was built that can be integrated into any

platform for introductory programming exercises, an UI was also built to visually demon-

strate the results achieved. The Strudel library is an important piece of this prototype,

allowing deserialization of code text and providing an easy-to-handle object structure.

It also provides functionalities that allow, for example, to check the role of a variable,

to execute the provided code after deserialization (independently of the programming

language), etc. It also means that if Strudel is improved, it could be reflected in an

53

improvement in this prototype, for example, deserialization of different programming

languages.

Our preliminary results establish the technical viability of the approach proposed in

this dissertation. In the future, conducting student studies to test the usefulness of the

prototype is part of the plan. It is also part of the plan to be able to integrate this

API into an introductory programming platform that can provide the innovative feature

provided by this prototype API.

54

Bibliography

[1] Y. Qian and J. Lehman, ‘Students’ misconceptions and other difficulties in intro-

ductory programming: A literature review’, ACM Transactions on Computing Edu-

cation (TOCE), vol. 18, no. 1, pp. 1–24, 2017.

[2] N. C. Brown and A. Altadmri, ‘Investigating novice programming mistakes: Edu-

cator beliefs vs. student data’, in Proceedings of the tenth annual conference on

International computing education research, 2014, pp. 43–50.

[3] J. Jackson, M. Cobb and C. Carver, ‘Identifying top java errors for novice program-

mers’, in Proceedings frontiers in education 35th annual conference, IEEE, 2005,

T4C–T4C.

[4] P. Bayman and R. E. Mayer, ‘A diagnosis of beginning programmers’ misconceptions

of basic programming statements’, Communications of the ACM, vol. 26, no. 9,

pp. 677–679, 1983.

[5] D. Sleeman et al., ‘Pascal and high-school students: A study of misconceptions.

technology panel study of stanford and the schools. occasional report# 009.’, 1984.

[6] M. De Raadt, ‘Teaching programming strategies explicitly to novice programmers’,

Ph.D. dissertation, University of Southern Queensland, 2008.

[7] S. M. M. Rubiano, O. López-Cruz and E. G. Soto, ‘Teaching computer programming:

Practices, difficulties and opportunities’, in 2015 IEEE Frontiers in Education Con-

ference (FIE), IEEE, 2015, pp. 1–9.

[8] J. M. Costa, ‘Microworlds with different pedagogical approaches in introductory

programming learning: Effects in programming knowledge and logical reasoning’,

Microworlds with different pedagogical approaches in introductory programming

learning: effects in programming knowledge and logical reasoning, no. 1, pp. 145–

174, 2019.

55

[9] T. W. Price, Y. Dong, R. Zhi et al., ‘A comparison of the quality of data-driven

programming hint generation algorithms’, International Journal of Artificial In-

telligence in Education, vol. 29, no. 3, pp. 368–395, 2019.

[10] T. Barnes and J. Stamper, ‘Toward automatic hint generation for logic proof tu-

toring using historical student data’, in International conference on intelligent

tutoring systems, Springer, 2008, pp. 373–382.

[11] J. Vom Brocke, A. Hevner and A. Maedche, Design Science Research. Cases. Springer,

2020.

[12] K. Pfeffers, T. Tuunanen, C. E. Gengler et al., ‘The design science research pro-

cess: A model for producing and presenting information systems research’, in Pro-

ceedings of the First International Conference on Design Science Research in In-

formation Systems and Technology (DESRIST 2006), Claremont, CA, USA, 2006,

pp. 83–106.

[13] C. Wohlin, ‘Guidelines for snowballing in systematic literature studies and a replic-

ation in software engineering’, in Proceedings of the 18th international conference

on evaluation and assessment in software engineering, 2014, pp. 1–10.

[14] M. Melo and G. L. Miranda, ‘Applying the 4c-id model to the design of a digital edu-

cational resource for teaching electric circuits: Effects on student achievement’,

in Proceedings of the 2014 Workshop on Interaction Design in Educational Envir-

onments, 2014, pp. 8–14.

[15] Z. Güney, ‘Four-component instructional design (4c/id) model approach for teach-

ing programming skills.’, International Journal of Progressive Education, vol. 15,

no. 4, pp. 142–156, 2019.

[16] J. M. Costa, G. L. Miranda and M. Melo, ‘Four-component instructional design

(4c/id) model: A meta-analysis on use and effect’, Learning Environments Re-

search, pp. 1–19, 2021.

[17] J. Frerejean, J. J. van Merriënboer, P. A. Kirschner, A. Roex, B. Aertgeerts and M.

Marcellis, ‘Designing instruction for complex learning: 4c/id in higher education’,

European Journal of Education, vol. 54, no. 4, pp. 513–524, 2019.

56

[18] J. Sweller, Cognitive load theory and educational technology. education tech re-

search dev 68, 1–16, 2020.

[19] B. J. Ericson, L. E. Margulieux and J. Rick, ‘Solving parsons problems versus fixing

and writing code’, in Proceedings of the 17th Koli Calling International Conference

on Computing Education Research, 2017, pp. 20–29.

[20] Y. Du, A. Luxton-Reilly and P. Denny, ‘A review of research on parsons problems’, in

Proceedings of the Twenty-Second Australasian Computing Education Conference,

2020, pp. 195–202.

[21] T. Lehtinen, A. L. Santos and J. Sorva, ‘Let’s ask students about their programs,

automatically’, in 2021 IEEE/ACM 29th International Conference on Program Com-

prehension (ICPC), IEEE, 2021, pp. 467–475.

[22] K. Zimmerman and C. R. Rupakheti, ‘An automated framework for recommending

program elements to novices (n)’, in 2015 30th IEEE/ACM International Conference

on Automated Software Engineering (ASE), IEEE, 2015, pp. 283–288.

[23] A. L. Santos, ‘Javardise: A structured code editor for programming pedagogy in

java’, in Conference Companion of the 4th International Conference on Art, Sci-

ence, and Engineering of Programming, 2020, pp. 120–125.

[24] S. Russell, ‘Automated code tracing exercises for cs1’, in Computing Education

Practice 2022, 2022, pp. 13–16.

[25] J. Hattie and H. Timperley, ‘The power of feedback’, Review of educational re-

search, vol. 77, no. 1, pp. 81–112, 2007.

[26] K. Zhang and D. Shasha, ‘Simple fast algorithms for the editing distance between

trees and related problems’, SIAM journal on computing, vol. 18, no. 6, pp. 1245–

1262, 1989.

[27] D. Gale and L. S. Shapley, ‘College admissions and the stability of marriage’, The

American Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[28] M. Kuittinen and J. Sajaniemi, ‘Teaching roles of variables in elementary program-

ming courses’, in Proceedings of the 9th annual SIGCSE conference on Innovation

and technology in computer science education, 2004, pp. 57–61.

57

[29] R. Richards, ‘Representational state transfer (rest)’, in Pro PHP XML and web ser-

vices, Springer, 2006, pp. 633–672.

[30] R. C. Martin, ‘Clean architecture: A craftsman’s guide to’,

[31] R. C. Martin, Agile software development: principles, patterns, and practices.

Prentice Hall PTR, 2003.

[32] E. Evans and E. J. Evans, Domain-driven design: tackling complexity in the heart

of software. Addison-Wesley Professional, 2004.

[33] S. Marwan, J. Jay Williams and T. Price, ‘An evaluation of the impact of automated

programming hints on performance and learning’, in Proceedings of the 2019 ACM

Conference on International Computing Education Research, 2019, pp. 61–70.

[34] S. Marwan, N. Lytle, J. J. Williams and T. Price, ‘The impact of adding textual

explanations to next-step hints in a novice programming environment’, in Pro-

ceedings of the 2019 ACM conference on innovation and technology in computer

science education, 2019, pp. 520–526.

[35] B. Fein, F. Obermüller and G. Fraser, ‘Catnip: An automated hint generation tool

for scratch’, in Proceedings of the 27th ACM Conference on on Innovation and

Technology in Computer Science Education Vol. 1, 2022, pp. 124–130.

[36] R. Singh, S. Gulwani and A. Solar-Lezama, ‘Automated feedback generation for

introductory programming assignments’, in Proceedings of the 34th ACM SIGPLAN

conference on Programming language design and implementation, 2013, pp. 15–

26.

58

	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	Code Listings
	Abbreviations
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Context
	1.3. Research Questions
	1.4. Objectives
	1.5. Research Methodology

	Chapter 2. Literature Review
	2.1. Four-Component Instructional Design (4C/ID) Model
	2.2. Existing Solutions For Learning Tools
	2.3. A Tool For Any Programming Exercise Platform

	Chapter 3. Automated Hint Generation
	3.1. Overview of the Approach
	3.2. Solution Strategy
	3.3. Abstract Syntax Tree
	3.4. Tree Edit Distance
	3.5. Nodes Matching
	3.6. Nodes Pairs Analysis And Hints Generation
	3.7. Exercise Scenario Walkthrough
	3.8. Limitations

	Chapter 4. Prototype Design and Implementation
	4.1. High Level System Architecture
	4.2. User Interface
	4.3. Exercise Hint API

	Chapter 5. Conclusions and Future Work
	Bibliography

