iscte INSTITUTO UNIVERSITÁRIO DE LISBOA

Car Accidents: How Much Is Due To External Factors And Conditions? A Data Science Approach For The Portuguese Road Network.

Ana Sofia Gamarro Figo Lourenço

Master In Business Analytics

SUPERVISOR:

Professor Nuno Duarte Fialho Sanches Borges Dos Santos, Guest Assistant Professor, ISCTE Business School, Department of Quantitative Methods For Management And Economics

October, 2022

iscte BUSINESS SCHOOL

Department of Quantitative Methods for Management and Economics

Car Accidents: How Much Is Due To External Factors And Conditions? A Data Science Approach For The Portuguese Road Network.

Ana Sofia Gamarro Figo Lourenço

Master In Business Analytics

Supervisor:

Professor Nuno Duarte Fialho Sanches Borges Dos Santos, Guest Assistant Professor, ISCTE Business School, Department of Quantitative Methods For Management And Economics

October, 2022

Resumo

O principal objetivo desta pesquisa é encontrar quais e qual o peso dos fatores externos nos acidentes e das vítimas que resultam do mesmo. A variável dos acidentes contém todos os acidentes que aconteceram em Portugal Continental em 2018, de acordo com o INE e a variável das vítimas contém todas as vítimas desde ligeiras, graves e mortais em Portugal Continental em 2018 resultantes de acidentes.

Os dados foram retirados de fontes como a IPMA, PORDATA, INE e Here (rede viária de Portugal). Após a recolha dos dados, a análise dos mesmos e a criação de novas variáveis, com a ajuda dos softwares QGIS e SPSS Statistics, foram todas organizas por município pertencentes ao país em estudo.

Após toda a seleção das variáveis, de acordo com a literatura, foram criados diferentes modelos de forma a retirar conclusões sobre as varáveis (fatores externos). Para este estudo foram criados dois modelos diferentes, para acidentes e vítimas pois estas duas variáveis (targets) não tinham uma forte correlação linear apresentando um valor de Sig de 0,554.

De modo a generalizar para as estruturas rodoviárias portuguesas e para outros países com características semelhantes a Portugal, foi utilizado o método de *bootstrap* como uma estratégia de simulação, deste modo gerou-se 300000 novos dados. Após a avaliação dos dados verificou-se que os fatores externos, utilizados nestes modelos têm uma capacidade explicativa inferior a 50%, mas a dependência espacial é um fator chave e muito importante em problemas geo-espaciais.

Keywords: Acidentes, Tráfego, Vítimas, Dependência Geo- espacial; Índice de Moran **JEL Classification System**: R41, C21

Abstract

The main objective of this research is to find out which and what weight external factors have in accidents and victims resulting from them. Within the variable accidents, all accidents that happened in Mainland Portugal in 2018 are counted, according to INE, as the victims include all victims, in Mainland Portugal in 2018 resulting from an accident.

The data used was taken from several sources, namely, PORDATA, IPMA, INE, DGTerritório and Here. After collecting the data, the data was thoroughly analyzed and new variables were created with the help of QGIS and SPSS Statistics software, all of them organized by municipalities belonging to the country under study.

After all the analysis and selection of variables with the Geoda software and the literature, different models were performed in order to draw conclusions about the selected variables. For this study, two different models were made, for accidents and victims (per 1000 meters and per 1000 inhabitants respectively), because these two variables (targets) didn't have a strong linear correlation, presenting a value of 0.036 (Pearson correlation) since there was no relationship between the variables.

In order to generalize to Portuguese road structures and to other countries with similar characteristics to Portugal, the bootstrap method was used as a simulation strategy, thus generating 300,000 new data. After evaluation the data, it was found that the external factors used in these models have an explanatory capacity of less than 50%, but spatial dependence is a key and very important factor in geospatial problems.

Keywords: Car accidents, traffic, victims, spatial dependence, Moran's Index

JEL Classification System: R41, C21

Index

Resumo	i
Abstract	iii
Table Index	vii
Figure Index	ix
Chapter 1 – Introduction	1
Chapter 2 – Literature Review	
2.1) Protocol for the systematic literature review	
2.1.1) Selection Procedures	
2.1.2) Selection Criteria	
2.1.3) Articles integrated into the systematic literature review	
2.2) Car Accidents and Victims	5
2.3) External Factors	6
2.4) Models used in accident prevention and victims	
Chapter 3 – Methodology and Data Sources	
Chapter 4 – Statistical Analysis of Data	
4.1) Statistical Analysis of Data	
4.1.1) Population	
4.1.2) Altitude	
4.1.3) Average Temperature Range	
4.1.4) Functional Class	
4.1.5) Velocity	
4.1.6) Intersections	
4.1.7) Motorcyclist and Pedestrians	
4.1.8) Accidents	
4.1.9) Victims	
4.2) Relation between dependent variables	
4.3) Spatial Dependence	
Chapter 5 – Results	
5.1) Evaluation metrics used	
5.2) Accidents	

5.3) Victims	l
5.4) External factors explanatory capacity	3
Chapter 6 - Conclusion	7
References)
Annex	3
Annex A – Variables Independent and Dependent	3
Annex B - Rotated Component Matrix – Independent Variables	5
Annex C – Correlation Table	5
Annex D – Scatter Plot of the victims by accidents	7
Annex E – Causality Test: accidents and victims, absolute values	7
Annex F – Correlation Tables: tot_ac_p_comp and tot_vit_p_pop	3
Annex G – Scatter Plot of victims per 1000 inhabitants by accidents per 1000 meters	3
Annex G – Causality Test: tot_ac_p_comp and tot_vit_p_pop	3
Annex H - Moran's Index)
Annex I – Linear Regression with Spatial Lag: tot_a_comp)
Annex J - Linear Regression with Spatial Lag: tot_v_pop	L
Annex K – Predictor Importance: Accidents Models	l
Annex L – Predictor Importance: Severity Models	3

Table Index

Table 2.1 - Quality criteria for evaluating the articles under study	4
Table 2.2 - Articles selected for the systematic review of the literature	5
Table 2.3 - Important articles for the literature review, external	5
Table 4.1 - Road Network Data	13
Table 4.2 - Variables choose by correlation matrix	15
Table 4.3 - Analysis of População2018 variable	16
Table 4.4 - Valid number of alt_min, altitude_med and alt_max	16
Table 4.5 - Variable alt_min	17
Table 4.6 -Analysis of the altitude_med variable	18
Table 4.7 - Analysis of the alt_max variable	19
Table 4.8 - Analysis of the variable amplitude_media_temperatura	20
Table 4.9 - Analysis of variable fun1_p_comp	21
Table 4.10 - Analysis of variable fun2_p_comp	22
Table 4.11 - Analysis of variable fun3_p_comp	23
Table 4.12 - Analysis of variable fun4_p_comp	24
Table 4.13 - Analysis of Variable vel6_p_comp	25
Table 4.14 - Analysis of speed variables in urban areas	26
Table 4.15 - Analysis of speed variables in tunnels	27
Table 4.16 - Analysis of the variable intersecoes_p_comp	28
Table 4.17 - Analysis of pedestrian and motorcycle variables	29
Table 4.18 - Analysis of tot_ac_p_comp variable	30
Table 4.19 - Analysis of the variable tot_vit_p_pop and Totaldevitimas	31
Table 5.1 - Accidents Models: Accuracy	40
Table 5.2 - Average Importance: Variables	40
Table 5.3 - Victims Models: Accuracy	41
Table 5.4 - Victims Models: Predictors of Importance	42
Table 5.5 – Explanatory Capacity: Accidents Models	44
Table 5.6 – Explanatory Capacity: Victims Models	44
Table 5.7 – Explanatory Capacity: External factors (accidents)	44
Table 5.8 – Explanatory Capacity: Other factors (victims)	45

Figure Index

Figure 2.1 - Factors Related to human being and external factors to severity	7
Figure 2.2 - Traffic Prediction using multifaceted Technique	9
Figure 3.1 – Approach used: flowchart	11
Figure 4.1 - Road Network Distribution in Portugal, University city and Campo Grande	13
Figure 4.2 - Analysis of the variable população2018	16
Figure 4.3 -Distribution of alt_min	17
Figure 4.4 - Distribution of the variable altitude_med	18
Figure 4.5 - Distribution of the variable alt_max	19
Figure 4.6 - Distribution of the variable amplitude_media_temperature	20
Figure 4.7 - Distribution of variable fun1_p_comp	21
Figure 4.9 - Distribution of variable fun3_p_comp	23
Figure 4.10 - Distribution of variable fun4_p_comp	24
Figure 4.11 - Distribution of the variable vel6_p_comp	25
Figure 4.12 - Distribution of variables vel2e3_urban_p_comp, vel4e5_urban_p_com	p and
vel7e8_urban_p_comp, respectively	26
Figure 4.13 - Distribution of the variable intersecoes_p_comp	28
Figure 4.14 - Distribution of motorcycle and pedestrian variables, respectively	29
Figure 4.15 - Distribution of the variable tot_ac_p_comp	30
Figure 4.16 - Distribution of the variable tot_vit_p_pop and total of victims in mainland Po	ortugal
	31
Figure 4.17 – Queen Contiguity	34

Chapter 1 – Introduction

This investigation will focus on the study and identification of the external factors that may influence the number of car accidents in Mainland Portugal. The main objectives of this study are identifying the most relevant factors and quantify how relevant the external factors are.

In several countries there are many studies about road accidents and how to predict them, but most of the articles refer as the main problem the driver or the vehicle conditions, but, on the other hand, it is also mentioned that the traffic on the road and the geometry of the road are factors that contribute to accidents (Xu et al., 2020), as well as the poor lighting on the roads (Shweta et al., 2021) and how the road is presented - dry or wet (Chong et al., 2004).

According to Ameen and Naji (2000) it is important to identify the causes of road accident fatalities because the growth of technology, population and consequently the number of vehicles and their use, with that, it's possible that more accidents might happen created by traffic, so it is important to solve accidents as soon as possible so that others do not happen consequently (Dogru & Subasi, 2012). In addition, many authors study the causes of road accidents but it's difficult to get a universal model because of the environment and geographical changes within different regions (Ameen & Naji, 2000).

According to the World Health Organization, recent assessments show that traffic accidents are responsible for more than one million deaths per year and are the largest public health problem and socio-economic cost according to Albuquerque, et al. (2021) and Shweta, et al. (2021).

Additionally, the accident rate in Mainland Portugal had a 4.6% growth between 2008-2018, meaning an increase of 36162 accidents in 2018, which resulted in 46034 victims (lightly injured, seriously injured and fatalities), 704 fatalities (Marktest - Sales Index/INE, 2021) which represents a weight of 1%, that might seem a low percentage, but it is alarming considering that many of these accidents could probably be avoided and thus preventing unwanted deaths.

Accidents on the roads are both an economic and a social problem. As we all know, in today's world, any event involves monetary issues and accidents are no exception. Speaking more specifically of insurance in the first and second quarter of the year 2021, 488,824 million euros were spent on automobile claims and in 2020 a total of 995,783 million euros, according to the Insurance Supervision Authority and Pension Fund (ASF, 2022). In addition, we have the social issue, any type of accident can bring a nuisance to people especially the injured resulting from it.

These accident figures can be related to several reasons: the driver, the vehicle itself and/or external factors such as the state of the road, the weather, the geography of the road among others. As we have seen above, these factors can be determinant of both the type and severity of accidents. With a review of the studies conducted in Portugal it was found that this focus more on human factors, since it is the most determinant (Pereira, 2016), or in the creation of a profile of the type of driver with more accidents (Bon de Sousa et al., 2016). But on the other hand, some studies take a more micro view in relation to some external factors, such as Guerreiro (2008) who conducted a descriptive study on the accident rate in Portugal and the reason for accidents on the EN6 and A5, suggesting some corrective measures, and Ilharcos, et al. (2013) who studied intersections, roundabouts and segments in the city of Lisbon, referring that there was a great difficulty in obtaining data and that the methodology used was not the most correct, this being initiated by explanatory variables of traffic and characteristics of the geometry of the road organized by 3 types of elements: roundabouts, segments and intersections with 3 or 4 lanes.

All the work done in this area uses only one or two external factors, mainly road geometry or road brightness, and the studies are restricted to a small area and not to the entire road network of the country under study.

As mentioned above, the accident rate between 2008 and 2018 has a growth rate, that is, an increase in accidents on Portuguese roads that could result in more injuries and deaths that many of them, with the right measures, could be avoided.

Chapter 2 – Literature Review

2.1) Protocol for the systematic literature review

In order to consolidate the literature review, a protocol was followed to understand how external factors can influence traffic accidents. For this, a main question and two specific questions were established. The main question is it is possible to explain accidents based on external factors; and the specific questions are: do external factors influence accidents/ victims and how much do external factors influence accidents/victims.

In addition, it will also analyze which external factors are the most important and how the available articles come to these conclusions. Thus, articles referring to accidents and accident victims were removed from B-on (<u>https://www.b-on.pt/</u>). All these articles are within a 22-year period, between 2000 and 2022, and must meet several inclusion and exclusion criteria, such as:

Inclusion criteria:

- Articles published in academic journals;
- Business and Economics articles.

Exclusion criteria:

- Articles that are not complete;
- Literature reviews;
- Duplicate articles;
- Engineering articles.

The search is performed using all of the above criteria and a query formed with different keywords for this research.

The query formed for this research is: ("car accident" OR "car disaster" OR "automobile accident" OR "auto accident" OR "road accident") AND ("external factor*") AND ("machine learning" OR model* OR predictive* OR segmentation* OR ml OR analytics OR forecasting*).

2.1.1) Selection Procedures

The articles selected were based on the above criteria: query, language, period, and inclusion and exclusion criteria. After the selection of these criteria, they were evaluated from a reading of the abstract to verify if they correspond to the objectives set for this systematic literature review,

relating traffic accidents to external factors. The scientific articles were then read and evaluated according to the criteria described in the following section: Selection Criteria.

The articles were evaluated according to the quality evaluation questions, these have answers as Yes, No and Partially.

2.1.2) Selection Criteria

ID	Quality Criterion	Possible Answer
Q1	Does it explain the importance of the study?	Yes/No/Partially
Q2	Does it address the importance of external factors?	Yes/No/Partially
Q3	Does it compare the different methods?	Yes/No/Partially
Q4	Describe the different methods used?	Yes/No/Partially
Q5	Does it have a good methodology?	Yes/No/Partially
Q6	Does it use external factors as a variable?	Yes/No/Partially
Q7	Does it describe the data processing?	Yes/No/Partially
Q8	What is the purpose of the model used?	Yes/No/Partially
Q9	Does it describe the evaluation steps of the model?	Yes/No/Partially

Table 2.1 - Quality criteria for evaluating the articles under study

2.1.3) Articles integrated into the systematic literature review

The table below shows a list of the articles selected for the systematic literature review and some that were found externally and relevant to the study.

ID	YEAR	TITLE	AUTHORS	JOURNAL
1	2000	Causal models for road accident fatalities	Ameen, J. R. M. & Naji, J. A.	Accident Analysis and
		in Yemen		Prevention
2	2017	A hybrid clustering and classification	Hasheminejad, S. H., Zahedi,	International Journal of Injury
		approach for predicting crash injury	M. & Hasheminejad, S. M.	Control and Safety Promotion
		severity on rural roads.	H.	
3	2020	A traffic prediction model based	Wang, J. & Chen, Q.	The Journal of
		on multiple factors		Supercomputing
4	2020	Machine learning models and techniques	Khatri, S., Vachhani, H.,	Peer-to-Peer Networking and
		for VANET based traffic management:	Shah, S., Bhatia, J.	Applications
		Implementation issues and challenges.	Chaturvedi, M., Tanwar, S.	
			& Kumar, N	
5	2020	Traffic Prediction Using Multifaceted	George, S. & Santra, A. K.	Wireless Personal
		Techniques: A Survey.		Communications
6	2020	Why Is Artificial Intelligence Blamed	Hong, J. W.	International Journal of
		More? Analysis of Faulting Artificial		Human-Computer Interaction
		Intelligence for Self-Driving Car		
		Accidents in Experimental Settings		

7	2021	Smart Cities: Data-Driven Solutions to	Albuquerque, V., Oliveira,	Energies
		Understand Disruptive Problems in	A., Barbosa, J. L., Rodrigues,	
		Transportation.	R. S., Andrade, F., Dias, M.	
			S. & Ferreira, J.C.	
8	2022	A hybrid neural network for driving	Fu, X., Meng, H., Wang, X.,	PLOS ONE
		behavior risk prediction based on	Yang, H. & Wang, J.	
		distracted driving behavior data		

ID	YEAR	TITLE	AUTHORS	JOURNAL
9	2005	Traffic Accident Analysis Using Machine	Abraham, A. & Paprzycki,	Informatica
		Learning Paradigms	М.	
10	2010	Effect Of Vehicle Characteristics On	Torrão, G., Coelho, M. &	WCTR
		Crash Severity: Portuguese Experience	Rouphail, N.	
11	2012	Traffic Accident Detection By Using	Dogru, N. &Subasi, A.	Information Systems and
		Machine Learning Methods		Sustainability
12	2021	A Framework for Analysing Road	Shweta, Yadav. J, Batra, K.	Journal of Physics:
		Accidentes Using Machine Learning	& Goel, K.	Conference Series
		Paradigms		
13	2021	Predictive Modeling of Maximum Injury	Alkan, G., Farrow, R., Liu,	Computational Statistics
		and Potencial Economic Cost in a Car	H., Moore, C., Keung, H.,	
		Accident Based on the General Estimates	Ng, T., Stokes, L. Xu, Y.,	
		System Data	Xu, Z. Yan, Y & Zhong, Y.	
14	2020	Analysis of the Risk Dactors Affecting the	Casado-Sanz, N., Guirao, B.	Sustainability
		Severity of Traffic Accidents on Spanish	& Attard	
		Crosstown Roasd: The Driver's		
		Perspective		

 Table 2.2 - Articles selected for the systematic review of the literature

Table 2.3 - Important articles for the literature review, external

2.2) Car Accidents and Victims

According to the World Health Organization (2022), recent assessments show that traffic accidents are responsible for more than one million deaths per year and are the largest public health problem and socio-economic cost according to Albuquerque, et al. (2021) and Shweta, et al. (2021). Road accidents not only include material loss, injuries, and deaths, they can have high costs to governments, including economic, social and political (Hasheminejad et al., 2017).

Thus, identifying the causes of accidents is quite important especially with the growth in the number of vehicles, population, technology and other factors (Ameen & Naji, 2000). Driver behavior is known to have a great influence and significance in traffic accidents according to Fu, et al. (2022) and Torrão, et al. (2010).

The identification of accidents and their causes is very important because by identifying some of their causes and their weight we can reduce accidents, and identifying them will reduce traffic and driver delay, improve road safety and especially avoid other accidents by the large amount of traffic created by an accident, so it is necessary to solve accidents as soon as possible so that others do not happen consequently (Dogru & Subasi, 2012).

Many authors try to generalize the causes of road accidents, but the problems have different trends because each country/city presents its own geography, environment and roadway (Ameen & Naji, 2000).

Although there are the mentioned differences in all the articles under study, one serious problem should be highlighted: traffic monitoring and congestion on the roads. High traffic on roads translates into serious problems of congestion, safety, environmental impact (Wang & Chen, 2020) and an increase in the number of incidents (Khatri et al., 2020). Thus, "reducing traffic accidents is a crucial social problem" (Wang & Chen, 2020).

It should also be noted that there are several factors that directly affect road accidents, mainly 4 factors: human, roadway, environmental and the vehicle (Hasheminejad et al., 2017).

"In 2008, 50% of the world's population lived in urban areas, and it was growing exponentially. By 2050, 70% of the world's population is expected to live in metropolitan areas" (Albuquerque et al., 2021). This transition is quite notorious in Portugal, more and more of the Portuguese population is moving to urban areas / large cities of the country, leaving the interior. This migration, to big cities increased pollution, more traffic on the roads and, in turn, road accidents in large cities (Albuquerque et al., 2021).

Additionally, car accidents can result in a major tragedy, namely, fatalities, and can also result in minor or serious injuries. Statistically, the highest number of fatalities happen in urban areas and with pedestrians, because they have no protection when there is a collision with a vehicle, which can result in a more serious outcome (Casado-Sanz et al., 2020).

2.3) External Factors

Accidents happen based of several factors that can influence the existence or non-existence of accidents, or even their severity. The main factors are internal factors such as the driver. Then we have external factors such as road conditions, weather conditions, road geography, among others (Hong, 2020).

It is known that the driver is often indicated as the main responsible in accidents, and to a lesser extent, the external factors. After a simulation study using 284 participants comparing accidents with drivers or with artificial intelligence systems, drivers place greater blame on

external factors when accidents happen with cars driven by artificial intelligence than with drivers (people) (Hong, 2020).

According to Shweta, et al. (2021) it is essential to understand the data regarding accidents, to detect the burden of damage and the source of the problem, namely, the roadway, to be able to provide the necessary safety to drivers and databases regarding this data are essential to demystify this problem. Furthermore, it is concluded that low light or dark lighting contributes to the causes of accidents compared to other regions, in this case in Canada (Shweta et al., 2021).

Although external factors have less weight, they always have some and by finding out which factors are more influential one can avoid some (Hong, 2020).

For this thesis, external factors such as road conditions, weather, lighting, low lighting according to Albuquerque, et al. (2021) and Chong, et al. (2005) and time of day are examples of factors that can make a big difference in traffic accidents (Fu et al., 2022) and the injury severity (Shweta et al., 2021). Furthermore, it is concluded that low light or dark lighting contributes to the causes of accidents compared to other regions, in this case in Canada (Shweta et al., 2021).

In addition to the factors described above, there are other variables external to the drivers that one needs to pay attention to, such as the social and economic diversity that exists in the country under study, which varies from country to country (Ameen & Naji, 2000). Historical problems (as happened in Yemen between 1989 and 1990) can also affect the number of accidents and their severity (Ameen & Naji, 2000), so it is necessary to pay special attention to outside influences, such as regional instability and internal politics, as in the case of Yemen (Ameen & Naji, 2000).

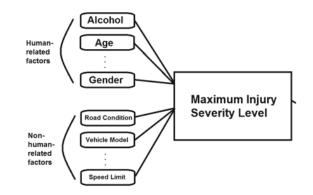


Figure 2.1 - Factors Related to human being and external factors to severity Source: Alkan, et. al. (2021)

2.4) Models used in accident prevention and victims

Various algorithms have already been used for the study of traffic accident prevention such as: predictive models, statistical models, decision making systems, accident severity prediction using data mining, artificial neural networks, and support vector machine to determine which key factors affect accident severity according to Hasheminejad, et al. (2017) and Wang and Chen (2020).

According to Fu, et al., (2022) it is possible to divide the models used for the study of traffic accident prediction into 3 categories:

- Models based on time series and Kalman filtering models;
- Nonlinear statistical models, based on non-parametric regression and chaos theory;
- Models based on machine learning, specifically neural networks and support vector machine (SVM).

In order to relate fatalities to road accidents, a model called the Smeed Model was created. This model has as its main objective to relate mortality rates and the number of vehicles per 10 km by population size (Ameen & Naji, 2000).

Source: Ameen and Naji (2000)

$$\frac{F}{V} = a \left(\frac{V}{P}\right)^{-b} \tag{1}$$

The above equation includes several components at the monitoring level and income level of developing countries. Thus, F is the number of fatalities, V is the number of vehicles on the road per 10km and P is the population size, with a and b being constants of the equation (Ameen & Naji, 2000).

Because of the way the Smeed model is implemented there are several authors criticizing it, indicating it is a model only for developing countries, such as the case of the study (Yemen)(Ameen & Naji, 2000).

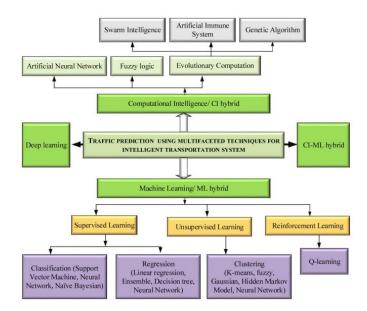


Figure 2.2 - Traffic Prediction using multifaceted Technique Source: George and Santra (2020)

Each technique, like artificial neural network, fuzzy logic, SVM, neural network, linear regression, decision tree, k-mean, was placed within 4 categories: Machine Learning (ML), Computational Intelligence (CI), Deep Learning (DL) and hybrid algorithms (George & Santra, 2020).

Thus, the categories where external factors have already been considered, using historical data and real-time data, are Machine Learning, Computational Intelligence and in the Computational Intelligence Hybrid algorithms (George & Santra, 2020).

It should be noted that models that use, especially, neural networks have had great advances and great results in accident prediction, but it is necessary to pay attention that most of the studies only consider the vehicles or drivers, others only study the temporal space of accidents and do not combine it with the spatial perspective and, finally, most of the studies obtain data from simulations and not real data (Fu et al., 2022).

According to Torrão, et al. (2010), C&RT is a model in which you can choose the independent and dependent variables that can give a great explanatory power of accidents and victims. It is a model that does not need a predefined relationship between the independent and dependent variables, being classified as an advanced data mining technique (Torrão et al., 2010).

Shweta et. al. (2021) divided the database by analyzing in clusters, using the k-means cluster technique with 4 clusters, the categories used were, district (location), lighting, visibility, and road

conditions, identifying that aggressive and distracting driving was one of the main causes for the increase in accidents, totaling 62.9%. This cause is also included as one of the main causes of accidents along with pedestrians.

Chapter 3 – Methodology and Data Sources

According to Razein, et al. (2016), many road accidents studies use the Cross Industry Process for Data Mining (CRISP-DM) methodology, a powerful methodology for data mining.

"The CRISP-DM (Cross Industry Standard Process for Data Mining) project addressed parts of these problems by defining a process model which provides a framework for carrying out data mining projects which is independent of both the industry sector and the technology used. The CRISP-DM process model aims to make large data mining projects, less costly, more reliable, mor repeatable, more manageable, and faster." (Wirth & Hipp, 2000).

The chosen methodology contains 6 consecutive phases, although it is not mandatory to follow all phases rigidly, CRISP-DM is a very complete methodology that pays full attention to all the necessary parts to perform a good data mining study, starting with the business study, and ending with the implementation (Chapman et al., 2000).

To carry out this study, we followed the approach illustrated in the figure 3.1, following the CRISP-DM methodology.

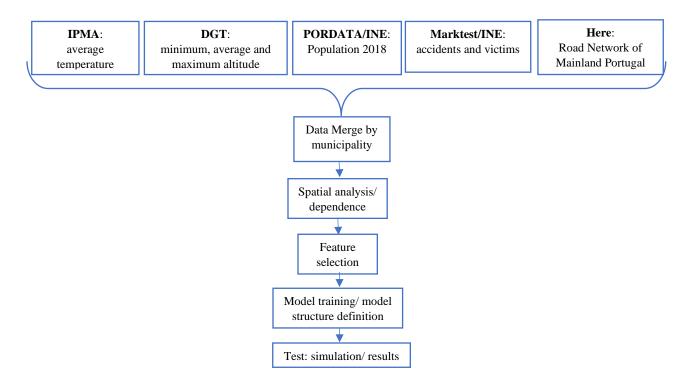


Figure 3.1 – Approach used: flowchart

In order to support this methodology, many software programs were used for spatial data analysis, like QGIS, GeoDa and GeoDa Space. In addition, to create new variables, to do all the

modifications and all of models, both SPSS Statistics and SPSS Modeler were used. These two software's were developed by IBM and adapted to the CRISP-DM methodology with several successes in solving problems in several companies in different industries (Chapman et al., 2000).

The data used for this study were collected from a variety of reliable sources.

IPMA is an institution belonging to the portuguese state from which data such as the thermal amplitude of the municipalities were taken (IPMA, 2022)

PORDATA is a database organized and developed by the Francisco Manuel dos Santos Foundation that prioritizes the "collection, organization, systematization and dissemination of information on multiple areas of society, for Portugal, municipalities and European countries. The statistics disclosed are from official and certified sources". (PORDATA, 2022). In this source there are several studies and one of them is the existing population in mainland Portugal of 2018 divided by municipalities, which was taken for this study.

The Direção Geral do Território (DGT) is a portuguese company owned by the portuguese state. The portuguese territory as the minimum, maximum, and average altitude of each municipality were taken from this institution for this study. (DGT - Direção Geral do Território, 2022)

MARKTEST is a group consisting of several companies specializing in market research. One of its market studies is the Sales Index, from which the data on road accidents and victims for 2018 was taken. (MARKTEST, 2022).

INE is a statistical studies company, independently and impartially. (INE, 2022)

Finally, Here is a location data and technology company that creates digital maps and has a strong presence in the automotive industry (Here, 2022). Through Here it was possible to obtain a database with several characteristics about the road segments present in Mainland Portugal.

Chapter 4 – Statistical Analysis of Data

4.1) Statistical Analysis of Data

The data collected from PORDATA/INE were organized by the 278 municipalities belonging to Portugal's Mainland.

The Here network was divided into links, that is, each road segment, sidewalk, or road existing in continental Portugal. Thus, the Here network totaled approximately 2 million links, of which 124,127 belonged to the North Road network and 108,800 to the South Road network, as can be seen in the table and in the image below.

Statistics						
Road Network of Mainland Portugal						
Ν	Valid	2324127				
	Missing 0					
	Table 4.1 Dead	Natural: Data				

 Table 4.1 - Road Network Data

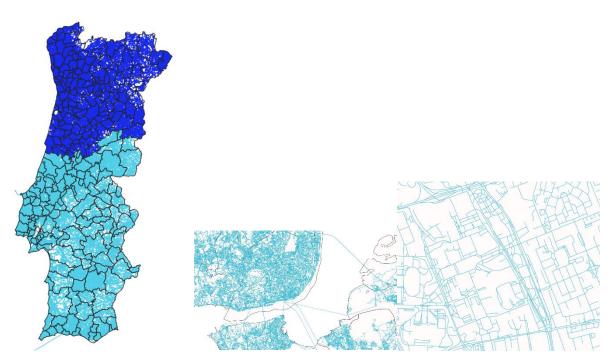


Figure 4.1 - Road Network Distribution in Portugal , University city and Campo Grande Source: Here

The Portuguese Road network database contains 108 explanatory variables, like if cars, boats, motorcycles, pedestrians and other are allowed in the road segment or the number of lanes in the

road segment, street name, municipality, district, intersections and others, describing each road link/segment.

Finally, from PORDATA/INE, DGT and IPMA was taken data for the population of 2018, the minimum altitude, average altitude, maximum altitude, and average temperature range for each municipality.

After collecting all the data, we obtained 5 different databases. All of them had to be changed in order to later unite all variables in the same database, organized by municipalities. In the database of the road network of mainland Portugal there were several variables that were not present in the known literature. Subsequently, each variable had its own way of reading, some were continuous, others nominal and others numerical.

Given that we are dealing with spatial data, most variables are sensitive to spatial units size and importance. For instance, one cannot compare the number of accidents in a small spatial unit and in a large one. Thus, new relative variables had to be created so that the original variables were comparable and conclusions could be drawn. We started by creating a variable called length, that is, we measured (in meters) the length of each link and in this way, we aggregated the entire database by municipality and join all of the data bases. Later, the variables were altered to put the same way of reading, that is, with the same denominator (divided by the length variable), only the variable referring to victims was put as divisor the population, because the victims are related to the population and not with the length of road of each municipality.

The dependent variables are constituted by the variables related to accidents and victims, as shown in the table below, annex B.

After the selection of variables (based on the literature) and the creation of new variables, we ended up with 67 variables, as shown in the Table 4.2. Still, it was necessary to perform a correlation matrix in order to verify the relationship between the variables and how to group them in order to reduce the number of variables without losing information. The correlation matrix can be found in the appendix (annex C).

After the correlation analysis between independent variables, it was found which variables are linearly related (annex C) and simplify and reduce the number of variables.

Regarding the independent variables it was found that the variables tot_ac_p_comp and tot_vit_p_pop encompassed all other variables of accidents and victims.

	Ν	Mean	Std. Deviation
alt_min	278	85.0288	116.32886
altitude_med	278	268.6897	213.86185
alt_max	278	648.2158	411.34681
amplitude_media_temperatura	278	22.5831	3.18798
vel6_p_comp	278	287.1519	160.94112
vel7e8_urban_p_comp	278	91.6023	64.32470
vel2e3_urban_p_comp	278	1.7082	4.89777
vel4e5_urban_p_comp	278	5.9338	6.11842
vel6_tunel_p_comp	278	.0318	.25828
intersecoes_p_comp	278	1.1528	1.16323
fun1_p_comp	278	12.3900	24.52306
vel4e5_tunel_p_comp	278	.0327	.37481
fun4_p_comp	278	104.2378	40.15510
auto_moto_p_comp	278	1966.7613	49.87992
vel2e3_tunel_p_comp	278	.0887	.52947
fun2_p_comp	278	20.7701	24.28690
fun3_p_comp	278	48.1596	28.86601
vel7e8_tunel_p_comp	278	.0029	.02819
ped_rodo_p_comp	278	1016.8972	267.70341
Poupulação2018	278	35179.2302	57227.79425

Table 4.2 - Variables choose by correlation matrixSource: Here, PORDATA/INE, DGT and IPMA

4.1.1) Population

The Population of mainland Portugal by municipalities shows a minimum of 1645 citizens, in 2018 in a single municipality (Barrancos) and a maximum of 507220 citizens, in 2018 (Lisbon). The municipalities with the largest population are concentrated near the large cities, such as Porto, Lisbon and Faro and the surrounding municipalities. This is one of the consequences of the migration of citizens to the big cities, as the interior of Portugal has the lowest number of citizens per municipality (Figure 4.2). There is an average of 35179.23 citizens per municipality, taking into account that 50% of the municipalities have a value below the average, 14626 citizens per municipality, which is represented by their median (Table 4.3).

In addition, 25% of the municipalities have below 6779 citizens and 25% have figures above 38404 citizens per municipality (Table 4.3).

	Statistics		and a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
População2018	8		Har Martin	(m)	
Ν	Valid	278		Spranker .	
	Missing	0			
Mean		35179.2302	A Company	ł	
Median		14626.0000	And the state	~	
Std. Deviation	1	57227.79425	A the start		
Minimum		1645.00			
Maximum		507220.00			
Percentiles	25	6779.0000	and the second		
	50	14626.0000	The second		
	75	38404.2500			
Table 4.3 - A	analysis of Popu	ılação2018 variable	13527		1645.00 - 6679.00 1645 -
	Source: IN	Е	R		6679.00 - 14626.00 6679 - 14626.00 - 38404.25 14626 38404.25 - 507221.00 38404
			Figure 4.2 - Ana	alysis of the	e variable população2018
				Source	: INE

4.1.2) Altitude

The altitude of the municipalities is shown in meters. Thus, within this large group we have 3 variables: the minimum altitude of each municipality, the average altitude of each municipality, and the maximum altitude of each municipality.

As there are no missing values, we can say that we have all the values of altitudes assigned to each municipality.

Statistics					
alt_min altitude_med alt_max					
N	Valid	278	278	278	
	Missing	0	0	0	

 Table 4.4 - Valid number of alt_min, altitude_med and alt_max

 Source: DGT

Minimum Altitude

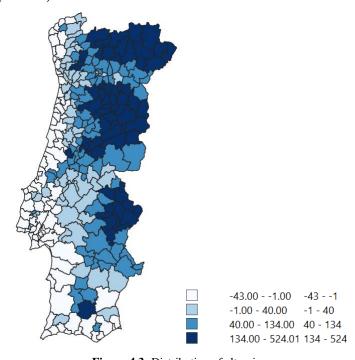
The minimum altitude of the municipalities is 43 meters below the average sea level, and the maximum that a municipality can accept as a minimum altitude is 524 meters above the sea level (Table 4.5).

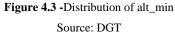
Additionally, looking at the figure for mainland Portugal, it should be noted that the municipalities further west and near the coast have a lower minimum altitude when compared to the interior of mainland Portugal. Furthermore, the highest minimum altitudes are found in the northeastern part of mainland Portugal.

From the percentiles, it was found that 25% of the municipalities are below mean water level, at least 1 meter below. The municipalities with the highest minimum altitude range between 134 and 524 meters above mean sea level (Figure 4.3).

Statistics alt_min				
	Missing	0		
Mean		85.0288		
Median		40.0000		
Std. Deviation		116.32886		
Variance		13532.404		
Minimum		-43.00		
Maximum		524.00		
Percentiles	25	-1.0000		
	50	40.0000		
	75	134.0000		

Table 4.5 - Variable alt_min





Average Altitude

The average altitude of the municipalities varies between 6.95 meters and 827.77 meters above sea level, with an average of 268.69 meters.

It is noteworthy that the areas with the lowest average altitude are along the coast and the most rugged areas are in the interior of mainland Portugal, especially the interior north, where the red color is visible (higher average altitude values).

All municipalities are above the sea level, while 25% of the municipalities have an average altitude below 75.9 meters, 25% have an average altitude above 423.9 meters. The median average altitude is 216.8 meters.

Source: DGT

	Statistics	
ltitude_med		
N	Valid	278
	Missing	0
Mean		268.6897
Median		216.7653
Std. Deviation	1	213.86185
Variance		45736.893
Minimum		6.95
Maximum		827.77
Percentiles	25	75.8802
	50	216.7653
	75	423.8642
able 4.6 -Ana	lysis of the alti	tude_med variable

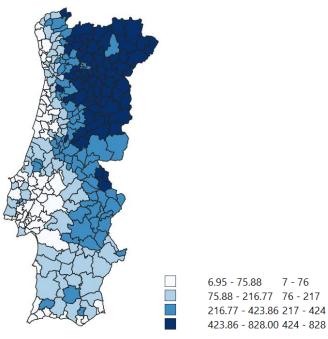
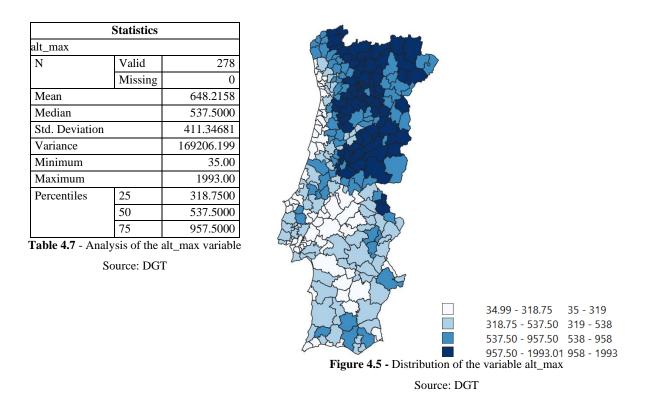


Figure 4.4 - Distribution of the variable altitude_med Source: DGT

Maximum Altitude

The highest maximum altitudes are found in the center interior and north interior of mainland Portugal and the lowest maximum altitudes along the coast and further south in Continental Portugal with the colors blue and green. This variable presents a high value range of 1958.00 meters, with a minimum value of 35 meters and a maximum value of 1993 meters.

Additionally, the average values of the maximum altitude variable are 648.21 meters, with no missing values.



4.1.3) Average Temperature Range

The average temperature range was derived as the average of the difference between the highest recorded temperature and the lowest recorded temperature in each municipality. Thus, it is noted that the highest and lowest temperatures are closer together along the coastal coast, mainly in the district of Lisbon and Leiria.

The highest average temperature range is 28,84 °C, and the lowest is 13,17 °C, totaling a maximum difference of 15,67 °C.

The average of the average temperature range corresponds to 22,58 °C, very close to the median, 22,99 °C.

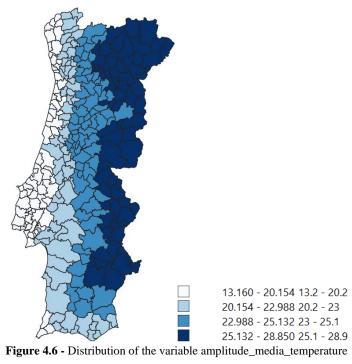
With the help of the percentiles, we see that the average temperature range is not very variable, since 25% of the municipalities have a maximum range of 20 °C, 50% of the municipalities have a maximum range of 23 °C, approximately. Only 25% of the municipalities have an average temperature range between 25 and 29 °C.

	Statistics	
amplitude_medi	a_temperatura	
Ν	Valid	278
	Missing	0
Mean		22.5831
Median		22.9880
Std. Deviation		3.18798
Variance		10.163
Minimum		13.17
Maximum		28.84
Percentiles	25	20.1543
	50	22.9880
	75	25.1320

 Table 4.8 - Analysis of the variable

 amplitude_media_temperatura

 Source: IPMA



4.1.4) Functional Class

Functional Class serves to rank roads depending on the speed, importance and connectivity of the road and is presented in values between 1 and 5.

Values between 1 and 5 are classified as (Here, https://www.here.com/, viewed on 15/08/2022):

- 1: allows a large volume of traffic movement at maximum speed;
- 2: allows a high volume of traffic movement at high speed;
- 3: allows a high volume of traffic movement;
- 4: allows a high volume of traffic movement at moderate speed between neighborhoods;
- 5: segments whose volume and traffic movement is lower than the other functional classes.

So, we created a new variable that corresponds to how many segments of each functional class there are per 1000 meter (thousand meters). Thus, we verify that there are many more segments of functional class 5, reaching an average of 778,64 per 1000 segments.

The segments with functional class 1 are those where there is a large volume of traffic at maximum speed. With the statistical analysis, analysis of Table 4.9 and Figure 4.7, it can be seen that there are not many segments of functional class 1, since at least 50% of the municipalities do

not contain links of functional class 1. In addition, the municipalities that contain the highest number of segments of per thousand meters (100.00 - 150.00) are in the district of Lisbon.

Furthermore, only one county contains more than 150.01 segments per thousand meters, having 204.25 functional class 1 segments per thousand meters.

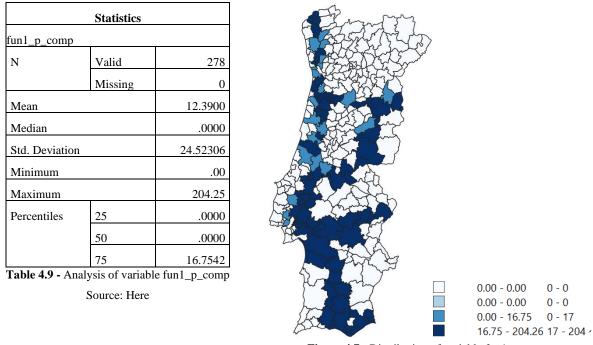


Figure 4.7 - Distribution of variable fun1_p_comp Source: Here

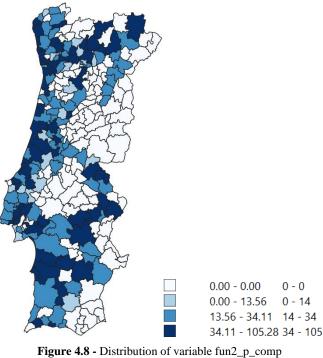
The segments with functional class 2 represent the segments with high traffic volume and with a high speed. Compared to the number of functional class 1 segments, it can be seen that there is a growth in the number of segments in municipalities with these characteristics, functional class 2, since only 25% of the municipalities do not have segments with this characteristic.

On average municipalities have 20.77 functional class 2 segments per 1000 meters, with a maximum of 278.54 functional class 2 segments per 1000 meters. Furthermore, 50 % of the municipalities have more than 45.43 functional class 2 segments per 1000 meters. The municipalities presenting the highest values of segments of this variable are found mainly in the north of the country with values between 65.46 and 278.5 functional class 2 segments per thousand meters.

Statistics fun2_p_comp				
	Missing	0		
Mean		20.7701		
Median		13.5628		
Std. Deviation		24.28690		
Minimum		.00		
Maximum		105.27		
Percentiles	25	.0000		
	50	13.5628		
	75	34.1132		

 Table 4.10 - Analysis of variable fun2_p_comp

Source: Here



Source: Here

Functional class 3 represents segments with a large volume of traffic. As it was verified before, functional class 3 segments are in larger number than functional classes 2 and 3. This can be verified since although the minimum value is 0 (zero), 25% of the municipality's present values between 0 and 30.97 functional class 3 segments per 1000 meters. The mean and median also present similar values, with the difference of 2 units only, 48.16 and 45.43, respectively.

Furthermore, only 25% of the municipalities have values higher than 61.70 and lower than 278.54 functional class 3 segments per 1000 meters.

From the graph it can be seen that the distribution of functional class 3 per thousand meters is somewhat irregular, although one can notice a large concentration in the north of Portugal, with values between 65.46 and 278.54 segments of functional class 3 per thousand meters.

	Statistics	
fun3_p_comp		
Ν	Valid	278
	Missing	0
Mean		48.1596
Median		45.4326
Std. Deviation		28.86601
Minimum		.00
Maximum		278.54
Percentiles	25	30.9719
	50	45.4326
	75	61.6964

 Table 4.11 - Analysis of variable fun3_p_comp

Source: Here

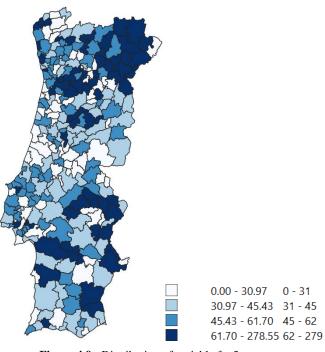
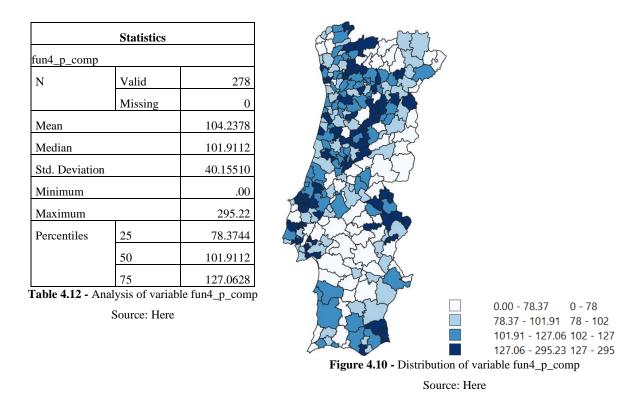


Figure 4.9 - Distribution of variable fun3_p_comp Source: Here

The functional class 4 represents large traffic volume with moderate speed between neighborhoods. It presents a total of 278 values, which represents the number of municipalities in Continental Portugal. The distribution of this variable, functional class 4 segments per 1000 meters, has a minimum value of 0 (zero) and a maximum value of 295.22, as shown in the table below, Table 4.12.

The mean and median values are close, presenting a difference of only 3 units, as can be seen in the table below, based on the variation of the variable, which is approximately 300 units.

The distribution of the different values by municipalities can be seen in Figure 4.10 showing many municipalities in the center of mainland Portugal, with a low number of segments 4 per 1000 meters, with a range of values from 0 to 71.87 segments of functional class 4 per 1000 meters.



4.1.5) Velocity

The database contains some variables that represent speed, one of the major causes mentioned in the literature. Thus, it was important to include these variables in the study and associate them with other variables also mentioned in the literature.

The database that contains the variables representing speed, belongs to Here (mentioned above) and contains 8 levels of speed, ranging from 2 to 8 (Here, https://www.here.com/, viewed on 15/08/2022).

It was important to group some speeds in order to help the study and to group them according to Portuguese roads. The speeds were organized in 4 groups (Here, https://www.here.com/, viewed on 15/08/2022):

- Speed 2 and 3: segments have a speed between 91 130 km/h;
- Speed 4 and 5: segments with speed between 51 90 km/h;
- Speed 6: segments with speed between 31 50 km/h;
- Speed 7 and 8: segments with speed between 0 30 km/h.

Velocity 6

Speed 6 represents segments with speeds between 31-50km/h. The municipalities with speed 6 segments per thousand meters have a range of 833.01, with 25% of the municipalities having at most 161.22 speed 6 segments per 1000 meters.

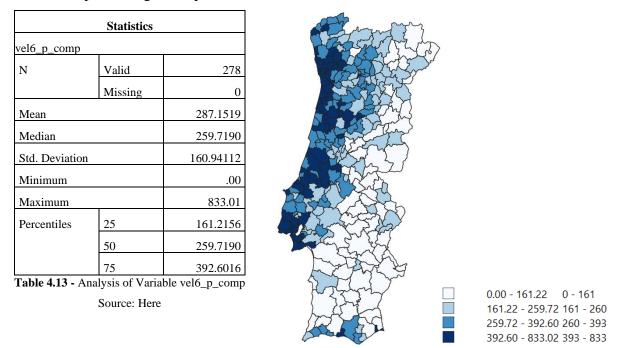


Figure 4.11 - Distribution of the variable vel6_p_comp Source: Here

Velocity in Urban Areas

Since many accidents are related to urban areas because they are areas where there are many pedestrians (World Health Organization, 2023), it was necessary to create these 3 variables. As expected, zones with a lower speed, namely speed 7 and 8 which comprise speeds between 0 and 30 km/h are the ones with the highest values, 325.05 speed segments 7 and 8 per 1000 meters.

Speeds 2 and 3 encompass speeds between 91 and 130 km/h, accounting for at least 50% of municipalities as 0 (zero) speed segments 2 and 3 in urban areas per 1000 meters, as shown in Table 4.14, showing a maximum of 42.37 in a single municipality, as we can see in Figure 4.12.

The segments with speeds between 51 and 90 km/h are more frequent, 25% of the municipalities have a maximum of 2.11 speed segments 4 and 5 in urban areas per 1000 meters, and 25% of the municipalities also have a minimum value of 7.70.

At lower speeds, there is a significant increase in the number of segments in urban areas per 1000 meters, as seen in speed 7 and 8, Table 4.14, totaling 325.05. As shown in Figure 4.12, the value of the number of segments of the different speeds per 1000 meters increases with the lower speed, there is also a greater number of segments along the coast of mainland Portugal, this is explained by the higher population density along the coast, as you can see in the point 4.1.1) Population, where the largest cities are located, such as Lisbon, Porto, among others.

		Statistics		
		vel2e3_urban_p_c	vel4e5_urban_p_c	vel7e8_urban_p_c
		omp	omp	omp
Ν	Valid	278	278	278
	Missing	0	0	0
Mean		1.7082	5.9338	91.6023
Median		.0000	4.1106	78.0694
Std. Deviation	1	4.89777	6.11842	64.32470
Minimum		.00	.00	.00
Maximum		42.37	43.16	325.05
Percentiles	25	.0000	2.1126	39.8450
	50	.0000	4.1106	78.0694
	75	.8256	7.7041	127.3644

Table 4.14 - Analysis of speed variables in urban areas

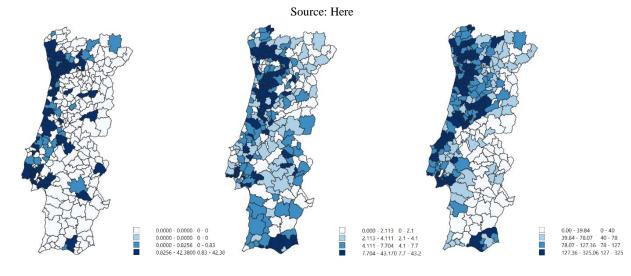


Figure 4.12 - Distribution of variables vel2e3_urban_p_comp, vel4e5_urban_p_comp and vel7e8_urban_p_comp, respectively

Source: Here

Velocity in Tunnels

Luminosity is an external factor with a certain weight in road accidents (Albuquerque et al., 2021), 4 variables were created with tunnels, based on the fact that when entering a tunnel, luminosity varies both for more or less luminosity. Associated with this factor, the speed was added being another determining factor in road accidents.

Analyzing Table 4.15, it can be seen that there are few tunnels along the Portuguese territory since in all variables with different speeds, at least 75% of the municipalities show a value equal to 0 tunnels with different speeds per 1000 meters.

Statistics vel2e3_tunel_p_c vel4e5_tunel_p_c vel6_tunel_p_co vel7e8_tunel_p_c omp omp mp omp Ν Valid 278 278 278 278 Missing 0 0 0 0 .0029 Mean .0887 .0327 .0318 .0000 Median .0000 .0000 .0000 52947 .37481 .25828 .02819 Std. Deviation .00 Minimum .00 .00 .00 Maximum 7.29 6.13 3.47 .42 .0000 .0000 Percentiles 25 .0000 .0000 50 .0000 .0000 .0000 .0000 75 .0000 .0000 .0000 .0000

However, the higher the speed, the higher the value of tunnels at a certain speed per 1000 meters, with a maximum of 7.29 at speed 2 and 3 and 0.42 at speed 7 and 8.

Table 4.15 - Analysis of speed variables in tunnels

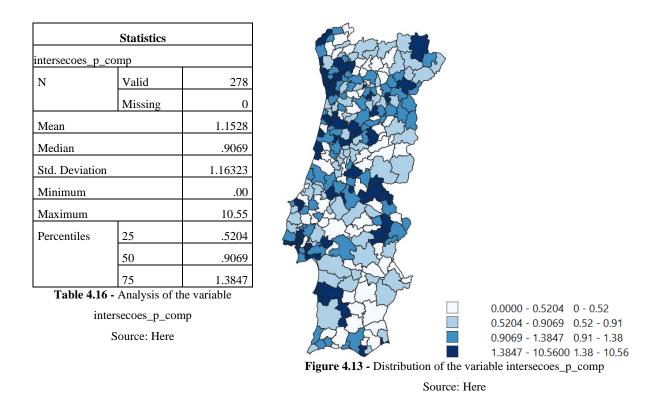
Source: Here

4.1.6) Intersections

The road conditions, like intersections are also a relevant factor in road accidents (Alkan et al., 2021)

The number of intersections per 1000 meters presents a range of 10.55, with only 25% presenting values higher than 1.38 intersections per 1000 meters. The intersections variable presents a mean and a median of 1.15 and 0.91 intersections per 1000 meters, respectively.

With the analysis of the Figure 4.13 it appears that there are different values of intersections per 1000 meters throughout Continental Portugal.



4.1.7) Motorcyclist and Pedestrians

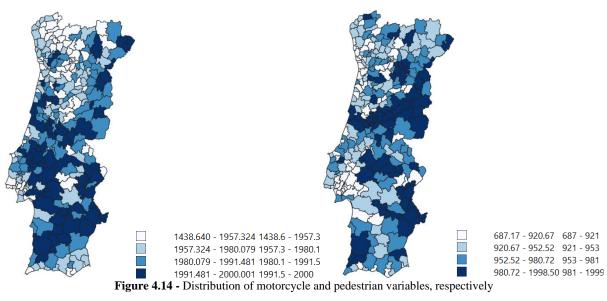
According to World Health Organization more than 50% of all road traffic death are Motorcyclists and pedestrians (World Health Organization, 2022) are two big weights in accidents and accident severity, so two variables were created that combine motorists, all four-wheeled vehicles along with motorcyclists, and pedestrians and motorists.

As most of the roads where four-wheelers pass motorcycles, there is a minimum of 1438.65 car and motorcycle segments per 1000 meters in a municipality and a maximum of 2000 car and motorcycle segments per 1000 meters in a municipality. On the contrary, the roads where pedestrians and road users can pass are lower, with a maximum of 1998.49 pedestrian and road user segments per 1000 meters in a municipality and a minimum of 687.18.

Statistics			
		auto_moto_p_co	ped_rodo_p_com
		mp	р
Ν	Valid	278	278
	Missing	0	0
Mean		1966.7613	1016.8972
Median		1980.0790	952.5250
Std. Deviation		49.87992	267.70341
Minimum		1438.65	687.18
Maximum		2000.00	1998.49
Percentiles	25	1957.3242	920.6675
	50	1980.0790	952.5250
	75	1991.4813	980.7223

Table 4.17 - Analysis of pedestrian and motorcycle variables

Source: Here



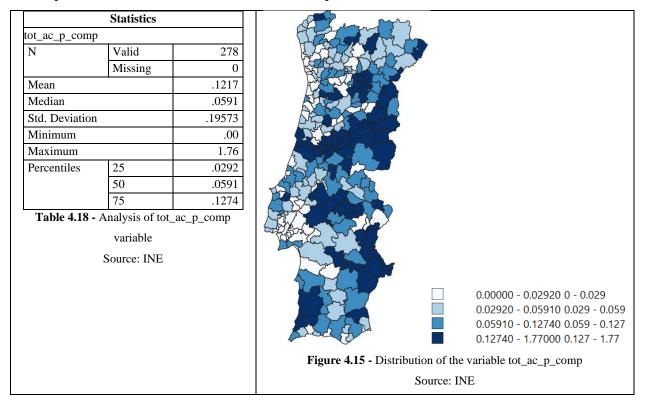
Source: Here

4.1.8) Accidents

As the objective of this work is to find out the weight that external factors have on accidents, the total number of accidents per length (meters) was considered as the dependent variable. From Figure 4.15 it is clearly noticeable that accidents occur mainly in the large arable areas of Lisbon

and Porto. Accidents have a more accentuated value along the coastline and decrease when moving inland.

The maximum value of accidents per 1000 meters is only 1.76, and it is important to note that there are municipalities with 0 (zero) accidents per 1000 meters and, at least, 75% of the municipalities have values lower than 1 accident per 1000 meters.



4.1.9) Victims

The dependent variable associated with victims was created from the variable corresponding to total victims (light, serious and fatal victims) per 1000 inhabitants. Furthermore, it will be important to study that, although accidents and victims are related in some way, whether on a statistical level they are related.

Since we will be conducting the study of which and with what weight external factors have on victims, that's how much external factors influence the likelihood of being a victim, so this variable will also be related against external factors, as a dependent variable.

Contrary to accidents, the likelihood to be a victim per 1000 citizens is not higher in the large areas of Lisbon and Porto, there are more victims in the central and southern areas, but analyzing the Table 4.19 and the Figure 4.16 referring to the total number of victims, there is a greater number

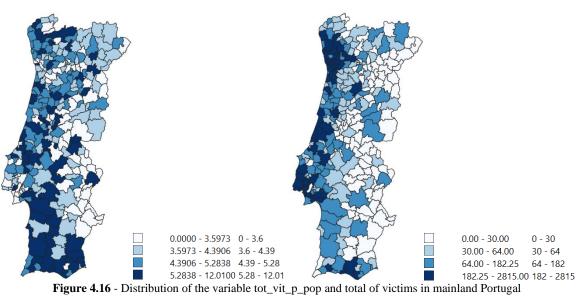
of victims along the coast, mainly in big cities. The maximum value is 12 victims per 1000 citizens, but in the real number is 3418 victims in just one municipality (Lisbon).

Statistics		
tot_vit_p_pop		
Ν	Valid	278
	Missing	0
Mean		4.5586
Median		4.3906
Std. Deviation		1.49434
Minimum		.00
Maximum		12.00
Percentiles	25	3.5973
	50	4.3906
	75	5.2838

	Statistics	
Totaldevitimas		
Ν	Valid	278
	Missing	0
Mean		158.2914
Median		64.0000
Std. Deviation		280.23676
Minimum		.00
Maximum		3418.00
Percentiles	25	30.0000
	50	64.0000
	75	182.2500

Table 4.19 - Analysis of the variable tot_vit_p_pop and Totaldevitimas

Source: INE



Source: INE

4.2) Relation between dependent variables

After the analysis of all variables, it is important to prepare and understand which variables can really be significant for the models.

Since accidents cause victims, we felt the need to verify if the external factors that influence accidents would be the same as those that influence victims, and what is the weight of these, since the purpose is to verify if and what influence external factors have on accidents and victims, these have to be dependent on external factors. So, the variables relative to accidents per 1000 meters

and victims per 1000 inhabitants are the dependent variables and all of variables relative a external factors are an independent variables.

As mentioned above, accidents cause victims and to do correctly specify the model structure and analytical approach to follow, the first step has to do with the casual link between accidents and victims.

Firstly, it is important to analyze the variables accidents and victims with their absolute values. For this analysis we did a correlation analysis (annex C), a scatter plot analysis (annex D) and a linear regression (equation 2) as a vehicle to explore causality between accidents and victims. With this analysis, it was verified that accidents have a strong correlation with victims, presenting a Pearson Correlation value of 0.99, practically 1 (meaning that these variables levels vary almost in the same proportions). Given the previous result, the scatter plot shows naturally almost perfect line.

Additionally, as a vehicle to test the relation between the variables, equation 2 was estimated.

$$victims_i = \beta_0 + \beta_1 \ accidents_i + u_i \quad , \qquad (2)$$

Where

 $victims_i$ = total number of victims in municipality I,

 $accidents_i =$ total number of accidents in municipality I,

 u_i = the error term.

The estimate of equation 2 confirmed the literature and the common sound, that is, the more accidents, the more victims. With the analysis of the equation, we can say, according to the absolute data taken from the INE, for each accident there is an increase in victims by 1.229 (β_1). Furthermore, equation 2 has a constant value of 6.978 (β_0) and *t* a value of 8.5 and 387.5 for β_0 and β_1 , respectively.

However, as stated previously, once we are dealing with spatial data, beside having to compare relative measures, our variable of interest is more the likelihood to have an accident per spatial unit, rather than the total number of accidents. So, the accidents per 1000 meters is a proxy for the likelihood of having an accident in the geographic space and the victims per 1000 inhabitants is a proxy for the likelihood of being a victim in a determinate location.

In order to analyze the relationship between these two proxy variables (and candidate dependent variables) for the likelihood for accidents and victims, it was necessary to analyze the

linear correlation between them (annex F), analysis of scatter plot (annex G) and the estimate of an equation 3.

Accidents per 1000 meters and victims per 1000 inhabitants don't show a strong linear correlation, as they have a Sig of only 0.554 (annex E) and a R square equal to 0.001. In addition, it is possible to see in annex E (scatter plot) the values are all dispersed.

Additionally, to test the existence of any causal link between the variables, equation 3 was performed.

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 W x_i + u_i , \qquad (3)$$

Where

 y_i = victims per 1000 inhabitants,

 x_i = accidents per 1000 meters,

W = queen contiguity matrix,

 u_i = the error term.

Equation 3 removed any probability of the existence of any causality between the variable representing the proxy for the likelihood of accidents and victims. For this conclusion, a hypothesis test was created:

$$H0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$$

H1: there is at least one $\beta_i \neq 0$

To teste the previous hypothesis, analyzing the F test (F=1.538, sig=0.191), we don't have statistical evidence in order to reject H0 (even at the 0.15 significance level), meaning that (at least for the tested structure), we have no sign that there might exist a causal link between the variables. This is an important conclusion once it conditions the modelling strategy followed. Once both variables are independent, it was decided to treat them independently, that is, to do a model to accidents and other model to victims against external factors and to understand which factors and what is the weight of each external factor in both victims and accidents.

4.3) Spatial Dependence

Since we are dealing with spatial information, it is important to understand if there is spatial dependence or not. To analyze spatial dependence, we used the Moran Index.

The Moran's index is a measure of spatial correlation (Chen, 2021) to identify a positive spatial relationship between accidents and the surrounding factors, measure (Oetomo et al., 2017), in this case the external factors.

According to García (2020) the Moran index was created by Patrick Alfred Pierce Moran in the early twentieth century in order to calculate spatial autocorrelation, in this case for the dependent variables. The Moran index is calculated as follows:

Source: García (2020)

$$I = \frac{N}{\sum_{i} \sum_{i} w_{ij}} \frac{\sum_{i} \sum_{i} w_{ij} (X_i - \bar{X}) (X_j - \bar{X})}{\sum_{i} (X_i - \bar{X})^2}$$
(4)

Where:

N – Number of spatial units indexed by i and j;

X – independent variable;

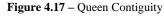
 \overline{X} – Arithmetic mean of variable X;

 w_{ij} – Spatial weight matrix element.

Analyzing Moran's Index of the two dependent variables, it was found a higher spatial correlation in the variable tot_ac_p_comp than in the variable tot_vit_p_pop, corresponding to a value of 0.482 and 0.147, respectively, meaning that accidents have higher spatial dependence than victims (annex H).

In order to analyze spatial dependence, the contiguity matrix was created using the Queen criteria. The Queen criteria means that everything around the observation will be influenced by these observations, in this case the accidents in a municipality influenced other accidents in others municipalities that are beside, as shown in Figure 4.17.

UnitC1	UnitB2	UnitC2
UnitB1	UnitA	UnitB3
UnitC4	UnitB4	UnitC3



Source: Oetomo, H. W, et. al. (2017)

According to Chen (2021) The weights express the neighbor structure between the observations as a $n \times n$ matrix W in which the elements W_{ij} of the matrix are the spatial weights.

Source: Chen (2021)

$$W = \begin{bmatrix} W_{11} & W_{12} & \dots & W_{1n} \\ W_{21} & W_{22} & \dots & W_{2n} \\ W_{n1} & W_{n2} & \dots & W_{nn} \end{bmatrix}$$

The value of the weights is never zero when i and j are neighbors, and when i and j are equal, W_{ij} will have a value of 0 (zero) (Geoda, 2022).

After calculating the contiguity matrix (W), the spatial lags of the dependent variables, tot_ac_p_comp and tot_vit_p_pop, were calculated. According to Oetomo, et al. (2017), the most important in spatial analysis is the contiguity matrix with the values referent to spatial weights, that determine the weights between locations.

Additionally, although the number of variables had already been reduced, it would be necessary to understand which variables could really bring some knowledge to the final model, thus, several models were created and analyzed with de linear regression like de equation 5.

$$y_i = ax_{1i} + bx_{2i} + cx_{3i} + \dots + zx_{ni} + \beta W x_{ki} + u_i$$
(5)

Being,

 y_i – dependent variable (accidents and victims),

 x_k – independent variables, with k=1, 2,....n,

W – the queen contiguity matrix,

 u_i - the error term.

"In a regression context, spatial effects pertain to two categories of specifications. One deals with spatial dependence, or its weaker expression, spatial autocorrelation, and the other with spatial heterogeneity." (Anselin, 2003)

The models created in order to verify which variables could bring a certain knowledge and results to the final models, are linear regressions with spatial lag component

In addition, it is necessary to pay attention to the factors mentioned in a paragraph above: multicollinearity, spatial heterogeneity e R^2 .

Following a general-to-specific (gts) significance approach, the variables that did not present significant coefficients at the 0.05 level were removed, obtaining a model with 6 variables for the accidents as shown in annex I and the equation 6.

 $Tot_a_comp_i = \beta_0 + \beta_1 vel_{comp_i} + \beta_2 vel_{tu_i} + \beta_3 inter_{comp_i} + \beta_4 fun_{comp_i} + \beta_5 vel_{tu_i} + \beta_6 Popul_{2018_i} + \beta_7 W_{tot_{a_{comp_i}}} + u_i$ (6)

With the variables defined and prepared for modeling, a linear regression model was obtained with Spatial Lag with an explanatory capacity of 70.27%. All variables have a positive β , that is, they all positively influence accidents, contribute to more accidents. Among all variables, speeds between 31-90 km/h are the variables that most influence accidents. In the other hand, the 2018 population and speed segments between 31-50 km/h are the variables that least positively influence accidents (annex I).

In relation to the victims variable, the same procedures were also performed as in the accident models, and thus a model with 4 variables was obtained, as can be seen in the annex J and equation 7.

$$Tot_v_pop_i = \beta_0 + \beta_1 Popul_{2018_i} + \beta_2 fun1_{comp_i} + \beta_3 vel6_{tu_i} + \beta_4 ampli_tura_i + \beta_6 Popul_{2018_i} + \beta_5 W_{tot_{v_{pop_i}}} + u_i$$
(7)

From the equation an explanatory capacity of 12.45% was obtained, where the population of 2018 and the temperature amplitude negatively influence the victims, that is, when the variables increase by 1 unit, the victims decrease. On the contrary, the variable that most positively influences (1.17) for the increase in victims are speeds 31-50 km/h in tunnels.

Chapter 5 – Results

After the analysis of all variables, the necessary modifications and their selection, the modeling creation phase began, from which the final results and conclusions will emerge.

Like we saw in the chapter 4, the dependents variables do not saw a large linear correlation, the variable corresponding to accidents are a higher value to spatial correlation, furthermore with the linear regressions addressed in the chapter 4, we saw that variables on model accidents are different that variables on model severity, so the modeling part was divided into 2 important sections since it will be state 2 dependent variables and that these have only a moderate correlation between them at the statistical level, as can be seen in the data preparation chapter.

Thus, the modeling chapter will also be divided in two sections: accidents and victims. The weight, w, discussed in the previous section, data preparation section is an important variable and included in all models, this variable (spatial lag) was created by the value of the weights for each municipality multiplied by the value of the dependent variable, in this case, tot_ac_p_comp or tot_vit_p_pop.

Modeling was carried out in two steps. First, we defined the structure of the models, and then we applied a simulation (bootstrapping) study for these models using the same structure, that is, generating new data from the victims and accidents databases.

According to Efron and Tibshirani (1986) the bootstrap is a methodology based in a computer method which substitutes a large amount of computation for simplify the study and increasingly a good data analytic.

The bootstrap method is a method that can be applied to databases with a large number of data, which consists in generating new data based on two principles, the non-parametrized method that generates data randomly and the parameterized method that generates new data based on the F distribution in order to normalize the distribution of variables (Wehrens et al., 2000), like we used. So in this case we use the bootstrap method to create a simulation study.

The bootstrap method and simulation study was used with 4 objectives: eliminate potential extreme effects and isolated cases (outliers) that are specific to Portugal; know the effects and weights asymptotically; potentially generalize to other countries with a similar road structures; potentially generalize to Portugal for new future road structures.

Thus, with the sample data, we identified the structure of the models. Then we went to do a simulation study, where we applied the structure model used in sample data, to know the weights

and explanatory capacity asymptotically, that is we randomly generated new 300,000 municipalities, to get closer to reality. So, the evaluation refers to 300,000 data.

5.1) Evaluation metrics used

To draw conclusions from the models, it is essential to evaluate them, so the evaluation metrics are the predictors of importance and the accuracy.

Predictor's importance

Predictors' importance is the center for analyzing the weight that external factors have on accidents and victims.

"Predictor importance can be determined by computing the reduction in variance of the target attributable to each predictor, via a sensitivity analysis." (IBM, 2021)

The predictors are ranked according to a sensitivity measure that is calculated as shown in equation 8.

Source: IBM, 2021

$$S_i = \frac{V_i}{V(Y)} = \frac{V(E(Y|X_i))}{V(Y)}$$
 (8)

V(Y) – unconditional variance of the output (independent variable)

 $V(E(Y|X_i))$ – variance of the integral of variable y over x

Subsequently, it is necessary to normalize the sensitivity measure, which is performed as follows, as presented in equation 9.

Source: IBM, 2021

$$V I_i = \frac{S_i}{\sum_{j=1}^k S_j} \tag{9}$$

Accuracy

There are several metrics to evaluate the effectiveness of different models, accuracy being the most widely used, in classification models, representing the percentage of correctness in the test predictions (Hasheminejad et al., 2017).

 $Accuracy = ESS/TSS, \tag{10}$

$$ESS = \sum (\hat{y} - \bar{y})^2, \tag{11}$$

 $TSS = \sum (y_i - \bar{y})^2 , \qquad (12)$

Where:

ESS = Explain sum of squares,TSS = Total of squares.

- y_i = dependent variables,
- \overline{y} = average of dependent variables

 \hat{y} = predicted value of y given x

As explained above (chapter 4) the relative dependent variables were treated independently. Thus, results were presented for the models of accidents per 1000 meters and results for the models of victims per 1000 inhabitants.

5.2) Accidents

For the accident variable a number of different modeling forms were created, ranging from neural networks, decision trees, and regressions, approaches talked about in the literature review chapter 1.

The models generated were all taken into account and some options were tweaked in order to avoid overfitting, in this case the neural network has only 1 hidden layer, and in the decision trees it was restricted to, at most, the tree could grow 7 layers and with a maximum of 5 child nodes or 5% of the data in the child node and 10% in the parent nodes. Additionally, exist models with components bagging and boosting, to improve de measure accuracy and avoid overfitting. In the regressions the models used a linear regression strategy.

All models were run with the variables selected, and so the input variables are: Popul_2018, vel6_comp, vell6_tu, inter_comp, fun1_comp, vel4e5_t e w_acid (weight), as mentioned in the data preparation chapter.

The models created have an accuracy range between 55% and 79%, and the model with the lowest accuracy is represented by the C&RT decision tree with the Bagging particularity, that is, it performs a bootstrapping and performing several models in order to avoid overfitting, and the model with the best accuracy rate is the Neural Network with 79.9%, as can be seen in Table 5.1.

Type of Model	Accuracy
Neural Network	0.799
Regression	0.705
Random Tree	0.714
Cart Boosting	0.64
Cart Bagging	0.556
LSVM	0.644
SVM	0.794
Average	0.6931
Average	

Table 5.1 - Accidents Models: Accuracy

Regarding the variables included in the models, each one has its importance, on average the variable with the highest value in the predictors is the w_acid, that is the spatial lag, since there is a spatial dependence, it was already expected that the weight is one of the variables with the highest weight. On the contrary the variable with less weight is vel_6, stretches with speeds between 31-50 km/h, with values of 28% and 7%, respectively (Table 5.2).

Variables	Average Importance
w_acid	0.2814
vel6_tu	0.1429
vel4e5_tu	0.1629
inter_comp	0.1129
popu_2018	0.1214
fun1_comp	0.0957
vel6_comp	0.0714

Table 5.2 - Average Importance: Variables

The importance of external factors varies according to the model under study, in the case of sections with functional class 1 (allows a large volume of traffic movement at maximum speed), it has a greater importance in the Random Tree model, representing 14.28% (0.714*0.2) of road accidents. The intersections variable has no weight in the SVM model, and its greatest representation is in the LSVM model, explaining 12.88% of accidents, according to this model.

As the variable representing the intersections the population also shows no explanatory value in the SVM model, having a higher explanatory value in the LSVM model.

In the C&RT Boosting and Bagging models all variables have an explanatory value of 0.15, representing 9.6% and 8.34%, respectively, of the road accidents. On the contrary, the variable

represented by functional class 1 presents an importance of only 0.07 in the C&RT Boosting and Bagging models.

Additionally, the speed 6 in tunnels has a higher explanatory value in the SVM model having a weight of 0.22 in the model. The neural network has the highest value of accuracy and for this model the most explanatory variable is the 2018 population of mainland Portugal representing 0.2, i.e., the 2018 population is able to represent 15.58% of road accidents, when using the neural network model (annex K).

5.3) Victims

The creation of the models for the victims were all based on the variables chosen with the help of the literature review and the regressions that were analyzed in Geoda, so the variables that served as input are: popul_2018, vel6_tu, fun1_comp, ampli_tura, w_vit and as target tot_v_pop. The models used were also created based on the literature and in this way the different algorithms were selected: neural network, decision trees, LSVM and regression with rule to avoid overfitting and improve the accuracy, with components boosting and bagging.

After creating all models with the input variables popul_2018, vel6_tu, fun1_comp, ampli_tura, w_vit and target, tot_v_pop and a bootstrapping of 300,000 observations, accuracies range between 11.2% and 15.5%, representing the CHAID Boosting and Random Tree algorithm, respectively, were obtained, as shown in annex K.

The neural network and regression algorithms show above average (12.48%) accuracy values of 13.7% and 12.9%, respectively. All other models present values below 12.48%.

Type of Model	Accuracy
Neural Network	0.137
Regression	0.129
Random Tree	0.155
Cart	0.105
Cart Boosting	0.122
Cart Bagging	0.111
Chaid Boosting	0.112
Chaid Bagging	0.102
LSVM	0.127
Average	0.1222

Table 5.3 - Victims Models: Accuracy

The factor with the highest explanatory value, on average, is the variable representing the weight calculated by the contiguity matrix with the target variable, presenting a value of 28.9% and, on its opposite, the factor that has the least explanatory value is tunnels with speed 6 (31-50 km/h) corresponding to only 9.4%.

Within the external factors, the factors with the highest explanatory capacity are the temperature range and the sections represented by functional class 1, having an explanatory capacity of 24.7% and 21.4%, respectively, as can be seen in Table 5.4.

Average Importance	
	0.298
	0.247
	0.214
	0.158
	0.094
	Average Importance

 Table 5.4 - Victims Models: Predictors of Importance

The value of the explanatory values can vary between 0 and 1. Moreover they explain only a part, that which belongs to the accuracy of the model we will address. In this way the temperature range is an explanatory variable, capable of explaining 3.3% of the victims in the C&RT model and 2.3% in the neural network created.

Regarding the sections with functional class 1 it is an explanatory variable with an importance of 29% representing an explanatory capacity of 3.2% of the victims resulting from accidents. Regarding the variable referring to the 2018 Population, three of all the models created this variable presents an importance lower than or equal to 5%, more specifically in Regression, LSVM, CHAID Bagging and C&RT, on the contrary, in the remaining models, Neural Network, Random Tree, CHAID Boosting and C&RT Boosting and Bagging, the variable presents an importance of at least 23%.

Finally, when analyzing the variable representing tunnels with speeds between 31-50km/h it was found that this variable has no weight in the CHAID and C&RT models with the Boosting specificity (annex L).

5.4) External factors explanatory capacity

Based on accidents, the models analyzed have an explanatory capacity of 69.3%, on average, this mean that external factors can explain a part of accidents. With all the analysis of the literature review, the variables and their selection, we arrived with a total of 6 variables capable to explain part of the accidents. These variables are: velocity between 31-50 km/h in tunnels, velocity between 51-90km/h in tunnels, velocity between 31-50 km/h on the road, intersections, population in 2018 and roads allows a large volume of traffic movement at maximum speed.

Within accidents models, the variable with the highest importance value is velocity between 51-90km/h in tunnels, and the variable with the lowest importance value is velocity between 31-50 km/h on the road, with 16.29% and 7.14%, on average, respectively.

As already mentioned above, in chapter 2, there are many other factors, namely intrinsic factors, with a greater weight, so it is acceptable and normally for the variable w_acid to be the variable that presents a greater importance, on average, both in accidents and in victims, presenting values of 28.14% and 29.14% respectively.

Based on victims, the models have an explanatory capacity of 12.22%, on average, that is a lowest value that accidents models. After all analysis described throughout this study, the victims models have 4 variables capable to explain part of the victims. The variables are: population in 2018, average of temperature, velocity between 31-50 km/h in tunnels and roads allows a large volume of traffic movement at maximum speed.

In these models we can see that the variable with a greater importance value is the average of temperature with, on average, 24.7% and the variable with a lowest importance value is velocity between 31-50 km/h in tunnels with, on average, 9.4%.

So based on these models we can suggest that external factors can influence the accidents and the victims. On average, the explanatory capacity of each variable, in accidents models are between 11.3% and 4.9%, as it is represented in the Table 5.5, with the variable velocity between 51-90 km/h in tunnels and velocity between 31-50 km/h, respectively.

The explanatory variable with the highest explanatory power on average (vel4e5_tu) has a higher explanatory power of 15.7% with the Random Tree model and the lower explanatory power of 7.7% in the LSVM model. The explanatory variable that have a lowest explanatory capacity is vel6_comp with an explanatory capacity of 0.8% with de SVM model.

Variables	Explanatory Capacity
vel6_tu	9.9%
vel4e5_tu	11.3%
inter_comp	7.8%
popu_2018	8.4%
fun1_comp	6.6%
vel6_comp	4.9%

Table 5.5 – Explanatory Capacity: Accidents Models

Additionally, based on de victims models the variable with higher explanatory capacity average temperature with 3% and lowest explanatory capacity is velocity between 31-50 km/h in tunnels with 1.1% (Table 5.6).

The amplit_termica is the variable with the higher explanatory capacity on victims, with 3%, on average. This variable has an explanatory capacity of 2.3% in Neural Network (the lowest value) and the 3.5% explanatory capacity in Regression model (the highest value).

Variables	Explanatory Capacity
amplit_termica	3.0%
fun1_comp	2.6%
popu_2018	1.9%
vel6_tu	1.1%

 Table 5.6 – Explanatory Capacity: Victims Models

Regarding the explanatory variable of spatial dependence, this is represented by external and internal factors not accounted for in these models. Thus accidents, the external factors have an explanatory capacity that varies between 38.9% (SVM) and 55.7% (Random Tree).

Type of Model	Explained Total	Explained w_accidents	Explained external factors
Neural Network	79.9%	24.8%	55.1%
Regression	70.5%	27.5%	43.0%
Random Tree	71.4%	15.7%	55.7%
Cart Boosting	64.0%	9.6%	54.4%
Cart Bagging	55.6%	8.3%	47.3%
LSVM	64.4%	15.5%	48.9%
SVM	79.4%	40.5%	38.9%
Average	69.31%	20.27%	49.04%

 Table 5.7 – Explanatory Capacity: External factors (accidents)

Regarding the models referring to victims, it appears that the explanatory capacity of the models is much lower, when compared to accidents, varying between 10% (Chaid Bagging and Cart) and 15% (Random Tree), taking into account the variables responsible for dependence spatial is included. This low percentage can be explained by the fact that this proxy likelihood of victims is not explained by the factors inherent to these models. In this way, internal factors are factor with much weight when it comes to victims, compared with accidents. The factor not accounted for in these models have an explanatory power of 90%, on average.

Type of Model	Explained Total	Explained w_victims	Explained external factors
Neural Network	13.7%	2.9%	10.8%
Regression	12.9%	4.5%	8.4%
Random Tree	15.5%	2.2%	13.3%
Cart	10.5%	5.1%	5.4%
Cart Boosting	12.2%	3.1%	9.1%
Cart Bagging	11.1%	2.6%	8.5%
Chaid Boosting	11.2%	2.9%	8.3%
Chaid Bagging	10.2%	3.0%	7.2%
LSVM	12.7%	4.8%	7.9%
Average	12.2%	3.46%	8.7%

Table 5.8 – Explanatory Capacity: Other factors (victims)

Chapter 6 - Conclusion

This research was positioned in a gap that existed in the literature and in studies of road accidents, i.e., existing studies and research focus on specific road sections with specific characteristics and this is replicated in several studies for different countries as we can see in the literature but these studies have a micro approach. So, we felt the need to create a macro approach to totality, a profile of the road structure in the Portuguese space and mobility database, that's it how much people move around the municipality.

This research encountered several limitations, mainly finding data that was felt to be needed and used in other studies addressed in the literature review namely accident times, road conditions, and weather accuracy are some examples of data addressed in other studies that were difficult to find or even impossible As the purpose was a macro approach, this prevented the use of intrinsic factors to drivers, as this would require an exhaustive survey of all existing accidents. This noninclusion of these and other factors may represent a omitted variables problem.

In addition, the fact that it was a study that was little addressed, the literature review was relatively scarce and difficult to find, with everything was a study where it was necessary to learn new concepts, namely being a geospatial problem. Additionally, conducting a study with the purpose of obtaining one or several models capable of responding to a general level of Continental Portugal is a great challenge, because each municipality has its own characteristics and this must be taken into account.

With the four objectives presenting in chapter 5: eliminate potential extreme effects and isolated cases (outliers) that are specific to Portugal; know the effects and weights asymptotically; potentially generalize to other countries with a similar road structures; potentially generalize to Portugal for new future road structures, the simulation study applied to all model structures was found that external factors have some weight in accidents, but are not their main reason, since all models, both in accidents and in victims present an explanatory capacity of 49.04%, on average, by external factors, and the 50%, proximally, are explained by other external factors not addressed or not exemplified in the collected data, or internal, mainly the driver, which, as we have seen, in several studies is pointed out as the main reason.

With all these analyzes and models, it can be said that the external factors, addressed and included in models discussed in chapter 5, can explain part of the accidents in 48%, approximately, and in victims 8.6%, on average.

In accidents the variable velocity between 31-50 km/h in tunnels can explain 9.9%, the velocity between 51-90km/h in tunnels explain 11.3%, velocity between 31-50 km/h on the road explain 4.9%, intersections explain 7.8%, population in 2018 can explain 8.4% and roads allows a large volume of traffic movement at maximum speed explain 6.6%.

The victims does not a explanatory capacity by external factors, the only 8.7% is explained by external factors include in models. The model with de highest explanatory capacity is the Rando Tree with 13.3%, and the lowest explanatory capacity is Cart with 5.4%

In victims the variable average temperature explains 3%, the variable roads allows a large volume of traffic movement at maximum speed explain 2.6%, the population in 2018 can explain 1.9% and velocity between 31-50 km/h explain 1.1%.

The results presented above are in agreement with the literature presented in chapter 2, since most of the causes are represented by other factors than external, such as, for example, factors related to the driver or even the vehicle, or other external factors not accounted in this study.

The major conclusion of this study is that external factors seem to explain a significant part of the likelihood of accidents in space, and not the likelihood of people to be accident victims. Additionally, spatial dependence is more evident in accidents per 1000 meters, and thus, should be taken into account.

For future investigations the models can be complemented with micro data on accidents (more specific) combined with external and internal factors.

References

- Albuquerque, V., Oliveira, A., Barbosa, J. L., Rodrigues, R. S., Andrade, F., Dias, M. S. & Ferreira, J.C. (2021). Smart Cities: Data-Driven Solutions to Understand Disruptive Problems in Transportation. *Energies 2021*, 14, 1-25. <u>https://doi.org/10.3390/en14113044</u>
- Alkan, G., Farrow, R., Liu, H., Moore, C., Keung, H., Ng, T., Stokes, L. Xu, Y., Xu, Z. Yan, Y & Zhong, Y. (2021) Predictive Modeling of Maximum Injury and Potencial Economic Cost in a Car Accident Based on the General Estimates System Data. *Computational Statistics.* 36, 1561-2575. <u>https://doi.org/10.1007/s00180-021-01074-7</u>
- Ameen, J. R. M. & Naji, J. A. (2020). Causal Models for road accident fatalities in Yemen. Accident Analysis and Prevention, 33, 547-561.<u>https://doi.org/10.1016/S0001-4575(00)00069-5</u>
- Anselin L. (2005). *Exploring Spatial Data with GeoDaTM: A Workbook*. Center for Spatially Integrated Social Science (version 2005)
- Anselin, L. (2003). Chapter Fourteen Spatial Econometrics. Em B. H. Baltagi (Ed.), A *Companion to Theoretical Econometrics* (pp. 310 330). Blackwell Publishing Ltd.
- ASF Autoridade de Supervisão de Seguros e Fundos de Pensões. (2022, June 30). *Estatísticas de Seguros*. <u>https://www.asf.com.pt/NR/exeres/34CBFBFE-40B5-4ECF-AA75-5934E13A57E4.htm</u>
- Casado-Sanz, N. Guirao, B. & Attard (2020). Analysis of the Risk Factors Affecting the Severity of Traffic Accidents on Spanish Crosstown Road: The Driver's Perspective. *Sustainability*, 12, 1-26. <u>https://doi.org/10.3390/su12062237</u>
- Chapman, P., Clinton J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. & Wirth, R. (2000). *CRISP-DM 1.0: Step-by-step Data Mining Guide*. SPSS Inc. (USA).
- Chen, Y. (2021). An Analytical process of spatial autocorrelation functions based on Moran's Index. *PLOS ONE*, *16*, 1-27. <u>https://doi.org/10.1371/journal.pone.0249589</u>
- Chong, M., Abraham, A. & Paprzycki, M. (2005). Traffic Accident Analysis Using Machine Learning Paradigms. *Informatica*, 29, 89-98.
- DGT Direção Geral do Território. (2022, June 30). *Quem Somos*. <u>https://www.dgterritorio.gov.pt/dgt/quem-somos</u>
- Dogru, N. & Subasi, A. (2012). Traffic Accident Detection By Using Machine Learning Methods. *Information Systems and Sustainability*, 2, 468-474.
- Efron B. & Tibshirani R. (1986). Booststrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. *Statistical Science*, 1, 54 -77. DOI: <u>10.4236/ojs.2015.56052</u>
- Fu, X., Meng, H., Wang, X., Yang, H. & Wang, J. (2022). A hybrid neural network for driving behavior risk prediction based on distracted driving behavior data. *PLoS ONE*, 17(1), 1-17. <u>https://doi.org/10.1371/journal.pone.0263030</u>
- Gan, J., Li, L., Zhang, D., Yi, Z. & Xiang, Q. (2020). An Alternative Method for Traffic Accident Severity prediction: Using Deep Forest Algorithm. *Journal of Advanced Transportation*, 2020,1-13. https://doi.org/10.1155/2020/1257627
- García, J. A. S., Ortis, A. F. A & García, A. J. S. (2020). Análisis Espacial Para Interpretar La Relación Entre Economía Y Territorio En Xalapa Veracruz A Través Del Geoprocesamiento De Autocorrelación Espacial Índice De Moran Como Diseño Metodológico En La Formación Del Arquitecto. DAYA. Diseño, Arte y Arquitectura, 8, 73-98.
- GEODA. (2022, August 15). Introducing GeoDa 1.20. https://geodacenter.github.io/

- George, S. & Santra, A. K. (2020, July, 22). Traffic Prediction Using Multifaceted Techniques: A Survey. *Wireless Personal Communications*, *115*, 1047–1106. https://doi.org/10.1007/s11277-020-07612-8
- Guerreiro, T. M. (2008). Análise da Sinistralidade Rodoviária em Portugal. Estudo de duas vias: EN6 e A5 (Tese de mestrado). Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa.
- Hasheminejad, S. H., Zahedi, M. & Hasheminejad, S. M. H. (2017). A hybrid clustering and classification approach for predicting crash injury severity on rural roads. *International Journal of Injury Control and Safety Promotion*, 25 (1), 85-101. DOI: 10.1080/17457300.2017.1341933

Here. (2022, June 07). About HERE Technologies. https://www.here.com/company/about-us

- Hong, J. W. (2020). Why Is Artificial Intelligence Blamed More? Analysis of Faulting Artificial Intelligence for Self-Driving Car Accidents in Experimental Settings. *International Journal of Human-Computer Interaction*, 36 (18), 1768-1774. <u>https://doi.org/10.1080/10447318.2020.1785693</u>
- IBM (2021). IBM SPSS Modeler 18.3: Algorithms Guide.
- IPMA. (2022, September 30). <u>https://www.ipma.pt/pt/index.html</u>
- Khatri, S., Vachhani, H., Shah, S., Bhatia, J. Chaturvedi, M., Tanwar, S. & Kumar, N. (2020). Machine learning models and techniques for VANET based traffic management: Implementation issues and challenges. *Peer-to-Peer Networking and Applications*, 14, 1778–1805. DOI:10.1007/s12083-020-00993-4
- MARKTEST (2022, June 07), https://www.marktest.com/wap/
- Oetomo, H., W., Lestariningsih, M. & Susanti. (2017). Spatial Analysis of Newspaper Sales in East Surabaya Traffic Lights Using Moran Index. *International Journal of Business and Administrative Studies*, 3 (5), 166-174. DOI: 10.20469/ijbas.3.10002-5
- Pereira, P.M.S. (2016). A sinistralidade rodoviária em ambiente urbano: a cidade de Lisboa como objeto de estudo. (Tese de mestrado). Instituto Superior de Ciências Policiais e Segurança Interna, Lisboa.
- PORDATA. (2022, June 30). A PORDATA. https://www.pordata.pt/sobre+a+pordata
- QGIS. (2022, July 15). https://qgis.org/en/site/
- Rezaein, A., Shokohyar, S. & Zolfaghari, S. (2016). Clustering and Classification of Road Accidents in Iran Using Data Mining Techniques. *International Journal of Business and Information*, 11 (3), 365-383.
- Shweta, Yadav, J., Batra, K. & Goel, K. (2021). A Framework for Analyzing Roads Accidents Using Machine Learning Paradigms. *Journal of Physics: Conference Series*, 1950, 1-8. DOI <u>10.1088/1742-6596/1950/1/012072</u>
- Torrão, G., Coelho, M. & Rouphail, N. (2010). Effect Of Vehicle Characteristics On Crash Severity: Portuguese Experience. WCTR, 12, 1-17. DOI:<u>10.1136/injuryprev-2012-040590u.41</u>
- Wang, J. & Chen, Q. (2021). A traffic prediction model based on multiple factors. *The Journal of Supercomputing*, 77, 2928-2960.
- Wehrens R., Putter, H. & Buydens, L. M. C. (2000). The bootstrap: a tutorial. *Chemometrics* and *Intelligent Laboratory Systems*, 11, 35-52.
- World Health Organization. (2022, June 20). *Road Traffic Injuries*. <u>https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries</u>
- Wirth, R. & Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data Ming.

Xu, P. & Meng, X. (2019) A novel ensemble learning method for crash prediction using road geometric alignments and traffic data. *Journal of Transportation Safety & Security*,12, 1128-1146. <u>https://doi.org/10.1080/19439962.2019.1579288</u>

Annex Annex A – Variables Independent and Dependent

Univariate Statistics								
	Ν	Mean	Std. Deviation					
alt_min	278	85.0288	116.32886					
altitude_med	278	268.6897	213.86185					
alt_max	278	648.2158	411.34681					
amplitude_media_temperatura	278	22.5831	3.18798					
seg_fun1_p_Nseg	278	3.8849	7.78301					
seg_fun2_p_Nseg	278	16.6071	24.37151					
seg_fun3_p_Nseg	278	70.7008	42.90255					
seg_fun4_p_Nseg	278	130.1664	45.72443					
seg_fun5_p_Nseg	278	778.6408	51.50521					
seg_vel2e3_p_Nseg	278	9.5211	10.86058					
seg_vel4e5_p_Nseg	278	180.3559	77.31504					
seg_vel6_p_Nseg	278	506.2633	126.35841					
seg_vel7e8_p_Nseg	278	303.8596	101.17164					
seg_vel2e3_tunel_p_Nseg	278	.0324	.14822					
seg_vel4e5_tunel_p_Nseg	278	.0275	.31664					
seg_vel6_tunel_p_Nseg	278	.0290	.21874					
seg_vel7e8_tunel_p_Nseg	278	.0021	.01949					
seg_vel2e3_urban_p_Nseg	278	.9983	3.08494					
seg_vel4e5_urban_p_Nseg	278	9.8042	8.86249					
seg_vel6_urban_p_Nseg	278	481.5496	126.95324					
seg_vel7e8_urban_p_Nseg	278	149.9634	87.17880					
n_ped_e_rodo_p_Nseg	278	945.1920	39.45014					
auto_moto_p_Nseg	278	1940.5929	62.90721					
urban_rodo_p_Nseg	278	660.4741	151.90154					
tunel_p_Nseg	278	.0910	.42868					
intersecoes_p_Nseg	278	5.1426	3.62621					
fun1_p_comp	278	12.3900	24.52306					
fun2_p_comp	278	20.7701	24.28690					
fun3_p_comp	278	48.1596	28.86601					
fun4_p_comp	278	104.2378	40.15510					
fun5_p_comp	278	814.4425	49.66324					
vel2e3_p_comp	278	27.4096	30.07874					
vel4e5_p_comp	278	249.1341	100.61043					
vel6_p_comp	278	287.1519	160.94112					

vel7e8_p_comp	278	436.3044	150.91219					
auto_moto_p_comp	278	1966.7613	49.87992					
tunel_p_comp	278	.1562	.71451					
intersecoes_p_comp	278	1.1528	1.16323					
vel2e3_tunel_p_comp	278	.0887	.52947					
vel4e5_tunel_p_comp	278	.0327	.37481					
vel6_tunel_p_comp	278	.0318	.25828					
vel7e8_tunel_p_comp	278	.0029	.02819					
vel2e3_urban_p_comp	278	1.7082	4.89777					
vel4e5_urban_p_comp	278	5.9338	6.11842					
vel6_urban_p_comp	278	267.5362	158.03794					
vel7e8_urban_p_comp	278	91.6023	64.32470					
urban_rodo_p_comp	278	402.7826	218.13792					
seg_vel2e3_urban_p_Nurban	278	.1255	.35002					
seg_vel4e5_urban_p_Nurban	278	1.6224	1.55303					
seg_vel6_urban_p_Nurban	278	75.3403	11.32737					
seg_vel7e8_urban_p_Nurban	278	22.9118	11.29022					
vel2e3_urban_p_compurban	277	.2785	.66076					
vel4e5_urban_p_compurban	277	1.7746	1.52749					
vel6_urban_p_compurban	277	73.2684	10.97050					
vel7e8_urban_p_compurban	277	24.6785	10.95065					
População2018	278	35179.2302	57227.79425					
Source: Here, PORDATA, DGT and IPMA								

Source: Here, PORDATA, DGT and IPMA

	N	Mean	Std. Deviation
ac_vit_auto_p_comp	278	.0074	.01916
ac_vit_mort_auto_p_comp	278	.0002	.00043
ac_vit_mort_nac_p_comp	278	.0007	.00108
ac_vit_mort_p_comp	278	.0021	.00244
ac_vit_nac_p_comp	278	.0247	.04384
tot_ac_p_comp	278	.1217	.19573
fer_grav_p_pop	278	.3246	.31060
fer_lig_p_pop	278	4.1219	1.37480
vit_auto_p_pop	278	.2846	.53514
vit_mort_p_pop	278	.1121	.15709
vit_nac_p_pop	278	1.4751	1.05665
tot_vit_p_pop	278	4.5586	1.49434

5	Source:	INE

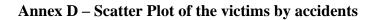
	Rotated Component Matrix ^a												
						С	ompone	ent					
	1	2	3	4	5	6	7	8	9	10	11	12	13
vel6_p_comp	.909	056	.281	005	.151	.003	.087	.089	039	.030	.007	079	.010
urban_rodo_p_Nseg	.908	.254	.171	054	.092	.036	.048	.077	082	.051	003	028	.008
vel6_urban_p_comp	.907	053	.291	.002	.164	002	.081	.074	025	.026	007	086	.014
seg_vel6_urban_p_Nseg	.892	336	.150	113	.093	.012	.048	.045	006	.013	050	017	010
seg_vel6_p_Nseg	.891	349	.137	123	.079	.020	.053	.069	026	.016	025	.003	014
urban_rodo_p_comp	.886	.184	.295	.032	.181	.083	.077	.073	015	.059	.046	083	.005
vel7e8_p_comp	815	.136	057	083	.105	.012	024	264	.220	032	244	036	194
seg_vel4e5_p_Nseg	672	303	258	.271	210	108	068	.162	042	061	.214	.189	.181
seg_vel7e8_urban_p_Nurban	104	.972	050	015	053	049	020	.017	121	.021	.007	037	.012
vel7e8_urban_p_compurban	129	.967	068	027	037	013	023	015	033	.009	032	023	020
seg_vel6_urban_p_Nurban	.126	964	.024	114	.054	.042	.020	022	.118	021	013	.033	015
vel6_urban_p_compurban	.144	962	.020	101	.027	.002	.015	.007	.043	014	.018	.024	.015
seg_vel7e8_urban_p_Nseg	.233	.941	019	030	004	059	023	.034	124	.028	012	028	.017
vel7e8_urban_p_comp	.559	.744	.085	.032	.121	043	021	.003	.007	.035	046	063	010
seg_vel7e8_p_Nseg	620	.670	020	045	.062	016	014	214	.063	.007	167	146	122
por100	.269	057	.911	016	.052	.077	.035	.031	063	.088	.095	009	.164
seg_vel2e3_urban_p_Nseg	.271	049	.907	006	.069	.048	.033	.020	076	.073	.083	004	.168
vel2e3_urban_p_comp	.323	036	.892	.006	.114	.046	.053	.000	085	.062	.085	011	.138
vel2e3_urban_p_compurban	.301	043	.874	022	.061	.129	.045	.011	064	.088	.121	024	.093
vel4e5_p_comp	299	125	427	.141	396	227	094	.237	296	041	.246	.188	.296
seg_vel4e5_urban_p_Nseg	.055	.067	024	.972	006	.052	.013	.031	022	004	001	.019	.018
seg_vel4e5_urban_p_Nurban	224	020	015	.945	019	.032	010	.033	.035	020	.021	.032	018
vel4e5_urban_p_compurban	239	005	033	.927	.046	.026	.035	.050	041	002	.050	001	006
vel4e5_urban_p_comp	.373	.147	.036	.783	.243	.007	.147	.055	155	.046	.003	011	.070
vel6_tunel_p_comp	.127	.060	.054	.088	.855	026	.040	017	255	.064	055	.110	.111
seg_vel6_tunel_p_Nseg	.125	.061	.059	.076	.850	017	.039	001	242	.068	052	.143	.102
intersecoes_p_comp	.369	101	.142	.028	.753	.032	.177	.102	182	040	.175	013	.098
intersecoes_p_Nseg	.046	241	.053	007	.643	.051	.091	.073	090	116	.299	.007	.091
fun1_p_comp	019	073	036	.097	.007	.929	019	017	.046	050	.004	073	.040
por milhares de segmentos	097	095	.046	.062	.020	.926	005	045	007	.012	053	066	.078
vel2e3_p_comp	.267	.035	.230	034	003	.731	028	.057	.097	.145	.388	030	076
seg_vel2e3_p_Nseg	.192	025	.439	075	.001	.683	007	.045	.016	.184	.328	024	.001
seg_vel4e5_tunel_p_Nseg	.089	051	.033	.038	.022	022	.987	.046	037	009	.079	.013	015

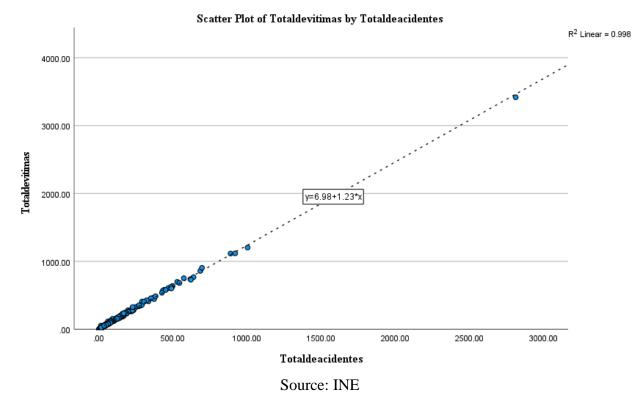
Annex B - Rotated Component Matrix – Independent Variables

	002	054	025	042	020	024	0.97	0.40	044	011	077	012	022
vel4e5_tunel_p_comp	.092	054	.025	.043	.030		.986	.040		011	.077	.012	022
tunel_p_Nseg	.144	006	.141	.063	.432	.008	.750	.021	168	.329	.036	.080	.123
seg_fun4_p_Nseg	.161	040	.065	.074	.069	036	.027	.898	.092	008	120	243	044
fun4_p_comp	.278	.128	085	001	081	160	.006	.854	163	029	045	158	.030
seg_fun5_p_Nseg	.158	.213	099	147	153	096	083	702	146	.017	188	439	.031
fun5_p_comp	314	063	007	028	052	257	085	701	.103	053	323	356	001
auto_moto_p_Nseg	009	227	.005	017	205	.135	042	006	.889	028	.050	.019	030
n_ped_e_rodo_p_Nseg	117	119	175	041	191	112	101	043	.800	104	108	.010	046
auto_moto_p_comp	133	063	078	073	341	.089	073	.029	.762	030	.082	.056	.040
vel2e3_tunel_p_comp	.035	.063	.020	008	026	.025	002	.005	025	.948	.084	008	014
seg_vel2e3_tunel_p_Nseg	.040	.006	.220	013	063	.089	.002	031	050	.860	.016	005	.122
tunel_p_comp	.123	.041	.058	.050	.319	002	.531	.019	136	.723	.081	.041	.048
fun2_p_comp	.176	.038	.257	020	.072	.069	.150	.035	.034	.188	.842	038	070
seg_fun2_p_Nseg	143	110	.080	.091	.104	.166	.068	.008	006	014	.831	149	001
fun3_p_comp	.025	045	061	007	.136	092	.028	.017	016	.011	093	.921	011
seg_fun3_p_Nseg	261	134	004	.035	.048	105	.033	110	.082	006	108	.882	003
seg_vel7e8_tunel_p_Nseg	.011	023	.238	003	.078	.043	.019	046	.011	.060	028	032	.882
vel7e8_tunel_p_comp .076 .012 .266 .042 .347 .051 .015 .018055 .088043 .013 .762									.762				
Extraction Method: Principal Component Analysis.													
Rotation Method: Varimax with Kaiser Normalization. ^a													
a. Rotation converged in 8 iter	ations.												

Annex C – Correlation Table

	Totaldevitimas	Totaldeacidentes
Pearson Correlation	1	.999**
Sig. (2-tailed)		.000
Ν	278	278
Pearson Correlation	.999**	1
Sig. (2-tailed)	.000	
Ν	278	278
_	Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed)	Pearson Correlation1Sig. (2-tailed)278N278Pearson Correlation.999**Sig. (2-tailed).000





Annex E – Causality Test: accidents and victims, absolute values

Model Summary								
			Adjusted R	Std. Error of the				
Model	R	R Square	Square	Estimate				
1	.999ª	.998	.998	12.02666				
a Predicto	a Predictors: (Constant) Totaldeacidentes sum							

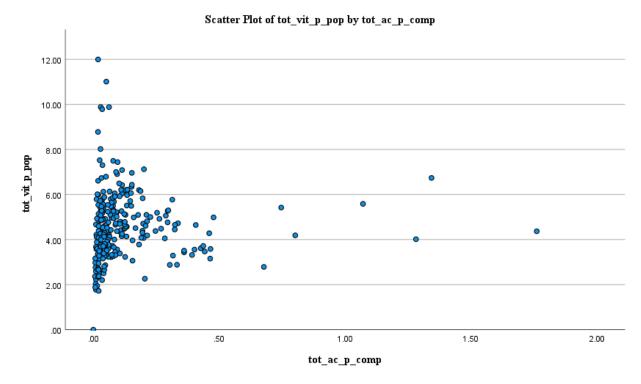
Coefficients^a Standardized Unstandardized Coefficients Coefficients В Std. Error Model Beta Sig. t 1 6.978 .820 8.507 .000 (Constant) Totaldeacidentes_sum 1.229 .003 .999 387.455 .000 a. Dependent Variable: Totaldevitimas_sum

Correlations								
		tot_vit_p_pop	tot_ac_p_comp					
tot_vit_p_pop	Pearson Correlation	1	.036					
	Sig. (2-tailed)		.554					
	N	278	278					
tot_ac_p_comp	Pearson Correlation	.036	1					
	Sig. (2-tailed)	.554						
	N	278	278					
**. Correlation is significant at the 0.01 level (2-tailed).								

Annex F – Correlation Tables: tot_ac_p_comp and tot_vit_p_pop

Source: INE

Annex G – Scatter Plot of victims per 1000 inhabitants by accidents per 1000 meters



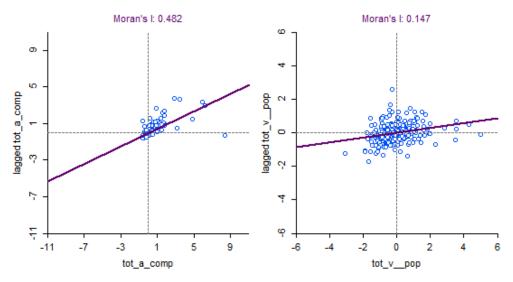
Annex G – Causality Test: tot_ac_p_comp and tot_vit_p_pop

Model Summary									
			Adjusted R	Std. Error of the					
Model	R	R Square	Square	Estimate					
1	.148 ^a	.022	.008	1.4885614695048					
				02					
a. Predicto	a. Predictors: (Constant), A3, w_acid, tot_a_comp, A2								

	ANOVA ^a							
Model		Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	13.634	4	3.409	1.538	.191 ^b		
	Residual	604.918	273	2.216				
	Total	618.552	277					
a. Dependent Variable: tot_v_pop b. Predictors: (Constant), A3, w acid, tot a comp, A2								

	Coefficients ^a							
				Standardized				
		Unstandardized Coefficients		Coefficients				
Model		В	Std. Error	Beta	t	Sig.		
1	(Constant)	4.455	.150		29.609	.000		
	tot_a_comp	4.652	2.067	.609	2.250	.025		
	w_acid	-2.525	1.294	226	-1.951	.052		
	A2	-4.511	3.791	761	-1.190	.235		
	A3	1.310	1.853	.339	.707	.480		
a. Depe	a. Dependent Variable: tot_vpop							

Annex H - Moran's Index



Annex]	I – 1	Linear	Regression	with S	patial]	Lag: tot	a comp

REGRESSION				
SUMMARY OF OUTPUT: S Data set Spatial Weight	: municipaliti	es	HOOD EST	IMATION
Dependent Variable	: tot a comp	Number of Observat	ions: 2	78
Mean dependent var S.D. dependent var Lag coeff. (Rho)	: 0.121739	Number of Variable	s :	8
S.D. dependent var	: 0.195374	Degrees of Freedom	1 : 2	70
Lag coeff. (Rho)	: 0.329415			
R-squared Sq. Correlation	: 0.702745	Log likelihood		
Sq. Correlation	: -	Akaike info criter	ion :	-433.901
Sigma-square		Schwarz criterion	:	-404.88
S.E of regression	: 0.10652			
Variable	Coefficient	Std.Error	z-value	Probability
W_tot_a_comp	0.329415	0.0620842	5.3059	
CONSTANT	-0.0667859	0.0145295	-4.5965	
vel6_comp	0.000256695	5.79686e-05	4.4281	5 0.00001
vel6_tu	0.148413	5.79686e-05 0.0379175 0.00901599	3.9141	2 0.00009 8 0.00653
inter_comp	0.0245206	0.00901599 0.000267128	2.7196	B 0.00653 5 0.00000
tun1comp vel4e5 t	0.00211286 0.111276	0.00026/128		
Vei4e5_t	4.04026e-07	0.018234	2.2195	
POpu1_2018	4.040202-07	1.820290-07	2.2195	
REGRESSION DIAGNOSTI DIAGNOSTICS FOR HETE RANDOM COEFFICIENTS				
TEST		DF VALU	IE	PROB
Breusch-Pagan test		6 10291.	1672	0.00000
DIAGNOSTICS FOR SPATI SPATIAL LAG DEPENDENC TEST				DROR
Likelihood Ratio Test	_		-	PROB 0.00002

Annex J - Linear Regression with Spatial Lag: tot_v_pop

>>10/11/22 22:34:28 REGRESSION	3			
REGRESSION				
SUMMARY OF OUTPUT:	SDATTAL LAC MOD	T - MANTMIN T	TERT THOOD P	STIMATION
Data set			IREDINOUD E	STINATION
Spatial Weight				
Dependent Variable			ervations:	278
Mean dependent war	·	Number of Var	iables :	6
Mean dependent var S.D. dependent var	- 1 49165	Degrees of Fr	codom :	272
Lag coeff. (Rho)	. 0.124205	Degrees of fr	.eedom .	212
Lag Coeff. (Rho)	: 0.1/4205			
R-squared Sq. Correlation Sigma-square S.E of regression	: 0.141594	Log likelihoo	d :	-485.244
Sq. Correlation	: -	Akaike info c	riterion :	982.488
Sigma-square	: 1.90996	Schwarz crite	rion :	1004.25
S.E of regression	: 1.38201			
				ue Probability
				437 0.04191
CONSTANT	6 35173	0 916945	6 92	706 0 00000
Popul 2018	-5.87319e-06	1.94912e-06	-3.01	325 0.00258
funl comp	0.0104257	0.00341678	3.05	132 0.00228
				339 0.00295
ampli tura	-0.112784	0.0303984	-3.71	019 0.00021
REGRESSION DIAGNOST	ICS			
DIAGNOSTICS FOR HET	EROSKEDASTICITY			
RANDOM COEFFICIENTS	1			
TEST		DF	VALUE	PROB
Breusch-Pagan test		4	27.3453	0.00002
-				
DIAGNOSTICS FOR SPA	TIAL DEPENDENCE			
SPATIAL LAG DEPENDE	NCE FOR WEIGHT	MATRIX : munic:	ipalities	
TEST		DF	VALUE	PROB
Likelihood Ratio Te	st	1	4.0790	0.04342

Annex K – Predictor Importance: Accidents Models

Model	Variable	Predictor Importance
	w_acid	0.31
Ł	vel6_tu	0.14
two	vel4e5_tu	0.14
ıl Ne	Inter_comp	0.06
Neural Network	popu_2018	0.04
Z	fun1_comp	0.11
	vel6_comp	0.02
	w_acid	0.39
	vel4e5_tu	0.18
ion	Inter_comp	0.13
Regression	vel6_tu	0.12
Reg	fun1_comp	0.07
	Popu_2018	0.05
	vel6_comp	0.05
Rando m Tree	popu_2018	0.12
Raı m T	vel6_comp	0.01

	inter_comp	0.10
	fun1_comp	0.20
	w_acid	0.22
	vel6_tu	0.13
	vel4e5_tu	0.22
	vel4e5_tu	0.15
	vel6_tu	0.15
ting	inter_comp	0.15
3005	w_acid	0.15
Cart Boosting	vel6_comp	0.15
Ű	popu_2018	0.15
	fun1_comp	0.07
	vel4e5_tu	0.15
	vel6_tu	0.15
ing	inter_comp	0.15
Bagg	w_acid	0.15
Cart Bagging	vel6_comp	0.15
U U	popu_2018	0.15
	fun1_comp	0.07
	w_acid	0.24
	inter_comp	0.2
	popu_2018	0.18
MVSL	vel4e5_tu	0.12
Γ	vel6_comp	0.09
	vel6_tu	0.09
	fun1_comp	0.07
	w_acid	0.51
	vel6_tu	0.22
	vel4e5_tu	0.18
MVZ	fun1_comp	0.08
Š	vel6_comp	0.01
	inter_comp	0
	popu_2018	0

Models	Variables	Predictor Importance
	popu_2018	0.29
Neural Network	fun1_comp	0.16
l Net	vel6_tu	0.17
ura	w_vit	0.21
ž	amplitude térmica	0.17
	fun1_comp	0.24
U	amplitude térmica	0.27
Regression	vel6_tu	0.07
Reg	w_vit	0.35
	 popu_2018	0.05
	popu_2018	0.29
Random Tree	fun1_comp	0.14
UIO	vel6_tu	0.25
and	amplitude térmica	0.18
X	w_vit	0.14
	w_vit	0.49
	amplitude térmica	0.31
Cart	fun1_comp	0.17
•	popu_2018	0.02
	vel6_tu	0.02
50	w_vit	0.25
Cart Boosting	fun1_como	0.25
Boo	amplitude térmica	0.25
Cart	popu_2018	0.25
	vel6_tu	0.00
50	popu_2018	0.23
gging	fun1_comp	0.23
Bag	amplitude térmica	0.23
Cart Bagging	w_vit	0.23
-	vel6_tu	0.09
50	amplitude térmica	0.26
Chaid Boosting	w_vit	0.26
I Bo	popu_2018	0.23
Jhai c	vel6_tu	0.00
C	fun1_comp	0.26
ъ Se	vel6_tu	0.11
Chaid Bagging	amplitude térmica	0.29
B ² C	popu_2018	0.03

Annex L – Predictor Importance: Severity Models

	fun1_comp	0.29
	w_vit	0.29
	popu_2018	0.03
5	fun1_comp	0.19
MAST	w_vit	0.38
	vel6_tu	0.14
	amplitude térmica	0.26