
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pricing after the IBOR era 
 

 

 

 

 

Daniel Alexandre Velho Ferreira 
 

 

 

 

 

Master’s in Mathematical Finance 
 

 

 

 

 

Supervisor: 
 

Prof. João Pedro Vidal Nunes, PhD 

 

  
 

 
 

 

 

 

 

 

 

 

 

 

November, 2022 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of Finance 
 

 

Department of Mathematics 
 

 

 

 

Pricing after the IBOR era 
 

 

 

 

 

Daniel Alexandre Velho Ferreira 
 

 

 

 

 

Master's in Mathematical Finance 
 

 

 

 

 

Supervisor: 
 

Prof. João Pedro Vidal Nunes, PhD 

 

  
 

 

 
 

 

 

 

 

 

 

 

November, 2022 



 



Dedicated to my parents and my girlfriend, for the constant support and encouragement

throughout the thesis. Thank you for believing in me.





Acknowledgment

I would like to thank professor João Pedro Nunes for all the support and guidance

throughout the writing of this thesis. His aid was fundamental to complete the thesis and

I am thankful for his constant inspiration and guidance throughout the whole process.

iii





Resumo

O principal objetivo desta tese é explorar os fundamentos teóricos para a avaliação de

swaps de taxas de juro. Para os swaps, existem dois tipos de taxas de juro subjacentes

a analisar: taxas de juro subjacentes com maturidade fixa (por exemplo, a EURIBOR

a 6 meses) e taxas de juros subjacentes num regime overnight, estas que são fixadas

diariamente (por exemplo, a secured overnight financial rate). A avaliação destes swaps

irá depender da medida de risco neutro, Q, que assume a money-market account como

numerário, e da forward measure, Qt, que será explicitada mais adiante. Após concluir a

teoria para a avaliação de swaps de taxas de juro, testaremos a eficácia na avaliação das

cotações mid para swaps EUSA com recurso a uma curva de obrigações de cupão zero

extráıda dos swaps EESWE.
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Abstract

The main objective of this thesis is to explore the theoretical foundations for interest rate

swaps pricing and valuation. For the swaps, there are two types of underlying interest

rates on which we will look upon: underlying interest rates with some fixed maturity (for

example, the 6-month EURIBOR), and underlying overnight interest rates, which are set

on a daily basis (as, for instance, the secured overnight financial rate). The pricing of

these swaps will rely heavily on both the risk-neutral measure, Q, and on the forward

measure, Qt, which will be defined later. After completing the theory of pricing interest

rate swaps, we will test the pricing accuracy of EUSA mid swap quotes with resource to

a bootstrapped zero-coupon bond curve derived from EESWE swaps.
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CHAPTER 1

Introduction

The London Interbank Offered Rate (LIBOR) has been the benchmark index for interest

rates and interest rate derivatives until the end of last year. The LIBOR rates were pub-

lished by the Intercontinental Exchange (ICE) on a daily basis and they were computed

through the weighted average of quotes on borrowing rates of financial institutions with a

good credit rating, such as major banks. Prior to the crisis of 2008, LIBOR was proven to

be manipulated by various groups of traders in these financial institutions and, according

to Jarrow and Li (2021) and Hou and Skeie (2014), this manipulation can be traced as

early as 2003.

Due to how effortless this manipulation was, many regulations were implemented in

both US and Europe. Hence, it was legislated that LIBOR was set to be extinct as an

interest rate benchmark for interest rate derivatives by January 1, 2022. In 2017, in the

US, the Alternative Reference Rates Committee (ARRC) created the Secured Overnight

Financial Rate (SOFR), an overnight rate that is based on a volume weighted average of

day-to-day transactions over the US Treasury bond market. The key factor is that the

volume weighting makes it more transparent and reduces the possibility of manipulation.

On the other hand, in Europe, the European Central Bank (ECB) created the euro short-

term rate (ESTR) to represent the wholesale overnight euro borrowing cost of financial

institutions, such as banks. It is calculated using daily confidential information of daily

transactions in the money market.

Although the problem with manipulation is resolved with the emergence of these

overnight rates based on the volume weightings of the money-market transactions, there is

some concern in the financial community around the fact that these overnight rates are not

the appropriate substitutes for the LIBOR as a benchmark for interest rates. According

to Jarrow and Li (2021), ”the issue underlying (...) is that a reference index rate, created

for use in interest rate derivatives, should facilitate hedges for fixed and floating rate loans

and be robust to manipulation”. Jarrow and Li (2021) study the effectiveness of hedging

on their paper, which is something that will not be covered during this thesis.

Of course, with a new type of interest rate swap also comes the need to know how to

compute the fair value of these swaps. As it is known, swaps are key to understanding

other market factors such as liquidity, supply and credit quality of the banks. Additionally,

the swap curve is an important benchmark for credit rates as well, therefore it is important

that the pricing is done correctly, as financial institutions also use them as a reference.

Like said, this is what the thesis is mainly focus on: pricing and finding closed-form

solutions for the swaps with each type of underlying interest rate mentioned above.
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This work is structured as follows: the thesis starts in Chapter 2 by reminding some

key concepts of financial mathematics that will help further on developing the pricing

for the swaps, as well as some key assumptions over the market overall that are crucial

to achieve our final results. In Chapter 3, we will price interest rate swaps under all

possible conditions in terms of type of underlying and embedded credit risk, and we will

also consider these two scenarios for valuating swaps that are still under some IBOR rate

and that will make the switch to an overnight index rate. In Chapter 4, we will test

the accuracy of pricing EUSA swaps with the aid of a bootstrapped zero-coupon bond

curve from another swap, EESWE. Finally, on Chapter 5, we present final remarks and

comments on the results and equations obtained throughout the thesis, and some key

notes on work to follow this thesis.
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CHAPTER 2

Stochastic calculus and the model

Before pricing swaps, it is crucial to remind some concepts that will help us further on. We

begin by recalling definitions and concepts regarding stochastic processes. Furthermore,

we will consider that we are working under some probability space (Ω,F ,P) paired with

a filtration Ft.

Definition 2.1. The conditional expectation,

EP [XT |Ft] , (2.1)

is the expected value of the unknown future value that the random variable X will assume at

time T ≥ t, computed under some probability measure P and conditional to the information

available until time t, Ft.

It is also crucial to understand the notion of martingale as well:

Definition 2.2. Let (Xt)t≥0 be a stochastic process adapted to the filtration (Ft)t≥0. A

martingale, under the probability measure P, is a continuous time and integrable stochastic

process such that:

E [Xt|Fs] = Xs, ∀s < t (2.2)

One important law that derives from conditional expectation is the law of iterated

expectations, which will be crucial to derive the equations for swaps later on.

Proposition 2.1. (Law of iterated expectations) Let XT be a FT -measurable random

variable. Then,

EP
[

EP [XT |Ft] |Fs

]

= EP [XT |Fs] , ∀s ≤ t ≤ T (2.3)

Also important for the pricing of swaps (or any financial instrument at all) is the

martingale probability measure Q:

Definition 2.3. Consider the initial value of a money-market account, B0. The

money-market account is a deposit account that earns interest with continuous compound-

ing at the risk-free rate of rt. The time−t value of the money-market account is equal

to:

Bt = B0e
∫

t

0
rsds (2.4)

Definition 2.4. The martingale probability measure Q is the probability measure that

is equivalent to the physical measure P, such that, for t ≤ T and considering X any

financial asset:

Xt = BtE
Q

[

XT

BT

∣

∣

∣

∣

Ft

]

(2.5)
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Another stochastic calculus result that will be crucial is the following:

Proposition 2.2. (Change of numeraire) Let QN and QM be two equivalent martin-

gale measures associated to the numeraire Nt and Mt, respectively. Then

NtE
QN

[

XT

NT

∣

∣

∣

∣

Ft

]

= MtE
QM

[

XT

MT

∣

∣

∣

∣

Ft

]

(2.6)

Going down the road, it is also important to characterize the model and assumptions

we will be using throughout. Similarly to Jarrow and Li (2021), we will assume that the

market trades: default-free zero coupon bonds of all maturities, a default-free money-

market account just like the one defined, and risky bonds.

Having defined a money-market account, we can also define the time-t value of a (unit

face value) default-free zero coupon bond expiring at time ti, P (t, ti), where 0 ≤ t ≤ ti.

On the other hand, risky zero coupon bonds, D(t, ti), are bonds where the issuer may

default on one or more payments before the bond reaches its maturity. In case the bond

defaults before the maturity, the bond will pay a stochastic recovery rate of 0 ≤ Rt ≤ 1.

Additionally, if we consider τ as the bond’s default time, the risky bond payoff is:

D(ti, ti) = Iτ>ti + Iτ≤tiRτ

Bti

Bτ

(2.7)

For the purpose of the pricing, we will also assume that both these markets are arbitrage

free.

Assumption 2.1. There exists an equivalent probability measure Q such that:

P (t, ti)

Bt

and
D(t, ti)

Bt

, ∀t ≤ ti (2.8)

are Q−martingales.

Furthermore, we will also consider these are free of transaction costs and trading

limitations, and we always act as price takers. Hence, our trades have no impact on the

market price.
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CHAPTER 3

Interest Rate Swaps

An interest rate swap (IRS) is an over-the-counter derivative that allows two parties to

exchange a cash-flow at a fixed rate of interest, also known as the swap rate, for a cash-

flow at a floating rate in the future. The settled floating rate is typically a LIBOR rate or

an overnight rate. When one pays the fixed rate, the IRS is termed payer IRS, otherwise,

it is termed receiver IRS. Going forward, we will solely consider the analysis of a payer

IRS. Furthermore,

Assumption 3.1. There is no counter-party risk while executing IRS contracts due to

the collateral agreements in interest rate swaps.

3.1. Interest rate swaps based on LIBOR rates

3.1.1. Floating rate loans based on LIBOR rates

Before evaluating interest rate swaps based on LIBOR rates, it is crucial to know how to

evaluate a floating rate loan (FRL) under some variable rate (e.g, a LIBOR rate).

A floating rate loan is a financial security with notional 1, that expires at some maturity

date tN . The payments of a FRL are made at times t1, t2, . . . , tN , and these are a coupon

rate equal to some market index. Assuming that the FRL is default-free, the payment at

time ti for i = 1, ..., N is

δL(ti−1, ti) =
1

P (ti−1, ti)
− 1 (3.1)

where we denote L(ti−1, ti) as the variable rate, L is the market index, and δ is the

duration (in years) of the coupon period, i.e, δ = ti − ti−1, for i = 1, . . . , N . Computing

the arbitrage-free value of floating rate loans,

Theorem 3.1. (Default-free floating rate loans) The fair value of a default-free floating

rate loan at time t (t0 ≤ t < t1) is
P (t, t1)

P (t0, t1)
(3.2)

Proof. Start by considering some arbitrary t such that t0 ≤ t < t1. Then, the time−t

value of the FRL is equal to:

FRLt = P (t, tN) + P (t, t1)× δL(t0, t1) +
N
∑

i=1

EQ

[

Bt

Bti

δL(ti−1, ti)

∣

∣

∣

∣

Ft

]

We need to know how to evaluate the present value of each coupon payment (besides

the next one) in order to proceed with the proof. For such, consider the same time t as in

the start of the proof, and two arbitrary coupon dates ti−1, ti, such that t1 < ti−1 < ti < tN .
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At time t, we will hedge the FRL cash-flow at time ti, δL(ti−1, ti). For such, consider the

following portfolio with the following investment strategy: firstly, consider a loan starting

at t and maturing at time ti in the amount of P (t, ti), which will generate a cash-flow of

−1 at ti. Secondly, consider a deposit starting at ti and maturing at ti−1 in the amount

of P (t, ti−1), which will generate a cash-flow of 1 at its maturity. The deposit will mature

at ti−1. Given this, at the deposit’s maturity date we will renew the same deposit. This

new deposit will start at ti−1 and will mature at ti, while also generating a cash-flow of

1 + δL(ti−1, ti).

Summing up these operations, we can calculate each net cash-flow at times t, ti−1, and

ti. By doing such, we will have a net cash-flow of P (t, ti−1) − P (t, ti) at t, 0 at ti−1 and

δL(ti−1, ti) at ti. In other words, our hedging strategy proves that: in order to receive

δL(ti−1, ti) at ti, we will need to invest, at time t, an amount of P (t, ti−1)− P (t, ti), i.e,

EQ

[

Bt

Bti

δL(ti−1, ti)

∣

∣

∣

∣

Ft

]

= P (t, ti−1)− P (t, ti)

Therefore,

FRLt = P (t, tN) + P (t, t1)× δL(t0, t1) +
N
∑

i=1

[P (t, ti−1)− P (t, ti)]

Simplifying the sum, we get that,

N
∑

i=1

[P (t, ti−1)− P (t, ti)] = P (t, t1)− P (t, tN),

which leads to,

FRLt = P (t, tN) + P (t, t1)× δL(t0, t1) +
N
∑

i=1

[P (t, ti−1)− P (t, ti)]

= P (t, tN) + P (t, t1)× δL(t0, t1) + P (t, t1)− P (t, tN)

= P (t, t1)[1 + δL(t0, t1)]

Using equation (3.1), we can finally derive that,

FRLt =
P (t, t1)

P (t0, t1)

which concludes the proof. □

In reality, in most of the cases, there is credit risk associated to a FRL. Therefore, we

will need to reconsider our analysis to include such risk. Consider the FRL mentioned

previously, but now with the assumption that it is under some credit-risky reference rate.

The payment at time ti, if default doesn’t occur before time ti−1, of this FRL is

Iτ>ti−1
[(δL(ti−1, ti))Iτ>ti +Rτ (1 + δL(ti−1, ti))Iτ≤ti ]

= Iτ>ti−1

[(

1

D(ti−1, ti)
− 1

)

Iτ>ti +Rτ

1

D(ti−1, ti)
Iτ≤ti

]

, (3.3)

6



for i = 1, . . . , N , where Rτ is the stochastic recovery rate, τ is the default time, and

D(ti−1, ti) is a credit risky zero coupon bond according to its FRL rating. The fair value

of this floating rate loan is given by the following theorem:

Theorem 3.2. (Defaultable floating rate loans) The fair value of a defaultable floating

rate loan at time t (t0 ≤ t < t1) is
D(t, t1)

D(t0, t1)
(3.4)

Proof. Start by considering the process X ti
t , which represents the present value of a

dollar paid at time ti, in case the underlying firm hasn’t defaulted before ti:

X ti
t = EQ

[

Bt

Bti

Iτ≥ti

∣

∣

∣

∣

∣

Ft

]

= BtE
Q

[

1

Bti

Iτ≥ti

∣

∣

∣

∣

∣

Ft

]

Considering a change of numeraire from the neutral-risk measure, Q, based on the nu-

meraire money-market account, to a forward measure, Qti , which takes the zero coupon

bond, P (t, ti), as the numeraire. Then

X ti
t = P (t, ti)E

Qti

[

1

P (ti, ti)
Iτ≥ti

∣

∣

∣

∣

∣

Ft

]

= P (t, ti)E
Qti [Iτ≥ti |Ft]

= P (t, ti)Qti(τ ≥ ti|Ft)

We will now divide the proof in three parts: the first one being the payment at the first

resettlement date, t1; the second one being the payments between t1 and tN ; the last one

being the payment at the FRL maturity date, tN . For the first part, given the equation

(1.3), we can determine the payment at time t1,
(

1

D(t0, t1)
− 1

)

Iτ>t1 +Rτ

(

1

D(t0, t1)

)

Iτ≤t1 ,

whose time−t value is:

Y t0
t = BtE

Q





(

1
D(t0,t1)

− 1
)

Iτ>t1 +Rτ

(

1
D(t0,t1)

)

Iτ≤t1

Bt1

∣

∣

∣

∣

∣

Ft





= BtE
Q





Iτ>t1
+Rτ Iτ≤t1

D(t0,t1)
− Iτ>t1

Bt1

∣

∣

∣

∣

∣

Ft





=
1

D(t0, t1)
BtE

Q

[

Iτ>t1 +Rτ Iτ≤t1

Bt1

]

− BtE
Q

[

1

Bt1

Iτ≥t1

∣

∣

∣

∣

∣

Ft

]

By the definition of a defaultable zero coupon bond, we can conclude that expected value

in the first term is just D(t, t1)Bt. Furthermore, we can also notice that the second term

of the difference is just the process X t1
t . Therefore, the time−t value of the payment at

7



time ti is
D(t, t1)

D(t0, t1)
−X t1

t ,

which concludes the first part.

For the second part, we will consider any i from i = 2, . . . , N . The payment at time

ti is given by equation (1.3). The value of this payment is,

Y ti
t = EQ

[

Iτ>ti +Rτ Iτ≤ti

D(ti−1, ti)

Iτ>ti−1

Bti

−
Iτ>ti

Bti

∣

∣

∣

∣

∣

Ft

]

Bt

= EQ

[

Iτ>ti +Rτ Iτ≤ti

D(ti−1, ti)

Iτ>ti−1

Bti

∣

∣

∣

∣

∣

Ft

]

Bt − EQ

[

Iτ>ti

Bti

∣

∣

∣

∣

∣

Ft

]

Bt

Since t < t1 < ti−1, given Proposition (2.1), we can use the fact that Ft ⊆ Fti−1
,

Y ti
t = EQ

[

Iτ>ti−1

D(ti−1, ti)
EQ

[

Iτ>ti +Rτ Iτ≤ti

Bti

∣

∣

∣

∣

∣

Fti−1

] ∣

∣

∣

∣

∣

Ft

]

Bt −X ti
t

= EQ

[

Iτ>ti−1

D(ti−1, ti)

D(ti−1, ti)

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −X ti
t

= EQ

[

Iτ>ti−1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −X ti
t

= X
ti−1

t −X ti
t

For the third and final part of this proof, we will evaluate the notional payment at tN .

At tN , the notional pays Iτ>tN , whose time−t is:

Y tN
t = EQ

[

Iτ>tN

BtN

∣

∣

∣
Ft

]

Bt = X tN
t

The value of the defaultable floating rate loan will be simply the sum of these parts all

together,

FRLt =

[

D(t, t1)

D(t0, t1)
−X t1

t

]

+
N
∑

i=2

(

X
ti−1

t −X ti
t

)

+X tN
t

=
D(t, t1)

D(t0, t1)

which concludes our proof. Also notice that, if we ignore credit risk, we get the result

derived in the proof of Theorem 1.1, by taking D(ti−1, ti) = P (ti−1, ti)

8



3.1.2. Interest rate swaps on a default-free reference rate

Consider a set of resettlement dates t0, t1, . . . , tN , and consider δ = ti − ti−1, for i =

1, . . . , N , such that δ is constant (i.e, payments happen at the same frequency). Further-

more, for further simplification, consider a principal of 1.

Definition 3.1. The payments in a plain-vanilla IRS are as follows:

(1) Payments will be made and received at times ti = t0 + iδ, for i = 1, . . . , N .

(2) For i = 1, . . . , N , at every period [ti−1, ti], the LIBOR rate L(ti−1, ti) is set at

ti−1 and the floating leg,

δL(ti−1, ti)

is paid at time ti.

(3) For i = 1, . . . , N , at every period [ti−1, ti], the fixed leg payment

δx(t, tN)

is paid at time ti, where x(t, tN) is the swap rate and t is such that t0 ≤ t < t1.

At time t, the value of a plain-vanilla IRS is simply equal to 0. Recalling that in an

interest rate swap, a set of floating rate payments (floating leg) are exchanged for a set of

fixed payment (fixed leg), this means that the time−t of both legs is equal to one another.

Considering the fixed leg of the IRS as a fixed coupon rate bond with coupon rate

equal to the fixed swap rate x(t, tN) (i.e, assuming an hypothetical exchange of capital),

we can easily evaluate the present value at time t of a plain-vanilla IRS fixed leg.

Theorem 3.3. (Fixed leg of an IRS on a default-free reference rate) The time−t value

of the fixed leg of a plain-vanilla IRS with t0 ≤ t < t1 on a default-free reference rate is

δx(t, tN)
N
∑

i=1

P (t, ti) (3.5)

Proof. Consider some time t such that t0 ≤ t < t1. The payment of the fixed leg at

any given time ti, where i = 1, . . . , N , is just

δx(t, tN),

and its time−t value is

EQ

[

δx(t, tN)

Bti

∣

∣

∣

∣

Ft

]

Bt = EQti

[

δx(t, tN)

P (ti, ti)

∣

∣

∣

∣

Ft

]

P (t, ti) = δx(t, tN)P (t, ti)

Therefore, the time−t value of the fixed leg is the sum of the fair value of all these

payments:
N
∑

i=1

δx(t, tN)P (t, ti) = δx(t, tN)
N
∑

i=1

P (t, ti)

□

9



Moving forward to the floating leg valuation, we can evaluate the present value of the

floating leg of an IRS with aid of the results derived in Section 3.1.1.

Theorem 3.4. (Floating rate of an IRS on a default-free reference rate) The time−t

value of the floating leg of a plain-vanilla IRS with t0 ≤ t < t1 on a default-free reference

rate is
P (t, t1)

P (t0, t1)
− P (t, tN) (3.6)

Proof. We will divide the proof into two parts. Starting off by evaluating the first

floating leg payment at t1, we already know by equation (1.1) that this payment is

1

P (t0, t1)
− 1,

whose time−t value is

EQ

[

1
P (t0,t1)

− 1

Bt1

Bt

∣

∣

∣

∣

∣

Ft

]

=
1

P (t0, t1)
EQ

[

1

Bt1

∣

∣

∣

∣

Ft

]

Bt − EQ

[

1

Bt1

∣

∣

∣

∣

Ft

]

Bt

Switching to the forward measure Qt1 , based on the zero-coupon bond, P (t, t1):

1

P (t0, t1)
EQt1

[

1

P (t1, t1)

∣

∣

∣

∣

Ft

]

P (t, t1)− EQt1

[

1

P (t1, t1)

∣

∣

∣

∣

Ft

]

P (t, t1) =
P (t, t1)

P (t0, t1)
− P (t, t1),

which concludes the first part of the proof. For the second part, we already know that,

by the same equation (1.1), the payment at time ti, for i = 2, . . . , N , is

1

P (ti−1, ti)
− 1,

whose time−t value is

EQ

[

1
P (ti−1,ti)

− 1

Bti

Bt

∣

∣

∣

∣

∣

Ft

]

= EQ

[

1

P (ti−1, ti)

1

Bti

∣

∣

∣

∣

Ft

]

Bt − EQ

[

1

Bti

]

Bt

Since Ft ⊆ Fti−1
, we can use Proposition (2.1), as well as the fact that 1

P (ti−1,ti)
is adapted

to the filtration Fti−1
, to get:

EQ

[

1

P (ti−1, ti)
EQ

[

1

Bti

∣

∣

∣

∣

Fti−1

] ∣

∣

∣

∣

Ft

]

Bt − P (t, ti)

= EQ

[

1

P (ti−1, ti)

P (ti−1, ti)

Bti−1

∣

∣

∣

∣

Ft

]

Bt − P (t, ti)

= P (t, ti−1)− P (t, ti),

which concludes the second part of the proof. Note as well that this last result is equal

to the one derived in the proof of Theorem 1.1. Finally, the arbitrage-free value of the

floating leg will be the sum of all the payments,

P (t, t1)

P (t0, t1)
− P (t, t1) +

N
∑

i=2

[P (t, ti−1)− P (t, ti)] =
P (t, t1)

P (t0, t1)
− P (t, tN)

which concludes our proof. □
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Since the time−t value of a plain-vanilla IRS is the difference between the time−t

values of both floating and fixed legs, i.e, the difference between equations (1.5) and (1.6),

IRSt =
P (t, t1)

P (t0, t1)
− P (t, tN)− δx(t, tN)

N
∑

i=1

P (t, ti) (3.7)

Setting such net value equal to 0 and solving for x(t, tN), we can derive the following

equation for determining the fixed swap rate for a plain-vanilla IRS:

Corollary 3.1. (Interest rate swap rate) The time−t swap rate (with t0 ≤ t < t1)

of a plain-vanilla IRS on a default-free reference rate is

x(t, tN) =

P (t,t1)
P (t0,t1)

− P (t, tN)

δ
∑N

i=1 P (t, ti)
(3.8)

One particular case of interest for this last result happens when we consider t = t0,

which gives the swap rate at the resettlement date t0:

x(t0, tN) =

P (t0,t1)
P (t0,t1)

− P (t0, tN)

δ
N
∑

i=1

P (t0, ti)

=
1− P (t0, tN)

δ
N
∑

i=1

P (t0, ti)

3.1.3. Interest rate swaps on a credit risky reference rate

As mentioned in section 3.1.1, there is usually credit risk attached to these derivatives.

Therefore, once again, we will need to adapt our previous theorems and corollaries to

include such risk.

Regarding the fixed leg, we can use Theorem 1.3 to cover this scenario, as the fixed leg

is totally independent from the underlying FRL in the floating leg. Therefore, the focus

will remain on the valuation of the floating leg under these conditions.

Theorem 3.5. The time−t value of the floating leg of a plain-vanilla IRS (with time

t0 ≤ t < t1) on a credit risky reference rate is

P (t, t1)

D(t0, t1)
+

N
∑

i=2

EQ

[

P (ti−1, ti)

D(ti−1, ti)

1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −

N
∑

i=1

P (t, ti) (3.9)

Proof. The proof for this theorem will be similar to the proof of Theorem 1.4, but

now we will consider the payment being under some defaultable zero coupon bond, i.e,

1

D(ti−1, ti)
− 1

11



Indeed, for the payment at t1,
1

D(t0,t1)
− 1, its time−t value is

EQ

[

1
D(t0,t1)

− 1

Bt1

Bt

∣

∣

∣

∣

∣

Ft

]

=
1

D(t0, t1)
EQ

[

1

Bt1

∣

∣

∣

∣

Ft

]

Bt − EQ

[

1

Bt1

∣

∣

∣

∣

Ft

]

Bt

=
P (t, t1)

D(t0, t1)
− P (t, t1)

On the other hand, for the payment at time ti (for i = 2, . . . , N), its present value is

EQ

[

1
D(ti−1,ti)

− 1

Bti

Bt

∣

∣

∣

∣

∣

Ft

]

= EQ

[

1

D(ti−1, ti)

1

Bti

∣

∣

∣

∣

Ft

]

Bt − EQ

[

1

Bti

]

Bt

Again, since Ft ⊆ Fti−1
, we can use Proposition (2.1), as well as the fact that 1

D(ti−1,ti)
is

adapted to the filtration Fti−1
, to get that

EQ

[

1

D(ti−1, ti)
EQ

[

1

Bti

∣

∣

∣

∣

Fti−1

] ∣

∣

∣

∣

Ft

]

Bt − P (t, ti)

= EQ

[

1

D(ti−1, ti)

P (ti−1, ti)

Bti−1

∣

∣

∣

∣

Ft

]

Bt − P (t, ti)

which concludes the second part of this proof. Finally, the time−t value of the defaultable

floating leg will be the sum of the value of all these payments:

FL
Default
t =

P (t, t1)

D(t0, t1)
− P (t, t1) +

N
∑

i=2

(

EQ

[

1

D(ti−1, ti)

P (ti−1, ti)

Bti−1

∣

∣

∣

∣

Ft

]

Bt − P (t, ti)

)

=
P (t, t1)

D(t0, t1)
+

N
∑

i=2

EQ

[

1

D(ti−1, ti)

P (ti−1, ti)

Bti−1

∣

∣

∣

∣

Ft

]

Bt − P (t, t1)−
N
∑

i=2

P (t, ti)

=
P (t, t1)

D(t0, t1)
+

N
∑

i=2

EQ

[

P (ti−1, ti)

D(ti−1, ti)

1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −

N
∑

i=1

P (t, ti)

□

Notice that if we consider D(t, ti) ≈ P (t, ti), we can achieve an approximation for the

last theorem,

P (t, t1)

D(t0, t1)
+

N
∑

i=2

EQ

[

P (ti−1, ti)

D(ti−1, ti)

1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −

N
∑

i=1

P (t, ti) ≈
P (t, t1)

D(t0, t1)
− P (t, tN)

Having the equation for the floating rate, we can easily derive again the swap rate under

these conditions, considering the net value at time t0 < t < ti,

12



Corollary 3.2. (Swap rate on a credit risky reference rate) The swap rate at time

t0 < t ≤ t1 of a plain-vanilla IRS on a credit risky reference rate is

x(t, tN) =

P (t,tN )
D(t0,tN )

+
N
∑

i=2

EQ

[

P (ti−1,ti)
D(ti−1,ti)

1
Bti−1

∣

∣

∣
Ft

]

Bt −
N
∑

i=1

P (t, ti)

δ
N
∑

i=1

P (t, ti)

(3.10)

Considering the same approximation used earlier, D(t, ti) ≈ P (t, ti), we can approxi-

mate the swap rate,

x(t, tN) ≈

P (t,t1)
D(t0,t1)

− P (t, tN)

δ
N
∑

i=1

P (t, ti)

3.2. Interest rate swaps based on overnight rates

3.2.1. Floating rate loans based on overnight rates

Like previously done for LIBOR rates, it is crucial to know how to price FRL based on

overnight rates.

Once again, consider some maturity date tN , as well as a set of times t1, t2, . . . , tN

where the FRL payments occur, and these payments include coupons that are equal to

some market index. Assuming that the FRL is default-free, the payment at time ti for

i = 1, . . . , N is

δSOFR(ti−1, ti) =

Mi
∏

k=1

1

P
(

ti−1+ k−1

N

, ti−1+ k

N

) − 1 (3.11)

where k = 1, . . . ,Mi,Mi are the number of days in the i−th coupon period, SOFR(ti−1, ti)

is the overnight variable rate, SOFR is the market index, and δ is the coupon period

duration (in years), δ = ti − ti−1. We will also assume that Assumption 1.1 is valid for

overnight rates as well. Calculating the arbitrage-free value of a floating rate loan, but

now under an overnight rate,

Theorem 3.6. (Default-free floating rate loans) The time−t value of a default-free

floating rate loan based on an overnight rate
(

t0 ≤ t < t 1

M1

)

is

P
(

t, t 1

M1

)

P
(

t0, t 1

M1

) (3.12)

Proof. Consider some arbitrary t such that t0 ≤ t < t 1

Mi

and for the purpose of

further simplification, consider that

Zti =

Mi
∏

k=1

Wk(ti), (3.13)
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where Wk(ti) =
1

P

(

t
i−1+

k−1
Mi

,t
i−1+ k

Mi

) . Therefore, the time−t value of the FRL is:

FRLt =
N−1
∑

i=1

EQ

[

Bt

Bti

Zti

∣

∣

∣

∣

Ft

]

+ EQ

[

Bt

BtN

(1 + ZtN )

∣

∣

∣

∣

Ft

]

= P (t, tN) +
N
∑

i=1

EQ

[

Bt

Bti

Zti

∣

∣

∣

∣

Ft

]

(3.14)

From here, it will be useful to know how to evaluate Zti for i = 1, . . . , N . For evaluating

Zti , consider dividing the proof into two parts once again: first, evaluate the expression

at t1; second, consider some ti such that i = 2, . . . , N . Firstly,

Zt1 =

M1
∏

k=1

1

P
(

t k−1

M1

, t k

M1

) − 1,

which means that the time−t value of this payment is:

EQ

[

Bt

Bt1

Zt1

∣

∣

∣

∣

Ft

]

= EQ











Bt

Bt1

∏M1

k=2
1

P

(

t k−1
M1

,t k
M1

)

P
(

t0, t 1

M1

)

∣

∣

∣

∣

∣

Ft











− EQ

[

Bt

Bt1

∣

∣

∣

∣

∣

Ft

]

=
1

P
(

t0, t 1

M1

)EQ





M1
∏

k=2

1

P
(

t k−1

M1

, t k

M1

)

1

Bt1

∣

∣

∣

∣

∣

Ft



Bt − P (t, t1)

=
1

P
(

t0, t 1

M1

)EQ





M1
∏

k=2

1

P
(

t k−1

M1

, t k

M1

)EQ

[

1

Bt1

∣

∣

∣

∣

FtM1−1

M1

]

∣

∣

∣

∣

∣

Ft



Bt − P (t, t1)

=
1

P
(

t0, t 1

M1

)EQ









M1
∏

k=2

1

P
(

t k−1

M1

, t k

M1

)

P

(

tM1−1

M1

, t1

)

BtM1−1

M1

∣

∣

∣

∣

∣

Ft









Bt − P (t, t1)

=
1

P
(

t0, t 1

M1

)EQ









1

P

(

tM1−1

M1

, t1

)

M1−1
∏

k=2

1

P
(

t k−1

M1

, t k

M1

)

P

(

tM1−1

M1

, t1

)

BtM1−1

M1

∣

∣

∣

∣

∣

Ft









×

× Bt − P (t, t1)

=
1

P
(

t0, t 1

M1

)EQ





M1−1
∏

k=2

1

P
(

t k−1

M1

, t k

M1

)

1

BtM1−1

M1

∣

∣

∣

∣

∣

Ft



Bt − P (t, t1)
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With the aid of Proposition (2.1), we can apply the same reasoning repeatedly to get

that,

EQ

[

Bt

Bt1

Zt1

∣

∣

∣

∣

Ft

]

=
1

P
(

t0, t 1

M1

)EQ





1

P
(

t 1

M1

, t 2

M1

)

1

Bt 2
M1

∣

∣

∣

∣

∣

Ft



Bt − P (t, t1)

=
1

P
(

t0, t 1

M1

)EQ





1

P
(

t 1

M1

, t 2

M1

)EQ





1

Bt 2
M1

∣

∣

∣

∣

Ft 1
M1





∣

∣

∣

∣

∣

Ft



Bt − P (t, t1)

=
1

P
(

t0, t 1

M1

)EQ





1

P
(

t 1

M1

, t 2

M1

)

P
(

t 1

M1

, t 2

M1

)

Bt 1
M1

∣

∣

∣

∣

∣

Ft



Bt − P (t, t1)

=
P
(

t, t 1

M1

)

P
(

t0, t 1

M1

) − P (t, t1) (3.15)

For the second part of this proof, for i > 1, we know that the payment at time ti is

Zti =

Mi
∏

k=1

Wk(ti)− 1 =

Mi
∏

k=1

1

P
(

ti−1+ k−1

N

, ti−1+ k

N

) − 1,

whose time−t value is:

EQ

[

Bt

Bti

Zti

∣

∣

∣

∣

Ft

]

= EQ

[

Bt

Bti

Mi
∏

k=1

Wk(ti)

∣

∣

∣

∣

∣

Ft

]

− EQ

[

Bt

Bti

∣

∣

∣

∣

∣

Ft

]

= EQ

[(

Mi
∏

k=1

Wk(ti)

)

EQ

[

1

Bti

∣

∣

∣

∣

∣

Ft
i−1+

Mi−1

Mi

] ∣

∣

∣

∣

∣

Ft

]

Bt − P (t, ti)

= EQ









(

Mi
∏

k=1

Wk(ti)

) P

(

t
i−1+

Mi−1

Mi

, ti

)

Bt
i−1+

Mi−1

Mi

∣

∣

∣

∣

∣

Ft









Bt − P (t, ti)

= EQ





(

Mi−1
∏

k=1

Wk(ti)

)

1

Bt
i−1+

Mi−1

Mi

∣

∣

∣

∣

∣

Ft



Bt − P (t, ti)

Following the same line of reasoning as we did for the payment at time t1 and using

Proposition (2.1), we can derive that:

EQ

[

Bt

Bti

Zti

∣

∣

∣

∣

Ft

]

= EQ

[

1

Bti−1

∣

∣

∣

∣

Ft

]

Bt − P (t, ti)

= P (t, ti−1)− P (t, ti) (3.16)
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which is exactly the same result derived in the proof of Theorem 1.4. All in all, joining

all the payments given by the equations (1.14), (1.15) and (1.16) we have that:

FRLt = P (t, tN) +
P
(

t, t 1

M1

)

P
(

t0, t 1

M1

) − P (t, t1) +
N
∑

i=2

[P (t, ti−1)− P (t, ti)]

=
P
(

t, t 1

M1

)

P
(

t0, t 1

M1

)

□

Again, like mentioned before, in most of the cases, there is credit risk associated to a

FRL. The payment at time ti, in case default does not occur before time ti−1, is

Iτ>ti−1
[(δSOFR(ti−1, ti))Iτ>ti +Rτ (1 + δSOFR(ti−1, ti))Iτ≤ti ]

= Iτ>ti−1

[





Mi
∏

k=1

1

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

) − 1



 Iτ>ti

+Rτ





Mi
∏

k=1

1

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)



 Iτ≤ti

]

(3.17)

for i = 1, . . . , N , where Rτ is the recovery rate, and τ is the time when default occurs.

The fair value of this floating rate loan is given by the following theorem:

Theorem 3.7. (Defaultable floating rate loan) The fair value of a defaultable floating

rate loan at time t
(

t0 ≤ t < t 1

M1

)

is

P
(

t, t 1

M1

)

D
(

t0, t 1

M1

)EQ

[

M1−1
∏

k=2

βk(t1)

∣

∣

∣

∣

∣

Ft

]

+
N
∑

i=2

(

EQ

[

Iτ>ti−1

Bti−1

Mi−1
∏

k=1

βk(ti)

∣

∣

∣

∣

∣

Ft

]

Bt −X ti
t

)

+X tN
t −X t1

t ,

(3.18)

where D (ti−1, ti) is a credit risky zero coupon bond according to its FRL rating, and

βk(ti) =
P

(

t
i−1+

k−1
Mi

,t
i−1+ k

Mi

)

D

(

t
i−1+

k−1
Mi

,t
i−1+ k

Mi

) .

Proof. Consider some arbitrary t such that t0 ≤ t < t 1

M1

and consider the same

process Zti consider in the proof for Theorem 1.6, but now for a credit risky zero coupon

bond. Like before, we will divide the proof into three parts: 1) payment at t1, 2) payment

for t1 < t ≤ tN , and 3) the present value of the notional. For 1), at t1, the FRL payment
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is




M1
∏

k=1

1

D
(

t k−1

M1

, t k

M1

) − 1



 Iτ>t1 +Rτ





M1
∏

k=1

1

D
(

t k−1

M1

, t k

M1

)



 Iτ≤t1

=





M1
∏

k=1

1

D
(

t k−1

M1

, t k

M1

)



 (Iτ>t1 +Rτ Iτ≤t1)− Iτ>t1

whose time−t value will be:

Y t1
t = EQ









M1
∏

k=1

1

D
(

t k−1

M1

, t k

M1

)(Iτ>t1 +Rτ Iτ≤t1)− Iτ>t1





Bt

Bt1

∣

∣

∣

∣

∣

Ft





= EQ





M1
∏

k=1

1

D
(

t k−1

M1

, t k

M1

)

Iτ>t1 +Rτ Iτ≤t1

Bt1

∣

∣

∣

∣

∣

Ft



Bt − EQ

[

Iτ>t1

Bt1

∣

∣

∣

∣

∣

Ft

]

Bt

= EQ





M1
∏

k=1

1

D
(

t k−1

M1

, t k

M1

)EQ

[

Iτ>t1 +Rτ Iτ≤t1

Bt1

∣

∣

∣

∣

∣

FtM1−1

M1

] ∣

∣

∣

∣

∣

Ft



Bt −X t1
t

= EQ









M1
∏

k=1

1

D
(

t k−1

M1

, t k

M1

)

D

(

tM1−1

M1

, t1

)

BtM1−1

M1

∣

∣

∣

∣

∣

Ft









Bt −X t1
t

=
1

D
(

t0, t 1

M1

)EQ





M1−1
∏

k=2

1

D
(

t k−1

M1

, t k

M1

)

1

BtM1−1

M1

∣

∣

∣

∣

∣

Ft



Bt −X t1
t

=
1

D
(

t0, t 1

M1

)EQ





M1−1
∏

k=2

1

D
(

t k−1

M1

, t k

M1

)EQ





1

BtM1−1

M1

∣

∣

∣

∣

∣

FtM1−2

M1





∣

∣

∣

∣

∣

Ft



Bt −X t1
t

=
1

D
(

t0, t 1

M1

)EQ









M1−1
∏

k=2

1

D
(

t k−1

M1

, t k

M1

)

P

(

tM1−2

M1

, tM1−1

M1

)

BtM1−2

M1

∣

∣

∣

∣

∣

Ft









Bt −X t1
t

Following Proposition (2.1) and the same line of reasoning until t0, we get that the time−t

value of the FRL payment at t1 is:

Y t1
t =

P
(

t, t 1

M1

)

D
(

t0, t 1

M1

)EQ





M1−1
∏

k=2

P
(

t k−1

M1

, t k

M1

)

D
(

t k−1

M1

, t k

M1

)

∣

∣

∣

∣

∣

Ft



−X t1
t (3.19)
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which concludes the first part of the proof. For the second part, for the payments in ti

for i = 2, . . . , N , we will use a simplified version of equation (1.15):

Iτ>ti−1





Mi
∏

k=1

1

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)



 (Iτ>ti +Rτ Iτ≤ti)− Iτ>ti

Calculating the time−t value of this payment:

Y ti
t = EQ







Iτ>ti−1





Mi
∏

k=1

1

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)



 (Iτ>ti +Rτ Iτ≤ti)− Iτ>ti





Bt

Bti

∣

∣

∣

∣

∣

Ft





= EQ



Iτ>ti−1





Mi
∏

k=1

1

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)





Iτ>ti +Rτ Iτ≤ti

Bti

∣

∣

∣

∣

∣

Ft



Bt −X ti
t

= EQ



Iτ>ti−1





Mi
∏

k=1

1

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)



EQ

[

Iτ>ti +Rτ Iτ≤ti

Bti

∣

∣

∣

∣

∣

Ft
i−1+

Mi−1

Mi

] ∣

∣

∣

∣

∣

Ft



Bt

−X ti
t

= EQ









Iτ>ti−1





Mi
∏

k=1

1

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)





D

(

t
i−1+

Mi−1

Mi

, ti

)

Bt
i−1+

Mi−1

Mi

∣

∣

∣

∣

∣

Ft









Bt −X ti
t

= EQ



Iτ>ti−1





Mi−1
∏

k=1

1

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)





1

Bt
i−1+

Mi−1

Mi

∣

∣

∣

∣

∣

Ft



Bt −X ti
t

= EQ



Iτ>ti−1





Mi−1
∏

k=1

1

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)



EQ





1

Bt
i−1+

Mi−1

Mi

∣

∣

∣

∣

∣

Ft
i−1+

Mi−2

Mi





∣

∣

∣

∣

∣

Ft



Bt

−X ti
t

= EQ









Iτ>ti−1





Mi−1
∏

k=1

1

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)





P

(

t
i−1+

Mi−2

Mi

, t
i−1+

Mi−1

Mi

)

Bt
i−1+

Mi−2

Mi

∣

∣

∣

∣

∣

Ft









Bt −X ti
t

Applying Proposition (2.1) and following the same reasoning, we get that:

Y ti
t = EQ





Iτ>ti−1

Bti−1

Mi−1
∏

k=1

P
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)

D
(

ti−1+ k−1

Mi

, ti−1+ k

Mi

)

∣

∣

∣

∣

∣

Ft



Bt −X ti
t (3.20)
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which concludes the second part. For the third and final part of this proof, we will evaluate

the notional on the payment at tN , which we already know that it is, Iτ>tN

Y tN
t = EQ

[

Iτ>tN

BtN

∣

∣

∣
Ft

]

Bt = X tN
t (3.21)

Joining all the three parts together, i.e, equations (1.19), (1.20) and (1.21), and defining

βk(ti) =
P

(

t
i−1+

k−1
N

,t
i−1+ k

N

)

D

(

t
i−1+

k−1
N

,t
i−1+ k

N

) , we can calculate the time−t value of a defaultable FRL:

FRLt =
P
(

t, t 1

M1

)

D
(

t0, t 1

M1

)EQ

[

M1−1
∏

k=2

βk(t1)

∣

∣

∣

∣

∣

Ft

]

−X t1
t +

N
∑

i=2

(

EQ

[

Iτ>ti−1

Bti−1

Mi−1
∏

k=1

βk(ti)

∣

∣

∣

∣

∣

Ft

]

Bt −X ti
t

)

+X tN
t

=
P
(

t, t 1

M1

)

D
(

t0, t 1

M1

)EQ

[

M1−1
∏

k=2

βk(t1)

∣

∣

∣

∣

∣

Ft

]

+
N
∑

i=2

(

EQ

[

Iτ>ti−1

Bti−1

Mi−1
∏

k=1

βk(ti)

∣

∣

∣

∣

∣

Ft

]

Bt −X ti
t

)

+X tN
t −X t1

t

□

In practice, we can despise the embedded credit risk on the defaultable zero coupon

bond, as the SOFR works almost as a risk-free rate, and the maturities on the defaultable

zero coupon bonds are too small to reflect such credit risk. Furthermore, if we define the

money-market accountBt with the same risk level as the overnight rate, the embedded zero

coupon bonds will also be on the same level of risk. In fact, if we take consider P (ti−1, ti) =

D(ti−1, ti) in this last theorem, we get the result from Theorem 1.6. Therefore, from here

on, credit risk will be ignored, and we will consider that the overnight rate is only based

on a default-free zero coupon bond, as this will have little effect on our results.

3.2.2. Interest rate swaps on a default-free overnight reference rate

Like in Section 1.2.2, consider the same assumptions as done before. Additionally,

considering N as the number of resettlement periods of the IRS contract, and Mi as the

number of compounded days on the overnight rate during the i−th coupon payment.

Definition 3.2. The payments in a plain-vanilla IRS are as follows:

(1) Payments will be made and received at times ti = t0 + iδ, for i = 1, . . . , N .

(2) For i = 1, . . . , N , at every period [ti−1, ti], the floating leg,

δSOFR(ti−1, ti)
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is paid at time ti.

(3) For i = 1, . . . , N , at every period [ti−1, ti], the fixed leg payment

δx(t, tN)

is paid at time ti, where x(t, tN) is the swap rate and t is such that t0 ≤ t < t 1

M1

.

The same reasoning used in Section 1.2.2 for evaluating IRS under default-free refer-

ence rates will be used here as well. Furthermore, as the valuation of the fixed leg will not

depend on the overnight rate, we can apply Theorem 1.3 to the IRS defined in Definition

1.2.

Theorem 3.8. (Fixed leg of an IRS on a default-free overnight reference rate) The

time−t value of the fixed leg of a plain-vanilla IRS with t0 ≤ t < t 1

M1

on a default-free

overnight reference rate is

δx(t, tN)
N
∑

i=1

P (t, ti) (3.22)

Proof. Consider some time t such that t0 ≤ t < t 1

Mi

. The payment of the fixed leg

at any given time ti, where i = 1, . . . , N , is just

δx(t, tN),

and its time−t value is

EQ

[

δx(t, tN)

Bti

∣

∣

∣

∣

Ft

]

Bt = EQti

[

δx(t, tN)

P (ti, ti)

∣

∣

∣

∣

Ft

]

P (t, ti) = δx(t, tN)P (t, ti)

Therefore, the time−t value of the fixed leg is the sum of the fair value of all these

payments:
N
∑

i=1

δx(t, tN)P (t, ti) = δx(t, tN)
N
∑

i=1

P (t, ti)

□

Now considering the floating leg:

Theorem 3.9. (Floating leg of an IRS on a default-free overnight reference rate) The

time−t value of the floating leg of a plain-vanilla IRS with t0 ≤ t < t 1

M1

on a default-free

overnight reference rate is

P
(

t, t 1

M1

)

P
(

t0, t 1

M1

) − P (t, tN) (3.23)

Proof. We will divide the proof into two parts: 1) the IRS floating payment at t1,

2) the rest of the IRS floating payments for ti, where i = 2, . . . , N . For both these proofs,

we already know the time−t values of these payments, as these were derived in the proof
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of Theorem 1.6. Therefore, we can calculate the time−t value of this floating leg:

Floatt =
P
(

t, t 1

M1

)

P
(

t0, t 1

M1

) − P (t, t1) +
N
∑

i=2

[P (t, ti−1)− P (t, ti)]

=
P
(

t, t 1

M1

)

P
(

t0, t 1

M1

) − P (t, tN)

□

Therefore, like was done before, we can calculate the time−t value of a plain-vanilla

IRS:

IRSt =
P
(

t, t 1

M1

)

P
(

t0, t 1

M1

) − P (t, tN)− δx(t, tN)
N
∑

i=1

P (t, ti) (3.24)

Having this, we can also derive the fixed swap rate for a plain-vanilla IRS, but now under

an overnight rate.

Corollary 3.3. (Interest rate swap rate) The time−t swap rate, with t0 ≤ t < t 1

M1

,

of a plain-vanilla IRS on a default-free overnight reference rate is

x(t, tN) =

P

(

t,t 1
M1

)

P

(

t0,t 1
M1

) − P (t, tN)

δ
N
∑

i=1

P (t, ti)

(3.25)

3.3. Switching interest rate swaps based on LIBOR rates to overnight rates

3.3.1. Interest rate swaps based on a default-free reference rate

One final case of interest is to consider some current IRS whose floating leg payments

are still under some LIBOR rate and, at some point in the future, will switch to an

overnight rate. Again, consider a set of resettlement dates t0, t1, . . . , tN , a notional of 1,

and consider δ = ti− ti−1, for i = 1, . . . , N , such that δ is constant. Additionally, consider

a specific resettlement date where the IRS will make the switch from a LIBOR rate to an

overnight rate. We will denote this resettlement date as tS.

One particularity of these type of IRS is that after the switch to overnight rates is done,

it is important to not alter the arbitrage dynamics of the IRS. To this end, according to

the International Swaps and Derivatives Association (ISDA), we need to consider a spread

adjustment in the floating leg’s payments, s.

To calculate the time−t value of this spread adjustment, st, we need to consider that it

will have to be such that the time−t value of an IRS under some LIBOR rate is the same

as the time−t value of an IRS under some overnight rate plus st. In practice, the most

widely suggested approach for calculating st is, according to ISDA, the five year median

for the LIBOR-SOFR spread. Utilizing this method has the advantage of avoiding market

fluctuations. On the other hand, depending on the market conditions at the time (t) of
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determining the spread, the median could be lower or higher and also be subject to higher

variance during times of economic stress. There is also the possibility of having a dynamic

spread adjustment and that is one of the results aimed to be answered. This method is

more economically fair as it will track market reality. However, it can be difficult to

manage, while also requiring other decisions on the side such as frequency change (how

much we want to keep track of the spread adjustment, i.e, second by second, minute by

minute, or hourly) and calculation methodology (as we will see later on, the equation for

the spread adjustment is dependent on the value of zero coupon bonds, which will make

every spread adjustment value different from model to model).

Definition 3.3. The payments in a plain-vanilla IRS switching to an overnight rate

are as follows:

(1) Payments will be made and received at times ti = t0 + iδ, for i = 1, . . . , N .

(2) For i = 1, . . . , S − 1, at every period [ti−1, ti], the LIBOR rate L(ti−1, ti) is set at

ti−1 and the floating leg,

δL(ti−1, ti)

is paid at time ti.

(3) For j = S, . . . , N , at every period [tj−1, tj], the floating leg,

δ[SOFR(tj−1, tj) + st]

is paid at tj, where st is the spread adjustment for the switch between rates.

(4) For i = 1, . . . , N , at every period [ti−1, ti], the fixed leg payment

δx(t, tN)

is paid at time ti, where x(t, tN) is the swap rate and t is such that t0 ≤ t <

t 1

M1

< t1.

Given the definition of an IRS switching from a LIBOR reference rate to a SOFR rate,

it is possible to derive an equation for the spread adjustment, st. If we consider the IRS

in the future at time tS, we will just get an IRS that pays SOFR rate plus the spread

adjusment until its maturity. We can compare the fair value of this IRS, IRS1, with

another IRS, IRS2, that would pay LIBOR until the end of its maturity. Since the fixed

leg of each IRS is equal, we will only need to compare their floating legs. Therefore, we

want to have that:

Floatingt(IRS1) = Floatingt(IRS2) (3.26)

For IRS2, we already know the time−t value of its floating leg:

P (t, t1)

P (t0, t1)
− P (t, tN) (3.27)
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And we already know the time−t value of IRS1 floating leg if consider the time−t floating

of the same IRS but without the spread adjustment addition (Theorem 1.9) 3.27. If also

we add the time−t value of the spread adjustment which is, for i = 1, . . . , N ,

EQ

[

δst
Bt

Bti

∣

∣

∣

∣

Ft

]

= δstE
Q

[

Bt

Bti

∣

∣

∣

∣

Ft

]

= δstP (t, ti), (3.28)

then the time−t value of IRS1 floating leg is:

P
(

t, t 1

M1

)

P
(

t0, t 1

M1

) − P (t, tN) + δst

N
∑

i=1

P (t, ti) (3.29)

Before using the floating legs to solve equation 3.26 for st, it is important to note that

the zero coupon bonds, P , in each floating leg are different due to them being discounted

in different ways. The discounting can be different because of factors such as, for example,

liquidity and different underlying interest rates. Therefore, let us define PL(ti−1, ti) as a

zero coupon bond linked to the discounting in a LIBOR reference rate, and PO(ti−1, ti)

as a zero coupon bond linked to the discounting in an overnight rate. Therefore, using

the floating legs 3.29 and 3.27 and equation 3.26 imply that:

PO
(

t, t 1

M1

)

PO

(

t0, t 1

M1

) − PO(t, tN) + δst

N
∑

i=1

PO(t, ti) =
PL(t, t1)

PL(t0, t1)
− PL(t, tN)

which yields the following solution:

st =

PL(t,t1)
PL(t0,t1)

− PL(t, tN)−
PO

(

t,t 1
M1

)

PO

(

t0,t 1
M1

) + PO(t, tN)

δ
N
∑

i=1

PO(t, ti)

, (3.30)

where t0 ≤ t < t 1

M1

. Notice that for t = t0, we get that

st0 =
PO(t0, tN)− PL(t0, tN)

δ
N
∑

i=1

PO(t0, ti)

by a simple substitution.

Again, the fixed leg will not change as it does not depend on the underlying rate.

Therefore, we will refer to Theorem 1.8 to valuate the fixed leg. For the floating leg:

Theorem 3.10. (Floating leg of an IRS on a default-free reference rate switching

to an overnight rate) The time−t value of the floating leg of a plain-vanilla IRS with

t0 ≤ t < t 1

M1

< t1 < tS < tN on a default-free reference rate switching to an overnight
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rate is
P (t, t1)

P (t0, t1)
− P (t, tN) + δst

N
∑

i=S

P (t, ti) (3.31)

Proof. Start by considering some time−t such that t0 ≤ t < t 1

M1

< t1. We will

divide the proof into three parts: 1) the first resettlement date, t1; 2) the remaining

LIBOR payments; 3) the overnight payments. For the payment at t1, we have that,

EQ

[

1

Bt1

δL(t0, t1)

∣

∣

∣

∣

∣

Ft

]

Bt =
P (t, t1)

P (t0, t1)
− P (t, t1), (3.32)

which we already proved before in the proof of Theorem 1.4. Furthermore, from the proof

of the same Theorem 1.4, we already know that, for i > 1:

EQ

[

1

Bti

δL(ti−1, ti)

∣

∣

∣

∣

∣

Ft

]

Bt = P (t, ti−1)− P (t, ti) (3.33)

For the overnight payments and using equation (1.16),

EQ

[

1

Bti

δ[SOFR(ti−1, ti) + st]

∣

∣

∣

∣

∣

Ft

]

Bt

= EQ

[

1

Bti

δSOFR(ti−1, ti)

∣

∣

∣

∣

∣

Ft

]

Bt + δEQ

[

1

Bti

st

∣

∣

∣

∣

∣

Ft

]

Bt

= P (t, ti−1)− P (t, ti) + δstP (t, ti) (3.34)

Therefore, we can join these last equations to derive the floating leg of this IRS:

Floatt =
P (t, t1)

P (t0, t1)
− P (t, t1) +

S−1
∑

i=2

[P (t, ti−1)− P (t, ti)]

+
N
∑

i=S

[P (t, ti−1)− P (t, ti) + δst · P (t, ti)]

=
P (t, t1)

P (t0, t1)
− P (t, t1) +

S−1
∑

i=2

[P (t, ti−1)− P (t, ti)]

+
N
∑

i=S

[P (t, ti−1)− P (t, ti)] + δst

N
∑

i=S

P (t, ti)

=
P (t, t1)

P (t0, t1)
− P (t, t1) +

N
∑

i=2

[P (t, ti−1)− P (t, ti)] + δst

N
∑

i=S

P (t, ti)

=
P (t, t1)

P (t0, t1)
− P (t, tN) + δst

N
∑

i=S

P (t, ti) (3.35)

□
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Therefore, the time−t value of this plain-vanilla IRS is

IRSt =
P (t, t1)

P (t0, t1)
− P (t, tN) + δst

N
∑

i=S

P (t, ti)− δx(t, tN)
N
∑

i=1

P (t, ti), (3.36)

and we can also calculate the spot swap rate of this IRS, by solving the equation IRSt = 0.

Corollary 3.4. (Interest rate swap rate) The time−t swap rate, with t0 ≤ t <

t 1

M1

< t1 < tS < tN , of a plain-vanilla IRS on a default-free reference rate switching to

an overnight rate is

x(t, tN) =

P (t,t1)
P (t0,t1)

− P (t, tN) + δst
∑N

i=S P (t, ti)

δ
∑N

i=1 P (t, ti)
(3.37)

3.3.2. Interest rate swaps based on a credit risky reference rate

As done before for the other swaps, it is important to also include the case where the

reference rate has some type of credit risk. Again, we can reuse Theorem 1.10 for an IRS

under these conditions as the fixed leg, as said before, is not dependent on the underlying

reference rate.

Following the same reasoning as in Section 3.4.1, and using Theorems 3.5 and 3.6, it

is possible to calculate the solution for the spread adjustment under these conditions:

PL(t, t1)

DL(t0, t1)
+

N
∑

i=2

EQ

[

PL(ti−1, ti)

DL(ti−1, ti)

1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −

N
∑

i=1

PL(t, ti)

=
PO
(

t, t 1

M1

)

PO

(

t0, t 1

M1

) − PO(t, tN) + δst

N
∑

i=1

PO(t, ti)

Solving for st:

st =

PL(t,t1)
DL(t0,t1)

+
N
∑

i=2

EQ

[

PL(ti−1,ti)
DL(ti−1,ti)

1
Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −
N
∑

i=1

PL(t, ti)−
PO

(

t,t 1
M1

)

PO

(

t0,t 1
M1

) + PO(t, tN)

δ
N
∑

i=1

PO(t, ti)

(3.38)

Concerning the time−t value of the floating leg under these conditions:

Theorem 3.11. (Floating leg of an IRS on a credit risky reference rate switching

to an overnight rate) The time−t value of the floating leg of a plain-vanilla IRS with

t0 ≤ t < t 1

M1

< t1 < tS < tN on a credit risky reference rate switching to an overnight

rate is

P (t, t1)

D(t0, t1)
+

S−1
∑

i=2

EQ

[

P (ti−1, ti)

D(ti−1, ti)

1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt−

S−2
∑

i=1

P (t, ti)+δst

N
∑

j=S

P (t, tj)−P (t, tN) (3.39)
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Proof. The time−t value of floating leg, as seen before, will be the sum of all the

time−t values of each payment at each resettlement date. Therefore, using the equations

derived in the proof of Theorem 3.5 for the time−t value of each payment under some

defaultable zero coupon bond:

Floatt = EQ

[

1
D(t0,t1)

− 1

Bt1

Bt

∣

∣

∣

∣

∣

Ft

]

+
S−1
∑

i=2

(

EQ

[

1
D(ti−1,ti)

− 1

Bti

Bt

∣

∣

∣

∣

∣

Ft

])

+
N
∑

j=S

EQ

[

1

Bti

δ[SOFR(ti−1, ti) + st]

∣

∣

∣

∣

∣

Ft

]

Bt

=
P (t, t1)

D(t0, t1)
− P (t, t1) +

S−1
∑

i=2

EQ

[

P (ti−1, ti)

D(ti−1, ti)

1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −
S−1
∑

i=2

P (t, ti)

+
N
∑

i=S

[P (t, ti−1)− P (t, ti) + δst · P (t, ti)]

=
P (t, t1)

D(t0, t1)
− P (t, t1) +

S−1
∑

i=2

EQ

[

P (ti−1, ti)

D(ti−1, ti)

1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt

−

[

S−1
∑

i=2

P (t, ti) +
N
∑

i=S

P (t, ti)

]

+
N
∑

i=S

P (t, ti−1) + δst

N
∑

i=S

P (t, ti)

=
P (t, t1)

D(t0, t1)
+

S−1
∑

i=2

EQ

[

P (ti−1, ti)

D(ti−1, ti)

1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −

N
∑

i=2

P (t, ti)

+
N
∑

i=S

P (t, ti−1) + δst

N
∑

i=S

P (t, ti)

=
P (t, t1)

D(t0, t1)
+

S−1
∑

i=2

EQ

[

P (ti−1, ti)

D(ti−1, ti)

1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −
S−2
∑

i=1

P (t, ti) + δst

N
∑

j=S

P (t, tj)− P (t, tN)

□

Joining this last equation with the fixed leg, we can calculate the time−t value of this

IRS:

IRSt =
P (t, t1)

D(t0, t1)
+

S−1
∑

i=2

EQ

[

P (ti−1, ti)

D(ti−1, ti)

1

Bti−1

∣

∣

∣

∣

∣

Ft

]

Bt −

S−2
∑

i=1

P (t, ti) + δst

N
∑

j=S

P (t, tj)− P (t, tN)

− δx(t, tN)
N
∑

i=1

P (t, ti) (3.40)

Solving the equation IRSt = 0 for x(t, tN), we can calculate the spot swap rate of this

IRS.

Corollary 3.5. (Interest rate swap rate) The time−t swap rate, with t0 ≤ t < t 1

M1

<

t1 < tS < tN , of a plain-vanilla IRS on a credit risky overnight reference rate switching
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to an overnight rate is

x(t, tN) =

P (t,t1)
D(t0,t1)

+
S−1
∑

i=2

EQ

[

P (ti−1,ti)
D(ti−1,ti)

1
Bti−1

∣

∣Ft

]

Bt −
S−2
∑

i=1

P (t, ti) + δst
N
∑

j=S

P (t, tj)− P (t, tN)

δ
N
∑

i=1

P (t, ti)

(3.41)
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CHAPTER 4

Testing pricing accuracy on EUSA swaps through the zero

coupon bond curve of EESWE overnight-based swaps

This section aims to test the pricing accuracy on EUSA swaps through bootstrapped

zero coupon bonds on ESTR-based swaps, EESWE swaps. During this section it will be

assumed that all swaps are based under default-free reference rates, the present moment

of valuation is t0 = 0, and that all dates are worked under the bond basis (30/360).

4.1. Valuating EUSA swaps

The Euro Swap Agreements (EUSA) are swaps that are linked to the EURIBOR 6M,

on a semi-annual frequency. Until now, we have taken examples of swaps who assume that

both fixed and floating legs have equal frequency regarding resettlement dates. However,

the EUSA swaps, whose pricing accuracy will be tested, have different frequencies: like

said above, the floating leg has semi-annual resettlement payments, whereas the fixed leg

has annual resettlement payments. On a more formal definition:

Definition 4.1. The payments in an EUSA swap are as follows:

(1) The floating leg payments will be made and received at times ti = t0 + i, for

i = 1, . . . , N .

(2) The fixed leg payments will be made and received at times ti = t0 + 2i, for

i = 1, . . . , N
2
.

(3) For i = 1, . . . , N , at every period [ti−1, ti], the floating leg,

EUR6M(ti−1, ti)

2

is paid at ti, where EUR6M is the six month EURIBOR index.

(4) For i = 1, . . . , N
2
, at every period [t2i−1, t2i], the fixed leg payment

EUSA(t, tN)

is paid at t2i, where EUSA(t, tN) is the EUSA swap rate and t is such that

t0 ≤ t < t1.

Furthermore, in this case, the floating leg has the same properties as the swaps defined

in Section 3.2, so we can use Theorem 3.4 for the EUSA swaps floating leg. However, for

the fixed leg:

29



Theorem 4.1. (Fixed leg of an EUSA IRS) The time−t value of the fixed leg of a

plain-vanilla IRS with t0 ≤ t < t1 on a default-free reference rate is

EUSA(t, tN)

⌊N

2
⌋

∑

i=1

P (t, t2i), (4.1)

where ⌊·⌋ is the floor function.

Proof. Consider some time t such that t0 ≤ t < t1. The payment of the fixed leg at

any given time t2i, where i = 1, . . . , N
2
, is just

EUSA(t, tN),

and its time−t value is

EQ

[

EUSA(t, tN)

Bt2i

∣

∣

∣

∣

Ft

]

Bt = EQt2i

[

EUSA(t, tN)

P (t2i, t2i)

∣

∣

∣

∣

Ft

]

P (t, t2i) = EUSA(t, tN)P (t, t2i)

Therefore, while also accounting the cases where N can be odd, the time−t value of the

fixed leg is the sum of the fair value of all these payments, yielding equation (4.1). □

Therefore,

IRSt =
P (t, t1)

P (t0, t1)
− P (t, tN)− EUSA(t, tN)

⌊N

2
⌋

∑

i=1

P (t, t2i), (4.2)

and we can formulate the equation for an EUSA swap:

Corollary 4.1. (EUSA swap rate) The time−t swap rate, with t0 ≤ t < t1 and

N ≥ 2, of a plain-vanilla EUSA swap is

EUSA(t, tN) =

P (t,t1)
P (t0,t1)

− P (t, tN)

⌊N

2
⌋

∑

i=1

P (t, t2i)

(4.3)

4.2. Valuating EESWE swaps

The Euro Overnight Index Swaps (EESWE) are swaps that are linked to the ESTR

index published on a daily basis by the European Central Bank (ECB), on an annual

frequency. This is will the basis for our pricing. Therefore, it is also crucial to know how

to value these swaps.

Definition 4.2. The payments in an EESWE swap are as follows:

(1) The floating leg payments will be made and received at times ti = t0 + i, for

i = 1, . . . , N .

(2) The fixed leg payments will be made and received at times ti = t0 + i, for

i = 1, . . . , N .
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(3) For i = 1, . . . , N , at every period [ti−1, ti], the floating leg,

ESTR(ti−1, ti)

is paid at time ti, where ESTR is the european short-term rate index.

(4) For i = 1, . . . , N , at every period [ti−1, ti], the fixed leg payment

EESWE(t, tN)

is paid at time ti, where EESWE(t, tN) is the EESWE swap rate and t is such

that t0 ≤ t < t1.

On contrary to EUSA swaps, EESWE swaps have the same frequency on both legs.

Furthermore, it is a swap of the same category as the ones evaluated on section 1.3.2.

Notice that if we consider δ = 1 and t = t0 for the equations on this same section, we can

easily obtain the EESWE swap rate equation:

EESWE(t0, tN) =
1− P (t0, tN)
∑N

i=1 P (t0, ti)
(4.4)

4.3. Testing the pricing

4.3.1. Preparations for bootstrapping the mid swap curves

Given that we will be bootstrapping the EESWE swaps, it is important to have a closed

form equation for P (t0, tN), where tN is the EESWE swaps maturity. For a EESWE swap

maturing at time t1, we know that,

EESWE(t0, t1) =
1− P (t0, t1)

P (t0, t1)
, (4.5)

whose equation we can easily solve for P (t0, t1):

P (t0, t1) =
1

1 + EESWE(t0, t1)
(4.6)

For EESWE swaps maturing at tN , for N ≥ 2, we can start by rewriting equation (4.4):

EESWE(t0, tN) =
1− P (t0, tN)
∑N

i=1 P (t0, ti)
=

1− P (t0, tN)

P (t0, tN) +
∑N−1

i=1 P (t0, ti)

Solving for P (t0, tN), we get that:

P (t0, tN) =
1− EESWE(t0, tN)

∑N−1
i=1 P (t0, ti)

1 + EESWE(t0, tN)
(4.7)

Moving to EUSA swaps, we can assume an EUSA swap maturing at t1. In this swap,

there will be a single floating leg payment done and no fixed leg payments. Therefore, we

will not consider any swap here. For an EUSA swap maturing at t2, now there will be
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two floating leg payments and one fixed leg payment. Therefore,

EUSA(t0, t2) =
1− P (t0, t2)

P (t0, t2)
⇐⇒ P (t0, t2) =

1

1 + EUSA(t0, t2)
(4.8)

For N > 2, it will be possible to consider some generic equation,

P (t0, tN) =







































1− EUSA(t0, tN)

N

2
−1
∑

i=1

P (t0, t2i)

1 + EUSA(t0, tN)
, if N is even

1− EUSA(t0, tN)
⌊N

2
⌋

∑

i=1

P (t0, t2i), if N is odd

(4.9)

4.3.2. MATLAB implementation

There are two ways we can test the pricing accuracy: 1) we obtain the zero coupon

bond curves from both EUSA and EESWE swaps; 2) we compare the EUSA original mid

quotes with the ones calculated through the EESWE zero coupon bond curve.

Step 0 - Importing swap data: using Bloomberg’s ICVS function, the raw money-market

data in Tables 1 and 2 was exported on the day 04/11/2022.

Maturity (y) Bloomberg Ticker Bid Ask Mid
0.5 EUR006M 2.2780% 2.2780% 2.2780%
1 EUSA1 2.7860% 2.8336% 2.8098%
1.5 EUSA1F 2.9555% 3.0011% 2.9783%
2 EUSA2 3.0406% 3.0754% 3.0580%
3 EUSA3 3.0522% 3.0818% 3.0670%
4 EUSA4 3.0561% 3.0719% 3.0640%
5 EUSA5 3.0617% 3.0803% 3.0710%
6 EUSA6 3.0706% 3.0894% 3.0800%
7 EUSA7 3.0843% 3.0999% 3.0921%
8 EUSA8 3.0964% 3.1136% 3.1050%
9 EUSA9 3.1177% 3.1333% 3.1255%
10 EUSA10 3.1394% 3.1554% 3.1474%

Table 1. EUSA Swaps - 04/11/2022
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Maturity (y) Bloomberg Ticker Bid Ask Mid
1 EESWE1 2.5779% 2.5966% 2.5872%
2 EESWE2 2.7683% 2.7937% 2.7810%
3 EESWE3 2.7608% 2.7852% 2.7730%
4 EESWE4 2.7410% 2.7910% 2.7660%
5 EESWE5 2.7461% 2.7959% 2.7710%
6 EESWE6 2.7537% 2.8003% 2.7770%
7 EESWE7 2.7677% 2.8063% 2.7870%
8 EESWE8 2.7874% 2.8286% 2.8080%
9 EESWE9 2.8057% 2.8563% 2.8310%
10 EESWE10 2.8334% 2.8846% 2.8590%

Table 2. EESWE Swaps - 04/11/2022

Step 1 - Find the zero coupon bond curves for both swaps: consider the equations for

each zero coupon bond: (4.9), (4.8), (4.6) and (4.7). For EESWE swaps, we can extract

directly the zero coupon curve as we have every mid quote for each year looking at Table

2, and we have annual frequency on both legs. Applying equations (4.6) and (4.7) we get

the discount factors in Table 3.

Maturity (y) ZCB - EESWE
1 0.9748
2 0.9466
3 0.9212
4 0.8966
5 0.8722
6 0.8484
7 0.8248
8 0.8010
9 0.7774
10 0.7537

Table 3. Zero coupon bond - EESWE swaps

For the EUSA swaps, since some maturities are missing from Table 1 (as they are not

available on Bloomberg), we will have to use linear interpolation as an alternative for

computing the missing mid quotes. These are presented in Table 4.
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Maturity (y) Mid
1 2.8098%
1.5 2.9783%
2 3.0580%
2.5 3.0625%
3 3.0670%
3.5 3.0655%
4 3.0640%
4.5 3.0675%
5 3.0710%
5.5 3.0755%
6 3.0800%
6.5 3.0861%
7 3.0921%
7.5 3.0986%
8 3.1050%
8.5 3.1152%
9 3.1255%
9.5 3.1364%
10 3.1474%

Table 4. EUSA swaps after interpolation for mid quotes

Having the interpolated the mid quotes, we can then calculate (in Table 5) the zero

coupon bond curve for the EUSA swaps using equations (4.9) and (4.8).

Maturity (y) ZCB - EUSA
1 0.9727
1.5 0.9710
2 0.9415
2.5 0.9414
3 0.9133
3.5 0.9133
4 0.8862
4.5 0.8861
5 0.8596
5,5 0.8594
6 0.8335
6.5 0.8331
7 0.8078
7,5 0.8074
8 0.7827
8.5 0.7820
9 0.7576
9.5 0.7568
10 0.7329

Table 5. Zero coupon bond - EUSA swaps
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Step 3 - Comparing both zero coupon bond curves: the last step is to graph both zero

coupon bond curves and calculate the difference between each curve. Before that, we need

to interpolate our EESWE zero coupon bond curve, in Table 6.

Maturity (y) ZCB - EESWE (interpolated)
1 0.9748
1.5 0.9607
2 0.9466
2.5 0.9339
3 0.9212
3.5 0.9089
4 0.8966
4.5 0.8844
5 0.8722
5.5 0.8603
6 0.8484
6.5 0.8366
7 0.8248
7.5 0.8129
8 0.8010
8.5 0.7892
9 0.7774
9.5 0.7655
10 0.7537

Table 6. Interpolated zero coupon bond - EESWE swaps

Both curves are plotted in Figure 1 and the difference is presented in Table 7.

Figure 1. Graph of both zero coupon bond curves for each swap
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Maturity (y) Difference in ZCB — EUSA-EESWE
1 0.21%
1.5 -1.04%
2 0.51%
2.5 -0.75%
3 0.79%
3.5 -0.44%
4 1.04%
4.5 -0.17%
5 1.27%
5.5 0.10%
6 1.49%
6.5 0.35%
7 1.70%
7.5 0.55%
8 1.83%
8.5 0.72%
9 1.98%
9.5 0.88%
10 2.08%

Table 7. EUSA ZCB curve minus EESWE ZCB curve

Step 4 - Calculating EUSA mid swap quotes using EESWE zero coupon bond curve: the

final step is to use data from Table 6 to price EUSA mid swap quotes for each maturity.

Using equation (4.1) we get the results in Table 8 and we also calculate the difference in

absolute value between the mid curves in Table 9. We also plot both mid curves in Figure

2 for comparison.

Figure 2. Graph of both EUSA mid swap quotes curves
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Maturity (y) EUSA mid using EESWE curve
1 2.5872%
1.5 4.0344%
2 2.7810%
2.5 3.4417%
3 2.7730%
3.5 3.2057%
4 2.7660%
4.5 3.0917%
5 2.7710%
5.5 3.0295%
6 2.7770%
6.5 2.9925%
7 2.7870%
7.5 2.9765%
8 2.8080%
8.5 2.9748%
9 2.8310%
9.5 2.9820%
10 2.8590%

Table 8. EUSA mid quotes calculated using EESWE curve

Maturity (y) Difference in absolute value
1 0.2226%
1.5 1.0561%
2 0.2770%
2.5 0.3792%
3 0.2940%
3.5 0.1402%
4 0.2980%
4.5 0.0242%
5 0.3000%
5.5 0.0460%
6 0.3030%
6.5 0.0935%
7 0.3051%
7.5 0.1221%
8 0.2970%
8.5 0.1404%
9 0.2945%
9.5 0.1544%
10 0.2884%

Table 9. Difference in absolute value of EUSA mids minus EUSA mids
using EESWE swaps
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4.4. Pricing results assessement

Commenting on the accuracy of the pricing itself, it is safe to say that, in the majority

of the cases, the zero coupon bond curve from EESWE swaps cannot replicate totally

the original EUSA mid swap quotes, at least for most of the prices. For the record, we

consider that a mid is replicated with success only if the difference in both mids is less

than 10 basis points (0.10%).

Indeed, by looking at Table 9, we can see that the best results occur on the 4.5, 5.5,

and 6.5 year maturities. However, for the remaining 16 resettlement dates, the results are

appalling. One could argue that the pricing is not accurate due to various reasons. One

possibility is that the current money-market conditions faces an unstable period (at the

time of writing) due to some uncertainty caused by the rate hikes imposed by the central

banks, causing the EUSA minus EESWE zero coupon bond curve to widen. Additionally,

and above all, the fact that these swaps both have different frequencies on the floating

legs is also not good for our pricing. As mentioned before, for n = 1, . . . , 10, not having

the zero coupon bond value for the
(

n+ 1
2

)

-th year on the EESWE zero coupon bond

curve forces the use of linear interpolation to compute these and there is not always a

linear relationship between the year before (n) and the year after (n+1), which can cause

some disturbance. Furthermore, if we explore the floating leg frequency argument a bit

further, we are also able to argue that the bootstrapped EESWE ZCB curve does not take

into account any gaps on the fixed leg (even after being interpolated), since we have both

fixed and floating payments occurring every resettlement date. But what if we did not? A

suggestion to work around this problem in EESWE swaps would be to assume that in the
(

n+ 1
2

)

-th years only one payment occurs, the floating one. Since we are assuming these

mid-term resettlement dates only for the purpose of EUSA swap pricing and since these

also do not affect the pricing on the EESWE swaps at the original resettlement dates,

we can assume that our zero coupon bond level at the
(

n+ 1
2

)

-th year will be the zero

coupon bond level from year n plus some adjustment to take into account the discount

factor for one more semester (0.5 years).
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CHAPTER 5

Conclusions

5.1. Final remarks

We began the thesis by reminding and exploring some key swap concepts under IBOR

rates and adapting these results to the new overnight rates, while also considering the

possibility of credit risk, to reach closed-form solutions.

Looking back at the derived closed-form solutions for the new underlying overnight

rates and using the already known ones for fixed maturity rates as a benchmark, we can

say that the results are line with the market practice, at least for the most simple scenario

where we assume default-risk. In this scenario, the equations obtained were almost similar

in both underlying rates, with them only differing on the type of zero coupon bond (just

like seen in Section 3.3 of Chapter 3) and the maturity of the zero coupon bonds embedded

on the first floating rate loan.

Considering the solutions derived under credit risky reference rates, most of the equa-

tions assume some expected value that cannot be further simplified, under the measure

Q. In practice, for these equations, we can adopt some assumptions that can simplify

the equation overall: we can consider some short-term interest rate model, like Vasiček

(1977), or try to Monte-Carlo the expected value while also assuming some interest rate

model.

In addition to the theoretical component of this thesis, we also present a numerical

exercise where we test the pricing accuracy on EUSA swaps through the zero coupon bond

curve of a EESWE swap. As we have previously noted in Section 4.4, the pricing overall is

not that appealing mainly due to the frequency of the fixed leg of EUSA swaps not being

equal to the frequency of the floating leg of the same swaps. Our proposed solution is to

consider some adjustment to mid-term resettlement dates using the previous resettlement

date, in order to adjust our EESWE zero coupon bond curve to match the shape of our

EUSA zero coupon curve, as per Figure 1 shows.

As prospects of future research, finding closed-form model independent solutions for

generalizing the pricing of swaptions and other OTC interest rate options (caps and floors)

under some underlying overnight rate is the next step. When pricing swaptions and

other OTC interest rate derivatives under some LIBOR underlying rate, for instance, we

previously demonstrate that the forward swap rate is a martingale under the measure QS

that assumes the annuity as a numeraire. However, this does not happen if our underlying

is an overnight rate, which makes the pricing harder. Xu (2021) already approaches this

pricing by modelling the dynamics of SOFR through a 1-factor Hull-White model for

European interest rate options, that is easily extended to multi-factor affine Gaussian
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models. On the other hand, American interest rate options can not be computed through

closed-form solutions, but numerical methods and Monte-Carlo are used to price these.

Furthermore, Rutkowski and Bickersteth (2021) already cover some alternative pricing

solutions for swaptions, as well as caps and floors under the SOFR, by reaching equations

based on the conditional expectation of their respective payoffs.
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APPENDIX A

MATLAB code

1 clear;

2 clc;

3

4 % Data reading

5

6 EUSA = readtable('EUSA.xlsx');

7 EESWE = readtable('EESWE.xlsx');

8

9 % Useful variables

10

11 freq EESWE = 1;

12 freq EUSA fixed = 1;

13

14 t0 = 0;

15 max maturity = max(EUSA.Tenor y );

16

17 % Creating vector for EUSA resettlement payment dates (all semesters ...

within

18 % 10 years)

19

20 EUSA resettlement dates = zeros(2 * max maturity,1);

21

22 for i = 1:length(EUSA resettlement dates)

23 EUSA resettlement dates(i) = t0 + i * 0.5;

24 end

25

26 % EESWE ZCB Bootstrapping

27

28 EESWE.ZCB(1) = 1 / (1 + freq EESWE * EESWE.Mid(1));

29

30 for i = 2:height(EESWE)

31 EESWE.ZCB(i) = (1 − freq EESWE * EESWE.Mid(i) * ...

sum(EESWE.ZCB(1:i−1))) / (1 + freq EESWE * EESWE.Mid(i));

32 end

33

34 EESWE interpolated = table(EUSA resettlement dates);

35 EESWE interpolated.Properties.VariableNames = {'Tenor y '};

36
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37 EESWE interpolated = outerjoin(EESWE interpolated, EESWE);

38 EESWE interpolated.Tenor y EESWE = [];

39 EESWE interpolated.Ticker = [];

40

41 EESWE interpolated = fillmissing(EESWE interpolated, 'linear', ...

'SamplePoints', EESWE interpolated.Tenor y EESWE interpolated);

42

43 % Getting EUSA data ready to merge with EESWE data + Computation

44

45 dt swaps = table(EUSA resettlement dates);

46 dt swaps.Properties.VariableNames = {'Tenor y '};

47

48 dt swaps = outerjoin(dt swaps, EUSA);

49 dt swaps.Tenor y EUSA = []; %remove extra tenor column

50 dt swaps.Ticker = [];

51

52 dt swaps = fillmissing(dt swaps, 'linear', 'SamplePoints', ...

dt swaps.Tenor y dt swaps);

53 dt swaps.N = dt swaps.Tenor y dt swaps * 2;

54

55 dt swaps.EESWE ZCB = EESWE interpolated.ZCB;

56

57 dt swaps.Mid using EESWE(1) = 1 − dt swaps.EESWE ZCB(1);

58

59 for i = 2:height(dt swaps)

60 dt swaps.Mid using EESWE(i) = (1 − dt swaps.EESWE ZCB(i)) / ...

(freq EUSA fixed * sum(dt swaps.EESWE ZCB(2:2:(floor(i/2))*2)));

61 end

62

63 dt swaps.MidDifference EUSA minus EUSA using EESWE ZCB = dt swaps.Mid ...

− dt swaps.Mid using EESWE;

64

65 % EUSA ZCB Bootstrapping

66

67 dt swaps.EUSA ZCB(1) = 1 − dt swaps.Mid(1);

68 dt swaps.EUSA ZCB(2) = 1 / (1 + dt swaps.Mid(2));

69

70 for i = 3:height(dt swaps)

71 if ¬mod(i,2) == 1

72 dt swaps.EUSA ZCB(i) = (1 − ...

dt swaps.Mid(i)*sum(dt swaps.EUSA ZCB(2:2:((i/2)−1)*2))) ...

/ (1 + dt swaps.Mid(i));

73 else

74 dt swaps.EUSA ZCB(i) = 1 − dt swaps.Mid(i) * ...

sum(dt swaps.EUSA ZCB(2:2:(floor(i/2))*2));

75 end

76 end
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77

78 dt swaps.ZCBDifference EUSA minus EESWE = (dt swaps.EUSA ZCB − ...

dt swaps.EESWE ZCB);

79

80 % Finalizing the table by removing first 0.5 year (first semester) ...

from the

81 % final results

82

83 dt swaps(1,:) = [];

84 dt swaps

85

86 % Plotting figures and results

87

88 figure(1)

89 plot(dt swaps.Tenor y dt swaps, dt swaps.Mid)

90 hold on

91 plot(dt swaps.Tenor y dt swaps, dt swaps.Mid using EESWE)

92 legend('EUSA − Original mid', 'EUSA − Mid calculated using EESWE ZCB ...

curve')

93 xlabel("Maturity (y)");

94 ylabel("Mid swap level")

95

96 figure(2)

97 plot(dt swaps.Tenor y dt swaps, dt swaps.EESWE ZCB)

98 hold on

99 plot(dt swaps.Tenor y dt swaps, dt swaps.EUSA ZCB)

100 legend('Zero coupon bond − EESWE','Zero coupon bond − EUSA')

101 xlabel("Maturity (y)")

102 ylabel("Zero coupon bond level")

103

104 best results condition = ...

abs(dt swaps.MidDifference EUSA minus EUSA using EESWE ZCB) < ...

0.1/100;

105

106 best results = dt swaps(best results condition,:)
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