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Chapter

SOME CONSIDERATIONS ON
ORTHOGONALITY, STRICT SEPARATION

THEOREMS AND APPLICATIONS IN HILBERT
SPACES

Manuel Alberto M. Ferreira ∗
Instituto Universitário de Lisboa (ISCTE-IUL),

Information Sciences, Technologies and
Architecture Research Center (ISTAR-IUL),

Business Research Unit (BRU-IUL) Lisboa, Portugal

Abstract

After presenting some structural notions on Hilbert spaces, which
constitute fundamental support for this work, we approach the goals of
the chapter. First, study about convex sets, projections, and orthogonality,
where we approach the optimization problem in Hilbert spaces with some
generality. Then the approach to Riesz representation theorem in this
field, important in the rephrasing of the separation theorems. Then we
give a look to the strict separation theorems as well as to the main results
of convex programming: Kuhn-Tucker theorem and minimax theorem.
These theorems are very important in the applications. Moreover, the

∗E-mail address: manuel.ferreira@iscte.pt
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presented strict separation theorems and the Riesz representation theorem
have key importance in the demonstrations of Kuhn-Tucker and minimax
theorems and respective corollaries.

Keywords: Hilbert spaces, convex sets, projections, orthogonality, Riesz repre-
sentation theorem, Kuhn-Tucker theorem, minimax theorem.

1. Introduction

Definition 1.1.

1. A Hilbert space is a complex vector space with an inner product that, as
metric space, is complete.

2. A Hilbert space is designated, usually, H or I . Remember that.

Definition 1.2. An inner product in a complex vector space H is a sesquilinear
Hermitian and strictly positive functional on H .

Observation.

1. In real vector spaces, “sesquilinear Hermitian” must be replaced by “bi-
linear symmetric,”

2. The inner product of two vectors x and y belonging to H , in this order, is
denoted as 〈x|y〉,

3. The norm of a vector x is given by ‖x‖ =
√
〈x|x〉,

4. The distance between two elements x and y belonging to H is d(x, y) =
‖x− y‖.

Proposition 1.1. The norm, in a space with inner products, satisfies the paral-
lelogram rule: ∥∥x− y∥∥2 +

∥∥x+ y
∥∥2 = 2

(∥∥x∥∥2 +
∥∥y∥∥2). (1.1)

For more details on these concepts see, for instance, [1–5].
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2. Convex Sets and Projections

Then, we enounce and demonstrate a theorem that is a result of existence and
uniqueness, fundamental in optimization, see [6].

Theorem 2.1. Every closed convex set in a Hilbert space has only one element
with minimal norm.

Dem. CallC, the closed convex set and d = inf‖x‖, x ∈ C. Under the assumed
conditions, it is possible to find a sequence ‖xn‖ in C, called minimizing se-
quence, such that d = lim

n
‖xn‖. By the parallelogram rule, it is

∥∥∥xn − xm
2

∥∥∥2 =
1

2

(∥∥xn∥∥2 +
∥∥xm∥∥2)− ∥∥∥xn

2
+
xm
2

∥∥∥2.
Nevertheless, as the second parcel of the second member of this equality is the
norm square of an element of C,∥∥∥xn − xm

2

∥∥∥2 ≤ 1

2

(∥∥xn∥∥2 +
∥∥xm∥∥2)− d2 → 0,

and so xn is a Cauchy sequence.
As C is closed and H is complete, the limit element z belongs to C. And,

by the inequality
∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖, it follows that ‖z‖ = d.

Now, suppose that z1 and z2 are two elements of C with norm d. So, again
by the parallelogram rule, it has∥∥∥1

2
(z1 − z2)

∥∥∥2 = d2 −
∥∥∥z1

2
− z2

2

∥∥∥2 ≤ 0,

and then z1 = z2. �
Be now a closed convex set C in H , and an element x belonging to H .

Noting that x−C is a closed convex set, it results in the following Corollary of
Theorem 2.1:

Corollary 2.1. Be C a closed convex set in H . For every element x in H , there
is only one element in C that is the closest of x; that is, there is only one element
z ∈ C such that

‖x− z‖ = inf‖x− y‖, y ∈ C.
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For the moment, there is a result of existence and uniqueness for the opti-
mization problem. However, unhappily, the demonstration is not constructive. It
is not said how to determine that unique element. However, it is possible a better
characterization, through a variational inequality, as we point in the following
result, see [7, 8]:

Theorem 2.2. Be C a closed convex set in H . For every x belonging to H , z is
the only element in C closest - in norm - of x if and only if

Re
[
〈x− z|z − y〉

]
≥ 0, ∀y ∈ C. (2.1)

Dem. Every characterization of this type comes through a variational argument.
Suppose that z is the only element closest in C, granted by Corollary 2.1. So,
for any θ, 0 ≤ θ ≤ 1, we have (1− θ)z + θy ∈ C since y ∈ C, as C is convex.
So,

g(θ) =
∥∥∥x− ((1− θ)z + θy

)∥∥∥2, (2.2)

is a function twice continuously differentiable of θ. More:

g′(θ) = 2Re
[〈
x− θy − (1− θ)z

∣∣z − y〉], and (2.3)

g′′(θ) = 2Re
[
〈z − y|z − y〉

]
. (2.4)

Then, so that z is the minimizing element, it is evident that it has to be

g′(0) ≥ 0⇔ Re
[
〈x− z|z − y〉

]
≥ 0.

Suppose now that (2.1) is fulfilled for a given element z of C. Therefore,
building again g(θ) as in (2.2), Eq. (2.1) allows concluding that g′(0) is non-
negative and, owing to (2.4), g′′(0) is non-negative. So g(0) ≤ g(1) for any
y ∈ C that is

‖x− z‖2 ≤ ‖x− y‖2,∀y ∈ C.

Therefore, it proofs that z is the minimizing element in C. As already seen,
such an element is unique. �

Observation.



Some Considerations on Orthogonality, Strict ... 5

1. It is interesting to interpret geometrically (2.1). Consider the set of ele-
ments h belonging to H , such that

Re
[
〈x− z|h〉

]
= c = Re

[
〈x− z|z〉

]
.

2. Indeed, a hyperplane that contains z, whose normal is x− z, is a convex
set C support plane in the sense that

Re
[
〈x− z|z〉

]
= c,∀z ∈ C (2.5)

Re
[
〈x− z|y〉

]
≤ c,∀y ∈ C. (2.6)

3. As

Re
[
〈x− z|z − y〉

]
≥ 0

⇔Re
[
〈x− z|z〉

]
− Re

[
〈x− z|y〉

]
≥ 0

⇔Re
[
〈x− z|z〉

]
≥ Re

[
〈x− z|y〉

]
,

the point z is the support point. �

Now it is pertinent to present the following Definitions, see [9]:

Definition 2.1. Given any closed convex set C in H , the application of H in
H , making to correspond to each x the closest element of x in C, is called
projection over C and is designated PC(·). PC(x) is said the projection of x
over C.

Observation. PC(·) is not necessarily linear and lets C invariant. �

Definition 2.2. A cone is a set with the following property: tx, t ≥ 0 belongs to
it since x belongs.

Observation.

1. A cone is not necessarily convex 1.

2. Note that C is a convex cone if whenever x1 and x2 belong to C also
t1x1 + t2x2 belong to C for any t1, t2 ≥ 0. �

1It is enough to think in two straight lines passing through the origin.
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Then it follows a Corollary of Theorem 2.2:

Corollary 2.2. Suppose that C is a closed convex cone. Be z the projection of
x over C. Then

Re
[
〈x− z|z〉

]
= 0 and Re

[
〈x− z|y〉

]
≤ 0,∀y ∈ C. (2.7)

In addition, if an element z of C satisfies these relations, it is the projection of
x over C. �

Corollary 2.3. Be M a closed vector subspace. So, for each x ∈ H, there is
only one element of M that is the closest of x, being the projection of x over M
such that 〈

x− PM (x)
∣∣m〉 = 0,∀m ∈M. (2.8)

In this case, PM (·) is linear and called projection operator corresponding to
M . �

3. Orthogonality and Orthonormal Basis

Following [10–12]:

Definition 3.1. Vector x is orthogonal to vector y if 〈x|y〉 = 0.

Definition 3.2. The set S orthogonal complement in a Hilbert space is the set
of the whole elements orthogonal to any element of S. Designate it S⊥.

Proposition 3.1.

1. If S 6= ∅, S⊥ is a closed vector subspace.

2. If M is a closed vector subspace

a) (M⊥)⊥ = M,

b) After (2.8):

x = PM (x) + (x− PM (x)), (3.1)

where PM (x) ∈M and (x− PM (x)) ∈M⊥.
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Observation. In Eq. (3.1), it is patent an orthogonal decomposition of x. That
is, x is decomposed in the sum of two elements orthogonal to each other. One
belongs to the subspace M and the other belongs to its orthogonal comple-
ment. Such a decomposition is unique in the sense that if x = z1 + z2 where
z1 ∈ M and z2 ∈ M⊥, it must be z1 = PM (x) and z2 = x − PM (x), since
(PM (x)− z1) + (x− (PM (x)− z2) = 0 and the elements between parenthesis
are orthogonal. �

Definition 3.3. Call an orthonormal set if and only if any two of its elements
are orthogonal to each other, and each element has norm 1.

Definition 3.4. Be S a non-empty set of H . L(S) designates the closure of the
set of every S elements finite linear combinations.

Definition 3.5. An orthonormal set S is a basis of L(S).

Observation.

1. If S has a finite number of elements xi, i = 1, · · · , n, the subspace L(S)
is precisely the set of the whole elements of the form

∑n
k=1 akxk. And,

in this case, the projection operator corresponding to L(S) is given by
PL(S)(x) =

∑n
k=1 akxk fulfilling the coefficients ak the equation

〈
x −∑n

j=1 ajxj
∣∣xi〉 = 0, i = 1, · · · , n or:

n∑
j=1

aj
〈
xj
∣∣xi〉 =

〈
x
∣∣xi〉, i = 1, · · · , n. (3.2)

2. If the set xi, i = 1, · · · , n is orthonormal, the projection has the simple
form

PL(S)(x) =
n∑
i=1

〈
x
∣∣xi〉xi, (3.3)

and also∥∥∥x∥∥∥2 ≥ ∥∥∥PL(S)(x)
∥∥∥2 =

n∑
i=1

∣∣∣〈x|xi〉∣∣∣2(Bessel’s Inequality).
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3. Call now, S a sequence {xi} of elements xi, i = 1, · · · , n. S can be
made orthonormal means that it is possible to determine an orthonormal
basis for L(S) : L(S) = L(O) being O orthonormal. Such a basis may
be obtained through the well-known Gram-Schmidt method since not the
whole {xi} are 0. �

With the whole generality:

Theorem 3.1. Every non-trivial Hilbert space, that is not constituted exclu-
sively by 0, has an orthonormal basis.

Dem. It is possible to find orthonormal sets in the space, unless it is trivial.
Introduce a partial ordination in the class of the orthonormal sets, through the
inclusion relation:

Given two orthonormal sets A and B, A < B if and only if A ⊂ B.

Be {Aα} a subclass totally ordered: a chain - maximal, that is: not strictly
contained in another chain. The Hausdorff maximal chain theorem grants the
existence of a maximal chain.

Be A =
⋃
αAα. A is orthonormal. Then, we show that L(A), the subspace

generated by A is, in fact, the whole Hilbert space.
Proceed by absurd. Suppose that z ∈ H is not in L(A). Call P the

projection operator corresponding to L(A). So e =
z − Pz
‖z − Pz‖

is orthogonal

to A and the family obtained postponing to the chain {Aα}. The set A ∪ {e}
violates the chain maximally. �

Observation.

1. There may be, evidently, many sets as the set A referred in this demon-
stration, but it is demonstrated that all of them have the same cardinal.

2. An orthonormal basis may not be finite and the space is of infinite dimen-
sion. Moreover, it is not necessarily countable. However, it results from
Bessel’s inequality that, for every x ∈ H , only a countable number of
〈x|e〉, e ∈ O, may be different from zero. �
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4. Riesz Representation Theorem

An important theorem about the representation of a continuous linear functional
by elements of the space is the Riesz representation theorem, see again [11]
and [13]:

Theorem 4.1 (Riesz representation). Every continuous linear functional f(·)
may be represented in the form f(x) = 〈x|q̃〉 where

q̃ =
f(q)〈
q
∣∣q〉q,

and f(q) is the conjugate complex number of f(q).

Dem. Begin noting that for every continuous linear functional f(·), the Nucleus
of f(·) 2 is a closed vector subspace. If the functional under consideration is
not the null functional, there is an element y such that f(y) 6= 0. Be z the
projection of y over Nuc(f) and make q = y − z. So, q is orthogonal to
Nuc(f) and f(q) = f(y) and, in consequence, f(q) 6= 0. Then, for every
x ∈ H,x− f(x)

f(q) q belongs evidently to Nuc(f). So, x− f(x)
f(q) q is orthogonal to

q and, in consequence,

〈
x
∣∣q〉− f(x)

f(q)

〈
q
∣∣q〉 = 0⇔

〈
x
∣∣q〉 =

f(x)

f(q)

〈
q
∣∣q〉

that is: f(x) =
〈
x
∣∣∣ f(q)〈
q
∣∣q〉q〉. �

Observation. From the theorem, it results in ‖f‖H′ = ‖q̃‖H , where the H
dual space is H ′ 3. �

2The Nucleus of is designated Nuc(f) and Nuc(f) = {x : f(x) = 0}.
3Consider a continuous linear functional f in a normed space E. It is called f norm, and

designated ‖f‖:
‖f‖ = sup

‖x‖≤1

|f(x)|.

That is the supreme of the values assumed by |f(x)| in the E unitary ball. The class of the
continuous linear functionals, with the norm above defined, is a normed vector space, called the
E dual space, designated E′. Of course, a Hilbert space is a normed space.
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5. Convex Sets Strict Separation

Convex sets separation is very important in convex programming, which is a
very potent mathematical instrument for operations research, management, and
economics. See, for example, [14-16]. The target of this work is to present
Theorem 5.1 that gives sufficient conditions for the strict separation of convex
sets. First the following definitions:

Definition 5.1. Two closed convex subsets A and B in a Hilbert space H are at
a finite distance from each other if inf

x∈A, y∈B
‖x− y‖ = d > 0.

Definition 5.2. Two closed convex subsets A and B in a Hilbert space H are
strictly separated if, for some v ∈ H,

inf
x∈A

〈
v
∣∣x〉 > sup

y∈B

〈
v
∣∣y〉. �

Then it follows, see again [12].

Theorem 5.1 (Strict separation). Two closed convex subsets A and B in a
Hilbert space H at finite distance from each other can be strictly separated.

Dem. Considering an A − B complement interior point, taking its projection
over the A − B closure and calling it v,

〈
−v
∣∣v − q

〉
≥ 0,∀q ∈ A − B, by

Theorem 2.2. So
〈
v
∣∣q〉 ≥ 〈v∣∣v〉 and

〈
v
∣∣x〉 − 〈v∣∣y〉 ≥ 〈v∣∣v〉, x ∈ A, y ∈ B

leading to inf
x∈A

〈
v
∣∣x〉 ≥ sup

y∈B

〈
v
∣∣y〉. �

It is also possible to show that:

Theorem 5.2. Being H a finite-dimensional Hilbert space, if A and B are non-
empty disjoint convex sets, they can always be separated.

6. Convex Programming

Now we outline a class of convex programming problems, at which we intend to
minimize convex functionals subject to convex restrictions. Begin presenting a
basic result that characterizes the minimum point of a convex functional subject
to convex inequalities, see [17]. Note that it is not mandatory to impose any
continuity conditions.
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Theorem 6.1 (Kuhn-Tucker). Be f(x), fi(x), i = 1, · · · , n, convex function-
als defined in a convex subset C of a Hilbert space. Consider the problem
min
x∈C

f(x), sub. : fi(x) ≤ 0, i = 1, · · · , n. Be x0 a point where the minimum,

supposed finite, is reached. Suppose also that for each vector u in En, Eu-
clidean space with dimension n, non-null and such that uk ≥ 0, there is a point
x in C such that

∑
1 ukfk(x) < 0, designating uk the components of u. So,

1. There is a vector v, with non-negative components {vk}, such that

min
x∈C

{
f(x) +

n∑
1

vkfk(x)
}

= f(x0) +
n∑
1

vkfk(x0) = f(x0). (6.1)

2. For every vector u in En with non-negative components, that is: belong-
ing to the positive cone of En,

f(x) +
n∑
1

vkfk(x) ≥ f(x0) +
n∑
1

vkfk(x0) ≥ f(x0) +
n∑
1

ukfk(x0).

(6.2)

Corollary 6.1 (Lagrange duality). In the conditions of Theorem 6.1,

f(x0) = sup
u≥0

inf
x∈C

f(x) +
n∑
1

ukfk(x). �

Observation.

1. This Corollary is useful in supplying a process to determine the problem
optimal solution.

2. If the whole vk in expression (6.2) are positive, x0 is a point in the border
of the convex set defined by the restrictions.

3. If the whole vk are zero, the inequalities do not influence the problem,
that is: the minimum is equal to the one of the restrictions free problem.
�

Considering non-finite inequalities, see [18]:
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Theorem 6.2 (Kuhn-Tucker in infinite dimension). Be C a convex subset of a
Hilbert space H and f(x) a real convex functional defined in C. Be I a Hilbert
space with a closed convex cone ℘, with non-empty interior, and F (x) a convex
transformation from H to I (convex in relation to the order introduced by cone
℘: if x, y ∈ ℘, x ≥ y if x − y ∈ ℘). Be x0 an f(x) minimizing in C subjected
to the inequality F (x) ≤ 0. Consider ℘∗ = {x : 〈x|p〉 ≥ 0, ∀x ∈ ℘} (dual
cone). Admit that given any u ∈ ℘∗, it is possible to determine x in C such that〈
u
∣∣F (x)

〉
< 0. So, there is an element v in the dual cone ℘∗, such that for x in

C

f(x) +
〈
v
∣∣F (x)

〉
≥ f(x0) +

〈
v
∣∣F (x0)

〉
≥ f(x0) +

〈
u
∣∣F (x0)

〉
,

being u any element of ℘∗. �

Corollary 6.2 (Lagrange duality in infinite dimension).

f(x0) = sup
v∈℘∗

inf
x∈C

(
f(x) +

〈
v
∣∣F (x)

〉)
in the conditions of Theorem 6.2. �

7. Minimax Theorem

Although belonging to the field of convex programming, we make the option of
giving privileged treatment to the Minimax Theorem, see [19, 20].

In a two players game with null sum, be Φ(x, y) a real function of two vari-
ables x, y ∈ H and A and B convex sets in H . One of the players chooses
strategies (points) in A in order to maximize Φ(x, y) (or minimize -Φ(x, y)): it
is the maximizing player. The other player chooses strategies (points) in B in
order to minimize Φ(x, y) (or maximize -Φ(x, y)); it is the minimizing player.
The function Φ(x, y) is the payoff function. The function Φ(x0, y0) represents,
simultaneously, the gain of the maximizing player and the loss of the minimiz-
ing player in a move at which they chose, respectively the strategies x0 and y0.
So, the gain of one of the players is equal to the other’s loss. That is why the
game is a null sum game. A game in these conditions value is c if

sup
x∈A

inf
y∈B

Φ(x, y) = c = inf
y∈B

sup
x∈A

Φ(x, y). (7.1)
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If, for any (x0, y0),Φ(x0, y0) = c, (x0, y0) is a pair of optimal strategies.
There will be a saddle point if also

Φ(x, y0) ≤ Φ(x0, y0) ≤ Φ(x0, y), x ∈ A, y ∈ B. (7.2)

So, see again [6]:

Theorem 7.1 (minimax). Consider A and B closed convex sets in H , being A
bounded. Be a real functional defined for x in A and y in B fulfilling:

1. Φ(x, (1 − θ)y1 + θy2) ≤ (1 − θ)Φ(x, y1) + θΦ(x, y2) for x in A and
y1, y2 in B, 0 ≤ θ ≤ 1 (that is: Φ(x, y) is convex in y for each x.)

2. Φ((1 − θ)x1 + θx2, y) ≥ (1 − θ)Φ(x1, y) + θΦ(x2, y) for y in B and
x1, x2 in A, 0 ≤ θ ≤ 1 (that is: Φ(x, y) is convex in x for each y.)

3. Φ(x, y) is continuous in x for each y.

So (7.2) holds, that is: the game has a value.

Dem. Beginning by the most trivial part of the demonstration:

inf
y∈B

Φ(x, y) ≤ Φ(x, y) ≤ sup
x∈A

Φ(x, y),

and so

sup
x∈A

inf
y∈B

Φ(x, y) ≤ inf
y∈B

sup
x∈A

Φ(x, y).

Then, as Φ(x, y) is concave and continuous in x ∈ A, A convex, closed and
bounded, it follows that sup

x∈A
Φ(x, y) <∞.

Be C = inf
y∈B

sup
x∈A

Φ(x, y). Suppose now that there is x0 ∈ A such

that Φ(x0, y) ≥ C, for any y in B. In this case, inf
y∈B

Φ(x0, y) ≥ C or

sup
x∈A

inf
y∈B

Φ(x, y) ≥ C as it is appropriate. Then the existence of such an x0

will be proved.
For any y inB, beAy = {x ∈ A : Φ(x, y) ≥ C}. Ay is closed, limited, and

convex. Suppose that, for a finite set (y1, y2, · · · , yn),
⋂n
i=1Ayi = ∅. Consider

a transformation from A to En defined by

f(x) =
(
Φ(x, y1)− C,Φ(x, y2)− C, · · · ,Φ(x, yn)− C

)
.
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Call G the f(A) convex hull closure. Be P the En closed positive cone. Now
we show P ∩ G = ∅: indeed, being Φ(x, y) concave in x, for any xk in A,
k = 1, 2, ·, n, 0 ≤ θk ≤ 1,

∑n
k=1 θk = 1,

n∑
k=1

θk
(
Φ(xk, y)− C

)
≤ Φ

( n∑
k=1

θkxk, y
)
− C.

Therefore, the convex extension of f(A) does not intersect P .
Consider now a sequence xn of elements of A, such that f(xn) converges

for v, v ∈ En. As A is closed, limited and convex, it is possible to define a
subsequence, designated xm such that xm converges weakly for an element of
A (call it x0). In addition, for any yi as Φ(x, yi) is concave in x,

lim Φ(xm, yi) ≤ Φ(x0, yi), or f(x0) ≥ lim f(xm = v).

So P
⋂
G = ∅. Then, G and P may be strictly separated, and it is possible to

find a vector in En with coordinates ak, such that

sup
x∈A

n∑
i=1

ai

(
Φ(x, yi)− C

)
<

n∑
i=1

aiei,

with the whole ai greater or equal than zero.
Obviously, ai cannot be simultaneously null. So dividing by

∑n
i=1 ai and

taking in account the convexity of Φ(x, y) in y

sup
x∈A

Φ(x, ȳ)− C < 0, where ȳ =

∑n
k=1 akyk∑n
k=1 ak

.

In addition, evidently, or ȳ ∈ B or inf
y∈B

sup
x∈A

Φ(x, y) < C. This contradicts

the definition of C. So,
n⋂
i=1

Ayi 6= ∅.

Indeed, ⋂
y∈B

Ay 6= ∅.
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as it will be seen in the sequence using that result and proceeding by absurd.
Note that Ay is a closed and convex set and so it is also weakly closed. And
being bounded, it is compact in the weak topology 4, as A. Calling Gy the com-
plement of Ay, it results that Gy is open in the weak topology. So, if

⋂
y∈B Ay

is empty,
⋂
y∈B Gy ⊃ H ⊃ A. But, being A compact, a finite number of Gyi is

enough to cover A:
n⋃
i=1

Gyi ⊃ A;

that is:
⋂n
i=1Ai is in the complement of A and so it must be

⋂n
i=1Ayi = ∅,

leading to a contradiction. Then suppose that x0 ∈
⋂
y∈B Ay. So, in fact x0

satisfies Φ(x0, y) ≥ C, as requested. �
Then it follows a Corollary of Theorem 7.1, obtained strengthening its hy-

pothesis:

Corollary 7.1. Suppose that the functional Φ(x, y) defined in Theorem 7.1 is
continuous in both variables, separately, and that B is limited. Therefore, there
is an optimal pair of strategies, with the property of being a saddle point.

Dem. It was already seen that exists x0 such that

Φ(x0, y) ≥ C, (7.3)

for each y. As Φ(x0, y) is continuous in y and B is limited

inf
y∈B

Φ(x0, y) = Φ(x0, y0) ≥ C, (7.4)

for any y0 in B 5. But inf
y∈B

Φ(x0, y) ≤ sup
x∈A

inf
y∈B

Φ(x, y) = C and, so

Φ(x0, y) = C. (7.5)

The saddle point property follows immediately from (7.3), (7.4), and (7.5). �
To see more details about this approach of Minimax Theorem, see [21–

26]. One last reference to Nash theorem, [27], which generalizes the Minimax
Theorem:

4See, for instance, [3].
5A continuous convex functional in a Hilbert space has a minimum in any limited closed

convex set.
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Theorem 7.2 (Nash). The mixed extension of every finite game has, at least,
one strategic equilibrium. �

Observation. Its demonstration demands, among other results, an important
contribution of Kakutani theorem, see [28]. �

8. Conclusion

Hilbert space is one of the mathematical fields more considered in the opti-
mization problems fundamentals. Therefore, its structure and respective conse-
quences deserve study and reflection. This was what we tried to do here in as
simple ways as we could. It is always important to emphasize the fruitfulness
of the results in part presented in convex programming, for instance in Kuhn-
Tucker theorem and in the minimax theorem. It is never too much to point out
the importance of strict separation theorems in achieving these results. Also
to refer the importance of the Riesz representation theorem in the rephrasing
of the separation theorems, key tools in functional optimization, here in strict
separation theorems. Moreover, its direct contribution to getting the Lagrange
duality results. Finally, to highlight Theorem 2.1, by its comprehensiveness,
fundamental in optimization.

Acknowledgement

This work is financed by national funds through FCT - Fundação para a Ciência
e Tecnologia, I.P., under the project UID/Multi/04466/2019. Furthermore, I
would like to thank the Instituto Universitário de Lisboa and ISTAR-IUL for
their support.

References

[1] Aubin, J. P. (1979). Applied Functional Analysis. John Wiley & Sons Inc.,
New York.

[2] Balakrishnan, A. V.(1981). Applied Functional Analysis. Springer-Verlag
New York Inc., New York.



Some Considerations on Orthogonality, Strict ... 17

[3] Kantorovich, L. V. and Akilov, G. P. (1982). Functional Analysis. Perga-
mon Press, Oxford.

[4] Kolmogorov and Fomin, S. V. (1982). Elementos da Teoria das Funções e
de Análise Funcional. Editora Mir.

[5] Royden. H. L. (1968). Real Analysis. Mac Milan Publishing Co. Inc, New
York.

[6] Ferreira, M. A. M. (1986). Application of separation theorems in convex
programming in Hilbert spaces. Management Journal, I, 41-44. (In Por-
tuguese.)

[7] Ferreira, M. A. M. and Filipe, J. A. (2014). Convex sets strict separation
in Hilbert spaces. Applied Mathematical Sciences, 8, 3155-3160.

[8] Ferreira, M. A. M., Andrade, M., and Matos, M. C. (2010). Separation
theorems in Hilbert spaces convex programming. Journal of Mathematics
and Technology, 1, 20-27.

[9] Ferreira, M. A. M. and Andrade, M. (2011). Hahn-Banach theorem for
normed spaces. International Journal of Academic Research, 3 (4, Part I),
13-16.

[10] Brézis. H. (1983). Analyse Fonctionelle (Théorie et Applications). Masson,
Paris.

[11] Ferreira, M. A. M. and Andrade, M. (2011). Riesz representation theorem
in Hilbert spaces separation theorems. International Journal of Academic
Research, 3, 302-304.

[12] Ferreira, M. A. M. and Andrade, M. (2012). Separation of a vector space
convex parts. International Journal of Academic Research, 4, 5-8.

[13] Ferreira, M. A. M., Andrade, M., and Filipe J. A. (2012). Weak conver-
gence in Hilbert spaces. International Journal of Academic Research, 4,
34-36.

[14] Ferreira, M. A. M. (2016). Optimization tools in management and finance.
Acta Scientiae et Intellectus, 2, 45-59.



18 Manuel Alberto M. Ferreira

[15] Ferreira, M. A. M. (2016). A topological approach to consumer theory.
Acta Scientiae et Intellectus, 2, 15-19.

[16] Ferreira M. A. M. and Andrade, M. (2011). Management optimization
problems. International Journal of Academic Research, 3, 647-654.

[17] Ferreira, M. A. M., Andrade, M., Matos, M. C., Filipe, J. A., and Coelho,
M. (2012). Kuhn-Tucker’s theorem - the fundamental result in convex pro-
gramming applied to finance and economic sciences. International Jour-
nal of Latest Trends in Finance & Economic Sciences, 2, 111- 116.

[18] Ferreira, M. A. M., Andrade, M., and Filipe, J. A. (2012). Kuhn-Tucker’s
theorem for inequalities in infinite dimension. Journal of Mathematics and
Technology, 3, 57-60.

[19] von Neumann, J. and Morgenstern, O. (1971). Theory of Games and Eco-
nomic Behavior. Princeton University Press, Princeton, New Jersey.

[20] von Neumann, J. and Morgenstern, O. (1967). Theory of Games and Eco-
nomic Behavior. John Wiley & Sons Inc., New York.

[21] Ferreira, M. A. M. (2015). The minimax theorem as Hahn-Banach theorem
consequence. Acta Scientiae et Intellectus, 1, 58-66.

[22] Ferreira, M. A. M., Andrade, M., Matos, M. C., Filipe , J. A., and Coelho,
M. (2012). Minimax theorem and Nash equilibrium. International Journal
of Latest Trends in Finance & Economic Sciences, 2, 36-40.

[23] Matos, M. C. and Ferreira, M. A. M. (2006). Game representation -code
form. Lecture Notes in Economics and Mathematical Systems, 567, 321-
334.

[24] Matos, M. C., Ferreira, M. A. M., and Andrade, M. (2010). Code form
game. International Journal of Academic Research, 2, 135-141.

[25] Matos, M. C., Ferreira, M. A. M., Filipe, J. A., and Coelho, M. (2010).
Prisoner’s dilemma: Cooperation or treason? PJQM-Portuguese Journal
of Quantitative Methods, 1, 43- 52.



Some Considerations on Orthogonality, Strict ... 19

[26] Matos, M. C., Ferreira, M. A. M., and Filipe, J. A. (2018). Let the games
begin and go on. International Journal of Business and Systems Research.
12, 43-52.

[27] Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54.

[28] Kakutani, S. (1941). A generalization of Brouwer’s fixed Point theorem.
Duke Mathematics Journal, 8.


