

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:

2022-12-20

Deposited version:

Accepted Version

Peer-review status of attached file:

Peer-reviewed

Citation for published item:

Magalhães, E., Costa, P., Pinto, V. S., Graça, J., Baptista, J., Ferreira, S....Gouveia, L. (2022). Reasons, willingness, and intention to be a foster family: A community-sample study. Children and Youth Services Review. 142

Further information on publisher's website:

10.1016/j.childyouth.2022.106648

Publisher's copyright statement:

This is the peer reviewed version of the following article: Magalhães, E., Costa, P., Pinto, V. S., Graça, J., Baptista, J., Ferreira, S....Gouveia, L. (2022). Reasons, willingness, and intention to be a foster family: A community-sample study. Children and Youth Services Review. 142, which has been published in final form at https://dx.doi.org/10.1016/j.childyouth.2022.106648. This article may be used for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in the Repository
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

T	Abstract
2	Research into the reasons that could lead community samples to become foster families
3	is sparse, as most studies focus on the reasons identified by licensed or prospective
4	foster families. The present study aims: (1) to assess the validity and reliability of the
5	Reasons for Fostering Inventory adapted for a community sample (Portuguese version);
6	and (2) to test the role of family factors and the different reasons for fostering as
7	potential predictors of willingness and behavioral intention to foster. The reliability and
8	validity of the inventory were assessed using a convenience sample of Portuguese adults
9	(n=441), 84% female, aged 26-74. A three-factorial structure (self-oriented reasons,
10	child-centered reasons, and family-related reasons) composed of 22 items was
11	identified. The factorial structure was tested with a holdout randomization method for
12	cross-validation. All factors were reliable, with internal consistency levels ranging from
13	.85 and .88. Being female, younger, and scoring lower on family-related reasons and
14	greater on child-centered reasons showed positive associations with both willingness
15	and intention to foster. Lower scores on self-oriented reasons were associated with
16	higher willingness to foster; while having parental experience, lower education, and
17	greater income were associated with a higher intention to foster. This study contributes
18	with additional psychometric evidence for this scale for use with community samples. It
19	also provides new insight into how individual resources may be linked with willingness
20	and intention to foster in a community sample.
21	
22	Keywords: Reasons for Fostering Inventory; foster care, foster family, community
23	sample, psychometrics
24	
25	

26 Introduction

27	Foster families aim to provide a secure and stable family environment for young
28	people who have experienced neglect and/or abuse (Delgado et al., 2014; Delgado et al.,
29	2019; Euillet, 2020). However, in many countries, such as Portugal (2.8% children in
30	foster care; ISS, 2020) and several eastern-european countries (e.g., Estonia 6.4%
31	children in foster care, Raudkivi, 2020), residential care remains predominant compared
32	to foster care. The disproportionate number of homes that provide the majority of care
33	(i.e., Pareto Principle or Vital Few foster parents) is also recognized as a challenge, as it
34	may encompass a risk of overwhelming these families leading to burnout experiences
35	(Orme et al., 2017). Ensuring a sufficient number of foster families to ensure children's
36	physical and emotional stability and integral development is a pressing issue, but
37	recruiting, selecting, training, and retaining foster families is a markedly difficult
38	process (Australian Institute of Health and Welfare, 2018; Contreras, & Muñoz, 2016;
39	Ciarrochi et al., 2012, Sinclair & Wilson, 2003). Several child protection systems
40	worldwide have been reporting the need to recruit new families, as there are fewer
41	available foster families than the number of children in need (Raudkivi, 2020; Sebba,
42	2012), especially for older children, those from minority ethnic backgrounds, and those
43	with emotional and/or behavioural difficulties (Shuker, 2012). Furthermore, the
44	retention of foster families is described as an additional challenge, namely the high
45	turnover rates of foster families (Gouveia et al., 2021). A scarcity of foster families
46	reduces matching options and can limit placement choices and weaken the foster system
47	as a whole (Sinclair et al. 2004). Therefore, outreach efforts and recruitment campaigns
48	to raise awareness (e.g., billboards, advertisements, brochures, news, word-of-mouth,
49	incentive payments for referrals) may play an important role to increase the number of
50	prospective foster families and meet the needs of children and young people in need

(Berrick et al., 2011; Delfabbro et al., 2008). Randle and colleagues (2012a) considered it crucial to optimize outreach efforts and recruitment campaigns using the most efficient vehicles (e.g., word-of-mouth, Rodger et al., 2006) and message features (e.g., highlighting the professional aspects of the caregiving role, Sellick et al., 2004) in specific groups or settings where the most likely people to become foster carers can be found (e.g., religious organizations, Cox et al., 2003). Hence, to improve outreach and recruitment campaigns, it is necessary to systematically assess reasons for fostering in community samples (i.e., people not currently involved in the foster care system), which firstly requires developing or adapting reliable and valid assessment measures to specific cultural contexts.

Reasons for fostering: evidence from foster families and community samples Foster families identify different reasons for fostering, with most families highlighting altruistic motivations (e.g., desire to care for children), available personal and family resources (e.g., having adequate financial resources), and social responsibility beliefs (Doyle & Melville, 2013; Gouveia et al., 2021; López & Del Valle, 2016; HowellMoroney, 2014; Metcalfe & Sanders, 2012; Migliorini et al., 2018). Self or familycentered reasons are also recognized by foster families, albeit to a lesser extent, which includes the desire for family expansion (Maeyer et al., 2014) or new experience and family enrichment (Migliorini et al., 2018). Taking all of these different reasons into account, altruistic motivations (e.g., caring for children at risk; the motivation to protect children) are associated with a greater likelihood of foster parent retention (Rodger et al., 2006). Child-centered reasons (e.g., helping children, providing family-based care) are more strongly associated with a longer fostering experience and fostering more children, and self-oriented reasons (e.g., wanting companionship, wanting to be loved

by a child) are more strongly associated with fewer and shorter placements, which may result in higher turnovers (Rhodes et al., 2006).

Moreover, when considering the Resource Theory (Cox et al., 2003), some authors suggest that more resources for the foster family (e.g., higher education, higher income, being married, having parenting experience) may be associated with a greater likelihood to begin fostering (Maeyer et al., 2014). The Resource Theory also proposes that people may get different resources from significant others (e.g., love, services, goods, money, information, and status). People with more resources may be in an advantageous position to share these resources with others and thus address their needs (Cox et al., 2003). Specifically, in the context of foster care, the authors suggested that adults who have more resources will be better at dealing with parenting demands and will therefore be able to continue fostering (Cox et al., 2003).

Despite the relevance of these findings only a few studies have explored such reasons with community samples (e.g., Ciarrochi et al., 2012; Contreras & Muñoz, 2016; Goodman et al., 2017), the vast majority of the studies focused on samples of foster families who were already closer to the foster system (i.e., licensed or prospective families). Studies with community samples – people not currently involved in the foster care system - are important as they may clarify the the factors linked with willingness and intention to become a foster family from a broader perspective, thus informing campaigns potentially targeting different social groups (e.g., based on different levels of willingness and awareness). The few studies conducted to date with community samples revealed that factors related to individual physical and mental health, high meaningfulness of life, positive social support, empathy, hope, and positive problem-solving orientation, were all associated with the intention and/or willingness to foster children at risk (Ciarrochi et al., 2012; Goodman et al., 2017). However, non-familiarity

with the foster care system, high workload/other commitments, and negative beliefs and misconceptions about foster care appeared to push people away from becoming a foster family (Contreras & Muñoz, 2016; Randle et al., 2012). Finally, some studies suggested that demographic variables, such as gender and age could be associated with a greater or lower predisposition to foster. However, these findings were relatively inconsistent, with some studies indicating that female and older people may be more predisposed to foster (Contreras & Muñoz, 2016), while others suggested that younger people may be more willing to foster (Ciarrochi et al., 2012).

Measurement challenges on the assessment of reasons for fostering

Valid and reliable measures that focus on fostering are necessary to ensure the quality and stability of selection procedures and foster care placement (Diogo & Branco, 2017; Luke & Sebba, 2013). These measures are important to enable professionals to conduct thorough assessments and thus inform more objective and less biased decisions (Luke & Sebba, 2013). The evaluation processes should combine strategies for gathering information, including both interviews and self-reported standardized tools, given that using only interviews can pose critical challenges. Social desirability may be greater in interviews, and families/individuals may not always spontaneously acknowledge all relevant reasons and motivations for fostering. As such, standardized and properly validated instruments are needed to complement the evaluation process (Rhodes et al., 2006).

The Casey Family Program, in collaboration with the University of Tennessee (Family Foster Care Project), has developed a battery of measures with evidence of reliability and validity (i.e., Casey Foster Family Assessments - CFFA) to inform the recruitment and selection of foster families (Buehler et al., 2006; Orme et al., 2006).

The main objective of these measures is to identify potential applicants and assess the training needs and professional support required to ensure the quality of foster placement. One of the protocols included in the battery of measurements (i.e., Casey Home Assessment Protocol, Orme et al., 2006) includes a set of 19 scales, including the Reasons for Fostering Inventory, which assesses the motives for fostering children. Given that preliminary analyses did not permit the identification of a meaningful underlying factorial structure (Orme et al., 2006), this inventory was mainly used as a checklist. According to licensed foster parents, the top reasons for fostering were related specifically to the child (e.g., to provide a child with love; to provide a good home to a child), and the least reported reasons were related to individual/family needs (e.g., wanting a child to help with chores or work in the family business; thinking that a child might help the marriage) (Rhodes et al., 2006).

Further efforts have been made to identify a meaningful factorial structure for the Reasons for Fostering Inventory with foster parents' samples. In particular, Maeyer et al. (2014) found a 12 item-structure composed of three factors (explaining 30.6% of the variance): child-centered reasons (3 items, e.g., "I want to provide a good home for a child"; α = 0.57), self-oriented reasons (7 items, e.g., "I cannot have any, or any more, children of my own"; α = 0.63) and society-oriented reasons (2 items, e.g., "I want to do something for the community/society"; α = 0.53) (Maeyer et al., 2014). The low internal consistency values obtained by Maeyer and colleagues (2014) reinforce the need for further evidence regarding the reliability and validity of the Reasons for Fostering Inventory. These low values may be related to the small number of items found per dimension. Moreover, a set of family characteristics were also tested as predictors for these three types of reasons (age, gender, educational level, available time, number of

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

170

171

172

173

174

children, number of foster children), but only available time positively predicted selforiented reasons (Maeyer et al., 2014).

These measurement developments offer important steps to advance knowledge on (and the assessment of) reasons for fostering with foster families. However, there is still a lack of studies that use this measure with community samples. This is a limitation because efforts to recruit prospective foster families in community samples should be informed by evidence on the motivations for fostering. Furthermore, research focusing on the psychometric properties of the Reasons for Fostering Inventory has revealed some problems in terms of validity and reliability. Both the work from the authors who developed the Reasons for Fostering Inventory (Orme et al., 2006) and further international adaptations (Maeyer et al., 2014) have also shown limitations when looking for a theoretically valid factorial structure for these items. As such, the current study may provide additional psychometric evidence for the Reasons for Fostering Inventory and provide new insights on how the reasons for fostering may predict the willingness and intention to foster using a community sample. As a first step toward addressing this need, the aims of the current study are twofold: 1) to assess the validity and reliability of the Reasons for Fostering Inventory adapted for a community sample (Portuguese version); and 2) to test the role of these reasons for fostering and family factors as predictors of willingness and behavioral intention to foster.

169 Method

Participants and procedure

This study belongs to a project approved by the Ethical Committee of the [blinded for review] (Ref. 92/2019). Data collection was performed via *Qualtrics.com* and disseminated on social media between December 2020 and May 2021. Facebook personal profiles and advertisements targeting adults who met the inclusion criteria

were used to recruit a sample of adults who were not involved in the foster care system as foster parents. A convenience sample of 441 adults met the inclusion criteria: (1) not being currently a foster family, (2) understanding the Portuguese language; and (3) being older than 25 years old (i.e., the age criterion to be foster parents in Portugal). Participants did not receive financial or material rewards, and their participation was voluntary. Informed consent was obtained before participants were asked to fill out the questionnaires. A description of the study's objectives, instructions, and conditions for participating was provided, alongside the research team's contact details for further questions or clarification. A total of 441 adults aged 26 to 74 (M_{age} = 41.86; SD= 10.64) participated in this study (see Table 1). Most were female (n= 370, 84%), married (n=199, 45%) and had children (n= 296, 67%). Most participants had completed a higher education degree (n= 296, 67%), were employed (n= 375, 85%) and did not have any contact with the child protection system (n=236; 54%).

TABLE 1

Instruments

variables, which was designed to capture the sample characteristics in terms of age, gender, marital status, education, income, and employment status.

Reasons for fostering inventory (Orme et al., 2006). This measure was taken from the Casey Home Assessment Protocol and included 32 statements with different reasons for fostering ("How true is each of the following statements for you if you consider or were to consider being a foster family?" e.g., "I want to provide a good home for a child"), using a Likert-type scale ranging from 1 (not at all true for me) to 5 (very true for me). The translation and adaptation of the items to Portuguese involved a set of sequential steps. The first step included asking the author's permission to translate and adapt the

Sociodemographic questionnaire. The study included a questionnaire on demographic

inventory's original version. Following international guidelines for adapting and validating questionnaires (Beaton et al., 2000), one researcher developed the first translation, which was reviewed by another independent researcher. A follow-up discussion took place to resolve incongruencies and achieve the final version. The translated version was back-translated by a bilingual speaker with knowledge and experience in foster care. This back-translated version was then compared to the original version, resulting in the final Portuguese version.

Willingness and Intention to foster. Willingness to foster was measured using a single.

item: "I would like to become a foster family". Intention to foster was measured using three items taken from Ru et al. (2019) and adapted to the context of foster care (i.e., I am willing to be a foster family shortly; I plan to be a foster family shortly; I will make an effort to become a foster family shortly). An excellent internal consistency was found in the current sample (α =.94). All these items were answered using a Likert-type scale ranging from 1 (Strongly disagree) to 7 (Strongly agree).

Analytical approach

The Reasons for Fostering Inventory's factorial structure was tested with a holdout randomization method for cross-validation by splitting the full sample into two subsamples of 229 participants (Exploratory Factor Analysis - EFA) and 212 participants (Confirmatory Factor Analysis - CFA). Data analyses were performed using *IBM SPSS® for Windows* (Version 26.0), *IBM AMOS® for Windows* (Version 21.0), *jamovi* software (Version 1.0), and the statistical program R through RStudio using the *parameters* package. Before conducting the EFA, we explored different strategies to decide the number of factors to extract. The unidimensional solution was supported by five (28%) methods out of 18 (t, p, Acceleration factor, TLI, RMSEA). The second

most voted solution was the seven-dimension solution with seven (17%) methods out of
18 (Optimal coordinates, Parallel analysis, Kaiser criterion). However, considering
these two structure solutions and the theoretical framework and previous empirical
evidence (e.g., Maeyer et al., 2014), we decided to consider the three-dimension
solution. For the EFA, we used Principal Axis Factoring (PAF), a reflective model that
captures latent variables. The oblique rotation method oblimin was applied since the
latent variables were expected to be correlated. This solution from EFA was then tested
with a CFA. There were less than 1% of missing values for each item, thus we used
mean imputation to handle missing values (Hair et al., 2010). Although factor loadings
greater than .50 are generally considered necessary for practical significance, a cut-off
.30 is also considered as a minimally acceptable value (Costello & Osborne, 2005; Hair
et al., 2010). The goodness of fit of the models was assessed through the following
criteria: a χ 2/df below 3, the CFI approaching 1 (Bentler, 1990), and the RMSEA below
.08 (MacCallum et al., 1996). Reliability evidence was obtained by calculating the
Cronbach's Alpha and the McDonald's ω.
Based on the Resources theory and previous studies (e.g., Maeyer et al., 2014), a
linear regression analysis was performed regarding willingness and intention to foster,
with the first block highlighting resources (i.e., education, income, marital status,
intimate relationship status, having parenting experience), and a second block focusing
on the reasons for fostering as predictors. Hierarchical Linear Regressions were
performed to find if reasons for fostering (Model 2) are associated with willingness and
intention after accounting for participants' resources (i.e., income, parenting experience,

249 Results

intimate relationships, marital status, education) (Model 1).

Descriptive statistics	on	reasons f	for	fostering
-------------------------------	----	-----------	-----	-----------

By analyzing the frequency of different reasons, which were marked with "Somewhat true for me" or "Very true for me", we found that the reasons most identified by participants (i.e., for more than 50% of the sample) were: "I want to help a child who is less fortunate" (74%), "I want to provide a child with love" (74%), "I want to provide a good home for a child" (70%), "I want to provide a home so a child won't have to be put in an institution" (67%), and "I want to do something for the community/society" (62%). The reasons less identified by the participants (for less than 4% of the sample) were: "I want a child to help with chores or work in family business" (1%), "I feel obligated to take a particular child" (1%), "I think a child might help my marriage" (3%), "I was a foster child myself" (3%), "I was abused or neglected myself" (4%), "My spouse wants to be a foster parent, so I agreed" (4%).

Factor Analyses (EFA and CFA)

First, a descriptive analysis of the 32 items was performed to analyze the items' distribution. Two items (25 and 26) showed a Skewness value higher than three and/or a Kurtosis value higher than eight, and for this reason, following recommendations in the literature (Costello & Osborne, 2005) they were removed from any further analyses (Table 2).

TABLE 2

The EFA, three factors solution, accounted for 43% of the variance, but two items showed loadings lower than .30 (19 and 20). A new EFA was performed without these items, and the new factorial model accounted for 45% of the total variance. The measures of the appropriateness of factor analysis were checked, including KMO = .861 and Bartlett's test ($\chi 2(378) = 3354$, p < .001).

275	TABLE 3
276	A CFA (maximum likelihood estimation) was performed for the model provided by the
277	EFA. The first model was tested (Model 1), and all latent factors were correlated. The
278	overall fit of Model 1 revealed poor fit statistics (χ^2 =860, p<.001; χ^2 /df=2.480; CFI =
279	.81; RMSEA = .084; CI90% [.077; .091]). One item revealed a loading lower than .30
280	(item 3), and five items showed high modification indices with different factors (10, 12
281	14, 18, 29). A second model was tested without these items and acceptable fit statistics
282	were reached (χ^2 =388.171, p<.001; χ^2 /df=1.894; CFI = .92; RMSEA = .065; CI90%
283	[.055; .075]), when correlating one pair of errors (11-13). Standardized Regression
284	Weights for each item are presented in Table 4 (all loadings were significant at p-value
285	<.001).
286	Factor 1 - Self-oriented reasons – refers to the fulfillment of individual needs
287	(e.g., "I want to have company for myself"). Factor 2 - Child-centered reasons -
288	includes motivations focused on the child welfare and needs, and how becoming a
289	foster parent may help a child in need to develop (e.g., "I want to help a child who is
290	less fortunate"). Factor 3 - Family-related reasons - refers to reasons focused on the
291	perceived familiarity with the foster child (e.g., "I want to provide a home for a child I
292	know"), as well as factors related to their own family (e.g., "My spouse wants to be a
293	foster parent, so I agreed").
294	TABLE 4
295	Reliability
296	Reliability with the whole sample was checked with Cronbach α and McDonald's ω .
297	Adequate reliability evidence was found for all factors: Self-oriented reasons (α =.85;
298	ω=.86), Child-centered reasons ($α$ =.88; $ω$ =.88) and Family-related reasons ($α$ =.86;
299	$\infty = 87$).

The association between sociodemographic factors, reasons for fostering and willingness and behavioral intention

Hierarchical linear regressions were performed regarding willingness (Model A) and behavioral intention (Model B) to foster, with the whole sample. The non-multicollinearity assumptions were ensured in both models, with Variance inflation factors (VIF) <3.0 for all predictors.

Model A identified gender, age, self-oriented, family-related, and child-centered reasons as significantly related to willingness to foster. However, the gender effect was no longer significant when the second block was introduced. Being female, younger, and scoring lower on family and self-related reasons and greater on child-centered reasons were positively associated with willingness to foster. Model B identified gender, age, income, parental experience, education, and family and child-centered reasons as significantly related to the intention to foster (Table 5). Being female is associated with greater intention in the first block, but this effect was no longer significant when the second block was introduced. Greater income was only associated with intention when the second block was introduced. Being female, younger, having parental experience, lower education, greater income and scoring lower on family, and greater on child-centered reasons were positively related to intention to foster.

Hierarchical linear regressions were also performed with a subsample of participants (n=298), excluding participants who responded negatively to the question "I would like to become a foster family" (i.e., points 1 to 4 in the response scale ranging from 1-Strongly disagree to 7-Strongly agree). The non-multicollinearity assumptions were ensured in both models, with Variance inflation factors (VIF) <3.0 for all predictors. Model A (willingness) identified gender, education, family-related, and child-centered reasons as significantly related to willingness to foster. However, the

gender effect was no longer significant when the second block was introduced. Being female, lower education, and scoring lower on family-related reasons and greater on child-centered reasons were positively associated with willingness to foster. Model B identified education and child-centered reasons as significantly related to the intention to foster (Table 6). Lower education and scoring greater on child-centered reasons were positively related to intention to foster.

TABLE 6

332 Discussion

The aims of the current study were twofold: (1) to assess the validity and reliability of the Reasons for Fostering Inventory adapted for a community sample; and (2) to test the role of family resources and the different reasons as associated with willingness and behavioral intention to foster. Research on the factors that motivate community samples to become foster families is sparse (e.g., Ciarrochi et al., 2012; Contreras & Muñoz, 2016), with the vast majority of studies focusing on the reasons identified by licensed or prospective foster families (Howell-Moroney, 2014; López & Del Valle, 2016; Maeyer et al., 2014; Metcalfe & Sanders, 2012; Migliorini et al., 2018; Rhodes et al., 2006). However, to inform outreach efforts and strategies to recruit new foster families, there is a need for evidence obtained with valid and reliable measures adapted to audiences outside of the foster system (i.e., community samples). In this study, we adapted the Reasons for Fostering Inventory (Orme et al., 2006) to be used with a community sample of adults.

The current findings revealed a three-factorial structure composed of 22 items: self-oriented reasons (10 items), child-centered reasons (6 items) and family-related reasons (6 items). Self-oriented reasons included motives focused on addressing individual's needs (e.g., "I want to have company for myself"; "I want to fill time").

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

Child-centered reasons included reasons related to caring for a child and the importance of addressing the child's needs (e.g., "I want to provide a child with love"; "I want to help a child with special problems"). Finally, family-related reasons included mostly motives related to familiarity with the fostered child (e.g., "I want to provide a home for a child I know"), and with existing family relationships that would contribute to the decision to become a foster family (e.g., "I know a foster child or a foster child's family and want to help"). Comparing our factorial structure with previous evidence (Maeyer et al., 2014), we found two remarkably similar dimensions: child-centered reasons and self-oriented reasons. However, items related to social responsibility were not retained in our study on a specific factor, despite Maeyer et al. (2014) finding a dimension related to society oriented reasons. In our study, the item "I want to do something for the community/society" loaded in the child-centered reasons, which might suggest that, in our context and with the current sample, doing something for children in need was seen as doing something for the society as a whole. Conversely, we identified a factor focused on family-related reasons that was not found by Maeyer et al. (2014), who used a Dutch version that was slightly modified and applied to a sample of non-kinship foster parents, which may also justify these discrepancies. All our factors were reliable, with internal consistency levels ranging from .85 and .88, higher than those found by Maeyer et al. (2014); .57 for child-centered reasons and .63 for self-oriented reasons).

The second aim of this study was to provide evidence about the role of family resources, demographic variables, and the different reasons for fostering on willingness and behavioral intention to foster. Our findings suggest that being female, younger, as well as scoring lower on family-related reasons and greater on child-centered reasons were positively associated with both willingness and intention to foster. Furthermore, lower scores on self-oriented reasons were associated with higher willingness (but not

intention), while having parental experience, lower education, and greater income were positively associated with intention to foster. When excluding participants who were not willing to foster, the findings reinforced that gender, child and family related reasons were associated with willingness to foster, and education and child-centred reasons were associated with intention to foster.

Consistently with the current study, previous findings have shown that women tend to be more willing to foster than men, both as a single foster parent and with a partner. In turn, men tend to consider becoming a foster parent mostly when there is no possibility of having biological children (e.g., Contreras & Muñoz, 2016). These differences can be explained by sociocultural factors, such as patriarchal culture, gender social roles, and social expectations. Gender socialization is well-described in the literature, as children grow up, they learn about gender roles and expectations related to each gender (Stockard, 2006). Also, women tend to be more involved in household chores than men, and traditional gender roles can shape how family-work relations are managed (Cerrato & Cifre, 2018).

In this study, younger individuals also seemed to be more prone to foster, which is consistent with the developmental and systemic perspective of family functioning, as parenting can be an important developmental task for young adults (McGoldrick & Carter, 2003). On the other hand, adults who were inclined to provide support to a child they already had a relationship with were less willing to become a foster family, presumably because this would involve fostering children that they or their families did not know. This may suggest that being a foster family would be perceived by these participants as a threat to the stability and homeostasis of their family system (Bertalanffy, 1969). Given that foster care in the Portuguese context is limited to non-kinship care, these participants may have a lower willingness and intention to foster

because the likelihood of them knowing the fostered child would be almost nonexistent.

Interestingly, female participants showed greater willingness and intention to foster, but this effect was no longer significant when the different reasons for fostering were included as predictors in the model. Only child-centered reasons were positively related with both willingness and intention to foster. The more people reflected on the right of all children to grow up in a family, to receive love, and the importance of children in need to have equal opportunities, the more they mentioned they were available to become a foster family. Furthermore, the more people thought about fostering to address their own needs, the less they were willing to be a foster parent. Previous research has shown that families with child-centered reasons are the most likely to remain in the system, foster more children, and have longer fostering experiences (Rhodes et al., 2006; Rodger et al., 2006). Our findings support the hypothesis that child-centered reasons can be used as the main leverage for efforts to recruit new prospective foster families in community samples.

Moreover, although greater family resources such as income or having parental experience positively predicted fostering intention, we observed an unexpected finding for education. We expected that participants with higher education levels would have wider access to information or more capability to ask for other resources. However, education appeared to be less important when other resources were available (e.g., income, having parenting experience). In line with the Resource Theory (Cox et al., 2003), family resources such as having a higher income and parenting experience may be associated with a greater likelihood to become a foster family (Maeyer et al., 2014). In turn, highly educated individuals may experience more work-family conflicts related to their professional roles and responsibilities (Schieman & Glavin, 2011). As such,

given that some working conditions (e.g., long hours, work pressures) are associated with greater work-family conflict (Schieman & Glavin, 2011), this may explain the lower willingness and intention for fostering among highly educated people in our sample.

To the best of our knowledge, this is the first study to test a factorial structure of the Reasons for Fostering Inventory with a community sample of adults. However, several limitations should be acknowledged and addressed in future research. The current study was cross-sectional and relied on an online convenience sample, mostly composed of female participants, therefore the results cannot be generalized to the general population and no causal relationships can be established. Future studies should include more diverse, probabilistic samples and gather additional evidence regarding the validity and reliability of the Reasons for Fostering Inventory, focusing on participants who intend to become foster families. We found a CFI model fit lower than 0.95, and even though it can be considered acceptable (Hair et al., 2010), further evidence is needed to provide robust data regarding the validity of this scale. Large-scale longitudinal studies are also warranted to follow trajectories of adults who effectively become foster families and adults who have not applied to be a family, and systematically analyze barriers and facilitators to becoming a foster parent.

Another issue thas was not addressed in the current study and should be a priority for future research is the challenge of retaining foster parents throughout the recruitment cycle (i.e., low conversion rate of those who express interest in becoming foster parents vs. those who actually become foster parents). For example, a recruitment campaign targeting the general population in Australia attracted a large number of enquires but fewer than 2% of these ended up registering as foster carers (Delfabbro et al., 2008), and available data from England showed that only 36% from the total

number of applications to perform the role of foster carers were approved (McDermid et al., 2012). It is necessary to investigate how to optimize the success rates of recruitment campaigns in terms of raising interest and awareness, but also in converting interested applicants into skilled and commited foster families – who support the children's individual needs, their relationship with the biological family, work alongside social workers and other professionals, and follow the overall guidance and regulations set by the child protection services (Berrick et al., 2011; Berrick & Skivenes, 2012; Pinto & Luke, 2022). This is critical to buffer the negative impact of potentially traumatic experiences of foster children (e.g., child abuse and neglect, placement disruptions) and enable positive developmental outcomes (Dorsey et al., 2012).

Notwithstanding the limitations of this study and the challenges of the field as a whole, the current work followed established international guidelines (Beaton et al., 2000) to translate, adapt, and validate the scale of reasons for fostering and provides a set of potential implications for future research and practice. First, our findings suggest that the Reasons for Fostering Inventory may be a useful measure to be used in community studies. Considering the shortage of foster homes across countries, there is a pressing need for measurement instruments to inform research that identifies characteristics and profiles of prospective foster parents, as well as foster families that remain in the system (Sinclair & Wilson, 2003). For instance, in the context where this study took place (i.e., Portugal), data from 2020 showed that more than 90% of all out-of-home children in the country were placed in residential care, including infants and children with less than three years old, partly due to the lack of available foster families (ISS, 2020). Knowledge about motivations for fostering and other individual (e.g., age, sex, income) and family (e.g., family functioning) correlates of willingness and intention to foster children can inform targeted efforts to recruit prospective foster

475	families. Motivations for fostering can also affect the caregiving relationship, and, in
476	turn, the emotional development trajectories of children in care (e.g., Cole, 2005).
477	Therefore, brief, valid, and reliable assessment measures such as appears the Reasons
478	for Fostering Inventory may also ultimately assist child welfare agencies in screening
479	for suitable foster family applicants, allowing a more comprehensive evaluation of the
480	reasons for fostering (Maeyer et al., 2014; Rhodes et al., 2006) and the identification of
481	training needs to help prevent discontinuities.
482	
483	References
484	Australian Institute of Health and Welfare (2018). Foster care numbers. Retrieved from
485	https://www.aihw.gov.au/reports/child-protection/nfpac/contents/national-
486	standards-indicators/12-2-foster-care-numbers
487	Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for
488	the process of cross-cultural adaptation of self-report measures. Spine, 25(24),
489	3186–3191. https://doi.org/10.1097/00007632-200012150-00014
490	Bentler, P. M. (1990). Comparative fit indexes in structural models. <i>Psychological</i>
491	Bulletin, 107(2), 238-246. https://doi.org/10.1037/0033-2909.107.2.238
492	Berrick, J. D., Shauffer, C., & Rodriguez, J. (2011). Recruiting for Excellence in Foster
493	Care: Marrying Child Welfare Research With Brand Marketing Strategies. Journal
494	of Public Child Welfare, 5(2-3), 271-281.
495	https://doi.org/10.1080/15548732.2011.566784
496	Berrick, J.D., & Skivenes, M.(2012). Dimensions of high quality foster care: Parenting
497	Plus. Children and Youth Services Review, 34(9), 1956–1965.
498	https://doi.org/10.1016/j.childyouth.2012.05.026

499	Bertalanffy, L. V. (1969). General system theory: Foundations, development,
500	applications. University of Alberta, Edmonton, Canada.
501	Buehler, C., Orme, J., Cuddeback, G., Le Prohn, N. & Cox, M. (2006). Casey Foster
502	Applicant Inventory (CFAI). User's Manual (2nd ed.) Knoxville: University of
503	Tennessee, Children's Mental Health Services Research Center.
504	Cerrato, J., & Cifre, E. (2018). Gender inequality in household chores and work-family
505	conflict. Frontiers in Psychology, 9, 1330.
506	https://doi.org/10.3389/fpsyg.2018.01330
507	Ciarrochi, J. V., Randle, M. J., Miller, L. M. & Dolnicar, S. (2012). Hope for the future
508	Identifying the individual difference characteristics of people who are interested
509	in and intend to foster-care. British Journal of Social Work, 42(1), 7-25.
510	https://doi.org/10.1093/bjsw/bcr052
511	Cole, S.A. (2005). Foster caregiver motivation and infant attachment: How do reasons
512	for fostering affect relationship? Child and Adolescent Social Work Journal, 22,
513	441-457. https://doi.org/10.1007/s10560-005-0021-x
514	Contreras, A. U., & Muñoz, I. M. (2016). Conocimiento y predisposición sobre el
515	acogimiento familiar en el alumnado universitario de Málaga. Revista de
516	Investigación en Education, 14-30.
517	Costello, A. B. & Osborne, J. W. (2005). Best practices in exploratory factor analysis:
518	Four recommendations for getting the most from your analysis. Practical
519	Assessment, Research & Evaluation, 10(7), 1-9. https://doi.org/10.7275/jyj1-4868
520	Cox, M. E., Orme, J. G., & Rhodes, K. W. (2003). Willingness to foster children with
521	emotional or behavioral problems. Journal of Social Service Research, 29(4), 23-
522	51. https://doi.org/10.1300/J079v29n04_02

523	Delfabbro, P., Borgas, M., Vast, R., Osborn, A. (2008). The effectiveness of public
524	foster carer recruitment campaigns: The South Australian experience. Children
525	Australia, 33(3), 29–36. https://doi.org/10.1017/S1035077200000298
526	Delgado, P., Carvalho, J., & Correia, F. (2019). Viver em acolhimento familiar ou
527	residencial: O bem-estar subjetivo de adolescentes em Portugal.
528	Psicoperspectivas, 18(2), 86-97. http://dx.doi.org/10.5027/psicoperspectivas-
529	vol18-issue2-fulltext-1605
530	Delgado, P., Carvalho, J., & Pinto, V. (2014). Crescer em família: a permanência no
531	acolhimento familiar. Pedagogia social, 123-150.
532	https://doi.org/10.7179/PSRI_2014.23.06
533	Diogo, E., & Branco, F. (2017). Being a Foster Family in Portugal—Motivations and
534	Experiences. Societies, 7(4), 1-14. https://doi.org/10.3390/soc7040037
535	Dorsey, S., Burns, B. J., Southerland, D. G., Cox, J. R., Wagner, H. R., & Farmer, E. M
536	(2012). Prior Trauma Exposure for Youth in Treatment Foster Care. Journal of
537	child and family studies, 21(5), 816-824. https://doi.org/10.1007/s10826-011-
538	<u>9542-4</u>
539	Doyle, J., & Melville, R. (2013). Good caring and vocabularies of motive among foster
540	carers. Journal of Comparative Research in Anthropology & Sociology, 4(2), 71-
541	90.
542	Euillet, S. (2020). Foster care in France: children's perception of their own well-being.
543	Child & Family Social Work, 1–9. https://doi.org/10.1111/cfs.12743
544	Goodman, M. L., Zhang, Y., Gitari, S., Azubuike, M., Keiser, P. H., & Seidel, S. E.
545	(2017). Predictors of Child-Fostering Attitudes in a Large Cross-Section of
546	Kenyan Women: Family, Health and Psycho-Social Factors and the Residual

547	Presence of Childhood Adversities. British Journal of Social Work, 47, 1850-
548	1869. https://doi.org/10.1093/bjsw/bcw118
549	Gouveia, L., Magalhães, E., & Pinto, V. S. (2021). Foster families: A systematic review
550	of intention and retention factors. Journal of Child and Family Studies, 30(11),
551	2766-2781. https://doi.org/10.1007/s10826-021-02051-w
552	Hair Jr, J. F., Black, J. W., Babin, B. J., & Anderson, E. R. (2010). Multivariate Data
553	Analysis (Seventh Ed). Edinburgh: Pearson Education Limited.
554	Howell-Moroney, M. (2014). The empirical ties between religious motivation and
555	altruism in foster parents: Implications for faith-based initiatives in foster care and
556	adoption. Religions, 5(3), 720–737. https://doi.org/10.3390/rel5030720
557	Instituto da Segurança Social (2020). Relatório Casa 2019—Caracterização Anual da
558	Situação de Acolhimento das Crianças e Jovens. Lisboa: Instituto da Segurança
559	Social.
560	López, M., & Fernández del Valle, J. C. (2016). Foster carer experience in Spain:
561	Analysis of the vulnerabilities of a permanent model. Psicothema, 28 (2), 122-
562	129. https://doi.org/10.7334/psicothema2015.168
563	Luke, N., & Sebba, J. (2013). How are foster carers selected. An international literature
564	review of instruments used within foster carer selection.
565	MacCallum, R.C., Browne, M.W., & Sugawara, H., M. (1996). Power Analysis and
566	Determination of Sample Size for Covariance Structure Modeling. Psychological
567	Methods, 1 (2), 130-49.
568	Maeyer, S., Vanderfaeillie, J., Vanschoonlandt, F., Robberechts, M., & Van Holen, F.
569	(2014). Motivation for foster care. Children and Youth Services Review, 36, 143-
570	149. https://doi.org/10.1016/j.childyouth.2013.11.003

571	McDermid, S., Holmes, L., Kirton, D. & Signoretta, P. (2012). The Demographic
572	Characteristics of Foster Carers in the UK: Motivations, Barriers and Messages
573	for Recruitment and Retention. The Childhood Wellbeing Research Centre
574	McGoldrick, M., & Carter, B. (2003). The family life cycle. In F. Walsh (Ed.), Normal
575	family processes: Growing diversity and complexity (pp. 375-398). The Guilford
576	Press. https://doi.org/10.4324/9780203428436_chapter_14
577	Metcalfe, W. A., & Sanders, G. F. (2012). Foster parent experience: the later years.
578	Child Welfare, 91(4), 127-145.
579	Migliorini, L., Rania, N., Cardinali, P., Guiducci, V., & Cavanna, D. (2018).
580	Motivations and Family Functioning of Foster Families in Italy. Journal of Social
581	Service Research, 44(4), 509–517.
582	https://doi.org/10.1080/01488376.2018.1477695
583	Orme, J. G., Cherry, D. J., & Brown, J. D. (2017). Against all odds: Vital Few foster
584	families. Children and Youth Services Review, 79, 584-593.
585	https://doi.org/10.1016/j.childyouth.2017.07.019
586	Orme, J. G., Cox, M. E., Rhodes, K.W., Coakley, T., Cuddeback, G. S., & Buehler, C.
587	(2006). Casey Home Assessment Protocol (CHAP): Technical manual (2nd ed.).
588	Knoxville: University of Tennessee, Children's Mental Health Services Research
589	Center.
590	Pinto, V. S., & Luke, N. (2022). The role of foster carers in England and Portugal: Is it
591	solely a parenting role? Children & Society, 36 (2), 249-265.
592	https://doi.org/10.1111/chso.12536
593	Randle, M., Miller, L., Dolnicar, S. and Ciarrochi, J. (2012), The science of attracting
594	foster carers. Child & Family Social Work. https://doi.org/10.1111/j.1365-
595	2206.2012.00881.x

596	Randle, M., Miller, L., Dolnicar, S., & Ciarrochi, J (2012a). Heterogeneity Among
597	Potential Foster Carers: An Investigation of Reasons for Not Foster Caring.
598	Australian Social Work, 65(3), 382-397.
599	https://doi.org/10.1080/0312407X.2011.574229
600	Raudkivi, M. (2020). What factors predispose the intention to become a foster family in
601	Estonia: Applying the theory of reasoned action and planned behavior?. Children
602	and Youth Services Review, 118, 105445.
603	https://doi.org/10.1016/j.childyouth.2020.105445
604	Rhodes, K., Cox, E. M., Orme, J. G., & Coakley, T. (2006). Foster parent's reasons for
605	fostering and foster family utilization. The Journal of Sociology & Social
606	Welfare, 33(4), 105-126.
607	Rodger, S., Cummings, A., & Leschied, A. W. (2006). Who is caring for our most
608	vulnerable children? The motivation to foster in child welfare. Child Abuse and
609	Neglect, 30(10), 1129–42. https://doi.org/10.1016/j.chiabu.2006.04.005
610	Ru, X., Qin, H., & Wang, S. (2019). Young people's behaviour intentions towards
611	reducing PM2. 5 in China: Extending the theory of planned behaviour.
612	Resources, Conservation and Recycling, 141, 99-108.
613	https://doi.org/10.1016/j.resconrec.2018.10.019
614	Schieman, S., & Glavin, P. (2011). Education and work-family conflict: Explanations,
615	contingencies and mental health consequences. Social Forces, 89(4), 1341-1362
616	https://doi.org/10.1093/sf/89.4.1341
617	Sebba, J. (2012). Why do people become foster parents?: An International Literature
618	Review on the Motivation to Foster. Retrieved from
619	http://reescentre.education.ox.ac.uk/

520	Sellick, C., Thoburn, T., and Philpot, T. (2004). What works in adoption and foster
521	care? Barnardo's.
522	Shuker, L. (2012). The Recruitment of Foster Carers: Key messages from the research
523	literature. University of Bedfordshire.
624	Sinclair, I., & Wilson, K. (2003). Matches and mismatches: The contribution of carers
525	and children to the success of foster placements. The British Journal of Social
526	Work, 33(7), 871-884. https://doi.org/10.1093/bjsw/33.7.871
527	Sinclair, I., Gibbs, I., Wilson, K. and Patten, P. (2004) Foster Carers: Why they Stay
528	and Why they Leave. Jessica Kingsley Publishers.
529	Stockard J. (2006) Gender Socialization. In: Handbook of the Sociology of Gender.
530	Handbooks of Sociology and Social Research. Springer, Boston, MA.
531	https://doi.org/10.1007/0-387-36218-5_11
532	
533	
534	
535	
536	
537	
538	
539	
540	
541	
642	
543	
644	

Table 1646 *Sample characteristics*

Variable	Frequency	Percentage	
Marital status			
Single	172	39	
Married	199	45	
Divorced	66	15	
Widowed	4	1	
Completed education			
Higher Education	298	67	
Secondary Education	101	23	
Primary Education	22	5	
Household monthly income (€)			
≤ 1000	66	15	
1001-2000	176	40	
2001-4000	146	33	
≥ 4000	35	8	
Employment			
Employed	375	85	
Employed/student	22	5	
Unemployed	22	5	
Retired	18	4	
Student	4	1	
Contact with the Child Protection System			
No contact	236	54	
I know people who have had and/or whose children	84	19	
have had a CPS case			
I know people who lived in a residential care home	56	13	
I lived with a foster family	1	0.2	
I fostered a child in the past	1	0.2	
I know people who were or are currently foster	34	8	
families			
I lived in a residential care home	2	0.5	
I am a professional in the CPS	35	8	
I was a professional working in the CPS	19	4	
I know professionals working in the CPS	5	1.1	
I have contact related with my profession (e.g.,	14	3	
physician, teacher)			
I have contact through research/academia	7	2	
I had a CPS case Note. Due to missings, the total percentage is not always 100	18	4	

Note. Due to missings, the total percentage is not always 100%.

Table 2
 Descriptive statistics: skewness and kurtosis of all items

Mean	Standard Deviation	Skev	wness	Kurtosis		
		Statistic	Std. Error	Statistic	Std. Error	
2.07	1.410	.981	.116	479	.232	
1.64	1.066	1.470	.118	.892	.235	
1.77	1.142	1.383	.117	.885	.234	
1.88	1.147	.949	.117	355	.234	
2.16	1.250	.583	.117	-1.053	.233	
1.57	.883	1.329	.117	.538	.234	
1.32	.759	2.545	.117	6.204	.234	
1.56	.976	1.676	.117	1.866	.234	
1.82	1.146	1.127	.117	.013	.234	
2.25	1.247	.430	.117	-1.159	.234	
3.84	1.241	-1.125	.117	.349	.233	
2.80	1.286	088	.117	-1.091	.234	
3.72	1.196	-1.030	.117	.294	.234	
1.34	.877	2.707	.117	6.536	.234	
2.78	1.081	199	.117	639	.233	
1.81	1.055	1.000	.116	247	.232	
3.64	1.180	927	.116	.098	.232	
1.27	.604	2.348	.116	5.037	.232	
1.50	.945	1.893	.116	2.683	.232	
1.69	.943	1.096	.117	.184	.233	
3.51	1.154	912	.116	.157	.232	
1.75	.989	1.024	.116	072	.232	
1.87	1.192	1.095	.116	077	.232	
1.50	1.000	1.995	.116	2.927	.232	
1.23	.693	3.507	.116	12.465	.232	
1.28	.763	2.934	.116	8.254	.232	
3.77	1.111	-1.200	.116	.979	.232	
1.86	1.141	1.033	.116	116	.232	
1.70	1.006	1.137	.116	.133	.232	
1.37	.721	1.954	.116	3.202	.232	
1.46	.873	1.929	.116	3.017	.232	
1.56	.898	1.368	.116	.662	.232	
_	1.64 1.77 1.88 2.16 1.57 1.32 1.56 1.82 2.25 3.84 2.80 3.72 1.34 2.78 1.81 3.64 1.27 1.50 1.69 3.51 1.75 1.87 1.50 1.23 1.28 3.77 1.86 1.70 1.37 1.46	1.64 1.066 1.77 1.142 1.88 1.147 2.16 1.250 1.57 .883 1.32 .759 1.56 .976 1.82 1.146 2.25 1.247 3.84 1.241 2.80 1.286 3.72 1.196 1.34 .877 2.78 1.081 1.81 1.055 3.64 1.180 1.27 .604 1.50 .945 1.69 .943 3.51 1.154 1.75 .989 1.87 1.192 1.50 1.000 1.23 .693 1.28 .763 3.77 1.111 1.86 1.141 1.70 1.006 1.37 .721 1.46 .873	2.07 1.410 .981 1.64 1.066 1.470 1.77 1.142 1.383 1.88 1.147 .949 2.16 1.250 .583 1.57 .883 1.329 1.32 .759 2.545 1.56 .976 1.676 1.82 1.146 1.127 2.25 1.247 .430 3.84 1.241 -1.125 2.80 1.286 088 3.72 1.196 -1.030 1.34 .877 2.707 2.78 1.081 199 1.81 1.055 1.000 3.64 1.180 927 1.27 .604 2.348 1.50 .945 1.893 1.69 .943 1.096 3.51 1.154 912 1.87 1.192 1.095 1.23 .693 3.507 1.28 .763 2.934 3.77 1.111 -1.200	2.07 1.410 .981 .116 1.64 1.066 1.470 .118 1.77 1.142 1.383 .117 1.88 1.147 .949 .117 2.16 1.250 .583 .117 1.57 .883 1.329 .117 1.57 .883 1.329 .117 1.56 .976 1.676 .117 1.82 1.146 1.127 .117 2.25 1.247 .430 .117 3.84 1.241 -1.125 .117 2.80 1.286 088 .117 3.72 1.196 -1.030 .117 1.34 .877 2.707 .117 2.78 1.081 199 .117 1.81 1.055 1.000 .116 1.27 .604 2.348 .116 1.29 .943 1.096 .117 3.51 1.154 912 .	2.07 1.410 .981 .116 479 1.64 1.066 1.470 .118 .892 1.77 1.142 1.383 .117 .885 1.88 1.147 .949 .117 355 2.16 1.250 .583 .117 -1.053 1.57 .883 1.329 .117 .538 1.32 .759 2.545 .117 6.204 1.56 .976 1.676 .117 1.866 1.82 1.146 1.127 .117 .013 2.25 1.247 .430 .117 -1.159 3.84 1.241 -1.125 .117 .349 2.80 1.286 088 .117 -1.091 3.72 1.196 -1.030 .117 .294 1.34 .877 2.707 .117 6.536 2.78 1.081 199 .117 .639 1.81 1.055 1.000	

Table 3Exploratory Factor Loadings – Principal Axis Factoring

Item	Self-oriented	Child-centered	Family-related
	reasons	reasons	reasons
I want to have company for myself	.767	018	021
I want a larger family	.722	.040	.011
I want to have company for my own child	.699	.191	113
I cannot have any, or any more, children of my own	.584	061	061
I want to adopt but cannot get a child or wanted to adopt but can't	.566	.041	.074
I am single and want a child	.531	150	.186
I think a child might help my marriage	.527	085	.172
I thought about adopting and thought foster parenting was a good way to start	.523	.326	064
I want to be loved by a child	.497	.227	.096
I want a certain kind of child (e.g., a girl or a five-year old)	.439	034	.162
I want to fill time	.411	051	.211
My own children were grown and I want children in the house	.300	.002	.234
I want to help a child who is less fortunate	.048	.869	.052
I want to provide a home so a child won't have to be put in an institution	006	.808	.114
I want to provide a good home for a child	.247	.748	160
I want to provide a child with love	.225	.744	149
I want to do something for the community/society	.060	.629	.012
I want to help a child with special problems	046	.524	.288
I do not want to care for an infant*	.146	.330	.008
I am attached to a particular child	025	057	.766
I am related to a child I want to foster	.021	.045	.763
I know a foster child or a foster child's family and want to help	100	.167	.738
I want to provide a home for a child I know	.043	.138	.723
I feel obligated to take a particular child	.125	119	.687
My spouse wants to be a foster parent, so I agreed	.082	.067	.657

I want a child to help with chores or work in family business	.109	197	.577
I had a child who died	.282	071	.398
I want to fulfill my religious beliefs by caring for a child	.270	.046	.340
Eigenvalues	7.40	3.31	1.67
% of Variance	26.4	12.9	5.97
Cronbach's α	0.859	0.853	0.875
McDonald's ω	0.867	0.864	0.884

^{*}reversed scale

 Table 4

 Standardized Regression Weights (SRW) and Standard Errors (SE) from the Confirmatory Factor Analysis

Factor	Item	SRW	SE
F1 – Self-oriented reasons	I cannot have any, or any more, children of my own.	.480	
$\alpha = 0.856; \ \omega = 0.869$	I am single and want a child.	.603	.162
	I want to adopt but cannot get a child or wanted to adopt but can't.	.634	.175
	I thought about adopting and thought foster parenting was a good way to start.	.536	.177
	I want a certain kind of child (e.g., a girl or a five-year old).	.717	.145
	I think a child might help my marriage.	.752	.137
	I want to have company for myself.	.793	.170
	I want to have company for my own child.	.516	.162
	My own children are grown and I want children in the house.	.657	.164
	I want to fill time.	.575	.141
F2 – Child-centered reasons	I want to provide a child with love.	.779	
α =0.872; ω =0.881	I want to provide a good home for a child.	.725	.058
	I want to help a child with special problems.	.458	.086
	I want to provide a home so a child won't have to be put in an institution.	.892	.079
	I want to do something for the community/society.	.604	.089
	I want to help a child who is less fortunate.	.878	.073
F3 – Family-related reasons	I know a foster child or a foster child's family and want to help.	.607	
α =0.851; ω =0.861	I am related to a child I want to foster.	.752	.116
	I want to provide a home for a child I know.	.812	.139
	I feel obligated to take a particular child.	.664	.083
	I am attached to a particular child.	.788	.104
	My spouse wants to be a foster parent, so I agreed.	.645	.101

Table 5 *Multiple linear regressions for willingness and intention for fostering children (n=441)*

			Mod	lel A – Wil	lingness			Model B	– Behaviora	al Intention	
Model 1		β	t	p-value	Tolerance	VIF	β	t	p-value	Tolerance	VIF
	Demographics		$R^2 = .079,$	F=4.371 [7	,362], p<.001			$R^2 = .073, F$	=3.997 [7,	362], p<.001	
	Gender	220	-4.234	<.001	.962	1.040	104	-1.998	.047	.962	1.040
	Age	195	-3.179	.002	.691	1.448	147	-2.392	.017	.691	1.448
	Income	023	449	.654	.982	1.018	.070	1.350	.178	.982	1.018
	Parental Experience	.108	1.716	.087	.656	1.524	.177	2.814	.005	.656	1.524
	Education	010	180	.857	.909	1.100	187	-3.487	.001	.909	1.100
	Marital status	.029	.468	.640	.652	1.533	050	798	.425	.652	1.533
	Intimate relationship	005	089	.929	.764	1.309	.010	.178	.859	.764	1.309
Model 2	-										
	Reasons for fostering	$R^2 = .4$	$08; \Delta R^2 = .3$	329; F=24.2	223 [10,362], p	><.001	R^2 =.237; ΔR^2 = .164; F=10.946 [10,362], p<.001				
	Gender	041	921	.358	.848	1.180	002	039	.969	.848	1.180
	Age	115	-2.291	.023	.668	1.498	095	-1.667	.096	.668	1.498
	Income	.036	.848	.397	.958	1.044	.098	2.061	.040	.958	1.044
	Parental Experience	.088	1.744	.082	.654	1.528	.170	2.946	.003	.654	1.528
	Education	050	-1.142	.254	.892	1.121	206	-4.172	<.001	.892	1.121
	Marital status	020	389	.697	.637	1.569	071	-1.218	.224	.637	1.569
	Intimate relationship	.015	.317	.751	.762	1.313	.023	.432	.666	.762	1.313
	Family-related reasons	190	-3.813	<.001	.681	1.468	118	-2.090	.037	.681	1.468
	Self-oriented reasons	128	-2.460	.014	.622	1.607	.006	.101	.920	.622	1.607
	Child-centered reasons	.597	13.500	<.001	.860	1.162	.422	8.404	<.001	.860	1.162

Note. Gender: Female (0), Male (1); Parental Experience: not have parenting experience (0), Having parenting experience (1); Education: Basic and Secondary (0), Higher Education (1); Intimate relationship status: without intimate relationship (0), with an intimate relationship (1); Marital status: Single/divorced/widowed (0), Married (1).

Table 6 *Multiple linear regressions for willingness and intention for fostering children (n=298)*

			Mod	Model A – Willingness				Model B – Behavioral Intention				
Model 1		β	t	p-value	Tolerance	VIF	β	t	p-value	Tolerance	VIF	
	Demographics		$R^2 = .079; I$	F=2.947 [7	, 239], p<.006			$R^2 = .115; F^2$	=4.433 [7,	239], p<.001		
	Gender	235	-3.705	<.001	.958	1.043	020	324	.746	.958	1.043	
	Age	027	356	.722	.647	1.546	018	234	.815	.647	1.546	
	Income	087	-1.385	.167	.974	1.026	.074	1.201	.231	.974	1.026	
	Parental Experience	.076	.914	.362	.562	1.778	.141	1.740	.083	.562	1.778	
	Education	080	-1.210	.228	.880	1.137	286	-4.406	<.001	.880	1.137	
	Marital status	.017	.213	.832	.630	1.587	084	-1.101	.272	.630	1.587	
	Intimate relationship	.047	.656	.513	.765	1.307	.035	.501	.617	.765	1.307	
Model 2												
	Reasons for fostering	$R^2 = .2$	257 ; $\Delta R^2 = .1$	178; F= 8.1	51 [10, 236], 1	o<.001	$R^2 = .16$	$64; \Delta R^2 = .0$	49; F=4.64	1 [10, 236], p	<.001	
	Gender	083	-1.360	.175	.851	1.175	.029	.450	.653	.851	1.175	
	Age	005	065	.949	.621	1.609	019	256	.798	.621	1.609	
	Income	005	083	.934	.931	1.074	.087	1.408	.160	.931	1.074	
	Parental Experience	.028	.368	.713	.553	1.808	.132	1.653	.100	.553	1.808	
	Education	129	-2.125	.035	.858	1.165	286	-4.446	<.001	.858	1.165	
	Marital status	.003	.043	.966	.605	1.652	048	626	.532	.605	1.652	
	Intimate relationship	.061	.951	.343	.760	1.315	.051	.751	.453	.760	1.315	
	Family-related reasons	201	-3.051	.003	.724	1.380	090	-1.286	.200	.724	1.380	
	Self-oriented reasons	118	-1.728	.085	.673	1.486	.127	1.745	.082	.673	1.486	
	Child-centered reasons	.368	6.206	<.001	.897	1.115	.198	3.146	.002	.897	1.115	

Note. Gender: Female (0), Male (1); Parental Experience: not have parenting experience (0), Having parenting experience (1); Education: Basic and Secondary (0), Higher Education (1); Intimate relationship status: without intimate relationship (0), with an intimate relationship (1); Marital status: Single/divorced/widowed (0), Married (1).