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Resumo 

 

O objetivo da dissertação é enfrentar o desafio necessário de fornecer modelos de coeficiente de 

cultura (Kc) baseados em refletância para reduzir o consumo de água na irrigação agrícola. Neste 

trabalho, foram criados 6 modelos diferentes para cada uma das culturas usando o índice de 

vegetação por diferença normalizada (NDVI) para estimar os coeficientes de cultura para milho, 

tomate, batata e girassol na região da Lezíria do Tejo combinando diferentes métodos de pré-seleção 

de séries temporais e usando a média e k-means para criar novas séries temporais, bem como usar 

regressão linear e polinomial para ajustar as novas séries temporais geradas com curvas Kc teóricas 

com o objetivo de usar esses modelos para determinar Kc nesta região. O desempenho desses 

modelos foi avaliado usando o coeficiente de determinação (R2), a raiz quadrada do erro quadrático 

médio (RMSE) e uma inspeção visual das previsões no conjunto de teste.  

Os resultados mostram que os modelos Kc-NDVI criados conseguiram capturar bem as curvas 

teóricas de Kc, bem como o uso de uma pré-seleção das séries temporais, média e k-means para 

estas culturas são úteis para capturar as curvas dos coeficientes de cultura, uma vez que alguns dos 

melhores resultados obtidos foram quando estas foram utilizadas. As melhores metodologias 

dependem de cada cultura e não existe uma que seja globalmente melhor. Estes resultados obtidos 

são promissores e podem ser vistos como métodos potenciais para melhor determinar os 

coeficientes de cultura e os modelos são adequados para seu uso pelo menos na região estudada. 

 

Palavras-chave: NDVI, Kc, machine learning, séries temporais, sensoriamento remoto. 
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Abstract 

 

This dissertation aims to meet the required challenge of providing reflectance-based crop coefficient 

models to reduce water consumption in agriculture irrigation. In this work, 6 different models were 

created for each crop by using normalized difference vegetation index (NDVI) to estimate crop 

coefficients (Kc) for maize, tomato, potato and sunflower for Lezíria do Tejo region combining 

different pre-selection methods of time series and mean and k-means to create new time series and 

use linear and polynomial regression to fit the new generate time series with theoretical Kc curves to 

use these models to determine Kc in this region. These models’ performance was assessed using the 

coefficient of determination (R2), root mean square error (RMSE) and a visual inspection of test set 

predictions.  

The results show that the Kc-NDVI models created were able to capture the theoretical 

curves of Kc well, and the use of a pre-selection of time series, mean and k-means for these crops is 

useful to capture the curves of the crop coefficients since some of the best results obtained were 

when they were used. The best methodologies depend on each crop; no one is globally better than 

the others. The results shown are promising and can be seen as potential methods to better 

determine crop coefficients and the models are suitable for their use at least in the region of this 

study. 

 

Keywords: NDVI, Kc, machine learning, time series, remote sensing. 
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CHAPTER 1 

Introduction 

 

1.1. Motivation 

The development of remote sensing in recent years has created the possibility of acquiring and 

storing large amounts of data, obtaining satellite images with a higher spatial, spectral, and temporal 

resolution, and enabling satellite data access to everyone in society (Cracknell, 2018). Therefore, the 

increased research in remote sensing is not surprising, evapotranspiration included (Z. Zhu et al., 

2019). 

The measurement of evapotranspiration (ET) is extremely important since it is a significant 

component for estimating crop water requirement. Crop water requirement can be defined as the 

amount of water necessary to compensate for evapotranspiration loss. If we subtract effective 

precipitation from it, it fundamentally represents the irrigation water requirement, that is, the 

amount of water necessary from irrigation to compensate for crop evapotranspiration and 

supplementary water needs (R. G. Allen et al., 1998). 

Its importance has grown in the last years due to climate change causing fluctuation in its 

measurement and the necessity for water resource management (Piticar et al., 2016). An essential 

factor to consider is the complexities in the land-plant-atmosphere system, which makes the 

measurement of actual evapotranspiration rather difficult (Ahmed et al., 2021). On the other hand, 

forecasting interpretation and accuracy depend heavily on the appropriate selection of predictor 

variables (Prasad et al., 2018). 

Irrigated agriculture accounts for around 70% of all available freshwater, making it the principal 

water consumer worldwide (AQUASTAT - FAO’s Global Information System on Water and Agriculture, 

n.d.). Due to climate change, population growth, and increasing pressure on available water 

resources, the importance of irrigation water management in agricultural fields and sustainable 

agricultural development has become apparent (Kharrou et al., 2021). Despite its importance, a lack 

of spatiotemporal patterns of evapotranspiration, mainly in large irrigated areas, as well as the 

factors which impact its measurement, has been frequently noted (Cheng et al., 2021; Saboori et al., 

2021). For that reason, we suggest that more studies are needed to explore evapotranspiration. 

One way of determining ET is by using reflectance-based crop coefficient methods. One of the 

methods is called single crop coefficient where the ET can be obtain through the product of a crop 

coefficient (Kc) with a reference evapotranspiration (ET0), which is measured using the FAO-Penman-

Monteith equation (R. G. Allen et al., 1998). Kc can be estimated using vegetation indexes (VI) which 

are mathematical representations of multiple spectral bands. 
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This dissertation focuses on the study of creating models by fitting normalized difference 

vegetation index (NDVI) to Kc called NDVI-Kc models, which are sub-group of VI-Kc models. That 

means that we aim to be able to estimate Kc, as well as evaluate different approaches for time series 

pre-selection. VI-Kc models are known for the easily of obtaining VI values through satellites like 

Sentinel-2, where the data obtained from these satellites are open to the public (Pôças et al., 2020). 

However, these models are generally region-specific and affected by climate conditions (Richard G. 

Allen et al., 2011a) and due to the effect of climate change in the last years (Piticar et al., 2016), 

these models need to be constantly updated. To the best of our knowledge, at least in the last two 

years, no NDVI-Kc models for maize, tomato, potato, and sunflower for Lezíria do Tejo region were 

created. To address this issue, the dissertation focuses on building NDVI-Kc models for these crops 

and this region from data obtained from Sentinel-2 using linear and polynomial regression, as other 

studies have done with success (Pôças et al., 2020). We also aim to evaluate the use of different pre-

selection techniques and k-means, which have not been addressed in the literature, at least for these 

crops in this region. 

 

1.2. Goals 

The main focuses of this dissertation are the followings: 

• Development of NDVI-Kc models for maize, tomato, potato, and sunflower for the 

Lezíria do Tejo region 

• Study the use of a pre-selection of time series and k-means to discover new temporal 

patterns in the data and the overall impact on the models. 

 

1.3. Dissertation organization 

This dissertation is organized into the following chapters. A literature review is presented in Chapter 

2, which addresses the fundamental concepts related to this work, namely: remote sensing, 

evapotranspiration, crop coefficient, vegetation indexes and different methodologies do determine 

evapotranspiration. Chapter 3 explains the methodology from how the data was acquired, then pre-

processed, and right after how the NDVI-Kc models were created and evaluated. In Chapter 4, the 

performance of each model is evaluated and compared using the coefficient of determination (R2) 

and root mean square error (RMSE) and a visual inspection of test set predictions. The conclusions 

and future work are presented in Chapter 5. 
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1.4. Main contributions 

We consider that this work has the following main contributions: 

• Implementation and validation of the effectiveness of NDVI-Kc models for maize, tomato, 

potato, and sunflower for the Lezíria do Tejo region that may translate well to other regions 

with similar climate conditions. 

• Demonstrating that using a pre-selection of time series and using k-means provide better 

results in some cases. 
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CHAPTER 2 

Literature Review 

 

2.1       Remote Sensing 

Since 1970, satellites with medium-high spatial resolution and with multispectral observations in the 

near-infrared (NIR) and visible (VIS) spectra started to be available with satellites like the Landsat 

series and later SPOT satellites being able to capture data with a spatial resolution of 30 m (with 16-

day revisit time) and 20 m, respectively. Meaning that, in the case of the Landsat, each pixel in the 

image corresponds to a 30x30 meter square on the ground. Unfortunately, this satellite imagery was 

costly, with low availability and long revisiting times. Nowadays, satellites like ESA Sentinel-2 have 

free and open access policy and with better spatial, temporal, and spectral resolutions. Sentinel-2 is 

composed of two satellites (Sentinel-2A and Sentinel-2B) with a multispectral sensor being able to 

capture data at 10 m (VIS and Broad NIR), 20 m (red edge, narrow NIR, and Short-Wave InfraRed 

(SWIR) bands), and 60 m (atmospheric bands) with 13 spectral bands in total and with a temporal 

resolution of 5 days (Transon et al., 2018). These new satellites open doors for society and promotes 

increased research in multiple fields related to the study of the earth. 

 

2.2       Evapotranspiration 

The Evapotranspiration concept consists of two parts that occur simultaneously and are hard to 

distinguish: evaporation and transpiration. The first one is the conversion of liquid water to water in 

a gaseous state (vapor) called vaporization and the consequent removal from the surface where it 

was. The second one consists of the release of water in a liquid state from the plant tissues through 

vaporization into the atmosphere (R. G. Allen et al., 1998) and plays a key role in water management 

in agriculture (Zhao et al., 2019). 

Initial studies mentioning evapotranspiration can be traced back to 1937, however, without a 

proper definition and explanation. It was then first defined in 1944 by Thornthwaite, which quickly 

was adopted, primarily thanks to the efforts of Penman and Monteith at the time (Stanhill, 2005).  

There are two main groups in terms of methodology that are used to measure ET. First, we have 

in-situ techniques which measure ET at the local scale, including micrometeorological methods (e.g., 

eddy covariance), hydrological methods (e.g., lysimeters), and physiological methods (e.g., sap flow) 

(Rana & Katerji, 2000). Due to the high accuracy of these methods, they have become the standards 

of ET measurement and are used to provide baseline information on how accurate the remote 

sensing approaches are to the measurement of ET. However, there are some limitations: first, they 
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have a hard time simulating mixed terrain, soil features, water content, and meteorological 

conditions, there fourth not suited for larger fields, and for last the instrumentation is expensive 

(Bhattarai et al., 2016; Drexler et al., 2004; Wagle et al., 2017). The other group is the remote sensing 

one which can be divided into three different categories according to the variables used:  

• First, we have the remote sensing-based Penman-Monteith direct methods, which are 

used in seasonally varied vegetation (R. Zhu et al., 2013) and are known for being 

physically rigorous models that take into account the potential ET’s relationships with 

the soil-surface temperature and net radiation heat flux with the counterpart of 

requiring an enormous number of climatic variables (Kazemi et al., 2021; Tikhamarine et 

al., 2020).  

• Second, we have the reflectance-based crop coefficient method, the one followed in this 

work. This method use vegetation indexes, which is possible due to the high correlation 

between the spectral response of the vegetation and vegetation transpiration, obtained 

through the fraction of active photosynthetic radiation absorbed by the canopy (Glenn et 

al., 2011). They have the advantage of providing continuous and robust estimates of ET 

since crop transpiration can firmly be extrapolated between satellite overpass times and 

with a smoother curve over time (Glenn et al., 2011; Hunsaker et al., 2003; Nagler et al., 

2005). Unfortunately, this method needs corrections, depends on crop-specific 

relationships, and the accuracy is reduced after wet events like rain or differences in soil 

moisture (Richard G. Allen et al., 2011a).  

• Finally, the surface energy balance (SEB) method, where the latent flux, calculated as the 

residual term of the surface energy balance equation, is used to estimate ET (Kharrou et 

al., 2021). These models use remote sensing to obtain albedo, land surface temperature, 

leaf area index, and vegetation cover fraction and have the advantage of most of them 

being independent of ground measurements. Consequently, indicators related to the 

measurement of ET can be calculated in extensive areas. The downside is that the ones 

that use thermal and visible/near-infrared data can only give precise measurements 

during clear-sky conditions (Jurečka et al., 2021). The main advantage of all remote 

sensing methods is that they are generally cost-effective and enable a good estimative of 

ET both in spatial and temporal aspects (Kharrou et al., 2021). 
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2.3       Crop coefficient 

One the most used reflectance-based crop coefficient methods is the FAO-56 method (R. G. Allen et 

al., 1998), which says that crop evapotranspiration (evapotranspiration of a specific crop), denoted as 

ETc (mm day-1), is determined by the product of a crop coefficient Kc by the reference 

evapotranspiration ET0 (mm day-1) as shown in following formula: 

𝑬𝑻𝒄 = 𝑲𝒄𝑬𝑻𝟎 (2.1) 

Where ETc is the evapotranspiration of a crop under standard conditions (crops grown in large 

fields in optimal soil water and agronomic conditions). Kc is a coefficient that represents the physical 

and physiological differences such as stomatal characteristics, aerodynamic properties, leaf anatomy 

and albedo between a specific crop and the reference crop. On the other hand ET0 is represented as 

the hypothetical grass reference crop evapotranspiration with some underlying assumptions such as 

an albedo of 0.23, a crop height of 0,12 m and a fixed surface resistance of 70 s m-1 representative of 

a moderately dry soil surface as a consequence of a weekly irrigation frequency and is determined 

using the FAO Penman-Monteith equation through meteorological data (R. G. Allen et al., 1998) and 

calculated as: 

𝑬𝑻𝟎 =
𝟎.𝟒𝟎𝟖∆(𝑹𝒏−𝑮)+𝜸

𝟗𝟎𝟎

𝑻+𝟐𝟕𝟑
𝒖𝟐(𝒆𝒔−𝒆𝒂)

∆+𝜸(𝟏+𝟎.𝟑𝟒𝒖𝟐)
  (2.2) 

where Rn is the net radiation at the crop surface (MJ m-2 day-1 ), G is the soil heat flux density (MJ m-2 

day-1 ), T the mean daily air temperature at 2 m height (°C), u2 is the wind speed at 2 m height (m s-1), 

es the saturation vapor pressure (kPa), ea the actual vapor pressure (kPa), es - ea the saturation vapor 

pressure deficit (kPa),  the slope vapor pressure curve (kPa °C-1) and  the psychrometric constant 

(kPa °C-1). The advantage of estimating ET0 using FAO Penman-Monteith equation is to provide a 

standard so that evaporation in a different spatial and temporal setting and between crops can be 

compared (R. G. Allen et al., 1998). 

The Kc can be used in two different ways. A single approach (single crop coefficient), as shown 

before, where a single Kc  integrates the relationship between ETc and ET0, and a dual approach (dual 

crop coefficient) where Kc is constituted of the sum of two individual components: one that 

represents the evapotranspiration from a well-irrigated crop in a dry soil named basal crop 

coefficient (Kcb) and one that represents the evaporation from the soil that is exposed named soil 

evaporation coefficient (Ke) (Wang et al., 2021) such as:  

𝐾𝑐=𝐾𝑐𝑏+𝐾𝑒  (2.3) 

A way to determine Kc is by using vegetation indexes obtained through remote sensing data that 

are mathematical transformations of multiple spectral bands. Studies have shown that these are 

good indicators of relative abundance and growth stage of green vegetation and, consequently, 

radiation absorption. This data can be obtained from multiple sources such as satellites and 
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unnamed aerial vehicles (UAV) and due to scientific development, its use has continued to increase 

(Pôças et al., 2020).  

The first studies, in this specific area, can be found in the works done by Bausch & Neale, (1987). 

Since then, multiple ways of using VI such as the NDVI, Soil Adjusted Vegetation Index (SAVI), and 

Enhanced Vegetation Index (EVI) to estimate Kc has been used. From those, NDVI is the most used 

one (Goward et al., 1991) as well as provides a better basis for the Kc -NDVI relationship than other VI 

(e.g SAVI) (Richard G. Allen et al., 2011b) and for that reason is the one used on this study. The 

authors Bausch & Neale (1987) found that NDVI is highly correlated to leaf area index (corresponding 

to the density of the vegetation cover) and fractional cover (corresponding to the fraction of ground 

covered by green vegetation), making it a good indicator of vegetation growth. NDVI is determined 

as: 

NDVI=
(𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑)

(𝜌𝑁𝐼𝑅+𝜌𝑟𝑒𝑑)
   (2.4) 

where 𝜌𝑁𝐼𝑅 is the reflectance at Near-infrared (NIR) spectral domain and 𝜌𝑟𝑒𝑑 the reflectance at red 

spectral domain. Although VI has been shown to provide better relationships with Kcb than Kc 

(Choudhury et al., 1994), due to the simplify of the eventual intention of the determination of ETc, 

the Kc values of R. G. Allen et al. (1998) study were used. 

The primary reason for their use in estimating Kc (Kc-VI models) is their interpretability, 

computational simplicity and availability in most constellations of satellite missions with moderate 

resolution (10-300 m) measurements in short periods. It means that they can capture the time and 

space variation in the development of crops with more straightforward automation of data pre-

processing with low latency and consequently suited for irrigation management in an agricultural 

setting (Calera et al., 2017; Johnson & Trout, 2012; Murray et al., 2009; Rafn et al., 2008). However, 

these models come with some difficulties since some of them are local and crop-dependent, with the 

necessity of complementary methods or failing due to the presence of clouds (Pôças et al., 2020).  

There are many Kc -VI models. Some of them can be created from relationships based on canopy 

development information created from vegetation indexes and empirical (linear and no-linear) 

relationships between crop coefficient and vegetation indexes and others that combine with soil 

water balance models (SWB) or thermal-based approaches which can be found in Pôças et al. (2020). 

Since previous studies using linear and polynomial regressions presented good results, in this 

work, we focus on bringing some contribution to the establishment of Kc -NDVI models for tomato, 

potato, maize, and sunflower for the considered region (Lezíria do Tejo), since at least in last two 

years, no research on this topic were found. We also evaluate the use of different pre-selection 

techniques and k-means, which to the best of our knowledge, has not been addressed in the 

literature. 



 

9 

CHAPTER 3 

Methodology 

 

In this chapter, a description of the methodology taken will be presented. It is subdivided into three 

sections. In the first section (3.1) an explanation of the data and how was acquired can be found. In 

the second section (3.2) a description of the pre-processing of the data process to increase the 

quality of the previously obtained data can be found. Finally, a specification of which models were 

used and how they were evaluated is in section 3.3.  

 

3.1   Acquisition and Selection of the Data 

The data was obtained from the AQUAFARM database (Aquafarm Database, n.d.) accessed on 

24/01/2022. The data consisted of the identifier of each polygon/crop field (id), type of culture, 

latitude (lat) e longitude (long), and a mean normalized difference vegetation index (NDVI) for the 

polygon registered with an interval of 5 days between each record (date) from 01/09/2020 to 

24/01/2022. The NDVI values were obtained from the Sentinel-2 mission from the Copernicus 

Programme (Homepage | Copernicus, n.d.). All polygons are in the Lezíria do Tejo in Portugal, 

according to the Nomenclature of Territorial Units for Statistics (NUTS III) (Figure 3.1). Although many 

crops were available only 4 crops (potato, maize, tomato, sunflower) were studied. These were 

chosen because they are some of Portugal’s most important and cultivated crops in the country. 

Thus, mitigating the waste of water on them would be beneficial to fighting the soil drought since the 

impact of climate change in the country has been increasing in recent years. In total, 7771 polygons 

were used (4779 for maize, 2380 for tomato, 445 for potato, and 168 for sunflower), which in turn 

created 7771 NDVI time series as illustrated in Figures 3.2-3.5. It´s possible to see in Figures 3.2-3.5 

that there isn’t a common temporal pattern for the time series and therefore defining precisely in 

time the development period of a crop it´s hard.   

The theoretical Kc values in each stage used for each crop and the length in each development 

stage were extracted from the FAO-56 paper guidelines (R. G. Allen et al., 1998) and are shown in 

Table 3.1 and Table 3.2, respectably. 
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Figure 3.1. Lezíria do Tejo region. The marked zone represents the studied area.  

 

 
Figure 3.2. NDVI time series for the maize crop.  

 



 

11 

 

Figure 3.3. NDVI time series for the tomato crop.  

 

 

Figure 3.4. NDVI time series for the potato crop.  
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Figure 3.5. NDVI time series for the sunflower crop. 

 

Table 3.1. The theoretical Kc values in each stage used for each crop (Kc ini – Kc values in the initial 

stage, Kc mid – Kc values in the mid-season stage, Kc end – Kc values in the end of the late season stage) 

Crop Kc ini Kc mid Kc end 

Maize 0.3 1.2 0.48 

Sunflower 0.35 1.08 0.35 

Potato 0.5 1.15 0.75 

Tomato 0.6 1.15 0.8 

 

Table 3.2. The length of each stage used for each crop ( Lini – number of days in the initial stage, 

Ldev – number of days in the development stage, Lmid – number of days in the mid-season stage, Llate – 

number of days in the late season stage) 

Crop Lini  

(days) 
Ldev 

(days) 
Lmid 

(days) 
Llate 

(days) 
Total 
(days) 

Maize 30 40 50 30 150 

Sunflower 25 35 45 25 130 

Potato 30 35 50 30 145 

Tomato 30 40 45 30 145 
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3.2. Data Preparation  

First, the data was analyzed to verify if no incorrect values were present (NDVI values inferior to -1 

and superior to 1) as well as the presence of Not a Number (NaN) values. Between these two, only 

the last one was detected. The replacement of these values was concluded using linear interpolation 

since, in the few series where they were present, this type of replacement would enable the 

conservation of the tendency of the time series in that period. Although the NDVI values were within 

the correct range, the temporal patterns were very different from each other’s, meaning that 

existing crops were registered incorrectly in the database. Unfortunately, there isn’t an easy solution 

to solve this problem and for that reason, all time series were taken into consideration.  

Afterward, a smoothing was applied to the newly generated time series to filter the noise they 

might contain due to, for example, the presence of clouds. The Savitzky-Golay (S-G) filter (Savitzky & 

Golay, 1964) was applied since other studies have used it successfully (Han et al., 2020). The S-G filter 

is a weighted moving average filter algorithm, where the weights coefficients are obtained within the 

moving filter window by the least-squares fitting of a polynomial (Chen et al., 2004) and it was 

implemented using the scipy python library. The general equation can be represented as follows: 

𝑌𝑗
∗ =

∑ 𝐶𝑖𝑌𝑗+𝑖
𝑖=𝑚
𝑖=−𝑚

𝑁
   (3.1) 

where Y is the original NDVI value, Y* is the resultant NDVI value, Ci is the coefficient for the ith NDVI 

value of the filter (smoothing window), and N is the number of convoluting integers and is equal to 

the smoothing window size (2m+ 1). The index j is the running index of the original ordinate data 

table. The smoothing array (filter size) consists of 2m+ 1 points, where m is the half-width of the 

smoothing window (Chen et al., 2004). 

The filter has two essential parameters: the window size (w) of the moving window and the 

degree of the smoothing polynomial (p). The filter was tested with different ratios of w and p, 

starting with a ratio w/p of 2.5 and incrementally raising by 1 (3.5; 4.5; …) until, through visual 

inspection, the filters seemed to be able to remove most of the noise. An example of a time series for 

the maize crop is illustrated in Figure 3.6. 
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Figure 3.6. Original time series (blue) and the same time series after applying different Savitzky-

Golay filters (red, purple, yellow) 

 

To determine the mathematical relationship between Kc-NDVI a few steps were necessary. First, 

the Kc values assumed that the crops were well irrigated. For that reason, for each time series, only 

the section where the pattern was similar to or the closest to a proper irrigated culture was used by 

ensuring the same number of days of the theoretical Kc curve for that crop. The period was selected 

by comparing each consecutive interval of days (with the same number of days of the theoretical Kc 

curve) with the theoretical Kc curve and the period where the Pearson correlation coefficient (r) was 

the highest since some studies found a high level of correlation between the two (Alam et al., 2018; 

Kukal et al., 2017). The Person correlation coefficient measures the linear correlation between two 

variables, where the values are always between -1 and +1, corresponding to a perfect negative and 

positive correlation, respectively. 

The overall look of the time series after all pre-processing (use of linear interpolation to remove 

NaN values, using S-G filter to filter the noise on the time series and selection of the most 

representative period for each time series using Pearson correlation) can be seen in Figure 3.7. 
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Figure 3.7. Some of the time series after the pre-processing 

 

Afterward, the data was divided into two subsets: train (70%) and test (30%) for maize and 

tomato and train (60%) and test (40%) for potato and sunflower since there are fewer time series for 

these two crops compared with maize and tomato. The train set was used to fit the data and the test 

set to evaluate the model. The following approaches for the analysis of the time series for each 

culture are mentioned below: 

-Use the mean of the time series values given at each point to create a single time series. 

-Use the k-means clustering algorithm to create clusters where the values of the centroids of 

each cluster would be used as time series. The purpose of using k-means was to see if new temporal 

patterns in the data were found. 

-Two other procedures used the same two previously mentioned, but instead of using all the 

time series, only 10% were selected (before the division in train and test set). The time series were 

chosen by having the highest values of NDVI at the global maximum of all the time series for that 

crop. In Figure 3.8 can be seen the global maximum of a time series. The intention behind these 

approaches is that the theoretical Kc curve was established for cultures that had achieved their full 

development. However, it´s difficult for the cultures in practice to achieve this stage of growth due to 

diverse reasons (e.g. climate change), and for that reason using only the crops that are the closest to 

this stage for modeling should give, in theory, better results. The drawback is that since we are 

working with fewer series there is a higher chance of having a lower proportion in terms of real 

signal/noise, and so, the new series created can contain more noise comparably with the other 

methods.  
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-The last two approaches followed the same methodology as the two first initially 

mentioned, but beforehand (before the division in train and test set) a pre-selection of the time 

series was done where only the ones with a Pearson correlation higher or equal to 0,9 with the Kc 

time series were used. The motivation behind this was that some time series appeared to have a 

different pattern from the majority, meaning that the presence of different crops was due to some 

time series being misattributed. For that reason, limiting the amount of series to the ones where only 

a strong linear relationship was present should allow the removal of some noise in the data. The 

drawbacks are that there is a chance of removing time series from the same culture and preserving 

time series that coincidentally have a high correlation with the Kc curve.  

These six approaches were applied and compared since a massive number of series makes the 

one-by-one analysis difficult and time-consuming. So, by using only the centroids values of each 

cluster or the mean of the time series, these difficulties would be solved and enable us to understand 

the main patterns that these time series have and see the overall quality of the data. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. NDVI time series of a crop. In orange the global maximum of this series is shown. 

 

The k-means algorithm was applied using the tslearn python library, which is based on the scikit-

learn python library implementation of the algorithm. According to the documentation of scikit-

learn: 
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“the k-means algorithm clusters data by trying to separate samples in n groups of equal variance: 

minimizing a criterion known as the inertia or within-cluster sum-of-squares. This algorithm requires 

the number of clusters to be specified. The k-means algorithm divides a set of 𝑁 samples 𝑋 into 𝐾 

disjoint clusters 𝐶 , each described by the mean 𝜇𝑗  of the samples in the cluster. The k-means 

algorithm aims to choose centroids that minimize the inertia, or within-cluster sum-of-squares 

criterion: 

∑ min
𝜇𝑗∈𝐶

(||𝑥𝑖 − 𝜇𝑗||
2

)𝑛
𝑖=0   (3.2) 

Inertia can be recognized as a measure of how internally coherent clusters are.” (2.3. Clustering, 

n.d.). The algorithm was implemented by considering the following steps: 

1. Choose a value for k (number of clusters) 

2. Initialize the k clusters centers (centroids) using k-means++ (Arthur & Vassilvitskii, 

2007) 

3. Use Euclidian distance to assign the remaining instances to the nearest cluster center 

4. Re-estimate the k cluster centers 

5. If convergence it´s reached by the relative tolerance with regards to Frobenius norm 

of the difference in the cluster centers of two consecutive iterations or the maximum 

number of iterations of the k-means algorithm for a single run it´s reached, then the 

algorithm stops. Otherwise, use the new k centroids and repeat steps 3-5.   

The Euclidian distance was used to reduce the computation time since a large set of time series 

was considered, and the Euclidian distance is fast to compute (Ratanamahatana & Keogh, 2004). 

Every culture was clustered with a maximum of 1000 iterations of the algorithm occurring on each 

run to increase the probability of convergence being reached and k-means++ was used to speed up 

the convergence (Arthur & Vassilvitskii, 2007). The clustering process was the following for each 

culture: 

1. Create 2 clusters from the time series 

2. Calculate the mean silhouette score of all samples 

3. Repeat the step (1) and (2) for 3 clusters 

4. The n clusters that would give a higher silhouette score would be chosen for the next 

step of the analysis 
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The silhouette score is calculated for each sample as (b-a)/max(a,b), where a is the mean intra-

cluster distance and b is the mean nearest cluster distance for each data point. The score can range 

between -1 and 1, where a data point with a score close to -1 has a high probability of being in the 

wrong cluster and a score close to 1 have a high chance of being in the right cluster (Shahapure & 

Nicholas, 2020). A maximum of 3 clusters was established since when more than 3 clusters were 

tested, new patterns in the time series weren´t visually detected. 

An example of the maize crop patterns for the k-means algorithm and mean is illustrated in 

Figure 3.9. In the case of the time series created from the k-means algorithm, for model evaluation 

only the time series with centroids with the highest values of NDVI at the global maximum with a 

difference not higher than 0,1 when compared to the global maximum of the mean time series were 

used. At the same time, these time series need to preserve the overall shape when compared with 

the mean time series, since it is likely to be the best representative of a well-developed crop while 

reducing the possibility of the time series, due to noise, being the representative of another crop and 

so for the example illustrated in Figure 3.4 only the second cluster (cluster_2) was used. 

 

 

 

Figure 3.9. Mean (green) and clusters (orange and blue) created by the k-means algorithm for 

the maize culture after the smoothing was applied. 

 

3.3. Modeling and Evaluation 

The determination of the relationship between the two (Kc and NDVI) was done using simple linear 

and polynomial regression. 

The following expression defines the simple regression model: 

𝑌 = 𝛽0 + 𝛽1𝑋, (3.3) 
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where 𝑌 is the dependent variable that we want to predict (target), X is the independent variable 

(predictor), and β0 and β1 are the intercept and slope, respectively. They are unknown parameters or 

coefficients and can be estimated. The training data can be used to generate estimates β0 and β1 for 

the model coefficients by the formula  

𝑦̂= 𝛽̂0 + 𝛽̂1𝑥, (3.4) 

where 𝑦̂ is a prediction of 𝑌 based on 𝑋 = 𝑥, and 𝛽̂0 , 𝛽̂1 are the estimated parameters. The 

employed algorithm will determine the line that minimizes the distance to each data pair according 

to a criterion. The method used in this work was the ordinary least squares estimation (OLS). The 

algorithm consists of calculating the residual sum of squares (RSS) as: 

RSS=∑ 𝑒𝑖
2𝑛

𝑖=1 =∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1 , (3.5) 

where 𝑒𝑖 is the ith residuals that is, the difference between the ith observed value (𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 +

𝜖𝑖) and the ith predicted value by the linear model (𝑦̂𝑖 = 𝛽̂0+ 𝛽̂1𝑥𝑖) (Hastie et al., 2021). 

The polynomial regression is an extension of the linear regression and can be represented as 

𝑦𝑖=𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝛽2𝑥𝑖

2 + 𝛽3𝑥𝑖
3+. . . +𝛽𝑑𝑥𝑖

𝑑 + 𝜖𝑖, (3.6)  

where the coefficients can be estimated as well by the OLS method. The polynomial regression has 

the advantage of being able to capture non-linear relationships of the data (Hastie et al., 2021).  

  

For the polynomial regression, we tested polynomial degrees up to 5 since no significant 

improvements were observed when further increasing the higher polynomial degree; and solely 

cases achieving the best results are shown. The models were evaluated using the coefficient of 

determination (R2), and root mean square error (RMSE) and a visual inspection of test set 

predictions.  

R2 is a statistic used to assess the goodness-of-fit (degree of fit) ranging from 0 (no fit) to 1 

(perfect fit). In other words, R2 explains the proportion of variability in Kc that may be explained by 

the independent variable NDVI and is given by the following equation. 

𝑅2 = [
∑ (𝐾𝑐−𝐾𝑐̅̅̅̅ )(𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅𝑛

𝑖=1 ) 

∑ √(𝐾𝑐−𝐾𝑐̅̅̅̅ )2(𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

]
2

 (3.7) 

On the other hand, RMSE measures the variation of the predicted values around observed 

values where the lower its value, the better the fit. As opposed to R2, RMSE is an absolute measure of 

fit. RMSE is the square root of the average of all the squared residuals (the difference between the 

observed and predicted values) and can be measured by the following expression: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦̂)2𝑛

𝑖=1

𝑛
   (3.8) 

where yi is the ith observation of y and ŷ is the predicted y value given the model. 
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3.4. Summary 

In summary, the methodology starts by acquiring the data from the Aquafarm database, pre-

processing it to become useful in the following steps, using or not a pre-selection of the time seriesto 

compare in the evaluation step, dividing the data in train and test set, using mean and k-means to 

create a single time series in each case, fitting the time series to linear and polynomial regression and 

finally evaluate these models.  In the Figure 3.10 a representation of every step of the methodology 

is illustrated. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Representation of every step of the methodology from data acquisition to model 

evaluation.  
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CHAPTER 4 

Results and Discussion 

 

This chapter shows the models for each crop in each section (4.1 to 4.4). A comparison is made 

between linear and polynomial regression; and between using the mean and k-means, followed by a 

comparison with previous studies that used linear and non-linear relationships to estimate Kc. In 

section 4.5 a summary of the results is presented. 

 

4.1. Maize 

Table 4.1 and Table 4.2 present the results obtained for using mean and k-means, respectively, 

without pre-selection, only selecting the ones with at least 0,9 Pearson correlation and finally, the 

time series with the 10% highest values at the global maximum of all the time series for that crop are 

presented. 

 

Table 4.1. Results obtained for Maize using mean 

MAIZE 

mean 

  

Linear Polynomial 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

R squared (train) 0.981 0.98 0.978 0.995 0.995 0.995 

R squared (test) 0.979 0.979 0.976 0.993 0.994 0.991 

RMSE (train) 0.049 0.050 0.049 0.026 0.026 0.026 

RMSE (test) 0.051 0.052 0.050 0.028 0.028 0.035 
 

Table 4.2. Results obtained for Maize using k-means 

MAIZE 

k-means 

  

Linear Polynomial 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

R squared (train) 0.971 0.965 0.955 0.993 0.993 0.991 

R squared (test) 0.970 0.964 0.954 0.991 0.991 0.985 

RMSE (train) 0.060 0.067 0.076 0.030 0.031 0.033 

RMSE (test) 0.062 0.068 0.078 0.033 0.034 0.044 
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From these results, we can observe that the difference between the train and test set metrics 

values is minimal in all cases in both tables (indicating no overfitting). Another aspect in common in 

both tables is the fact that the polynomial regression achieves better results than linear regression. 

From Table 4.1, we can see that using pre-selection or not provides pretty much the same 

results, both for linear and polynomial regression. However, in Table 4.2, a higher discrepancy is 

detected for the linear regression, compared with Table 4.1. 

Since polynomial regression provided better results a close inspection was done in the graphical 

representation of the predictions done in the test set illustrated in Figure 4.1. 

       

 

  

 

Figure 4.1. Test set predictions for different models for Maize  
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We can see from Figure 4.1 that the mean provides, in general, a better fit compared to k-

means. Another pattern that can be seen is that k-means NDVI time series reach higher maximum 

values than the mean NDVI time series which can, in theory, be a better representation of a well-

developed crop. Finally, it is possible to observe that using mean without pre-selection and mean 

with a pre-selection of the cases with a Pearson correlation higher or equal to 0.9 with the Kc crop 

coefficient - provides the best fit. In contrast, mean and k-means with a selection of the time series 

with the 10% highest values at the global maximum of all the time series for that crop provided the 

worst fit. 

 

4.1.1. Other Studies 

A study made in Évora (Portugal) achieved an R2 of 0,82 through NDVI obtained by the Landsat 5 

images and Kc coefficients measured using water balance and in situ observed data (Toureiro et al., 

2017). In another study made by Beeri et al. (2019), the best model achieved an R2 of 0,95 and an 

RMSE of 0,057. Showing that the models created in this work show better results, it is essential to 

know that the conditions in their studies are different from those in this work. 

 

4.2. Tomato 

In Table 4.3 and Table 4.4 the results obtained for using mean and k-means, respectively, without 

pre-selection, only selecting the ones with at least a 0,9 Pearson correlation and finally, the time 

series with the 10% higher values at the global maximum of all the time series for that crop are 

presented. 

 

Table 4.3. Results obtained for Tomato using mean 

TOMATO 

mean 

 

Linear Polynomial 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

R squared (train) 0.984 0.985 0.989 0.998 0.998 0.998 

R squared (test) 0.984 0.984 0.982 0.998 0.998 0.996 

RMSE (train) 0.027 0.027 0.023 0.010 0.010 0.009 

RMSE (test) 0.028 0.027 0.029 0.010 0.010 0.014 
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Table 4.4. Results obtained for Tomato using k-means 

TOMATO 

k-means 

 

Linear Polynomial 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

R squared (train) 0.965 0.991 0.971 0.994 0.998 0.994 

R squared (test) 0.960 0.990 0.962 0.990 0.998 0.989 

RMSE (train) 0.041 0.022 0.037 0.017 0.009 0.017 

RMSE (test) 0.044 0.022 0.042 0.021 0.009 0.023 
 

From the results, it’s possible to observe that in all cases in both tables, the differences between 

the train and test set metrics values are minimal, although the cases where a pre-selection of the 

time series with the 10% highest values at the global maximum of all the time series for that crop 

show in general a bigger discrepancy. Another aspect in common in both tables is where polynomial 

regression is used, better results are detected when compared with the same methodology when 

using linear regression. In Table 4.3 it’s possible to see either using or not a pre-selection of the time 

series provided similar results for linear and polynomial regression. However, in Table 4.4 it’s 

possible to see that applying a pre-selection by selecting the time series with at least a 0,9 Pearson 

correlation with Kc provides better results. 

Finally, it’s possible to see that the methodologies that provided better results were using the 

mean with polynomial regression, with no pre-selection and with a pre-selection of the time series 

that have at least a 0,9 Pearson correlation with Kc and a pre-selection of the time series with the 

10% highest values at the global maximum of all the time series for that crop as well as k-means with 

polynomial regression with a pre-selection of the time series who have at least a 0,9 Pearson 

correlation with Kc. For that reason, a closer inspection was done of the graphical representation of 

the predictions in the test set illustrated in Figure 4.2. 
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Figure 4.2. Test set predictions for different models for Tomato 

 

From Figure 4.2 it’s possible to see that all four provided a great fit to the Kc curve, although 

using mean with a selection of the time series with the 10% highest values at the global maximum of 

all the time series for that crop provided a slightly worse fit but almost insignificant. 

 

4.2.1. Other Studies 

A study made by Ihuoma et al. (2021) in Canada established two equations using NDVI using Sentinel-

2 and PlanetScope, obtaining an R2 of 0,98 and 0,78, respectively. Although the study was done in a 

different location the result using Sentinel-2 were similar to those obtained in this work. 

 

4.3. Potato 

In Table 4.5 and Table 4.6, the results obtained from using mean and k-means, respectively, without 

pre-selection, only selecting the ones with at least a 0,9 Pearson correlation and the time series with 

the 10% higher values at their maximum, are presented. 
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Table 4.5. Results obtained for Potato using mean 

POTATO 

mean 

  

Linear Polynomial 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

R squared (train) 0.984 0.992 0.993 0.998 0.999 0.998 

R squared (test) 0.983 0.985 0.986 0.993 0.989 0.995 

RMSE (train) 0.033 0.023 0.021 0.012 0.010 0.011 

RMSE (test) 0.034 0.030 0.030 0.022 0.028 0.018 
 

Table 4.6. Results obtained for Potato using k-means 

POTATO 

k-means 

  

Linear Polynomial 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

R squared (train) 0.995 0.995 0.989 0.998 0.998 0.997 

R squared (test) 0.992 0.993 0.971 0.996 0.997 0.985 

RMSE (train) 0.019 0.019 0.027 0.011 0.011 0.013 

RMSE (test) 0.023 0.022 0.044 0.017 0.013 0.032 
 

Compared to Maize and Tomato, the results show, overall, a bigger discrepancy between train 

and test set metrics in both tables. Another aspect in common in both tables is where polynomial 

regression is used, better results are detected when compared with the same methodology when 

using linear regression. On other hand, in contrast to Maize and Tomato, using k-means generally 

provided better test results than the mean. 

Finally, the methods that offered better results were: mean with polynomial regression without 

pre-selection and with a selection of the time series with the 10% highest values at the global 

maximum of all the time series for that crop and using k-means with linear and polynomial regression 

without pre-selection and with a selection of the time series who have at least a 0,9 Pearson 

correlation with Kc and for that reason a closer inspection was done of the graphical representation 

of the predictions in test set illustrated in Figure 4.3. 
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Figure 4.3. Test set predictions for different models for Potato 

 

From Figure 4.3 it’s possible to see that using mean without a pre-selection had lower values of 

NDVI at his global maximum compared to the other cases, which may be less representative of a fully 

developed crop than others.  

Figure 4.3 suggests that using k-means with a selection of the time series that have at least a 0,9 

Pearson correlation with Kc and fitted with a polynomial regression, a better fit is obtained, although 

all cases seemed to have achieved a good fit. 
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4.3.1. Other Studies 

A study by Alataway et al. (2019) established an equation that measures Kc according to the nº of 

days after planting, obtaining an R2 of 0,9629. The study by Malachy et al. (2022) used crop height 

methods using four different methods where the best model obtained an R2 of 0,84 with an RMSE of 

0,049. Although the models created in this work show better results, it is important to know that the 

conditions in their studies differ from those in this work. 

 

 

4.4. Sunflower 

Table 4.7 and Table 4.8 present the results obtained for using mean and k-means, respectively, 

without pre-selection, only selecting the ones with at least a 0,9 Pearson correlation, and finally, the 

time series with the 10% higher values at their global maximum. 

 

Table 4.7. Results obtained for Sunflower using mean 

SUNFLOWER 

mean 

  

Linear Polynomial 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

R squared 
(train) 0.973 0.980 0.969 0.983 0.986 0.982 

R squared (test) 0.968 0.978 0.934 0.972 0.982 0.954 

RMSE (train) 0.049 0.042 0.053 0.039 0.035 0.039 

RMSE (test) 0.056 0.045 0.076 0.050 0.040 0.064 
 

Table 4.8. Results obtained for Sunflower using k-means 

SUNFLOWER 

k-means 

  

Linear Polynomial 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

No Pre-
selection 

≥0,9 P. 
Corr. 

10% 
Higher 

R squared 
(train) 0.959 0.969 0.978 0.980 0.984 0.989 

R squared (test) 0.948 0.968 0.938 0.970 0.981 0.960 

RMSE (train) 0.060 0.053 0.044 0.042 0.038 0.032 

RMSE (test) 0.068 0.053 0.074 0.051 0.041 0.059 
 

Comparing these results with Maize and Tomato shows a higher discrepancy between train and 

test set metrics in both tables. Another aspect in common in both tables is where polynomial 

regression is used, better results are detected when compared with the same methodology when 
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using linear regression. On the other hand, in contrast to Potato, in general, using mean provided 

better test results compared to k-means. 

Finally, the methods that offered better results were using mean and k-means with no pre-

selection using polynomial regression and using mean and k-means with a pre-selection of the time 

series who have at least a 0,9 Pearson correlation with Kc with linear and polynomial regression and 

for that reason a closer inspection was done in the graphical representation of the predictions done 

in test set illustrated in Figure 4.4. 

 

Figure 4.4. Test set predictions for different models for Sunflower 

 

From Figure 4.4 it’s possible to see that in most cases, the models are a good fit. In all models, 

we can see that there is a struggle to capture the end of the Kc curve (approx. after 120 days). It may 

be explained by the fact that the theoretical Kc curve is not the best representative for the sunflower 

development in Portugal or due to climate conditions in the country during this study. Another 
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interesting pattern is that in all models that used k-means, the NDVI time series have a higher value 

at their global maximum which may mean they are a better representation of a well-developed crop. 

Finally, from Figure 4.4, it seems that the model that fits better overall to the Kc curve uses mean 

with a selection of the time series that have at least a 0,9 Pearson correlation with the Kc curve and 

fitted with a polynomial regression. 

Just like in the potato case, in the cases where linear regression was used the NDVI curve is not 

possible to see since the predicted Kc curve it´s overlapping it.  

 

4.4.1. Other Studies 

A study in China made by Hong et al. (2017) established relationships between Kc in different 

four different stages of growth (initial, rapid growth, middle and mature stage) with salinity levels for 

sunflowers under salt stress obtaining an R2 of 0,860, 0,003, 0,225 and 0,312, respectably. Since the 

conditions are very different from this study and an adequate study was not found, a comparison will 

not be made. 

 

4.5. Summary 

Taking the results obtained into account we conclude that: 

• For maize the use or not of a pre-selection of time series provides no major 

differences with the exception of using k-means with linear regression where 

using no pre-selection provides better results. Using mean instead of k-

means provides better results when using the same methodology. 

• For tomato the use or not of a pre-selection of time series provides no major 

differences with the exception of using k-means where using a pre-selection 

of the time series with at least a Pearson correlation with the theoretical Kc 

curve provides better results. Using mean instead of k-means provides, in 

most cases, better results when using the same methodology. 

• For potato the use or not of a pre-selection of time series provides no major 

differences with the exception of using k-means where using a pre-selection 

of the time series with the 10% highest values at the global maximum of all 

the time series for that crop provides worst results. Using k-means instead of 

mean provides, in most cases, better results when using the same 

methodology. 

• For sunflower the use or not of a pre-selection of time series with at least a 

Pearson correlation with the theoretical Kc curve provides better results 
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compared to the other methods. Using mean instead of k-means provides, in 

most cases, better results when using the same methodology. 
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CHAPTER 5 

Conclusion 

 

This chapter summarizes the dissertation conclusions and presents some proposals for future work. 

 

5.1. Conclusions 

This work has studied different pre-selection techniques using means and k-means to generate time 

series. A literature review has been presented in Chapter 2, which addresses the fundamental 

concepts related to this work: remote sensing, evapotranspiration, crop coefficient, and different 

methodologies to determine evapotranspiration and vegetation indexes. 

In Chapter 3, the methodology used in this work is described. It started by explaining how data 

was acquired and what contained. After, a description of how each time series period was selected 

using Pearson Correlation, followed by an explanation of all the pre-selection approaches used 

before using the mean and k-means to generate the time series. Finally, an explanation of the 

algorithms (linear and polynomial regression) used to fit the generated time series and the metrics 

used to evaluate the models are provided.  

In Chapter 4, the models created are evaluated and compared for each one of the crops. All 

models seem to be able to capture the Kc curve relatively well. However, the models created for the 

sunflower struggle a little more by the end of the Kc curve which may be due to the number of the 

time series available being less than for the other crops. Another critical aspect to take into account 

is the fact that the use of pre-selection of the time series didn’t provide a significant difference 

compared with the absence of the pre-selection although some of the best models are the ones 

where a pre-selection occurred. A pattern in common in all crops was that the polynomial regression 

always provided better results than the linear regression when the same methodology was followed. 

As a final remark, the results obtained in this work confirm that using a pre-selection of the time 

series, mean, and k-means for these crops helps to capture the crop coefficient curve. Choosing the 

best methodologies depends on each crop although there isn’t one that is overall better than the 

others. Finally, the methodologies presented show promising results that can be seen as potential 

methods to determine crop coefficients better, and the best models for each crop are adequate for 

their use, at least in the region of this study. The code to reproduce the results it´s available at 

https://github.com/GuilhermeDuarte-30/tesemestrado. 
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5.2. Future work 

Regarding the results obtained in this dissertation, some future work suggestions can be considered: 

• Test the same methodologies in different crops and see if the quality of the 

results still holds. 

• Combine different methodologies, for example, first use Pearson correlation to 

choose the time series, and finally, use only the time series with the highest 

values at the global maximum of all the time series for that crop and assess the 

performance. 

• Use different vegetation indexes and compare them to the ones used in this 

study. 

• Study the impact of smoothing the data on max values of NDVI 
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APPENDIX A  

Models Obtained 

 

Table 6.1. Models obtained for Maize using mean 

MAIZE 

Mean 

  Linear Polynomial 

No Pre-
Selection 

≥0,9 P. 
Corr. 

10% 
higher 

No Pre-
Selection 

≥0,9 P. Corr. 10% higher 

Equation y=1.496x-
0.05 

y=1.449x-
0.030 

y=1.377x-
0.018 

y=-104.2 x5+ 
263.6 x4- 252.5 
x3 + 114.6 x2- 
23.35 x + 
2.016 

y=-89.06 x5+ 
225.9 x4- 216.2 
x3 + 97.64 x2- 
19.57 x + 
1.702 

y=-45.51 x5+ 
120.4 x4- 118.3 
x3 + 53.89 x2- 
10.29 x + 
0.9664 

 

Table 6.2. Models obtained for Maize using k-means 

MAIZE 

K-Means 

  Linear Polynomial 

No Pre-
Selection 

≥0,9 P. 
Corr. 

10% 
higher 

No Pre-
Selection 

≥0,9 P. Corr. 10% higher 

Equation y=1.399x-
0.03 

y=1.374x-
0.019 

y=1.328x-
0.018 

y=-87.28 x5+ 
228.9 x4- 
225.6 x3 + 
104.3 x2- 21.5 
x + 1.888 

y=-82.82 x5+ 
218 x4- 215.2 
x3+ 99.38 x2- 
20.35 x + 
1.789 

y=-80.59 x5+ 
218.1 x4- 219.4 
x3+ 102.1 x2- 
20.88 x + 
1.823 

 

Table 6.3. Models obtained for Tomato using mean 

TOMATO 

Mean 
 

Linear Polynomial 

No Pre-
Selection 

≥0,9 P. Corr. 10% higher No Pre-
Selection 

≥0,9 P. Corr. 10% higher 

Equation y=0.939x+0.
453 

y=0.930x+0.
457 

y=0.857x+0.
472 

y=-112.7 x5+ 
261.3 x4- 
227.9 x3 + 
91.75 x2- 
15.7 x + 
1.527 

y=-108.5 x5+ 
251.8 x4- 
219.5 x3 + 
88.23 x2- 
15.01 x + 

1.479 

y=-68.36 x5+ 
163.9 x4- 
146.4 x3 + 
59.56 x2- 
9.863 x + 

1.147 
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Table 6.4. Models obtained for Tomato using k-means 

TOMATO 

K-Means 
 

Linear Polynomial 

No Pre-
Selection 

≥0,9 P. Corr. 10% higher No Pre-
Selection 

≥0,9 P. 
Corr. 

10% higher 

Equatio
n 

y=0.865x+0.4
63 

y=0.859x+0.4
64 

y=0862x+049
6 

y=-213.2 
x5+ 451.4 

x4- 361.7 x3 
+ 134.5 x2 - 
21.44 x + 

1.771 

y=-77.16 
x5+ 188.2 

x4- 171.8 x3 
+ 71.95 x2- 
12.64 x + 

1.364 

y=-74.26 
x5+ 167.7 

x4- 138.8 x3 
+ 50.48 x2- 
6.645 x + 
0.8292 

 

Table 6.5. Models obtained for Potato using mean 

POTATO 

Mean 
 

Linear Polynomial 

No Pre-
Selection 

≥0,9 P. Corr. 10% higher No Pre-
Selection 

≥0,9 P. 
Corr. 

10% higher 

Equatio
n 

y=1.316x+0.23
7 

y=1.188x+0.27
3 

y=1.091x+0.27
5 

y=-202.6 
x5+ 463.7 
x4- 408.2 
x3 + 171.1 
x2- 32.37 x 

+ 2.704 

y=-145.5 
x5+ 340 x4- 
302.5 x3 + 
126.8 x2- 
23.56 x + 

2.058 

y=-115.7 
x5+ 284 x4- 
263.1 x3 + 
113.9 x2- 
21.79 x + 

1.985 

 

Table 6.6. Models obtained for Potato using k-means 

POTATO 

K-Means 
 

Linear Polynomial 

No Pre-
Selection 

≥0,9 P. Corr. 10% higher No Pre-
Selection 

≥0,9 P. 
Corr. 

10% 
higher 

Equatio
n 

y=1.121x+0.24
9 

y=1.055x+0.27
9 

y=1.017x+0.27
9 

y=-124.1 
x5+ 320.5 
x4- 315.9 
x3 + 147.3 
x2- 31.1 x 
+ 2.885 

y=-99.71 
x5+ 256.3 
x4- 249.4 
x3 + 113.6 
x2- 22.98 x 

+ 2.164 

y=-94.86 
x5 + 248.5 
x4- 244.8 
x3 + 112.1 
x2- 22.73 x 

+ 2.15 
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Table 6.7. Models obtained for Sunflower using mean 

SUNFLOWER 

Mean 
 

Linear Polynomial 

No Pre-
Selection 

≥0,9 P. Corr. 10% higher No Pre-
Selection 

≥0,9 P. 
Corr. 

10% 
higher 

Equatio
n 

y=1.556x-
0.027 

y=1.448x+0.01
9 

y=1.388x+0.07
6 

y=108 x5- 
294.3 x4+ 
298.8 x3 - 
140.1 x2+ 
31.69 x - 

2.403 

y=2.522 
x5- 22.16 
x4+ 30.67 
x3 - 14.82 
x2+ 3.958 

x - 
0.07412 

y=83.62 x5 
- 222.2 x4+ 
217.2 x3 - 
96.22 x2 + 
20.36 x - 

1.251 

 

Table 6.8. Models obtained for Sunflower using k-means 

SUNFLOWER 

K-Means 
 

Linear Polynomial 

No Pre-
Selection 

≥0,9 P. Corr. 10% higher No Pre-
Selection 

≥0,9 P. 
Corr. 

10% 
higher 

Equatio
n 

y=1.377x-
0.015 

y=1.333x+0.00
5 

y=1.429x+0.11
1 

y=6.924 x5 
- 53.77 x4 
+ 88.26 x3 
- 56.12 x2 
+ 16.1 x - 

1.323 

y=0.8838 
x5- 21.02 
x4+ 37.86 
x3 - 23.57 
x2+ 6.859 
x - 0.3819 

y=-113.4 
x5+ 254.9 
x4- 223.3 
x3 + 94.07 
x2- 17.16 x 

+ 1.453 
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