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Abstract: In the process of automatic container terminal loading and unloading, the three-

dimensional attitude of the container affects the security of loading and unloading operations, so 

the three-dimensional attitude positioning of the container is very important. In this paper, a visual 

non-contact measurement method is used to realize the real-time orientation of the three-

dimensional attitude of the container. First, the container corner is coarsely positioned by a small-

scale deep learning network. Secondly, the precise position of the container keyhole is obtained by 

the secondary positioning of the container corner through the traditional image processing 

algorithm, and the container posture is measured in three dimensions by combining the physical 

motion model of the container during loading and unloading. After testing, unlike previous 

measurement methods, the measurement accuracy of this method met the requirements of 

automatic loading and unloading of container terminals, and the measurement time met the 

requirements of real-time measurement. 
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1. Introduction 

An automated container terminal replaces manual operation by machine, and offers 

the advantages of high operative efficiency, high safety and reliability, low environmental 

pollution, and saving of manpower [1], all of which are vital to the inevitable development 

trend of the container terminals of the future. Rail-mounted gantry cranes are the main 

equipment for automated container terminal yard operations, responsible for container 

loading and unloading between the container yard and container trucks (hereinafter 

referred to as trucks). In the process of container loading and unloading, if an accident 

occurs, such as the truck lifting up or the container overturns, it is necessary to obtain the 

attitude information of the container and frame through three-dimensional measurement, 

re-position the container and lift it again. In order to avoid serious economic and safety 

losses caused by accidents during the container lifting process, it is particularly important 

to measure the three-dimensional attitude of the container. The three-dimensional 

attitude of the container means that, during the loading and unloading of the container, 

due to improper operation of the spreader, the container shifts to different degrees in the 

three directions of X, Y, and Z in the space coordinate system. 

The traditional three-dimensional attitude positioning of containers relies on LiDAR 

[2,3], which can scan the contour of a container and analyze the posture change of a 

Citation: Mi, C.; Huang, S.; Zhang, 

Y.; Zhang, Z.; Postolache, O.  

Design and Implementation of 3-D 

Measurement Method for Container 

Handling Target. J. Mar. Sci. Eng. 

2022, 10, 1961. https://doi.org/ 

10.3390/jmse10121961 

Academic Editor: Mihalis Golias 

Received: 30 September 2022 

Accepted: 2 December 2022 

Published: 9 December 2022 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



J. Mar. Sci. Eng. 2022, 10, 1961 2 of 21 
 

 

container in real time. LiDAR has the advantages of high detection accuracy and is not 

easily affected by weather and light conditions. However, in practical applications, LiDAR 

calibration is difficult and the cost is too high to be suitable for most terminals. 

With the rapid development of machine vision technology, vision-based 

measurement adopts a non-contact mode of operation [4], which has the advantages of 

low cost, high precision, and all-weather work. It is widely used in different fields, such 

as navigation [5], aerospace [6], industry [7] and military [8]. Vision-based 3D attitude 

measurement can be divided into monocular vision measurement, binocular vision 

measurement and multi-view vision measurement [9], according to the number of 

cameras. The monocular vision system only uses a single vision sensor and has the 

advantages of simple structure and fast calculation speed, so it is widely used in practical 

projects. 

The attitude measurement based on monocular vision is divided into traditional 

image processing algorithms and deep learning algorithms. Traditional image processing 

algorithms can achieve high accuracy but lack real-time performance, and cannot cope 

with complex environments [10]. The deep learning algorithms use convolutional neural 

networks to extract deeper features in an end-to-end manner to detect and classify targets 

[11,12]. 

The attitude measurement method based on deep learning is roughly divided into 

three directions: 

(1) Directly detect the three-dimensional attitude of the target in RGB images, such as 

YOLO-6D [13], Pose-RCNN [14], DOPE [15] and other algorithms. The key is to find 

the center of the target in the RGB image, and then return to the centroid of the target 

in the camera coordinate system, to realize the pose detection of the target. Although 

the attitude detection of the target can be performed directly, the algorithm is usually 

too complicated and the real-time performance is relatively poor, so it must rely on 

high-performance computers. 

(2) Define multiple target attitudes in advance as annotation information, and transform 

the attitude estimation problem into a classification problem. This method is often 

used for attitude detection of non-cooperative targets [16,17]. For example, Sharma 

et al. [18], at Stanford University, proposed a non-cooperative target attitude 

estimation method, based on convolutional neural network. However, the actual 

application of the target attitude changes was diverse and could not be directly 

applied.  

(3) The deep learning network is combined with traditional image processing methods 

to solve the target attitude by establishing a model [19,20]. This method can not only 

detect targets well in environments with poor lighting and weather conditions, but 

also greatly reduces the complexity of the model, so that it can meet the requirements 

of real-time detection in embedded computing devices with low performance and 

limited working space. Our team used the above methods to identify and measure 

the truck wheel target [21] and the top hole of the container corner [22] in the early 

stage, but could only complete the measurement in a single direction, and could not 

measure the attitude of the container in three dimensions with the methods. 

In this paper, we propose an algorithm that combines deep learning networks with 

traditional image processing algorithms to detect, in real time, the three-dimensional 

posture of containers during loading and unloading. Firstly, the method uses a small-scale 

deep learning network to quickly locate the container corner, and combines the target 

tracking network to accurately track the target during the loading and unloading process. 

Since the container keyhole target belongs to a small target, we modified the single-stage 

target detection algorithm SSD [23] to adapt it to small target detection. Secondly, the 

traditional image processing algorithm was used to re-locate the container corner to 

obtain the accurate position of the container keyhole, and, according to the movement of 

the container during the loading and unloading process, to establish the measurement 
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model to measure the container attitude in three dimensions. This article is organized as 

follows: Section 2 introduces the measurement system and its principles. Section 3 gives 

the method of measurement of container three-dimensional attitude. Section 4 is the 

experimental part. 

2. Vision-Based Measurement System 

The vision-based measurement system for container handling proposed in this work 

consists of an image processing unit, several industrial cameras, and brackets for fixing 

the cameras, as presented in Figure 1. The camera is used to capture the image of the side 

of the container during the unloading operation. There are no less than two cameras. The 

resolution of the camera is 1980×1080, the FPS is 24 and the installation position of the 

camera can capture the position of the front and rear lock pins of the container. 

 

Figure 1. Hardware installation diagram. 

In the process of container loading and unloading, accidents, such as the truck lifting 

and overturning of the container, can occur. In order to avoid such accidents, the proposed 

system uses a camera to collect the three-dimensional attitude changes of the container 

keyhole during the loading and unloading process, and realizes three-dimensional 

measurement during container loading and unloading. The container keyhole is shown 

in Figure 2. The container keyhole is also called the container corner hole. The container 

corner hole is divided into a top hole, a bottom hole, an end hole and a side hole. The 

container corner piece side hole is used to fix the container, and so plays a huge role in the 

container lifting operation. The research object of this paper was mainly the side hole of 

container corner parts. 
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Figure 2. Container keyhole. 

3. Visual Measurement Algorithm 

The proposed visual measurement algorithm includes three parts: the tracking 

network, based on detection, the target secondary positioning network and the three-

dimensional measurement algorithm. The detection-based tracking network is divided 

into two parts: target detection and target tracking. The target detection network uses a 

convolutional network structure and introduces an attention mechanism to improve the 

ability to extract keyhole features. The tracking part uses the simplified Deep SORT [24] 

(Deep Simple Online and Realtime Tracking) to predict the trajectory of the keyhole target 

in subsequent frames and calculates the Mahalanobis distance and GIOU (Generalized 

Intersection over Union) distance of the detection frame and the tracking frame for data 

association to obtain the keyhole tracking trajectory. The target secondary positioning 

network uses the traditional image detection algorithm to perform secondary positioning 

of the container keyhole on the basis of target detection and tracking, and obtains the 

accurate position of the container keyhole. The three-dimensional measurement algorithm 

uses the camera imaging principle to measure the three-dimensional attitude of the 

container keyhole to estimate the container attitude, so as to realize the three-dimensional 

measurement of the container loading and unloading process. The overall flowchart of 

the algorithm is shown in Figure 3. 

 

Figure 3. Algorithm flowchart. 
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3.1. Detection-Based Tracking Algorithm 

3.1.1. Target Detection Algorithm 

The detected object is expressed by the container keyhole, and is a small target. The 

current algorithms, such as the single-stage target detection algorithm or the two-stage 

target detection algorithm, cannot balance the accuracy and speed of small target 

detection. SSD has the advantages of a simple model and fast detection speed in the target 

detection algorithm, and also has good performance on low-performance devices. 

Therefore, this paper uses the backbone network Resnet-18 [25] with stronger feature 

extraction ability in the original SSD network instead of VGG-16 [26]. An attention 

mechanism, namely, R-E-SSD, is introduced to improve the accuracy of small target 

detection while maintaining a faster detection speed. The residual network (Resnet-18) 

can deepen the network depth, improve the network feature extraction ability and solve 

the problem of gradient disappearance very well. The R-E-SSD algorithm architecture is 

shown in Figure 4. 

 

Figure 4. R-E-SSD network structure. ECA-Net, a lightweight and efficient channel attention 

module, ensures the neural network focuses on certain channels with large weight values, and 

resnet-18 provides the feature extraction backbone network. 

The original SSD model uses VGG-16 as the feature extraction network, but the VGG-

16 network has a large number of parameters and slow calculation speed, which cannot 

meet the requirements of real-time classification and detection of container keyholes. 

Therefore, in this work, Resnet-18 deep residual network was considered for feature 

extraction. The network has only 18 layers and has faster calculation speed. Its floating-

point calculation amount is one tenth that of the VGG-16 network, and can better meet the 

requirements of real-time classification detection, as well as ensuring the model converges 

faster during training, and, thus, reducing training time. 

In order to enable the network to automatically learn the correlation between feature 

map channels, a lightweight and efficient attention mechanism, ECA-Net [27], is 

introduced to enhance useful information and remove redundant features without 

increasing network computation. ECA-Net is a non-dimensionality local cross-channel 

interaction strategy and kernel size adaptive selection method, which acquires cross-

channel interaction information in an extremely lightweight way. The network first pools 

each channel of the input feature map to obtain a global receptive field, and then directly 

performs local cross-channel connections; that is, a one-dimensional convolution 

operation is performed by considering each channel obtained by the pooling operation 

and its k  adjacent channels. The value of k  is adaptively determined by the number of 

channels C : 

( )
( )2log

odd

C b
C

 
= +  (1) 
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Among them, 
odd

 represents the odd number close to the result, and  , b  

represent constants, which are 2 and 1, respectively. The structure diagram of the ECA-

Net network model is shown in Figure 5. 

 

Figure 5. ECA-Net structure. H, W, and C are the length, width and channel of the feature map X, 

respectively. 

3.1.2. Tracking Algorithm 

In the process of container loading and unloading, relying only on the deep learning 

algorithm, to detect the targets of each frame of image, consumes a lot of memory and it 

is difficult to achieve real-time results. Therefore, Deep SORT, a detection-based tracking 

network, was used to track the movement of container keyholes in subsequent frames. 

The tracking effect of Deep SORT largely depends on the detection effect of the detector. 

The Deep SORT detector is the R-E-SSD proposed above. 

The Deep SORT workflow is divided into three steps: prediction, observation, and 

update. In the prediction stage, Kalman filtering is used to initialize the motion variables 

and predict the target position in the next frame. Kalman filter is a widely used optimal 

tracking algorithm for linear systems. The detection frame rate obtained by the above 

detection algorithm is 30.7 frames/s. During the truck loading and unloading operation, 

the spreader is lifted vertically, and the vertical position of the container keyhole between 

the video sequences changes very little, so the motion can be considered uniform. 

Therefore, the time change of the container keyhole tracking system is considered linearly 

correlated. The Kalman filter uses uniform and linear observation models to predict and 

update the target trajectory. The Kalman filter state variable is constructed as shown in 
(2), where u  and v  are the center coordinates of the target detection result, and  , h  are 

the aspect ratio and height of the target detection result, respectively. The values u
•

, v
•

,
•

,

h
•

are the target position of the next frame predicted by the Kalman filter: 

[ , , , , , , , ]TX u v h u v h =  (2) 

The Hungarian algorithm is a combinatorial optimization algorithm for solving the 

task assignment problem in polynomial time. In computational complexity theory, 

polynomial time means that the computational time of a problem is not greater than a 

polynomial multiple of the problem size. The mathematical description is: ( ) ( )km n O n= , 

where k is a constant value. In this paper, it was used to establish the relationship between 

the detection target and the prediction target, that is, to match the target data. The 

detection results and the prediction results were obtained by the R-E-SSD algorithm and 

the Kalman filter, respectively, and the similarity between the prediction results and the 

detection results was measured by Mahalanobis distance. The calculation of Mahalanobis 
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distance is shown in formula (3), where 
,i jd is the motion matching value between 

trajectory i  and detection result j , 
iS  is the covariance matrix of the observation space 

of the frame, which is obtained by Kalman filter: 

1

, ( ) ( )T

i j j j i j jd d y S d y−= − −  (3) 

In the data matching stage, the Hungarian algorithm was used to find the optimal 

matching solution between the prediction result and the detection result, as shown in 

formula (4): 

1 1 , ,min m n

i j i j i jZ d x= ==   (4) 

If the matching is successful, it enters the update stage of the Kalman filter, where m 

and n are the number of tracked targets and the number of detected targets, respectively. 

Data matching failure is mainly divided into tracking target matching failure and 

detection target matching failure. The failure to match the tracking target is caused by 

missed detection of the R-E-SSD network or the disappearance of the target in the video. 

Since there is almost no occlusion in the container handling operation, the reason for 

failure to match the target in the detection frame is that the target is new in the video. 

Focusing on the above matching failure problem, GIOU matching was performed 

between the tracking target that failed to match and the detection target that failed to 

match, as shown in the relations (5) and (6). At the same time, the maximum threshold 

was determined experimentally to remove the matching between the detection frame and 

the tracking frame with low correlation. If the matching is successful, it enters the update 

stage of the Kalman filter: 

c

c

A U
GIoU IoU

A

−
= −  (5) 

A B
IoU

A B


=


,U A B=   (6) 

where A  is the detection result, B  is the prediction result, and 
cA  is the minimum 

closure area of the detection result and the prediction result frame. The detection results 

closest to the predicted results are classified as the same target. 

3.2. Target Secondary Positioning Algorithm 

The result of deep learning network detection is often not the target itself but the 

largest area containing the target. In order to obtain the accurate positioning of the 

container keyhole target, we used the traditional image processing algorithm to locate the 

container keyhole target twice. The keyhole image obtained by the above detection and 

tracking algorithm is shown in Figure 6. 

 

Figure 6. The container keyhole detected by the above method. 
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As can be seen from the above figure, due to the long-term exposure of the container 

keyhole to the open air, rust wear occurred around the container keyhole, which caused 

great difficulties in the accurate positioning of the container keyhole. To this end, the 

image was first preprocessed to enhance the image quality and remove some noise, and, 

then, the container keyhole was accurately located, as shown in Figure 7. 

 

Figure 7. Secondary location algorithm. 

Firstly, the MSR algorithm was used to preprocess the image to enhance the image 

quality. The MSR algorithm is a classical algorithm for image enhancement, based on 

Retinex theory [28]. The MSR algorithm is described in formula (7): 

( ) ( ) 
1

( , ) log , log , ( , )
N

k i k i

k

R x y I x y F x y I x y
=

= − •        (7) 

Where 
k  is the weighting coefficient corresponding to different scales, 

1

1
N

k

k


=

= ; N

represents the number of scale parameters, usually 3 ; is the surround convolution 

function of different scales, ( ),kF x y  can be described by relation (8): 

( )
2 2 2( )/

, kx y c

kF x y e − +
=  (8) 

where 2

kc  is a scale parameter with different sizes, and, generally, three parameters with 

different scales are selected, so that the scale factor covers a larger range. 

Regarding the container keyhole image after image enhancement, there is often a 

certain amount of noise. Gaussian filtering is a linear smoothing filter that is widely used 

for noise reduction in image processing. Therefore, Gaussian filtering was used to denoise 

the enhanced image, and, then, the image was binarized after threshold segmentation. 

It can be seen from the binarized image that, although Gaussian filtering removed a 

lot of noise and retained the container keyhole area, there were still shadows on the edge 

of the lock and the interior of the keyhole. In order to avoid the interference of other parts 

on the positioning of the container keyhole, all of the closed contour 
iC  in the binarized 

image, was found and all the closed contour area 
iArea  was calculated. The area of the 

closed contour was compared and the closed contour represented by the MAX of the 

maximum area 
iArea  was found to be the outer contour 

maxC  of the container keyhole. 

Finally, the minimum circumscribed rectangle was used to fit the container keyhole 

contour to achieve the accurate positioning of the container keyhole. 
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3.3. Three Dimensional Measurement Algorithm 

Considering that, in the process of container loading and unloading, in the event of 

an accident, such as hoisting or turning of the container, it is necessary to obtain the 

attitude information of the container and the frame through three-dimensional 

measurement to re-align the container and then lift it again, we need to study container 

attitude when the truck is lifted. 

As shown in Figure 8, the international standard ISO1161 stipulates that the size of 

container corner fittings is 178 mm×18 mm×162 mm, and the size of the container keyhole 

on the side is about 79 mm×52 mm. The three-dimensional coordinates of the container 

keyhole are obtained by establishing a relationship between the size of the pixels imaged 

in the image of the container keyhole by the secondary positioning and the actual size of 

the keyhole, so as to realize the three-dimensional measurement of the container keyhole. 

 

Figure 8. Standard container corner piece. 

3.3.1. Convert Pixel Distance to Actual Distance 

We used the similar triangle principle to get the correspondence between image 

pixels and actual distances, as shown in Figure 9. The method is based on the 

characteristics of the pinhole camera, and its calculation is simple and accurate. 

 

Figure 9. Camera imaging principle. 

As shown in the figure, F  is the focus of the camera, f  is the focal length of the 

camera, D  is the distance between the object to be measured and the focus of the camera, 

d  is the actual length of the object to be measured, 
1d  is the length of the image, 

1x  is the 

total pixels of the image, and x  is the pixel size of the object to be imaged in the image. 

The triangle formed by the measured object and the camera focus is similar to the triangle 
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formed by the image and the camera focus. According to the triangle similarity principle, 

the relationship between d  and x  can be obtained, as shown by the formula (9): 

1

1

dD
d x

f x
=  (9) 

If the distance D , between the measured object and the focal point of the camera, is 

known, then d  is proportional to x ; that is, 1

1

dD

f x
 = • , where   is defined as the 

conversion factor between the pixel size and the actual distance. Under ideal conditions, 

the conversion factor in the horizontal direction of the image is the same as that in the 

vertical direction, that is, 
x y = : 

d x=  (10) 

Before calculating distances, it is important to note that most cameras have some 

image distortion, due to lens distortion and coordination issues during assembly. 

Therefore, before calculating the position parameters, we used the calibration method 

described by Zhang [29] to calibrate the image. 

3.3.2. Keyhole Offset Distance 

In order to realize the three-dimensional measurement of the container target during 

the container loading and unloading process, the vertical direction is considered the be 

the Z-axis, the truck driving direction the Y-axis, and the camera’s direction the X-axis, so 

as to measure the three-dimensional position change of the container keyhole during the 

loading and unloading process. 

As shown in Figure 10, the offset distances of the container keyholes in the Y and Z 

directions refer to the moving distances in the Y and Z directions between the detected 

container keyhole center position 
iP  and the initial position 

0P . According to the 

secondary positioning of the container keyhole mentioned above, the central positions 

0 0 0( , )P y z  and ( , )i i iP y z  of the container keyhole in the initial state and time can be 

obtained. The initial position D  of the container from the camera is known, and the 

proportional relationship 0 1

0

1

D d

f x
 = •  between the pixel size of the container and the 

actual distance in the initial state is obtained according to the camera imaging principle, 

and after the secondary positioning, the center position 
iP  of the container keyhole is 

obtained, so the container keyhole is in the Y direction and the Z direction. The offset 

distances Y  and Z  in the direction are given by the following relation (11): 

0 0

0 0

i

i

Y y y

Z z z





 = −

 = −
 (11) 
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Figure 10. Y, Z offset distance. 

As shown in Figure 11, the offset distance of the container keyhole in the X direction 

refers to the detected moving distance between the center position 
iP  of the container 

keyhole and the initial position 
0P  in the direction of the camera. According to the camera 

imaging principle, the proportional relationship between the distance D  of the measured 

object from the camera and the image pixel size x  is: 1

1

1f x d
D

d x

• •
= •  . It can be seen that 

D  is inversely proportional to the pixel x , where 1

1

f x d

d

• •
 =  is the proportional 

coefficient. 

According to the proportional relationship between D  and pixel x , the distance 
iD  

from the container keyhole to the camera at time i can be obtained, thereby obtaining the 

distance X  from which the container keyhole moves in the X direction: 

1

1

0

1
i

i

i

f x d
D

d x

X D D

• •
= •

 = −

 (12) 
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Figure 11. X offset distance. 

3.3.3. Keyhole Offset Angle 

In the container loading and unloading task, in addition to paying attention to the 

offset distance of the container during the loading and unloading process, the offset angle, 

and the direction of the offset of the container, are also worthy of attention. The container 

is often deflected in the X direction during the lifting process of the spreader. Figure 12 

shows the attitude change of the container after deflection in the X direction, with the top 

view, during the loading and unloading of the container, and the side view of the 

container captured by the camera. 

 

Figure 12. Container X direction offset. 

As can be seen from the above figure, once the container is deflected, the imaging 

size of the container corner piece collected by the camera also changes in the image. 

According to the formula (13), the container keyhole-a and keyhole-b move at the time i  

compared to the initial state. The distances are 
aX  and 

bX , and the length of the 

container is L . Firstly, the deflection angles 
a  and 

b  on both sides of the container 

keyhole a and b are calculated. The schematic diagram and specific calculation of the offset 
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angles 
2

a b 


+
= , 

a  and 
b  of the container relative to the initial state at time i  are 

shown in Figure 13. 

 

Figure 13. Calculate offset angle. 

2
arcsin

2
arcsin

a

a

b

b

x

L

x

L





 
=  

 

 
=  

 

 (13) 

4. Experiment 

4.1. Experimental Platform 

The training environment of this experiment was Ubuntu20.04 system. The GPU 

adopted Nvidia Tesla M40 (24GB), the CPU adopted Intel i7-6700, and CUDA 10.1 was 

used for accelerated training under the Python library. 

4.2. Experimental Data 

In order to verify the reliability of the system designed in this paper, the data used in 

the experiment were all from the container loading and unloading tasks of container 

trucks of different sizes in a terminal in Tianjin. The schematic diagram of the on-site 

camera installation is shown in Figure 14. The resolution of the image was 1980×1080, and 

the fps was 24. 

 

Figure 14. Camera installation drawing. 

A total of 40-foot and front, middle, and rear 20-foot box positions were selected for 

the experiment. The figure 15 shows the pictures collected by different cameras in 

different box positions. 
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Figure 15. Part of the dataset images. 

4.3. Experimental Results and Analysis 

4.3.1. Target Detection Experiment 

In order to compare the detection effect of the R-E-SSD designed in this paper and 

other typical target detection algorithms, on container keyhole targets, the data collected 

by the team through experiments on the spot were used as the data set, with a total of 

2783 images, and the data set was divided in the ratio 8:1:1. The comparison results are 

shown in Table 1. The evaluation index of detection speed was FPS (Frame Per Second, 

FPS), which is defined as the number of frames processed by the network per second; the 

detection accuracy was made into a curve according to Precision and Recall, ranging from 

0 to 1. The area between the drawn curve and the coordinates was the precision (AP), 
1

0
( )AP P R dR=  , and the definition of precision and recall is as follows: 

TP
precision

TP FP

TP
recall

TP FN

=
+

=
+

 (14) 

where TP  is the positive example in the positive sample, and FP is the positive example 

in the negative sample, FN  is a negative example in the positive sample. 

Table 1. Comparison of test results. 

 Backbone Input AP/% FPS 

SSD VGG-16 300*300 71.86 36 

DSSD Resnet-101 320*320 73.46 17 

Faster-RCNN Resnet-50 600*600 81.95 7.8 

Yolov3 Darknet-53 416*416 87.54 31.4 

ours Resnet-18 300*300 94.75 30.7 

Analyzing the results presented in Table 1, the detection accuracy of the proposed R-

E-SSD algorithm was better than those of other models. Enlarging the input image could 

significantly improve the detection effect of small targets. The input image sizes of Faster 

RCNN [30], YOLOv3 [31] and DSSD [32] were much larger than that of SSD, but the R-E-

SSD algorithm designed in this paper replaced the deep residual network with stronger 

feature extraction ability as the backbone network and introduced a lightweight channel 

attention mechanism to improve the detection accuracy of container keyhole targets, 

without significantly increasing the model size. So, the R-E-SSD algorithm designed in 

this paper exhibited a better detection effect in the case of small input images. The 

algorithm designed in this paper was compared with the comparison algorithms SSD, 

DSSD, Yolov3, Faster-RCNN. The AP increased by 22.89%, 21.29%, 12.8% and 7.21%, 

respectively. In terms of detection speed, compared with SSD and Yolov3, the detection 

speed of the R-E-SSD algorithm designed in this paper was slightly reduced, but also met 

the requirements of real-time detection. Although the algorithm designed in this paper 
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replaced the backbone network and introduced the attention mechanism, while deleting 

some convolutional layers, the model was still relatively simple. Compared with DSSD 

and the two-stage object detection algorithm, Faster-RCNN, the detection speed of the 

algorithm designed in this paper was significantly faster. The experimental results 

showed that the improved algorithm could effectively improve the detection accuracy of 

container keyhole targets in complex backgrounds on the basis of real-time testing. 

Figure 16 shows the PR curves of each target detection algorithm when IOU=0.5 

(Intersection Over Union). It can be seen intuitively from the PR curve in the figure that 

the algorithm proposed in this paper was better than other detection models in both 

precision and recall; that is, the R-E-SSD algorithm designed in this paper had better 

regression ability on the target position of the container keyhole than did the other 

detection models. 

 

Figure 16. P-R curve, Yellow is the PR curve of Faster-RCNN; purple is the PR curve of YOLOv3; 

green is the PR curve of DSSD; orange is the PR curve of SSD; red is the PR curve of our algorithm. 

4.3.2. Target Tracking Experiment 

In the container loading and unloading task, the tracking effect of the container 

keyhole movement mainly depends on the detection effect. Therefore, for the target 

tracking during the loading and unloading process, we were more concerned about the 

real-time performance of the target tracking. We used several container loading and 

unloading videos as tests. and intercepted different frames to show the tracking effect of 

the algorithm, as shown in Figure 17. 
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Figure 17. Tracking results. 

In order to verify the effect of algorithm tracking, MOTA (the accuracy of multi-target 

tracking, which is reflected in the number of targets and the accuracy of the relevant 

attributes of the target, used to count the accumulation of errors in tracking) and FPS (the 

number of frames transmitted per second) is an indicator to judge the accuracy and real-

time performance of the algorithm. After testing, the target tracking accuracy MOTA was 

97.3 %, and the tracking speed was 21.7 frames/s, which met real-time requirements. 

4.3.3. Secondary Positioning Experiment 

The secondary positioning of the container keyhole adopted the traditional image 

processing algorithm to perform secondary detection on the tracking results, and the 

detection accuracy depended on the accuracy of the R-E-SSD. Therefore, the experiment 

mainly tested the positioning error and detection speed of traditional image processing 

algorithms. 

The implementation of image processing algorithms was based on Python and 

OpenCV. In the experimental part, we used a set of 278 images of container keyholes 

detected by R-E-SSD. These images included a collection of containers with different types 

of containers at different times during the day and night. Figure 18 shows the results after 

detection by traditional image processing algorithms. It can be seen from the figure that 

the traditional image processing algorithm had a good detection effect on the secondary 

positioning of the container keyhole. 
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Figure 18. Secondary positioning results. The first row shows the input image after the above 

detection and tracking. The second row shows the results after MSR image enhancement. The third 

row shows the results after binarization. The fourth row shows all the contour results in the marked 

image. The fifth row shows the result of fitting the largest contour using the smallest rectangle. The 

sixth row shows the result after secondary positioning. 

Combined with the above detection and tracking algorithms, the secondary 

positioning experiment was carried out on the container keyhole to judge the performance 

of the overall detection algorithm. The detection time of the overall algorithm was the sum 

of the rough positioning of R-E-SSD of the container keyhole, tracking during loading and 

unloading, and the traditional image algorithm’s secondary positioning detection of the 

container’s keyhole, to test the real-time performance of the overall algorithm. The 

detection accuracy was the product of detection rate of the R-E-SSD algorithm, and the 

tracking accuracy and traditional image processing algorithm. The detection time of the 

whole algorithm was about 80.3 ms, and about 12.5 frames / s, and the success rate was 

about 92.86%. 
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4.3.4. Three-Dimensional Measurement Experiment 

In the initial state, the actual distance 
0D  from the container to the camera was 2.7 m, 

and the resolution of the camera was 1920×1080. A 40-foot container was used to simulate 

loading and unloading operations. The size of the 40-foot container was 12.19 × 2.438 × 

2.591 m. According to the scale factor of the pixel distance and the actual distance 

mentioned above, in the initial state: 3.59x = , 3.25y = , the scale factor of the distance 

between the measured object and the camera and the image pixel size 60 = . 

The accuracy of the container offset distance measurement proposed in this paper 

was checked by controlling the spreader to move only in a single direction at any one time, 

where the spreader moved a fixed distance in different directions. The moving distance 

in the Z direction was 30 cm, the moving distance in the Y direction was 30 cm, and the 

moving distance in the X direction was 50 cm. The container offset distance evaluation 

index was the difference between the calculated distance and the actual distance moved 

by the spreader, which were X-error, Y-error, and Z-error. The scaling factors 
x  and 

y  

of the pixel distance to the actual distance remained the same as the spreader moved in 

the Z and Y directions. When the spreader moved 50 cm in the X direction, the scale factor 

of the pixel distance and the actual distance: 3.89x = , 3.54y = , the distance from the 

measured object to the camera and the scale factor of the image pixel size 54 = . 

The container deflection angle was controlled by the spreader to turn horizontally at 

a fixed angle of 5° in the X direction, and, at this time, the container keyhole moved about 

54 cm in the X direction. The difference between the measured angle and the actual 

turning angle  -error was calculated as the container deflection angle measurement 

index. The data collected the movement in the three directions each time and the flips in 

the X direction were completed as a group of experimental data, with a total of 10 groups. 

The experimental results are shown in Table 2. 

Table 2. 3D measurement results. 

 X-Error (cm) Y-Error (cm) Z-Error (cm) error − (°) 

First 4.75 1.88 1.43 0.45 

Second 4.72 1.72 1.47 0.41 

Third 4.26 1.68 1.17 0.46 

Fourth 4.63 1.75 1.58 0.45 

Fifth 4.81 1.92 1.27 0.37 

Sixth 4.18 1.75 1.32 0.46 

Seventh 4.72 1.68 1.54 0.35 

Eighth 4.38 1.95 1.04 0.53 

Nineth 4.09 1.73 1.45 0.38 

Tenth 4.31 1.83 1.41 0.37 

It can be seen from Table 2 that, among the 10 measurement results, the average 

accuracy of the offset distance in the three directions of X, Y, and Z by the three-

dimensional measurement algorithm of container attitude designed in this paper were 

4.48 cm, 1.79 cm and 1.37 cm, respectively. The average accuracy of the offset angle in the 

X direction was 0.42°. It is not difficult to see from the above data that the detection 

accuracy of the 3D measurement algorithm designed in this paper was slightly lower than 

the detection accuracy in the Y and Z directions in the X direction. The reason was that, 

when the container only moved in the vertical lifting and horizontal directions, the scale 

factor   between the container pixel size and the actual distance was almost unchanged. 

When the container flipped and moved in the X direction, the scale factor   between the 

container pixel size and the actual distance and the scale factor   between the distance 

of the measured object from the camera and the image pixel size changed, resulting in a 
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certain measurement error, but it still met the requirements of automated loading and 

unloading of container terminals. 

The traditional container loading and unloading operation adopts the “two-step” 

strategy; that is, the spreader grabs the container and lifts it to a certain height. Then, the 

driver checks the container lifting condition. If the container is normally lifted, the driver 

sends the normal lifting signal to the remote-control room to continue lifting the container. 

The device designed in this paper does not require the “driver confirmation” step, saving 

at least 10 s. Usually, within an hour, 30 container cranes can be lifted. used in this paper, 

The design of the equipment used in this paper meant that, within one hour, about 32.7 

containers could be lifted, improving the efficiency of container loading and unloading. 

Furthermore, the design of the adopted device with its automatic monitoring meant it 

saved on human resources. 

5. Conclusions 

In order to ensure the safety of container trucks in the process of container loading 

and unloading, this paper proposed a vision-based container loading and unloading 

measurement system, and designed a target 3D measurement algorithm, based on deep 

learning. For all-weather work in complex environments, the algorithm took the container 

keyhole as the goal. Firstly, a small-scale deep learning network is used to quickly locate 

the container corners. Secondly, the traditional image processing algorithm is used to 

perform secondary positioning of the container corner fittings to obtain the accurate 

position of the container keyhole. Combined with the motion model of the container 

during loading and unloading, the three-dimensional measurement of the container 

attitude is carried out. The experimental results showed that, unlike the previous LiDAR 

detection methods, the measurement accuracy of this algorithm was up to 92.86%, and 

the measurement time was about 80.3 ms, which met the measurement accuracy of 

automatic container loading and unloading and realized real-time measurement. 
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