
Streamlining Code Smells:
Using Collective Intelligence and Visualization

José Vicente Pereira dos Reis

PhD in Information Science and Technology

Supervisors:
Doctor Fernando Brito e Abreu, Associate Professor,
Iscte– Instituto Universitário de Lisboa

Doctor Glauco de Figueiredo Carneiro, Assistant Professor,
Federal University of Sergipe (UFS), Brazil

June, 2022

Department of Information Science and Technology

Streamlining Code Smells:
Using Collective Intelligence and Visualization

José Vicente Pereira dos Reis

PhD in Information Science and Technology

Jury:

Doctor Fernando Manuel Marques Batista,Associate Professor
Iscte– Instituto Universitário de Lisboa (President)
Doctor Silvia Mara Abrahão, Associate Professor
Universitat Politècnica de València
Doctor Marcelo de Almeida Maia, Full Professor
Universidade Federal de Uberlândia
Doctor Luís Miguel Martins Nunes, Associate Professor
Iscte– Instituto Universitário de Lisboa
Doctor Fernando Brito e Abreu, Associate Professor
Iscte– Instituto Universitário de Lisboa

June, 2022

Streamlining Code Smells:
Using Collective Intelligence and Visualization

Copyright © 2022, José Vicente Pereira dos Reis, School of Technology and Architecture, Uni-

versity Institute of Lisbon.

The School of Technology and Architecture and the University Institute of Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation through

printed copies reproduced on paper or on digital form, or by any other means known or that

may be invented, and to disseminate through scientific repositories and admit its copying and

distribution for non-commercial, educational or research purposes, as long as credit is given to

the author and editor.

[This page has been intentionally left blank]

To my wife and daughter.

[This page has been intentionally left blank]

Acknowledgements

When I decided to do this Ph.D., I expected a long, complicated, and arduous journey, with

ups and downs, but also enriching and exciting. However, several people have contributed to

mitigating the difficulties arising and to make this Ph.D. even more fascinating, for which I

would like to thank them.

First of all, I would like to thank my supervisor Professor Fernando Brito e Abreu for his

unconditional support, advice, suggestions, and criticism during these years. He started as an

advisor and ended as a friend. I hope it has been as rewarding for Professor Fernando Brito e

Abreu to orient me as it has been for me to be oriented by him. My deepest thanks.

I would also like to thank my co-supervisor, Professor Glauco Carneiro, for his advice,

support, criticism, and suggestions. It was a great pleasure to have had his collaboration, help,

and friendship in realizing this Ph.D.

I would like to thank the member of my follow-up committee, Professor Luís Nunes, for

his comments, suggestions, and our conversations. Thank you very much.

Being sure that I will forget someone and that many other people also deserve my thanks

because they contributed directly or indirectly to this thesis, I want to thank in a very special

way :

My colleague and friend, Professor Vítor Basto-Fernandes, this thesis would not be possible

without him because his involvement in the crowd experiments was fundamental to making it

possible. I have deep gratitude for him.

My friends and colleagues in this long journey, Américo Rio and João Caldeira, for their

contributions, readiness to help, discussions, criticisms, proposals for improvement, and many

other things. Their support was tireless in the realization of this thesis.

Professor Craig Anslow, from Victoria University of Wellington, New Zealand, for his

collaboration in realizing the SLR, suggestions, and improvements. Without him, we would not

have had many answers to the surveys.

My many thanks to the technology students who collaborated in the experimental study

and without whom the study would not exist.

Last but not least, I would like to thank my parents and brothers, for all their love, support,

and encouragement and for always believing in me, especially my father, who died during the

course of this thesis.

And finally, to the most important people in my life, my wife and daughter, for their

patience, support, and understanding. For the moments when I was not present in their lives

due to this thesis.

Thank you.

ix

Lisboa, June of 2022

José Vicente Pereira dos Reis

x

Abstract

Context. Code smells are seen as major source of technical debt and, as such, should be

detected and removed. Code smells have long been catalogued with corresponding mitigating

solutions called refactoring operations. However, while the latter are supported in current IDEs

(e.g., Eclipse), code smells detection scaffolding has still many limitations. Researchers argue

that the subjectiveness of the code smells detection process is a major hindrance to mitigate the

problem of smells-infected code.

Objective. This thesis presents a new approach to code smells detection that we have

called CrowdSmelling and the results of a validation experiment for this approach. The latter is

based on supervised machine learning techniques, where the wisdom of the crowd (of software

developers) is used to collectively calibrate code smells detection algorithms, thereby lessening

the subjectivity issue.

Method. In the context of three consecutive years of a Software Engineering course, a total

“crowd” of around a hundred teams, with an average of three members each, classified the pres-

ence of 3 code smells (Long Method, God Class, and Feature Envy) in Java source code. These

classifications were the basis of the oracles used for training six machine learning algorithms.

Over one hundred models were generated and evaluated to determine which machine learning

algorithms had the best performance in detecting each of the aforementioned code smells.

Results. Good performances were obtained for God Class detection (ROC=0.896 for Naive

Bayes) and Long Method detection (ROC=0.870 for AdaBoostM1), but much lower for Feature

Envy (ROC=0.570 for Random Forrest).

Conclusions. Obtained results suggest that Crowdsmelling is a feasible approach for the

detection of code smells, but further validation experiments are required to cover more code

smells and to increase external validity.

Keywords: crowdsmelling, code smells, crowdsourcing, code smells detection, machine learn-

ing, software quality

xi

[This page has been intentionally left blank]

Resumo

Contexto. Os cheiros de código são a principal causa de dívida técnica (technical debt),

como tal, devem ser detectados e removidos. Os cheiros de código já foram há muito tempo

catalogados juntamente com as correspondentes soluções mitigadoras chamadas operações

de refabricação (refactoring). No entanto, embora estas últimas sejam suportadas nas IDEs

actuais (por exemplo, Eclipse), a deteção de cheiros de código têm ainda muitas limitações. Os

investigadores argumentam que a subjectividade do processo de deteção de cheiros de código é

um dos principais obstáculo à mitigação do problema da qualidade do código.

Objectivo. Esta tese apresenta uma nova abordagem à detecção de cheiros de código, a

que chamámos CrowdSmelling, e os resultados de uma experiência de validação para esta

abordagem. A nossa abordagem de CrowdSmelling baseia-se em técnicas de aprendizagem

automática supervisionada, onde a sabedoria da multidão (dos programadores de software) é

utilizada para calibrar colectivamente algoritmos de detecção de cheiros de código, diminuindo

assim a questão da subjectividade.

Método. Em três anos consecutivos, no âmbito da Unidade Curricular de Engenharia de

Software, uma "multidão", num total de cerca de uma centena de equipas, com uma média de

três membros cada, classificou a presença de 3 cheiros de código (Long Method, God Class, and

Feature Envy) em código fonte Java. Estas classificações foram a base dos oráculos utilizados

para o treino de seis algoritmos de aprendizagem automática. Mais de cem modelos foram

gerados e avaliados para determinar quais os algoritmos de aprendizagem de máquinas com

melhor desempenho na detecção de cada um dos cheiros de código acima mencionados.

Resultados. Foram obtidos bons desempenhos na detecção do God Class (ROC=0,896 para

Naive Bayes) e na detecção do Long Method (ROC=0,870 para AdaBoostM1), mas muito mais

baixos para Feature Envy (ROC=0,570 para Random Forrest).

Conclusões. Os resultados obtidos sugerem que o Crowdsmelling é uma abordagem viável

para a detecção de cheiros de código, mas são necessárias mais experiências de validação para

cobrir mais cheiros de código e para aumentar a validade externa.

Palavras-chave: crowdsmelling, cheiros de código, crowdsourcing, deteção de cheiros de có-

digo, aprendizagem automática, qualidade do software.

xiii

[This page has been intentionally left blank]

Contents

Acknowledgements ix

Abstract xi

Resumo xiii

List of Figures xix

List of Tables xxi

Listings xxiii

Acronyms xxv

I Fundamentals 1

1 Introduction 3

1.1 Motivation and Scope . 4

1.1.1 Code Smells and Its Relevance on Software Design 4

1.1.2 Code Smell Detection and visualization 4

1.1.3 Collective intelligence . 7

1.2 Research Drivers . 8

1.2.1 Research Problems . 8

1.2.2 Research Questions . 9

1.2.3 Main Contributions . 9

1.3 Dissertation Outline . 11

1.4 Summary . 13

2 State of the Art 15

2.1 Introduction . 17

2.2 Related work . 17

2.3 Research Methodology . 20

2.3.1 Planning the Review . 20

2.3.2 Conducting the Review . 21

2.4 Results and Analysis . 25

2.4.1 Overview of studies . 26

xv

CONTENTS

2.4.2 Approach for CS detection (F1) . 28

2.4.3 Dataset availability (F2) . 31

2.4.4 Programming language (F3) . 31

2.4.5 Code smells detected (F4) . 33

2.4.6 Machine Learning techniques used (F5) 34

2.4.7 Evaluation of techniques (F6) . 35

2.4.8 Detection tools (F7) . 36

2.4.9 Thresholds definition (F8) . 37

2.4.10 Validation of techniques (F9) . 38

2.4.11 Replication of the studies (F10) . 40

2.4.12 Visualization techniques (F11) . 41

2.5 Discussion . 43

2.5.1 Research Questions (RQ) . 43

2.5.2 SLR validation . 45

2.5.3 Validity threats . 46

2.6 Conclusion . 48

2.6.1 Conclusions on this SLR . 48

2.6.2 Open issues . 49

2.7 Summary . 49

II CS Detection and Visualization 51

3 Crowdsmelling: The use of collective knowledge in CS detection 53

3.1 Introduction . 55

3.2 Related Work . 55

3.2.1 Crowd and collaborative-based approaches 55

3.2.2 Multiple ML models based approaches 57

3.3 Experiment Planning . 58

3.3.1 Research Questions . 58

3.3.2 Participants . 58

3.3.3 Data . 59

3.3.4 CS . 61

3.3.5 Code Metrics . 61

3.3.6 Machine Learning Techniques Experimented 61

3.3.7 Model Evaluation . 62

3.3.8 Process . 63

3.4 Results . 67

3.4.1 RQ1. What is the performance of ML techniques when trained with

data from the crowd? . 67

3.4.2 RQ2. What is the best ML model to detect each one of the three CS? . 70

3.4.3 RQ3. Is it possible to use Collective Knowledge for CS detection? . . 72

3.5 Discussion . 74

xvi

CONTENTS

3.5.1 Research Questions (RQ) . 74

3.5.2 Implications and limitations of the Crowdsmelling Approach 76

3.5.3 Threats to validity . 77

3.6 Summary . 79

4 Code Smells Visualization 81

4.1 Introduction . 82

4.2 Visualization Survey . 82

4.2.1 Survey and Samples . 83

4.2.2 Survey Results . 83

4.3 Smelly Maps as SourceMiner Views . 89

4.4 Summary . 91

III Crowdsmelling: a ML-based crowdsourcing approach for code smells de-
tection 93

5 Crowdsmelling Tool 95

5.1 Introduction . 96

5.2 Motivation . 96

5.3 Related work . 96

5.3.1 Code smells detection tools . 97

5.3.2 ML-based code smells detection . 98

5.4 Crowdsmelling . 100

5.4.1 Proposed approach . 100

5.4.2 Proposed architecture for an application using approach 101

5.4.3 Application usage scenarios . 102

5.5 Summary . 106

IV Conclusion 109

6 Conclusion and Future Work 111

6.1 Introduction . 112

6.2 Thesis Synthesis . 112

6.3 Main Contributions . 113

6.4 Research Opportunities . 114

Bibliography 117

Appendices 131

A Systematic Literature Review Materials 131

A.1 Studies included in the review . 132

A.2 Studies after applying inclusion and exclusion criteria (phase 3) 139

xvii

CONTENTS

A.3 Quality assessment . 148

A.4 Description of code smells detected in the studies, according to the authors . . 151

A.5 Frequencies of code smells detected in the studies 156

B Crowdsmelling Materials 159

B.1 Code metrics . 160

C Architectures of the crowdsmelling tool versions 163

C.1 Version 1 - Eclipse plugin and Azure Machine Learning 164

C.1.1 Eclipse IDE plugin . 164

C.1.2 Machine Learning Component . 164

C.2 Version 2 - Eclipse plugin and Weka . 164

C.3 Version 3 - Microservices Architecture . 166

D Eclipse Java Metamodel 167

D.1 Eclipse Java Metamodel . 168

xviii

List of Figures

2.1 Stages of the study selection process . 24

2.2 Selected studies per research question (RQ) . 25

2.3 Trend of publication years . 26

2.4 Type of publication venue . 26

2.5 Programming languages and number of studies that use them 32

2.6 Number of languages used in each study . 32

2.7 Number of code smells detected by number of studies 34

2.8 Summary of main findings . 42

2.9 Relations between findings and research questions 43

3.1 Process of CS classification by the developer . 63

3.2 Process of creation of the datasets and evaluation of the ML techniques by the re-

searcher . 65

3.3 Process of testing the variance between ML models 66

4.1 Answers to the question: "The vast majority of code smells detection studies do not

propose visualization features for their detection" 84

4.2 Answers to the question: "The vast majority of existing code smells visualization

studies did not present evidence of its usage upon large software systems" 85

4.3 Answers to the question: "Software visualization researchers have not adopted spe-

cific visualization related taxonomies to support the identification of code smells" 86

4.4 Answers to the question: "If visualization related taxonomies were used in the im-

plementation of code smells detection tools, that could enhance their effectiveness." 87

4.5 Answers to the question: "Which of the following visual attributes have you imple-

mented in tools targeting the support of code smells identification?" 88

4.6 Answers to the question: "The combined use of collaboration (among software devel-

opers) and visual resources may increase the effectiveness of code smells detection." 89

4.7 An extended reference model for MVIEs (from [23]) 90

5.1 Component Diagram . 101

5.2 Use Case Diagram . 103

5.3 The CrowdSmelling approach process . 104

5.4 The Code smells detection process . 105

5.5 The code smells classification process . 105

xix

LIST OF FIGURES

C.1 Crowdsmelling Eclipse IDE plugin . 164

C.2 Feature Envy training workflow . 165

C.3 Feature Envy predictive workflow . 165

D.1 Eclipse Java Metamodel - Java Project Structure . 168

D.2 Eclipse Java Metamodel - Type Components . 169

D.3 Eclipse Java Metamodel - Abstract Syntax Tree Components 170

xx

List of Tables

1.1 Code smells described in Martin Fowler’s Catalog [43] 5

1.2 Smell taxonomy . 6

1.3 Correspondence between chapters of the thesis and papers 12

2.1 Inclusion criteria . 22

2.2 Exclusion criteria . 22

2.3 Interpretation of the Kappa results . 23

2.4 Quality criteria (Stage 4) . 23

2.5 Number of studies by score obtained after application of the quality assessment

criteria (stage 4) . 24

2.6 Top-ten cited papers, according to Google Scholar 27

2.7 CS detection approaches used . 29

2.8 Top ten open-source software projects used in the studies 31

2.9 Code smells detected in more than 3 studies . 33

2.10 ML algorithms used in the studies . 35

2.11 Metrics used to evaluate the detection techniques 36

2.12 Number of studies that developed a tool and its approach 37

2.13 Number of studies that use thresholds in CS detection 38

2.14 Tools / approach used by the studies for validation 39

2.15 Summary of survey results . 47

3.1 Teams whose CS detection was included in the oracles 59

3.2 Datasets (Oracles) and their composition . 60

3.3 Long Method: ROC Area results for the ML algorithms trained by the 3 years datasets 67

3.4 God Class: ROC Area results for the ML algorithms trained by the 3 years datasets 68

3.5 Feature Envy: ROC Area results for the ML algorithms trained by the 3 years datasets 69

3.6 Long Method: Performance of the code smell prediction models 71

3.7 God Class: Performance of the code smell prediction models 72

3.8 Feature Envy: Performance of the code smell prediction models 73

4.1 Different scopes of code smells . 90

xxi

[This page has been intentionally left blank]

Listings

xxiii

[This page has been intentionally left blank]

Acronyms

ANOVA one-way ANalysis Of VAriance.

API Application Program Interface.

AST Abstract Syntax Tree.

BBN Bayesian Belief Networks.

BPMN Business Process Model.

CS Code Smells.

CSV Comma Separated Values.

EJM Eclipse Java Model.

EJMM Eclipse Java Metamodel.

GA Genetic Algorithms.

IDE Integrated Development Environment.

JDT Eclipse Java Development Tools.

M2DM MetaModel Driven Measurement.

ML Machine Learning.

MSA MicroServices Architecture.

MVIE Multiple Views Interactive Environments.

OCL Object Constraint Language.

OO Object-Oriented.

REST Representational State Transfer.

ROC Receiver Operating Characteristic.

SLR Systematic Literature Review.

xxv

ACRONYMS

SM Systematic Mapping Study.

SO Service-Oriented.

xxvi

P
a
r
t II I

Fundamentals

Introduction
Chapter 1

PART I: FUNDAMENTALS

State of the Art
Chapter 2

Crowdsmelling: The use of collective knowledge
in code smells detection
Chapter 3

PART II: CODE SMELLS DETECTION AND VISUALIZATION

Smelly Maps
Chapter 4

Crowdsmelling Tool
Chapter 5

PART III: CROWDSMELLING: A ML-BASED CROWDSOURCING
 APPROACH FOR CODE SMELLS DETECTION

Conclusion
Chapter 6

PART IV: CONCLUSION

This part covers the motivation, scope, research problems and main contributions of this work

and highlights the fundamental topics, such as: code smells, code smells detection and visual-

ization. It also presents a Systematic Literature Review about code smells.

2

C
h
a
p
t
e
r

11 1

Introduction

Contents
1.1 Motivation and Scope . 4

1.1.1 Code Smells and Its Relevance on Software Design 4

1.1.2 Code Smell Detection and visualization 4

1.1.3 Collective intelligence . 7

1.2 Research Drivers . 8

1.2.1 Research Problems . 8

1.2.2 Research Questions . 9

1.2.3 Main Contributions . 9

1.3 Dissertation Outline . 11

1.4 Summary . 13

This chapter introduces the motivation and scope, describes the problems faced in detecting

and visualizing code smells, and suggests methods to overcome them. Finally, it summarizes

the contributions made to the detection and visualization of code smells.

3

CHAPTER 1. INTRODUCTION

1.1 Motivation and Scope

In this chapter, we present the motivation and scope that led to the realization of this thesis.

We begin in section 1.1.1 by introducing the problem of software maintenance, the influence

that code smells have on it, and the principal code smells. Then, in section 1.1.2, we focus on

the problems of detecting and visualizing code smells.

1.1.1 Code Smells and Its Relevance on Software Design

Software maintenance has historically been the Achilles’ heel of the software life cycle [2].

Maintenance tasks are incremental modifications to a software system that aim to add or adjust

some functionality or correct some design flaws and fix some bugs. It has been found that

feature addition, modification, bug fixing, and design improvement can cost as much as 80%

of total software development cost [131]. In addition, it is shown that software maintainers

spend around 60% of their time in understanding code [148]. Therefore, as much as almost half

(80%x60%=48%) of total development cost may be spent on understanding code. This high

cost can be reduced by the availability of tools to increase code understandability, adaptability,

and extensibility [78].

In software development and maintenance, especially in complex systems, the existence of

Code Smells (CS) jeopardizes the quality of the software and hinders several operations such as

code reuse. Code smells are not bugs since they do not prevent a program from functioning, but

rather symptoms of software maintainability problems [144]. However, they often correspond

to the violation of fundamental design principles and may slow down software evolution (e.g.,

due to code misunderstanding) or increase the risk of bugs or failures in the future. Code smells

can then compromise software quality in the long term by inducing technical debt [9].

In this context, the detection of CS or anti-patterns (undesirable patterns, said to be recipes

for disaster [16]) is a topic of special interest since it prevents code misunderstanding and

mitigates potential maintenance difficulties.According to the authors of [122], there is a subtle

difference between a CS and an anti-pattern: the former is a kind of warning for the presence of

the latter. This thesis will not explore that difference, thereby only referring to the CS concept.

The most relevant CS are cataloged, and the most widely used catalog was compiled by

Martin Fowler [43] and describes 22 CS. Table 1.1 presents the 22 CSs of Fowler’s catalog

and their description according to [142]. Other researchers, such as Van Emden and Moonen

[34], have subsequently proposed more CS and provided the first formalization of code smells.

Mäntylä et al. [79] and Wake [135] proposed two initial taxonomies for code smells (see Table

1.2). In recent years, CSs have been cataloged for other object-oriented programming languages,

such as Matlab [46], Python [27], and Java Android-specific CS [61, 98], which confirms the

increasing recognition of their importance.

1.1.2 Code Smell Detection and visualization

Many techniques and tools have been proposed in the literature for detecting and visualizing

code smells [114], but the former faces a few challenges. The first is that code smells lack a

formal definition [136]. Therefore, their detection is highly subjective (e.g., dependent on the

4

1.1. MOTIVATION AND SCOPE

Table 1.1: Code smells described in Martin Fowler’s Catalog [43]

Code Smell Description

Alternative Classes with
Different Interfaces

Classes that mostly do the same things, but have methods with dif-
ferent signatures

Data Class Classes with fields and getters and setters not implementing any
function in particular

Data Clumps Clumps of data items that are always found together weather within
classes or between classes

Divergent Change One class is commonly changed in different ways for different rea-
sons

Duplicated Code Same or similar code structure repeated within a class or between
classes

Feature Envy A method that seems more interested in another class other than the
one it’s actually in. Fowler recommends putting a method in the
class that contains most of the data the method needs

God (Large) Class Class takes too many responsibilities relative to the classes with
which it is coupled. The God Class centralizes the system function-
ality in one class, which contradicts the decomposition design prin-
ciples

Long Method The methods is very large compared to the other methods in the
same class. Long Method centralizes the class functionality in one
method

Inappropriate Intimacy Two classes are overly intertwined

Incomplete library class Libraries lacking on specific functionality

Lazy Class A class with not enough functionality

Long Parameter List Provide a method with just enough data so that it can obtain every-
thing it needs

Message Chains This is the case in which a client has to use one object to get an-
other, and then use that one to get to another, etc. Any change to the
intermediate relationships causes the client to have to change.

Middle Man A class is delegating almost everything to another class

Misplaced Class In large packages it happens often that a class needs the classes from
other packages more than those from its own package.

Parallel Inheritance Hierar-
chies

Each is required to make a subclass of one class, is required also to
make a subclass of another

Primitive Obsession Use primitives data types instead of small objects for simple tasks
(such as phone numbers, money, etc.)

Refused Bequest Subclasses do not want or need everything they inherit

Shotgun Surgery A change in a class results in the need to make a lot of little changes
in several classes

Speculative Generality Over-generalized code in an attempt to predict future needs

Switch Statements Conditionals depending of type leading to duplication

Temporary Field Consists of fields that are used as temporary variables. This means
that a value assigned to such a field is not used by any method except
for the method containing the assignment

5

CHAPTER 1. INTRODUCTION

Table 1.2: Smell taxonomy

Class Code Smells

Bloaters Long Method, Large Class, Primitive Obsession, Long Pa-
rameter List, Data Clumps

Object-Orientation
Abusers

Switch Statements, Temporary Field, Refused Bequest, Al-
ternative Classes with Different Interfaces, Parallel Inheri-
tance Hierarchies

Change Preventers Divergent Change and Shotgun Surgery

Dispensables Lazy Class, Data Class, Duplicate Code, Speculative Gener-
ality

Encapsulators Message Chains, Middle Man

Couplers Feature Envy, Inappropriate Intimacy

Others Incomplete Library Class, Comments

developer’s experience). Second, due to the dramatic growth in the size and complexity of

software systems in the last four decades [54], it is not feasible to detect code smells thoroughly

without tools.

A factor that exacerbates the complexity of CS detection is that practitioners have to reason

at different abstraction levels: some CS are found at the class level, others at the method

level, and even others encompass both method and class levels simultaneously (e.g., Feature
Envy). This means that once a CS is detected, its extension/impact must be conveyed to the

developer to allow him to take appropriate action (e.g., a refactoring operation). For instance,

the representation of a Long Method (circumvented to a single method) will be rather different

from that of a Shotgun Surgery that can spread across a myriad of classes and methods. Therefore,

besides the availability of appropriate CS detectors, we need suggestive and customized CS

visualization features to help practitioners understand their manifestation. Nevertheless, there

are only a few primary studies aimed at CS visualization.

We classify CS visualization techniques in two categories: (i) the detection is done through

a non-visual approach, the visualization being performed to show CS location in the code itself,

(ii) the detection is performed through a visual approach. In the Systematic Literature Review

(SLR) that we present in section 2.1, we address these two categories.

Most of the proposed CS visualization techniques show them inside the code itself. For

certain systems, this technique works, but it is too meticulous for a global refactoring strategy,

especially when working with large legacy systems. Therefore, a more macro approach is

needed to present CS in a more aggregated form without losing information. Unfortunately,

there are few primary studies in that direction.

Manual CS detection requires code inspection and human judgment and is therefore un-

feasible for large software systems. Furthermore, CS detection is influenced (and hampered)

by the subjectivity of their definition, as reported by Mantyla et al. [80], based on the results

of experimental studies. For example, they observed that the degree of agreement in the eval-

uation of CS was high for the simplest CS, but when developers evaluated more complex CS

6

1.1. MOTIVATION AND SCOPE

such as Lazy Class and Middle Man, the degree of agreement was lower. The main reason re-

ported for this was the lack of knowledge about more complex CS because the latter naturally

require a better understanding of the code. In other words, they suggested that experience may

mitigate the subjectivity issue, and indeed they observed that experienced developers reported

more complex CS than novices did. However, they also concluded that the CS’ commonsense

detection rules expressed in natural language could also cause misinterpretation.

Automated CS detection, mainly in object-oriented systems, involves the use of source code

analysis techniques, often metrics-based [72]. Unfortunately, despite research efforts dedicated

to this topic in recent years, the availability of automatic detection tools for practitioners is

still scarce, especially when compared to the number of existing detection methods (see section

2.4.7).

Many researchers proposed CS detection techniques. However, most studies are only tar-

geted to a small range of existent CS, namely God Class, Long Method and Feature Envy. Moreover,

only a few studies are related with the application of calibration techniques in CS detection

(see section 2.4.5 and 2.4.7). The latter relates to defining a set of parameters for an algorithm

that results in creating a predictive model.

Considering the diversity of existing techniques for CS detection, it is important to group

the different approaches into categories for a better understanding of the type of technique used.

Kessentini et al. [62] classified those approaches into seven categories: metric-based approaches,

search-based approaches, symptom-based approaches, visualization-based approaches, proba-

bilistic approaches, cooperative-based approaches, and manual approaches. The most popular

code smells detection approach is metric-based. The latter is based on the application of de-

tection rules that compare the values of relevant metrics extracted from the source code with

empirically identified thresholds. However, these techniques present some problems, such as

subjective interpretation, a low agreement between detectors [40], and threshold dependability.

To overcome the aforementioned limitations of code smell detection, researchers recently

applied supervised machine learning techniques that can learn from previous datasets without

needing any threshold definition [6, 31]. However, the main impediment for applying those

techniques is the scarcity of publicly available oracles, i.e., tagged datasets for training detection

algorithms.

1.1.3 Collective intelligence

The use of collective intelligence in problem-solving is not a new phenomenon. It has been

used in various sciences such as biology, social sciences, engineering, computer science, etc., for

many years and refers to intelligence in groups [73].

In the book The Wisdom of Crowds, James Surowiecki [129] presents a set of experiments

and events where a group of people can, under certain conditions, achieve better results than

the most intelligent individual in the group. Surowiecki argues that groups are remarkably

intelligent and do not need to be dominated by exceptionally intelligent people in order to make

intelligent decisions. However, to get good results from a group, it must meet four conditions

that characterize wise crowds: i) diversity of opinion (each person should have some private

information, even if it’s just an eccentric interpretation of the known facts), ii) independence

7

CHAPTER 1. INTRODUCTION

(people’s opinions are not determined by the opinions of those around them), iii) decentraliza-

tion (people are able to specialize and draw on local knowledge), and iv) aggregation (some

mechanism exists for turning private judgments into a collective decision).

Leimeistern, in his article Collective Intelligence [73], presents a set of potential areas of

application of Collective Intelligence and refers to Collective Intelligence as: "Decomposing

collective intelligence etymologically, the term collective describes a group of individuals who

are not required to have the same attitudes or viewpoints. Different members can reveal dif-

ferent perspectives and approaches, and thus leading to better explanations or solutions to a

given problem. Intelligence refers to the ability to learn, to understand, and to adapt to an

environment by using own knowledge."

1.2 Research Drivers

The starting point of our research process was the formulation of the main problems we are

undertaking (section 1.2.1). This led us to the research questions presented in the section

1.2.2. To answer these questions, we had to use a methodology and conduct experiments that

supported our conclusions about the benefits and effectiveness of our proposals. The main

contributions of this dissertation are described in section 1.2.3.

1.2.1 Research Problems

The goal of our research work is to address the following problems in the area of code smells

detection and visualization:

• RP1. Code smells detection. Although in recent years we have seen an evolution in the

automatic detection of smells (see the related work in section 2.1), that kind of support

is still very limited, namely when compared with their mitigating solutions, known as

refactoring operations [41]. Without automated support, code smells detection becomes

a fastidious manual process, often taken as an unfeasible overhead when there is (there

is always) pressure to deliver a new version. The main reasons why the current state of

the art in the automatic detection of code smells is still poor are: i) most code smells have

subjective (natural language-based) definitions [132, 136], and ii) automation requires

a different detection algorithm for each code smell, and that implies training data to

guarantee its Accuracy. Looking more carefully, we see that the first cause subsumes the

second: subjectivity hampers the availability of appropriate training data.

• RP2. Code smells visualization. When dealing with large, complex software systems,

code smells awareness features are particularly important since their distribution and

collateral effects may spread a lot. Effective, yet non-intrusive, visualization features

should allow to a) spot the location of code smells, b) diagnose their cause, and c) warn of

their potential hazardous consequences. Several software visualization metaphors were

proposed in the literature [32]. A comprehensive one considers a system as a city [139],

packages as neighborhoods, classes as buildings, and methods as their floors. In such a

setup, it would not be upfront to represent, for instance, code smells that occur within

8

1.2. RESEARCH DRIVERS

a hierarchy, simply because class hierarchies are not clearly mapped into this appealing

city metaphor. This counterexample highlights the need to carry out further research to

figure out which metaphor is the most appropriate for each smell.

The systematic literature review results in section 2.1 confirm that these research problems

are still open issues. Also, surveys of researchers in the areas of code smells detection and

software visualization reinforce the importance and relevance of these problems.

1.2.2 Research Questions

To address the research problems of section 1.2.1, the following research questions were formu-

lated:

• RQ1: Is it possible to use Collective Knowledge for code smells detection?

• RQ2: What is the performance of machine learning techniques when trained with data

from the crowd and hypothetically more realistic?

• RQ3: How can we visualize CS location in large software systems?

Each RQ is related to the corresponding RP in section 1.2.1. Thus, RQ1 and RQ2 are related

to RP1, and RQ3 is related to RP2. RQ2 presumes that RQ1 has a positive answer.

1.2.3 Main Contributions

This section presents a summary of the main contributions achieved with the development of

this dissertation:

1. Crowdsmelling approach for Code smells detection.

We propose the concept of crowdsmelling – use of collective intelligence in the detection

of code smells – to mitigate the aforementioned problems of subjectivity and lack of cali-

bration data required to obtain accurate detection model parameters. Crowdsmelling is a

collaborative crowdsourcing approach based on machine learning, where the wisdom of

the crowd (of software developers) is used to collectively calibrate code smells detection al-

gorithms (one per each code smell type). The applications based in collective intelligence,

where the contribution of several users allows attaining benefits of scale and/or other

types of competitive advantage, are gaining increasing importance in Software Engineer-

ing [127] and other areas [11, 12]. Some of the most notable examples of crowdsourcing

in Software Engineering are crowdtesting [120], code snippets recommendation [105] or stack
overflow [126].

2. ML-based crowdsourcing approach for code smells detection.

We propose a crowdsourcing approach based on supervised Machine Learning (ML) algo-

rithms to mitigate the subjectivity problem to detect code smells. We implemented the

approach in a tool dubbed CrowdSmelling Checker and presented its usage scenarios to

detect code smells.

9

CHAPTER 1. INTRODUCTION

The front-end of the proposed tool is a plugin installed in each developer’s Integrated

Development Environment (IDE) that computes metrics from the source code and sends

them to a MicroServices Architecture (MSA), requesting the location of detected code

smells. That architecture includes a scientific workflow management system, an exe-

cution platform for ML algorithms, and a database management system. All services

communicate through Representational State Transfer (REST) interfaces.

In brief, CrowdSmelling Checker includes a frontend embedded as a plugin in the IDE and

a backend in the cloud. The frontend captures explanatory variables from the currently

opened software project in the IDE and sends their values to the backend. In the backend,

a set of Machine Learning (ML) algorithms suggest the locations of code smells occur-

rences and feds them back to the frontend. The software developer will either accept

(true positives) or reject the proposed code smells occurrences (false positives) or suggest

the location of non-detected occurrences (false negatives). Crowdsourcing is fundamental

in this approach since the feedback received from the crowd of software developers on

false negatives, and true and false positives are used to train multiple ML algorithms,

allowing the dynamic calibration and choice of the best alternative for the detection of

code smells. As such, each developer will participate in the collective enrichment of the

training sets used for calibrating the ML algorithms. The corresponding ML algorithm

will be retrained whenever a training set size increases by a given delta. This progressive

calibration will improve the detection process. The input factors (aka explanatory vari-

ables) to the aforementioned ML-based detection algorithms will be formally expressed

in OCL [137] the upon MetaModel Driven Measurement (M2DM) approach [1], upon the

Eclipse Java Metamodel (EJMM) defined in [55]. The latter was obtained by reverse engi-

neering two Eclipse Java Development Tools (JDT) components: the Eclipse Java Model

(EJM) and the Eclipse Abstract Syntax Tree (AST). According to the M2DM approach, the

explanatory variables will be formalized in Object Constraint Language (OCL) [137] upon

the EJMM.

3. Code smells visualization

We also propose code smells visualization at different abstraction levels, aiming at increas-

ing software quality awareness and facilitating refactoring decisions upon large software

systems.

Visualization provides perceivable cues to several aspects of the data under analysis to

reveal patterns and behaviors that would otherwise remain “under the radar” [125]. Code

smells are defined at different scopes (within one method, within one class, within a class

hierarchy, across several methods, across several classes). A visualization feature for a

code smell of the first kind (within one method) seems straightforward: the best way is

adding some type of flag, usually in the code editor’s margin, in the place where it was

found. Even though classes may be large (i.e., spread across several screen heights), it is

still acceptable to use the flagging technique for representing the location of code smells

of the second kind (within one class), for instance, close to the class header. As for the

other three kinds of code smells, we need to identify adequate visualization mechanisms

10

1.3. DISSERTATION OUTLINE

since they may spread across many methods or classes. We will call Smelly Maps to these

views, and they will act as a front-end for the more complex code smells, facilitating the

comprehension of their side-effects and the diagnosis of their cure.

Based on a well-known reference model for information visualization from Card et al.

[20], Carneiro and Mendonça extended and adapted it to the context of SourceMiner, a

Multiple Views Interactive Environments (MVIE) implemented as an Eclipse plugin [21,

22], that allows visualizing software attributes at different levels of abstraction (packages,

types, and operations). We offer Smelly Maps as a set of new views in SourceMiner, which

will work in cooperation with the CrowdSmelling tool.

4. List of Publications

The following papers were produced for this thesis, which contains the main contents

presented in this dissertation:

4.1 J. Pereira dos Reis, F. Brito e Abreu, and G. de Figueiredo Carneiro, “Code Smells

Incidence: Does It Depend on the Application Domain?,” in QUATIC, 2016, pp.

172–177. IEEE. https://doi.org/10.1109/QUATIC.2016.044

4.2 J. Pereira dos Reis, F. Brito e Abreu, and G. de Figueiredo Carneiro,“Code smells

detection 2.0:Crowdsmelling and visualization.” in 2017 12th Iberian Conference

on Information Systems and Technologies (CISTI). June 2017, pp. 1–4. IEEE.

https://doi.org/10.23919/CISTI.2017.7975961

4.3 J Caldeira, FB e Abreu, JP dos Reis, J Cardoso, "Assessing Software Development

Teams’ Efficiency using Process Mining."in 2019 International Conference on Process

Mining (ICPM), 2019, pp. 65-72. IEEE. https://doi.org/10.1109/ICPM.2019.00020

4.4 J. Pereira dos Reis, F. Brito e Abreu, G. de Figueiredo Carneiro, and C. Anslow.

“Code Smells Detection and Visualization: A Systematic Literature Review.” in

Archives of Computational Methods in Engineering 29, 47-94 (2022). Springer.

https://doi.org/10.1007/s11831-021-09566-x

4.5 J. Pereira dos Reis, F. Brito e Abreu, and G. de Figueiredo Carneiro,

“Crowdsmelling: A preliminary study on using collective knowledge in code

smells detection."In: Empiricial Software Engineering 27(3), 69 (2022). Springer.

https://doi.org/10.1007/s10664-021-10110-5

4.6 J Caldeira, FB e Abreu, J Cardoso, JP dos Reis, "Unveiling process insights from

refactoring practices."in Computer Standards & Interfaces 81, C (2021). Elsevier.

https://doi.org/10.1016/j.csi.2021.103587

4.7 J. Pereira dos Reis, F. Brito e Abreu, and G. de Figueiredo Carneiro, “Crowdsmelling:

a ML-based crowdsourcing approach for code smells detection.” - Submitted.

1.3 Dissertation Outline

This thesis is based on a set of articles, where each chapter corresponds to an article or part of

an article (except for chapter 6-Conclusion and Future Work), as presented in table 1.3.

11

CHAPTER 1. INTRODUCTION

Table 1.3: Correspondence between chapters of the thesis and papers

Chapter Paper name

1-Introduction Code smells detection 2.0:Crowdsmelling and
visualization

2-State of the Art Code Smells Detection and Visualization: A Sys-
tematic Literature Review

3-Crowdsmelling: The use of collective
knowledge in code smells detection

Crowdsmelling: A preliminary study on using
collective knowledge in code smells detection

4-Code Smells Visualization Code Smells Detection and Visualization: A Sys-
tematic Literature Review

5-Crowdsmelling Tool Crowdsmelling: a ML-based crowdsourcing ap-
proach for code smells detection (Submitted)

6-Conclusion and Future Work Several papers

The option to publish all chapters was intended to validate the research and obtain feedback

from reviewers, thus improving the work done.

This thesis is organized into four parts, as shown in Figure 1.1, where each part contains a

set of chapters, six in total. Each of these chapters is briefly described as follows:

Part I - Fundamentals . Introduces this dissertation, the fundamental topics, and an SLR.

• Chapter 1 - Introduction. Provides context to this work, identifies some of the main

problems in research and details the solutions prescribed to mitigate them. Finally, it

summarizes the benefits and highlights the dissertation structure.

• Chapter 2 - State of the Art. It gives an overview of the related work, proposes a taxon-

omy to categorize it, and identifies research gaps within the code smells detection and

visualization area.

Part II - Code Smells Detection and Visualization. The solution proposed and its applica-

tions.

• Chapter 3 - Crowdsmelling: The use of collective knowledge in code smells detection.

Presents the results of a validation experiment for the Crowdsmelling approach, where the

wisdom of the crowd (of software developers) is used to collectively calibrate code smells

detection algorithms, thereby lessening the subjectivity issue.

• Chapter 4 - Smelly Maps. Smelly Maps, to visualize code smells.

Part III - Crowdsmelling: a ML-based crowdsourcing approach for code smells detection.

Implements the Crowdsmelling approach in a tool.

• Chapter 5 - Crowdsmelling Tool. Presents the implementation of the Crowdsmelling
approach in a tool and presents its usage scenarios to detect code smells.

12

1.4. SUMMARY

Part IV - Conclusion. Draws the conclusions and raises new research opportunities.

• Chapter 6- Conclusions and Future Work. Concludes and summarizes the achievements

of this dissertation and discusses future work.

1.4 Summary

This first chapter aims to provide an overview of the research work carried out in this thesis. We

begin with an introduction to what code smells are and their relevance in the software design

section 1.1.1, followed by an approach to code smell detection and visualization, presenting the

various types of approaches and main problems in detection and visualization, section 1.1.2.

Next, research problems, research questions and main contributions expected from the thesis

are described, respectively, in sections 1.2.1, 1.2.2 and 1.2.3. Finally, section 1.3 provides an

outline with a brief explanation of what is included in each chapter.

13

[This page has been intentionally left blank]

C
h
a
p
t
e
r

22 2

State of the Art

Contents
2.1 Introduction . 17

2.2 Related work . 17

2.3 Research Methodology . 20

2.3.1 Planning the Review . 20

2.3.2 Conducting the Review . 21

2.4 Results and Analysis . 25

2.4.1 Overview of studies . 26

2.4.2 Approach for CS detection (F1) . 28

2.4.3 Dataset availability (F2) . 31

2.4.4 Programming language (F3) . 31

2.4.5 Code smells detected (F4) . 33

2.4.6 Machine Learning techniques used (F5) 34

2.4.7 Evaluation of techniques (F6) . 35

2.4.8 Detection tools (F7) . 36

2.4.9 Thresholds definition (F8) . 37

2.4.10 Validation of techniques (F9) . 38

2.4.11 Replication of the studies (F10) . 40

2.4.12 Visualization techniques (F11) . 41

2.5 Discussion . 43

2.5.1 Research Questions (RQ) . 43

2.5.2 SLR validation . 45

2.5.3 Validity threats . 46

2.6 Conclusion . 48

2.6.1 Conclusions on this SLR . 48

2.6.2 Open issues . 49

15

CHAPTER 2. STATE OF THE ART

2.7 Summary . 49

This chapter present the protocol design, execution and findings of a Systematic Literature

Review (SLR) on Code Smells Detection and Visualization.

16

2.1. INTRODUCTION

2.1 Introduction

The purpose of this chapter is to systematically review the published research on code smells

detection and visualization. We chose to perform an SLR, as this provides a fair evaluation of

the current state of the art in the area, using a trustworthy, rigorous, and auditable methodology.

Summing up, the main objectives for this review are:

• What are the main techniques for the detection of CS and their respective effectiveness

reported in the literature?

• What are the visual approaches and techniques reported in the literature to represent CS

and therefore support practitioners to identify their manifestation?

2.2 Related work

We will present the related work in chronological order.

Zhang et al. [146] presented a systematic review on CS, where more than 300 papers pub-

lished from 2000 to 2009 in the main journals from IEEE, ACM, Springer and other publishers

were investigated. After applying the selection criteria, the 39 most relevant ones were ana-

lyzed in detail. The authors revealed that Duplicated Code is the most widely studied CS. The

authors’ results indicate that most studies focus on the development of methods and tools for

the automatic detection of CS, with few studies reporting the impact that CS have and therefore

a phenomenon that was far from being fully understood.

A vast literature review was conducted by Rattan et al. [110] to study software clones (aka

Duplicate Code) in general and software clone detection in particular. The research was focused

on a systematic set of 213 papers published in 11 leading journals and 37 premier conferences

and workshops out of a total of 2039 articles. An empirical assessment of clone detection

tools/techniques is provided. Clone management, its benefits, and cross cutting nature is

reported. Studies involving nine different types of clones are presented, as well as thirteen

intermediate representations and 24 match detection techniques. In conclusion, the authors

call for a better understanding of the possible advantages of software clone management and

recognize the need for semantic and model clone detection techniques to be developed.

Rasool and Arshad [109] presented a review on various detection tools and techniques for

mining CS. They used the classification presented by Kessentini et al. [62] to classify the CS

detection techniques presented in the various papers and compared the various approaches

based on their key characteristics. They also compared the results of the techniques and tools

presented in the review studies, and presented a critical analysis, where the limitations for

the different tools were identified. The authors concluded, for example, that there was still no

consensual definition of CS definitions in the research community, and that there was a lack of

systems to serve as a reference standard for the evaluation of existing techniques.

Al Dallal [3] performed an SLR that identifies and analyzed techniques that identify op-

portunities for refactoring object-oriented code. A total of 47 studies were analyzed, and some

of the most important conclusions reached by the authors were: the most frequent refactoring

activities were Extract Method, Move Method, and Extract Class; the most used approach in

17

CHAPTER 2. STATE OF THE ART

identifying refactoring opportunities was quality metrics-oriented; open-source systems were

the most used to validate researchers’ results, the most used being JHotDraw, and the dominant

programming language in datasets was Java.

Fernandes et al. [37] presented the findings of a SLR on CS detection tools. They found in

the literature a reference to 84 tools, but only 29 of them were available online for download.

These 84 tools used at least six different detection techniques to detect a total of 61 CS. The

dominant programming languages in tool development and for CS detection were Java, C, and

C++. In a second phase of the SLR, the authors presented a comparative study of four detection

tools concerning two CS: Long Method and Large Class. The findings showed that the results

obtained by the tools were redundant for the same CS. Finally, this SLR concluded that the

three CS most detected by the tools were the Long Method, Large Class, and Duplicated Code.

Singh and Kaur [122] published a SLR on refactoring with respect to CS. Although the title

appears to focus on refactoring, different types of techniques for identifying CS and antipat-

terns are discussed in depth. The authors claimed that this work was an extension of the one

published in [3]. They found 1053 papers in the first stage, which were reduced to 325 just

based on the paper title. Then, based on the abstract, they trimmed down that number to 267.

Finally, a set of 238 papers was selected after applying inclusion and exclusion criteria. This

SLR includes primary studies from the early ages of digital libraries till September 2015. Some

conclusions regarding detection approaches were that 28.15% of researchers applied automated

detection approaches to discover the CS, while empirical studies were used by a total of 26.89%

of researchers . The authors also pointed out that Apache Xerces, JFreeChart and ArgoUML

were among the most targeted systems. They also reckon that God Class and Feature Envy are

the most recurrently detected CS.

Gupta et al. [49] performed a SLR based on publications from 1999 to 2016 and 60 papers,

screened out of 854, were deeply analyzed. The objectives of this SLR were to provide an

overview of the investigation carried out in the area of CS, identify the techniques used in the

detection and find out which CS were the most detected with the various detection approaches.

The authors of this SLR concluded that the Duplicate Code was the most used CS in papers,

the impact of CS was poorly studied, the majority of papers focused on the study of detection

techniques and tools, and a significant inverse correlation between detection techniques and

CS has been performed on the basis of CS. They also identified four CS from Fowler’s catalog,

whose detection was not reported in the literature: Inappropriate Intimacy, Primitive Obsession,

Comments and Incomplete Library Class.
Alkharabsheh et al. [4] performed a Systematic Mapping Study (SM) where they analyzed

studies published between 2000 and 2017, in a total of 395 articles, published in journals,

proceedings, and book chapters, in the area of Design Smells Detection. The main conclusions

of this SLR pointed at to the need of standardizing the concepts, requiring greater collaboration

among international research teams there was no correlation between detection techniques

and efficiency of results, and all automatic detection tools produced a binary detection result

(having the CS or not); the non-existence of a CS corpus common to several detection tools was

also a significant problem; it was complicated to compare the results of different techniques

due to the absence of benchmarks, and the homogeneity in the performance of the indicators

was low; another important finding was the detection of CS positively influenced the quality of

18

2.2. RELATED WORK

the code.

Santos et al. [118] investigated the effect of CS on software development, the CS effect. They

reached three main results: the need to study more the effects of CS in software development

because there was still a lack of understanding of these effects; in the systematic review of the

67 papers, there was no strong evidence of the correlation between CS and the effort to maintain

the software; due to the low agreement on the detection of CS, manual evaluation of CS should

not be trusted. Finally, the authors made suggestions to improve knowledge of the effects of CS:

improving the factors that influence the human perception of CS, e.g., practitioners’ experience;

perform a better classification of CS according to their relevant characteristics.

Sabir et al. [116] Aimed to identify the similarities and differences in the identification

of CS in Object-Oriented (OO) and Service-Oriented (SO) Software. Thus, in the SLR, they

investigated the main techniques used to detect CS in different paradigms of Software Engi-

neering from OO to SO. They performed a SLR based on publications from January 2000 to

December 2017 and selected 78 papers. The authors concluded that: the most used CS in the

literature were Feature Envy, God Class, Blob, and Data Class; on the opposite side were CS as the

Yo-Yo Problem, Intensive coupling, Unnamed Coupling, and Interface Bloat, less mentioned in the

literature. Mainly two techniques in the detection of smells were used in the literature: static

source code analysis and dynamic source code analysis based on dynamic threshold adaptation,

e.g., using a genetic algorithm, instead of fixed thresholds for smells detection.

The SLR proposed by Azeem et al. [7] investigated the usage of Machine Learning ap-

proaches in the field of CS between 2000 and 2017. Out of the 2456 papers initially obtained,

only 15 used ML approaches. The study of the 15 papers was conducted from four different

perspectives: (i) CS considered, (ii) setup of ML approaches, (iii) design of the evaluation strate-

gies, and (iv) a meta-analysis on the performance achieved by the models proposed so far. The

authors concluded that: the most used CS in the literature are God Class, Long Method, Func-
tional Decomposition, and Spaghetti Code; The most widely used ML algorithms in CS detection

are Decision Trees and Support Vector Machines; there are several questions that the research

community did not yet answered and that should be focused on in the future, e.g., tools to

capture the severity of CS; finally, they argue that ML techniques in CS detection can still be

improved.

Kaur [57] examined 74 primary studies focused on CS detection through search-based ap-

proaches. The results obtained indicated that there was no benchmark system to compare the

results of the different detection approaches, making it difficult to validate the results. The

authors carried out an experiment with 2 tools that used a search-based approach (jDeodor-
ant and CodeNose) to compare the detection results. The problems of determining threshold

values in metric-based detection techniques were still unknown and unreliable, as well as the

detection of CS in large systems. Other findings state that most tools are not publicly available;

few authors evaluated their approaches in commercial systems, using essentially open-source

systems; Java was the most used programming language, and the most used CS were Feature
Envy, Long Method, Duplicate Code, and Long Parameter List.

Sobrinho et al. [124] conducted an extensive Systematic Literature Review to determine

the state of the art on bad smells with 351 works produced between 1990 and 2017. The SLR

was structured through five Thematic Areas, the 5 W’s, having reached the following main

19

CHAPTER 2. STATE OF THE ART

conclusions: (i) Bad smell types (Which). The most studied code smell was the Duplicate Code,

present in 69.8% of the studies, followed by Large Class, Feature envy, Long Method, and Data

Class; The co-occurrence of Large Class with Long Method was also detected in 41 papers. (ii)

Interest on smells over time (When). There has been an oscillation in the number of papers

published since 1990; however, interest in this research topic has increased over the years, with

new researchers appearing every year. (iii) Aims, findings, and settings (What). The two main

aims of the papers are to study the detection and impact of code smells on software maintenance.

Regarding the impact, the authors identified that there are sometimes contradictions among the

studies. These contradictions seem to be due to the wide range of tools and systems used in the

experimental settings, suggesting a lack of well-designed benchmarks. (iv) Researchers (Who).

The authors have different levels of interest in code smells, and few of them address studies with

a wide range of smells. It was also detected an influence in the publications and code smells

studied due to scientific connections among researchers. (v) Distribution of papers among

venues (Where). Some venues, like ICSE (International Conference on Software Engineering),

SCAM (Working Conference on Source Code Analysis and Manipulation), ICSME (International

Conference on Software Maintenance and Evolution), WCRE (Working Conference on Reverse

Engineering), ICPC (International Conference on Program Comprehension), CSMR (Conference

on Software Maintenance and Reengineering), and EMSE (Empirical Software Engineering),

have a higher proportion of Duplicated Code papers. However, Since 2004, the interest in other

bad smells has increased, where TSE (IEEE Transactions on Software Engineering) and ICSME

are the venues with the highest proportion of studies.

The scope and coverage of the current SLR goes beyond those of aforementioned SLRs,

mainly because it also covers the CS visualization aspects. The latter is important to show

programmers the scope of detected CSs, to help deciding whether to refactor or not. A good

visualization becomes even more important if one takes into account the subjectivity existing

in the definition of CS, which leads to the detection of many false positives.

2.3 Research Methodology

An SLR consists of a sequence of specific and rigorous methodological steps for the purpose

of reviewing research literature, reducing bias and enhancing replication [15] and [68]. SLRs

rely on well-defined and evaluated review protocols to extract, analyze, and document results,

as the stages conveyed in Figure 2.1. This section describes the methodology applied for the

phases of planning, conducting and reporting the review.

2.3.1 Planning the Review

Identify the needs for a systematic review. Search for evidences in the literature regarding the

main techniques for CS detection and visualization, in terms of (i) strategies to detect CS, (ii)

effectiveness of CS detection techniques, (iii) approaches and techniques for CS visualization.

Research Questions. We aim to answer the following questions, by conducting a methodologi-

cal review of published research results:

20

2.3. RESEARCH METHODOLOGY

RQ1. Which techniques have been reported in the literature for the detection of CS? The list of the

main techniques reported in the literature for the detection of CS can provide a comprehensive

view for both practitioners and researchers, supporting them in selecting a technique that

best fits their daily activities, as well as highlighting which of them deserve more effort to be

analyzed in future experimental studies.

RQ2. What literature has reported on the effectiveness of techniques aiming at detecting CS? The goal

is to compare the techniques among themselves, using parameters such as Accuracy, Precision
and Recall, as well as the classification of automatic, semi-automatic or manual approaches.

RQ3. What are the techniques and resources used to visualize CS and therefore support the practition-
ers to identify CS occurrences? The visualization of CS occurrences is a key issue for its adoption

in the industry, due to the variety of CS, their scope (e.g. within methods or classes, or among

methods or classes).

These three research questions are somehow related to each other. In fact, any detection

algorithm after being implemented, should be tested and evaluated to verify its effectiveness,

which causes RQ1 and RQ2 to be closely related. RQ3 encompasses two possible situations: i)

CS detection is done through visual techniques, and ii) the latter are only used for represent-

ing CS previously detected with other techniques; therefore, there is also a close relationship

between RQ1 and RQ3.

Publications Time Frame. We conducted a SLR in journals, conferences papers and book chap-

ters from January 2000 to June 2019.

2.3.2 Conducting the Review

This phase is responsible for executing the review protocol.

Identification of research. Based on the research questions, keywords were extracted and used

to search the primary study sources. The search string is presented as follows and used the

same strategy cited in [26]:

("code smell"OR "bad smell") AND (visualization OR visual OR representation OR identification
OR detection) AND (methodology OR approach OR technique OR tool)

Selection of primary studies. The following steps guided the selection of primary studies.

Stage 1 - Search string results automatically obtained from scientific repositories - ACM Digital

Library, IEEE Xplore, ISI Web of Science, Science Direct, Scopus and Springer Link were selected

based on their relevance as sources in Software Engineering [145]. The search was conducted

using the specific syntax of each database, considering only the title, keywords, and abstract.

The search was configured in each repository to select only papers carried out within the defined

period. The automatic search was complemented by a backward snowballing manual search,

following the guidelines of Wohlin [140]. Duplicates were discarded.

Stage 2 - Analyse titles, abstracts and keywords to identify potentially relevant studies - Studies

that were clearly irrelevant to the search were discarded at this stage. If there was any doubt

about whether a study should be included or not, it was included for consideration on a later

stage.

21

CHAPTER 2. STATE OF THE ART

Stage 3 - Apply inclusion and exclusion criteria on reading the introduction, methods and con-
clusion sections - Selected studies in previous stages were reviewed, by reading the introduction,

methodology and conclusion sections. Afterwards, inclusion and exclusion criteria were ap-

plied (see Table 2.1 and Table 2.2). At this stage, in case of doubt preventing a conclusion, the

study was read in its entirety.

Table 2.1: Inclusion criteria

Criterion Description

IC1 The publication venue should be a “journal” or “conference proceedings” or
"book".

IC2 The primary study should be written in English.

IC3 The primary work is an empirical study or have "lessons learned"(experience
report).

IC4 If several papers report the same study, the latest one will be included.

IC5 The primary work addresses at least one of the research questions.

Table 2.2: Exclusion criteria

Criterion Description

EC1 Studies not focused on code smells.

EC2 Short paper (less than 2000 words, excluding numbers) or unavailable in full
text.

EC3 Secondary and tertiary studies, editorials/prefaces, readers’ letters, panels,
and poster-based short papers.

EC4 Works published outside the selected time frame.

EC5 Code Smells detected in non-object oriented programming languages.

The reliability of the inclusion and exclusion criteria of a publication in the SLR was as-

sessed by applying Fleiss’ Kappa [38]. Fleiss’ Kappa is a statistical measure for assessing the

reliability of agreement between a fixed number of raters when classifying items. We used the

Kappa statistic [84] to measure the level of agreement between the researchers. Kappa result

is based on the number of answers with the same result for all observers [71]. Its maximum

value is 1, when the researchers have almost perfect agreement, and it tends to -1 when there is

no agreement between them. Table 2.3 shows the interpretation of this coefficient according to

Landis & Koch [71].

We asked two seniors researchers to classify, individually, a sample of 31 publications to

analyze the degree of agreement in the selection process through the Fleiss’ Kappa [38]. The

selected sample was the set of the most recent publications (last 2 years) from phase 2. The

result of the degree of agreement showed a substantial (good) level of agreement between the

two researchers (Kappa = 0.631).

The 102 studies resulting from this phase are listed in Appendix A.2.

Stage 4 - Obtain primary studies and make a critical assessment of them - A list of primary

studies was obtained and later subjected to critical examination using the 8 quality criteria set

22

2.3. RESEARCH METHODOLOGY

Table 2.3: Interpretation of the Kappa results

Kappa values Degree of agreement

<0.00 Poor

0.00 - 0.20 Slight

0.21 - 0.40 Fair(Weak)

0.41 - 0.60 Moderate

0.61 - 0.80 Substantial (Good)

0.81 - 1.00 Almost perfect (Very Good)

out in Table 2.4. Some of these quality criteria were adapted from those proposed by Dyba and

Dingsøyr [33]. In the QC1 criterion we evaluated venue quality based on its presence in the

CORE rankings portal1. In the QC4 criterion, the relevance of the study to the community was

evaluated based on the citations present in Google Scholar2 using the method of Belikov and

Belikov [10]. The grading of each of the 8 criteria was done on a dichotomous scale ("YES"=1 or

"NO"=0). For each primary study, its quality score was determined by summing up the scores

of the answers to all the 8 questions. A given paper satisfies the Quality Assessment criteria if

reaches a rating equal or higher to 4. Among the 102 papers resulting from stage 3, 19 studies

[11, 16, 19, 22, 32, 36, 57, 71, 73, 77, 82, 83, 85, 86, 87, 90, 91, 95, 102] (see Appendix A.2) were

excluded because they did not reach the minimum score of 4 (Table 2.5), while 83 passed the

Quality Assessment criteria. All 83 selected studies are listed in Appendix A.1 and the details

of the application of the quality assessment criteria are presented in Appendix A.3.

Table 2.4: Quality criteria (Stage 4)

Criterion Description
QC1 Is the venue recognized in CORE rankings portal?

QC2 Was the data collected in a way that addressed the research issue?

QC3 Is there a clear statement of findings?

QC4 Is the relevance for research or practice recognized by the community?

QC5 Is there an adequate description of the validation strategy?

QC6 The study contains the required elements to allow replication?

QC7 The evaluation strategies and metrics used are explicitly reported?

QC8 Is a CS visualization technique clearly defined?

Data extraction. All relevant information on each study was recorded on a spreadsheet. This

information was helpful to summarize the data and map it to its source. The following data

were extracted from the studies: (i) title and authors; (ii) year; (iii) type of article (journal,

conference, book chapter); (iv) name of conference, journal or book; (v) number of Google

Scholar citations at the time of evaluation; (vi) answers to research questions; (vii) answers to

1http://www.core.edu.au/
2https://scholar.google.com/

23

CHAPTER 2. STATE OF THE ART

Table 2.5: Number of studies by score obtained after application of the quality assessment
criteria (stage 4)

Resulting score Number of studies % studies
1 3 2.9%

2 4 3.9%

3 12 11.8%

4 15 14.7%

5 30 29.4%

6 32 31.4%

7 6 5.9%

8 0 0.0%

quality criteria.

Figure 2.1: Stages of the study selection process

Data Synthesis. This synthesis is aimed at grouping findings from the studies in order to: iden-

tify the main concepts covered regarding CS detection and visualization, conduct a comparative

analysis on the characteristics of the study, type of method adopted, and identify how the three

research questions (RQ1, RQ2 and RQ3) were addressed on each study. Other information was

synthesized when necessary. For the data synthesis process, we have used the meta-ethnography

method [91] as a guide.

Conducting the Review. We started the review with an automatic search followed by a manual

search, to identify potentially relevant studies and later applied the inclusion/exclusion criteria

and finally the quality criteria. In some search engines we had to adapt the search string,

but always keeping its primary meaning and scope. The manual search consisted in studies

published in conference proceedings, journals and books, that were selected by the authors

through backward snowballing in primary studies. These studies were equally analyzed and

24

2.4. RESULTS AND ANALYSIS

Figure 2.1 presents them as 17 studies. We tabulated everything on a spreadsheet so as to

facilitate the subsequent phase of identifying potentially relevant studies. Figure 2.1 presents

the results obtained from each electronic database used in the search, which resulted in 1866

articles considering all databases.

Potentially Relevant Studies. The results obtained from both the automatic and manual search

were included on a single spreadsheet. Papers with identical title, author(s), year and abstract

were discarded as redundant. At this stage, we registered an overall of 1866 articles (Stage
1). We then read titles and abstracts to identify relevant studies resulting in 161 papers (Stage
2) including the corresponding to the backward snowballing procedure. At Stage 3 we read

introduction, methodology and conclusion in each study and then we applied the inclusion and

exclusion criteria, resulting in 102 papers. In Stage 4, after applying the quality criteria (QC)
the remaining 83 papers were analysed to answer the three research questions - RQ1, RQ2 and

RQ3.

2.4 Results and Analysis

In this section we present the results and the analysis of this SLR, which will allow us to answer

the 3 research questions (RQ1, RQ2 and RQ3), based on the quality criteria and findings (F).

Figure 2.2 shows the relationship between the selected studies and the research questions they

answer. In the figure we can see that 72 studies discuss RQ1 issues, 61 papers address RQ2

issues, and 17 studies address issues related to RQ3. All selected studies are listed in Appendix

A.1 and referenced as "S" followed by the number of the paper.

Figure 2.2: Selected studies per research question (RQ)

25

CHAPTER 2. STATE OF THE ART

2.4.1 Overview of studies

The study selection process (Figure 2.1) resulted in 83 studies selected for data extraction and

analysis. Figure 2.3 presents the temporal distribution of primary studies. Note that 78.3%

primary studies have been published after 2009 (last 10 years) and that 2016 and 2018 were the

years that had the largest number of studies published. We can conclude that although research

in Software Engineering started several decades ago (since the 1970s), research on CS detection

is much more recent, with most papers published in the last decade.

Figure 2.3: Trend of publication years

In relation to the type of publication venue (Figure 2.4), the majority of the studies were

published in conference proceedings 76%, followed by journals with 23%, and 1% in books.

Figure 2.4: Type of publication venue

According to Google Scholar citations in September 20193, the top ten studies regarding

their scientific impact included in the SLR are shown in Table 2.6. As can be verified by

their respective citation numbers, these studies are indicative of the importance of the issues

presented in this SLR and the impact these studies have on the literature. Table 2.6 also shows

a summary of the distribution of the most important studies according to the corresponding

RQ. In the following items, we present a summary of the studies, in descending order of the

number of citations.

A brief review of each of the top cited paper follows:

[S9] - RQ1 and RQ3 are addressed in this paper that got the highest number of citations. It

introduces a systematic way of detecting CS by defining detection strategies based in four steps:

3Data obtained in 22/09/2019

26

2.4. RESULTS AND ANALYSIS

Table 2.6: Top-ten cited papers, according to Google Scholar

Studies Cited by Research Question

S9 964 RQ1 and RQ3

S26 577 RQ1 and RQ2

S3 562 RQ1 and RQ2

S1 423 RQ3

S10 245 RQ1 and RQ2

S4 240 RQ1 and RQ2

S7 184 RQ3

S21 174 RQ1 and RQ2

S45 157 RQ1 and RQ2

S15 156 RQ1 and RQ3

Step 1: Identify Symptoms; Step 2: Select Metrics; Step 3: Select Filters; Step 4: Compose the

Detection Strategy. It describes how to explore quality metrics, set thresholds for these metrics,

and create a set of rules to identify CS. Finally, visualization techniques are used to present the

detection result, based in several metaphors.

[S26] - The DECOR method for specifying and detecting code and design smells is intro-

duced. Using a consistent vocabulary and domain-specific language to automatically create

detection algorithms, this approach enables defining smells at a high level of abstraction. Four

design smells are identified by DECOR, namely Blob, Functional Decomposition, Spaghetti Code,

and Swiss Army Knife, and the algorithms are evaluated in terms of Precision and Recall. This

study addresses RQ1 and RQ2, and is one of the most used studies for validation / comparison

of results in terms of Accuracy and Recall of detection algorithms.

[S3] - Issues related to RQ1 and RQ2 are discussed. This paper proposes a mechanism

called “detection strategies” for producing a metric-based rules approach to detect CS with

detection strategies, implemented in the IPLASMA tool. This method captures deviations

from good design principles and consists of defining a list of rules based on metrics and their

thresholds for detecting CS.

[S1] - A visualization approach supported by the jCOSMO tool, a CS browser that performs

fully automatic detection and visualizes smells in Java source code, is proposed. This study

focuses its attention on two CS, related to Java programming language, i.e., instanceof and

typecast. This paper discusses issues related to RQ3.

[S10] - This paper addresses RQ1 and RQ2 and proposes the Java Anomaly Detector

(JADET) tool for detecting object usage anomalies in programs. To conclude properties that are

almost always fulfilled, JADET uses conceptual analysis, and it lists the failures as anomalies.

This approach is based on identifying usage patterns.

[S4] - This paper presents a metric-based heuristic detection approach capable of detecting

two CS, namely Lazy Class and Temporary Field. For a systematic description of CS, the authors

propose a model consisting of 3 parts: a CS name, a description of its characteristics, and

27

CHAPTER 2. STATE OF THE ART

heuristics for its detection. An empirical study is also reported, to justify the choice of metrics

and thresholds for detecting CS. This paper discusses issues related to RQ1 and RQ2.

[S7] - This paper addresses RQ3 and presents a visualization framework for quality analysis

and understanding of large-scale software systems. Programs are represented using metrics.

The authors consider that fully automatic approaches are more efficient, but there is no control

in context, while manual analysis is inaccurate and time-consuming. As such, they present a

semi-automatic approach, which they claim is a good compromise between the two.

[S21] - This paper proposes an approach based on Bayesian Belief Networks (BBN) to

identify and detect CS in applications. This approach implements the detection rules defined in

DECOR [S26] and manages the uncertainty of the detection through the BBN’s. The detection

results are presented in the form of a probability that a class has a defect type. This paper

discusses issues related to RQ1 and RQ2.

[S45] - This paper addresses RQ1 and RQ2, and proposes an approach called HIST (His-

torical Information for Smell deTection) to detect five different CS (Divergent Change, Shotgun
Surgery, Parallel Inheritance, Feature Envy, and Blob). HIST explores change history informa-

tion mined from versioning systems to detect CS, by analyzing co-changes among source code

artifacts over time.

[S15] - This last paper in the top ten most cited ones addresses RQ1 and RQ3. It presents

an Eclipse plug-in (JDeodorant) that automatically identifies Type-Checking CS in Java source

code, and allows their elimination by applying appropriate refactorings. JDeodorant is one of

the most used tools for validation / comparison of results in terms of Accuracy and Recall of

detection algorithms.

2.4.2 Approach for CS detection (F1)

The first finding to be analyzed is the approach applied to detect CS, that is, the steps required

to accomplish the detection process. For example, in the metric-based approach [72], we need

to know the set of source code metrics and corresponding thresholds for the target CS.

Considering the diversity of existing techniques for CS detection, it is important to group

the different approaches into categories for a better understanding of the type of technique used.

Thus, we will classify the existing approaches for CS detection into seven (7) broad categories,

according to the classification presented by Kessentini et al. [62]: metric-based approaches,

search-based approaches, symptom-based approaches, visualization-based approaches, proba-

bilistic approaches, cooperative-based approaches and manual approaches.

Classifying studies in one of the seven categories is not an easy task because some studies

use intermediate techniques for their final technique. For example, several studies classified

as symptom-based approaches use symptoms to describe CS, although detection is performed

through a metric-based approach.

Table 2.7 shows the classification of the studies in the seven broad categories. The most used

approaches are search-based, metric-based, and symptom-based, being used in 30.1%, 24.1%

and 19.3% of the studies, respectively. The least used approaches are the cooperative-based

and the manual ones, each being used in only one of the selected studies.

28

2.4. RESULTS AND ANALYSIS

Table 2.7: CS detection approaches used

Approaches Nº of studies % Studies Studies

Search-Based 25 30.1%
S5, S6, S14, S22, S24, S28, S33, S34, S36,
S37, S42, S43, S45, S48, S51, S53, S55,
S56, S71, S74, S75, S77, S78, S79, S83

Metric-Based 20 24.1%
S3, S9, S29, S38, S44, S47, S49, S52, S58,
S60, S63, S64, S66, S67, S68, S70, S72,
S73, S81, S82

Symptom-based 16 19.3%
S4, S8, S13, S15, S20, S23, S26, S30, S31,
S32, S52, S57, S59, S61, S62, S69

Visualization-based 12 14.5%
S1, S2, S7, S11, S12, S16, S17, S19, S21,
S39, S46, S76

Probabilistic 10 12.0%
S10, S18, S25, S27, S35, S40, S50, S54,
S65, S80

Cooperative-based 1 1.2% S41

Manual 1 1.2% S52

2.4.2.1 Search-based approaches

Search-based approaches are influenced by contributions in the domain of Search-Based Soft-

ware Engineering (SBSE). SBSE uses search-based methods to solve problems of Software

Engineering optimization. Most techniques in this category apply ML algorithms. The main

advantage of ML-based approaches is that they are automatic, so they do not require users to

have extensive knowledge of the area. However, the success of these techniques depends on the

quality of data sets to allow training ML algorithms.

2.4.2.2 Metric-based approaches

The metric-based approach is one of the the most commonly used. The use of quality metrics to

improve the quality of software systems is not a new idea and, for more than a decade, metric-

based CS detection techniques have been proposed. This approach consists in creating a rule,

based on a set of metrics and respective thresholds, to detect each CS.

The main problem with this approach is that there is no consensus on the definition of CS.

As such, there is no consensus on the standard threshold values for the detection of CS. Finding

the best fit threshold values for each metric is complicated because it requires a significant

calibration effort [62]. Threshold values are one of the main causes of the discrepancy in the

results of different techniques.

2.4.2.3 Symptom-based approaches

This approach is based on describing CS symptoms, such as class roles and structures, which

are then translated into detection algorithms to identify CS. Kessentini et al. [62] defines two

main limitations to this approach:

• there exists no consensus in defining symptoms;

29

CHAPTER 2. STATE OF THE ART

• due to the high number of existing CSs, describing their symptoms manually, produc-

ing rules and translating these into detection algorithms can be a very hard work; as a

consequence, symptoms-based approaches are considered as slow and inaccurate.

Other authors [109] add more limitations, such as the definition of appropriate threshold val-

ues, when converting symptoms into detection rules, requiring a great effort of analysis. The

Accuracy of these approaches is poor due to the various interpretations of the same symptoms.

2.4.2.4 Visualization-based approaches

Visualization-based techniques usually consist of a semi-automated process to support devel-

opers in the identification of CS. The data visually represented to this end is mainly enriched

with metrics (metric-based approach) throughout specific visual metaphors.

This approach has the advantage of using visual metaphors, which reduces the complexity

of dealing with a large amount of data. The disadvantages are those inherent to human inter-

vention: (i) they require great human expertise, (ii) time-consuming, (iii) human effort, and (iv)

error-prone. Thus, these techniques have scalability problems for large systems.

2.4.2.5 Probabilistic approaches

Probabilistic approaches consist essentially of determining a probability of an event, for ex-

ample, the probability of a class being a CS. Some techniques consist on the use of BBN,

considering the CS detection process as a fuzzy-logic problem or frequent pattern tree.

2.4.2.6 Cooperative-based approaches

Cooperative-based CS techniques are primarily aimed at improving Accuracy and performance

in CS detection. This is achieved by performing various activities cooperatively.

The only study that uses a cooperative approach is Boussaa et al. [S41]. According to the

authors, the main idea is to evolve two populations in parallel. The first population through

a metric-based approach creates a set of detection rules, maximizing the coverage of a set of

CS, while the second population maximizes the number of artificially generated CS that are not

covered by the detection rules of the first population [S41].

2.4.2.7 Manual approaches

Manual techniques are human-centric, tedious, time-consuming, and error prone. These tech-

niques require a great human effort, therefore are not effective for detecting CS in large systems.

According to the authors of [62], another important issue is that locating CS manually has been

described as more a human intuition than an exact science.

The only study that uses a manual approach is [S52], where a catalog for the detection

and handling of model smells for MATLAB / Simulink is presented. In this study, 3 types of

techniques are used - manual, metric-based, symptom-based - according to the type of smell.

The authors note that the detection of certain smells like the Vague Name or Non-optimal Signal
Grouping can only be performed by manual inspection, because of the expressiveness of the

natural language.

30

2.4. RESULTS AND ANALYSIS

2.4.3 Dataset availability (F2)

The second finding is whether the underlying dataset is available - a precondition for study

replication. When we talk about the dataset, i.e. the oracle, we are considering the software

systems where CS and anti-patterns were detected, the type and number of CS and anti-patterns

detected, and other data needed for the method used, e.g. if it is a metric-based approach the

dataset must have the metrics for each application.

Only 12 studies provide a link to their dataset. However, 2 studies, [S28] and [S32], no

longer have the active links. Thus, only 12.0% of the studies (10 out of 83, [S18, S27, S38, S51,

S56, S59, S69, S70, S74, S82]) provide the dataset.

Another important feature for defining the dataset is which software systems are used in

studies on which CS detection is performed. The number of software systems used in each

study varies widely, and there are studies ranging from only one system to studies using 74 Java

software systems and 184 Android apps with source code hosted in open source repositories.

Most studies (83.1%) use open-source software. Proprietary software is used in 3.6% of studies

and the use of the two types, open-source and proprietary, is used in 3.6% of studies. It should

be noted that 9.7% of studies do not make any reference to the software systems being analysed.

Table 2.8: Top ten open-source software projects used in the studies

Open-source software Nº of Studies % Studies
Apache Xerces 28 33.7%

GanttProject 14 16.9%

ArgoUML 11 13.3%

Apache Ant 10 12.0%

JFreeChart 8 9.6%

Log4J 7 8.4%

Azureus 7 8.4%

Eclipse 7 8.4%

JUnit 5 6.0%

JHotDraw 5 6.0%

Table 2.8 presents the most used open-source software in the studies, as well as the number

of studies where they are used and the overall percentage. Apache Xerces is the most used (33.7%

of the studies), followed by GanttProject with 16.9%, ArgoUML with 13.3%, and Apache Ant
used in 12.0% of the studies.

2.4.4 Programming language (F3)

In our research we do not make any restriction regarding the object-oriented programming

language that supports the detection of CS. So, we have CS detection in 7 types of languages,

in addition to the techniques that are language independent (3 studies) and a study [S66] that

is for Android Apps without defining the type of language, as shown in Figure 2.5

31

CHAPTER 2. STATE OF THE ART

Figure 2.5: Programming languages and number of studies that use them

77.1% of the studies (64 out of 83) use Java as a target language for the detection of CS.

C# is the second most used programming language, with 6 studies (7.2%), the third most used

language is C/C++ with 5 studies (6.0%). JavaScript and Python are used in 2 studies (2.4%).

Finally, we have 2 languages, MatLab and Java Android, which are used in only 1 study (1.2%).

In total we found seven different types of program languages to be used as support for the

detection of CS.

In our analysis we found that 3.6% of studies (3 out of 83, [S20, S32, S47]) present

language-independent CS detection technique. When we related the studies that are language-

independent with the used approach, we found that two of the three studies used Symptom-

based and one the Metric-based approach. These results are in line with what was expected,

since a symptom-based approach is the most susceptible of being adapted to different program-

ming languages.

Figure 2.6: Number of languages used in each study

Multi-language support for CS detection is also very limited, as shown in Figure 2.6. In

addition to the three independent language studies, only [S28], one study (1.2%) of the 83

analyzed, supports 3 programming languages. Five studies (6.0%, [S3, S9, S12, S15, S57])

detect CS in 2 languages and 69 studies (83.1%) only detect in a one programming language.

32

2.4. RESULTS AND ANALYSIS

Five studies (6.0%) explain the detection technique, but do not refer to any language.

When we analyze the 5 studies that do not indicate any programming language, we find that

all use a visualization-based approach, i.e., 41.7% (5 out of 12) of studies that use visualization

techniques do not indicate any programming language.

2.4.5 Code smells detected (F4)

Several authors use different names for the same CS, so to simplify the analysis we have grouped

the different CS with the same mean into one, for example, Blob, Large Class and God Class were

all grouped in God Class. The description of CS can be found in Appendix A.4.

In Table 2.9 we can see the CS that are used in more than 3 studies, the number of studies

in which they are detected and the respective percentage. As we have already mentioned in

subsection 2.4.4, in this systematic review we do not make any restriction regarding the object-

oriented programming language used. Thus, considering all object-oriented programming

languages 68 different CS are detected, much more than the 22 described by Fowler [43]. God
Class is the most detected CS, being used in 51.8 % of the studies, followed by Feature Envy and

Long Method with 33.7 % and 26.5 %, respectively.

Table 2.9: Code smells detected in more than 3 studies

Code smell Nº of studies % Studies
God Class (Large Class or Blob) 43 51.8%

Feature Envy 28 33.7%

Long Method 22 26.5%

Data class 18 21.7%

Functional Decomposition 17 20.5%

Spaghetti Code 17 20.5%

Long Parameter List 12 14.5%

Swiss Army Knife 11 13.3%

Refused Bequest 10 12.0%

Shotgun Surgery 10 12.0%

Code clone/Duplicated code 9 10.8%

Lazy Class 8 9.6%

Divergent Change 7 8.4%

Dead Code 4 4.8%

Switch Statement 4 4.8%

All 68 CS detected are listed in Appendix A.5, as well as the number of studies in which

they are detected, their percentage, and the programming languages in which they are detected.

When we analyzed the CS detected in each study, we found that the number is low, with an

average of 3.6 CS per study and a mode of 1 CS. Only the study [S57], with a symptom-based

approach, detects the 22 CS described by Fowler [43].

33

CHAPTER 2. STATE OF THE ART

Figure 2.7 shows the number of CS detected by number of studies. We can see that the

number of smells most detected is 1 (in 24 studies), 4 smells are detected in 13 studies and 11

studies detect 3 smells. The detection of 12, 13, 15 and 22 smells is performed in only 1 study.

It should be noted that 5 studies do not indicate which CS they detected. It is also important to

note that these 5 studies use a visualization-based approach.

Figure 2.7: Number of code smells detected by number of studies

2.4.6 Machine Learning techniques used (F5)

ML algorithms present many variants and different parameter configurations, making it difficult

to compare them. For example, the Support Vector Machines algorithm has variants such

as SMO, LibSVM, etc. Decision Trees can use various algorithms such as C5.0, C4.5 (J48),

CART, ID3, etc. As algorithms are presented with different details in the studies, for a better

understanding of the algorithm used, we classify ML algorithms in their main category, creating

9 groups as shown in the table 2.10.

Table 2.10 shows the ML algorithms, the number of studies using the algorithm and its

percentage, as well as the ID of the studies that use the algorithm.

From the 83 primary studies analyzed 35% of the studies (29 out of 83, [S6, S18, S22, S24,

S27, S28, S31, S33, S34, S36, S40, S41, S42, S43, S45, S50, S53, S54, S56, S58, S64, S66, S70,

S71, S74, S75, S77, S79, S83]) use ML techniques in CS detection. Except for 3 studies [S36, S56,

S77] where multiple ML algorithms are used, the other 26 studies use only 1 algorithm in CS

detection.

The most widely used algorithms are Genetic algorithms (9 out 83, [S31, S41, S43, S45, S58,

S64, S66, S70, S79]) and Decision Trees (8 out 83, [S6, S28, S36, S40, S53, S56, S77, S83]), which

are used in 10.8% and 9.6%, respectively, of the analyzed studies. We think that a possible

reason why genetic algorithms are the most used algorithm, is because they are used to generate

the CS detection rules and to find the best threshold values to be used in the detection rules.

34

2.4. RESULTS AND ANALYSIS

Table 2.10: ML algorithms used in the studies

ML algorithm Nº of Studies % Studies Studies

Genetic Programming 9 10.8%
S31, S41, S43, S45, S58,
S64, S66, S70, S79

Decision Tree 8 9.6%
S6, S28, S36, S40, S53, S56,
S77, S83

Support Vector Machines (SVM) 6 7.2% S33, S34, S36, S56, S71, S77
Association Rules 6 7.2% S36, S42, S50, S54, S56, S77
Bayesian Algorithms 5 6.0% S18, S27, S36, S56, S77
Random Forest 3 3.6% S36, S56, S77
Neural Network 2 2.4% S74, S75
Regression models 1 1.2% S22
Artificial Immune Systems (AIS) 1 1.2% S24

Regarding Decision trees, it is due to the easy interpretation of the models, mainly in its variant

C4.5 / J48 / C5.0.

The third most used algorithms for ML, used in 7.2% of the studies, are Support Vector

Machines (SVM) (6 out 83, [S33, S34, S36, S56, S71, S77]) and association rules (6 out 83, [S36,

S42, S50, S54, S56, S77]) with Apriori and JRip being the most common.

Bayesian Algorithms are the fifth most used algorithm with 6.0% (5 out 83, [S18, S27, S36,

S56, S77]).

The other 4 ML algorithms that were also used are Random Forest (in 3 studies), Neural

Network (in 2 studies), Regression models (in 1 study) and Artificial Immune Systems (AIS) (in

1 study).

2.4.7 Evaluation of techniques (F6)

The evaluation of the techniques used is an important factor to realize their effectiveness and

consequently choose the best technique or tool. The main metrics used to evaluate the tech-

niques are Accuracy, Precision, Recall, and F-Measure. These 4 metrics are calculated based on

true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) instances

of CS detected, according to the following formulas:

• Accuracy = (TP + TN) / (TP + FP + FN + TN)

• Precision = TP / (TP + FP)

• Recall = TP / (TP + FN)

• F-Measure = 2 * (Recall * Precision) / (Recall + Precision)

In the 83 articles analyzed, 86.7% (72 studies) evaluated the technique used and 13.3% (11

studies) did not. Table 2.11 shows the most used evaluation metrics. Precision is the most used

with 46 studies (55.4%), followed by Recall in 44 studies (53.0%) and F-Measure in 17 studies

(20.5%). It should be noted that 28 studies (33.7 %) use other metrics for evaluation such as the

number of detected defects, Area Under Receiver Operating Characteristic (ROC), Standard Error

35

CHAPTER 2. STATE OF THE ART

(SE) and Mean Square Error (MSE), Root Mean Squared Prediction Error (RMSPE), Prediction Error
(PE), etc.

Table 2.11: Metrics used to evaluate the detection techniques

Metric Nº of studies % Studies
Precision 46 55.4%

Recall 44 53.0%

F-measure 17 20.5%

Accuracy 10 12.0%

Other 28 33.7%

Without evaluation 11 13.3%

In the last years the most used metrics in the evaluation are Precision and Recall, but until

2010 few studies have evaluations based on these metrics, presenting only the CS detected.

When we analyze the evaluations of the different techniques, we verified that the results depend

on the applications used to create the oracle and the CS detected, so we have several studies

that have chosen to present the means of Precision and Recall.

Regarding the different approaches used, we can conclude that:

1. in manual approaches and cooperative-based approaches, since we only have one study

for each, we cannot draw conclusions;

2. in the visualization-based approaches, most of the evaluations presented are qualitative,

and almost half of the studies do not present an evaluation;

3. in relation to the other 4 approaches (probabilistic, metric, symptom-based, and search-

based), all present at least one study/technique with 100% Recall and Precision results.

4. It is difficult to make comparisons across the different techniques since, except for the

studies of the same author(s), all the others have different oracles.

The usual way to build an oracle is to choose a set of software systems (typically open

source), choose the CS that you want to detect and ask a group of MSc students (3, 4 or 5

students), supervised by experts (e.g. software engineers), to identify the occurrences of smells

in systems. In case of doubt on a candidate CS, either the expert decides, or the group reaches

a consensus on whether this candidate is, or not, a CS. As you can see, the creation of an oracle

is not an easy task, because it requires a considerable amount of manual work in the detection

of CS, encompassing the aforementioned problems of a manual approach (see section 2.4.2.7)

mainly its subjectivity.

For a rigorous comparison of the evaluation of the different techniques, it is necessary to

use common oracle (see section 2.4.3), which does not happen today.

2.4.8 Detection tools (F7)

Comparing the results of CS detection tools is important to understand the performance of the

techniques associated with the tool and consequently to know which one is the best. It is also

important to create tools that allow us to replicate studies.

36

2.4. RESULTS AND ANALYSIS

When we analyzed which studies created a detection tool, we found that 61.4% (51 out of

83) studies developed a tool, as show in table 2.12.

Table 2.12: Number of studies that developed a tool and its approach

Approaches Nº studies
Nº studies
with tool

% Studies in
the approach

% Studies in
total

Symptom-Based 16 13 81.3% 15.7%

Metric-Based 20 13 65.0% 15.7%

Visualization-Based 12 10 83.3% 12.0%

Search-Based 25 9 36.0% 10.8%

Probabilistic 10 6 60.0% 7.2%

Cooperative-Based 1 0 0.0% 0.0%

Manual 1 0 0.0% 0.0%

The Symptom-Based and Metrics-Based approaches are those that present most of the devel-

oped tools with 15.7% (13 out of 83 studies), follow by Visualization-Based with 12.0% (10 out

of 83 studies) (see Table 2.12). On the opposite side, there is the Probabilistic approach where

only 7.2% (6 out of 83 studies) present developed tools.

When we analyze the percentage of studies that develop tools within each approach, we find

that Visualization-Based and Symptom-Based approaches are those that have a greater number of

developed tools with 83.3% (10 out of 12 studies) and 81.3% (13 out of 16 studies), respectively

(see Table 2.12).

On the other side, there is the Search-Based approach where only 36.0% (9 out of 25 studies)

present developed tools. In this approach, less than half of the studies present a tool because

authors used existing tools instead of creating new ones. For example, some studies [S34, S36,

S56, S77] use Weka 4 to implement their techniques.

As Rasool and Arshad mentioned in their study [109], it becomes arduous to find common

tools that performed experiments on common systems for extracting common smells. Different

techniques perform experiments on different systems and present their results in different

formats. When analyzing the results of different tools to verify their results, examining the

same software packages and CS, we verified a disparity of results [37, 109].

2.4.9 Thresholds definition (F8)

Threshold values are a very important component in some detection techniques because they

are the values that define whether or not a candidate is a CS. Its definition is very complicated

and one of the reasons why there is so much disparity in the detection results of CS (see section

2.4.8). Some studies use genetic algorithms to calibrate threshold values as a way of reducing

subjectivity in CS detection, e.g. [S70].

A total of 44 papers use thresholds in their detection technique, representing 53.0% of all

studies. 47.0% of studies (39 out of 83 studies) did not use thresholds.

4Weka is a collection of ML algorithms for data mining tasks (www.cs.waikato.ac.nz/ml/weka/)

37

CHAPTER 2. STATE OF THE ART

Table 2.13: Number of studies that use thresholds in CS detection

Approaches Nº studies
Nº use

thresholds
% Studies in
the approach

% Studies in
total

Metric-Based 20 15 75.0% 18.1%

Symptom-Based 16 11 68.8% 13.3%

Search-Based 25 8 32.0% 9.6%

Probabilistic 10 8 80.0% 9.6%

Visualization-Based 12 1 8.3% 1.2%

Cooperative-Based 1 1 100.0% 1.2%

Manual 1 0 0.0% 0.0%

Without the Cooperative-Based approach (which presents only 1 study), in the total of stud-

ies, Metric-Based and Symptom-Based approaches are those that present the most used of thresh-

olds with 18.1% (15 out of 83 studies) and 13.3% (11 out of 83 studies), respectively (see Table

2.13).

When we analyze the number of studies within each approach that uses thresholds, we

find that the three approaches that most use thresholds in their detection techniques are Prob-

abilistic with 80% (8 out of 10 studies), Metric-Based with 75.0% (15 out of 20 studies), and

Symptom-Based with 68.8% (11 out of 16 studies). In visualization-Based approaches, only one

study use thresholds in their CS detection techniques, as shown in Table 2.13.

Analyzing the detection techniques, we verified that these results are in line with what was

expected, since we found that the Probabilistic and Metric-Based approaches are those that most

need to use thresholds. In the Probabilistic approaches thresholds are required to define the

values of support, confidence and probabilistic decision values. In Metric-Based approaches, it

is essential to define threshold values for the different metrics that compose the rules.

2.4.10 Validation of techniques (F9)

The validation of a technique is performed by comparing the results obtained by the technique,

with the results obtained through another technique with similar objectives. Obviously, both

techniques must detect the same CS in the same software systems. The most usual forms

of validation are: using the techniques of various existing approaches, such as manuals; use

existing tools; comparing the results with those of other published papers.

When we analyze how many studies are validating their technique (see Table 2.14), we

verified that 62.7% (52 out of 83) of the studies do not validate the technique.

Considering the differences between techniques and all subjectivity in a technique (see

sections 2.4.9, 2.4.8, 2.4.7), we conclude that it is not easy to perform validations with tools that

implement other techniques, even if they have the same goals. Thus, it is not surprising that one

of the most common methods for validating the results is express opinion, with a percentage of

26.9% of the studies (14 of the 52 studies doing validation, [S3, S6, S8, S13, S15, S23, S31, S38,

S43, S44, S53, S54, S56, S66]), as shown in Table 2.14.

Some authors, as in [S8], claim that validation was performed by experts because only

38

2.4. RESULTS AND ANALYSIS

Table 2.14: Tools / approach used by the studies for validation

Tool/approach Nº of Studies % Studies Studies

DECOR 14 26.9%
S18, S24, S27, S30, S31, S42, S43, S45,
S48, S50, S51, S59, S62, S79

Manually 14 26.9%
S3, S6, S8, S13, S15, S23, S31, S38, S43,
S44, S53, S54, S56, S66

JDeodorant 10 19.2%
S42, S44, S45, S50, S51, S54, S62, S72,
S73, S75

iPlasma 8 15.4% S26, S49, S53, S54, S56, S65, S68, S81
Machine Learning 7 13.5% S24, S43, S58, S66, S67, S79, S83
Papers 6 11.5% S41, S51, S60, S61, S74, S77
DETEX 3 5.8% S33, S34, S71
Incode 3 5.8% S53, S64, S44
inFusion 3 5.8% S65, S53, S49
PMD 3 5.8% S49, S56, S53
BDTEX 2 3.8% S33, S59
CodePro AnalytiX 2 3.8% S55, S78
Jtombstone 2 3.8% S55, S78
Rule Marinescu 2 3.8% S47, S65
AntiPattern Scanner 1 1.9% S56
Bellon benchmark 1 1.9% S15
Checkstyle 1 1.9% S49
DCPP 1 1.9% S50
DUM-Tool 1 1.9% S78
Essere 1 1.9% S68
Fluid Tool 1 1.9% S56
HIST 1 1.9% S42
JADET 1 1.9% S20
Jmove 1 1.9% S75
JSNOSE 1 1.9% S70
Ndepend 1 1.9% S73
NiCad 1 1.9% S28
SonarQube 1 1.9% S50

maintainers can assess the presence of defects in design depending on their design choices

and in the context, or as in [S23] where validation was performed by independent engineers

who assessed whether suspicious classes are smells, depending on the context of the systems

studied/analysed.

Equally with manual validation is the use of the DECOR tool [87], also used in 26.9% of

studies (14 out of 52, [S18, S24, S27, S30, S31, S42, S43, S45, S48, S50, S51, S59, S62, S79]), this

approach is based on symptoms. DECOR is a tool proposed by Moha et al. [87] which uses a

Domain-Specific Language (DSL) to describe CS. They used this DSL to describe well-known

smells, Blob (aka Long Class), Functional Decomposition, Spaghetti Code, and Swiss Army Knife.

They also presented algorithms to parse rules and automatically generate detection algorithms.

The following two tools most used in validation, with 19.2% (10 out of 52 studies) are

JDeodorant [39] used for validation of the studies [S42, S44, S45, S50, S51, S54, S62, S72, S73,

39

CHAPTER 2. STATE OF THE ART

S75], and iPlasma [81] for the studies [S26, S49, S53, S54, S56, S65, S68, S81]. JDeodorant 5 is a

plug-in for the Eclipse IDE developed by Fokaefs et al. for automatic detection of some CS (God
Class, Type Check, Feature Envy, Long Method) and performs refactoring. iPlasma 6 is a tool that

uses a metric-based approach to CS detection developed by Marinescu et al.

Seven studies [S24, S43, S58, S66, S67, S79, S83] compare their results with the results

obtained through ML techniques, namely Genetic Programming (GP), BBN, and Support Vector

Machines (SVM). The ML techniques represent 13.5% of the studies (7 out of 52) that perform

validation.

As we can see in table 2.14, where we present 28 different ways of doing validation, there

are still many other tools used to validate detection techniques.

2.4.11 Replication of the studies (F10)

The replication of a study is an important process in Software Engineering, and its importance is

highlighted by several authors such as Shull et al. [121] and Barbara Kitchenham [67]. Accord-

ing to Shull et al. [121], replication helps to “better understand software engineering phenomena
and how to improve the practice of software development. One important benefit of replications is that
they help mature software engineering knowledge by addressing both internal and external validity
problems."The same authors also mention that in terms of external validation, replications help

to generalize the results, demonstrating that they do not depend on the specific conditions of

the original study. In terms of internal validity, replications also help researchers show the

range of conditions under which experimental results hold. These authors still identify two

types of replication: exact replications and conceptual replications.

Another author to emphasize the importance of replication is Kitchenham [67], claiming

that "replication is a basic component of the scientific method, so it hardly needs to be justified."

Given the importance of replication, it is important that studies provide the necessary

information to enable replication. Especially in exact replications, where the procedures of

an experiment are followed as closely as possible to determine if the same results can be ob-

tained [121]. Thus, our goal is not to perform replications, but to verify that the study has the

conditions to be replicated.

According to Carver [24] [25], a replication paper should provide the following information

about the original study (at a minimum): Research questions, Participants, Design, Artifacts,

Context variables, Summary of results. This information about the original study is required

to provide sufficient context to understand replication. Thus, we consider that for a study to

be replicated, it must provide the aforementioned information. For CS detection studies the

relevant artefacts are the target Software Systems (usually open-source, as seen in section 2.4.3),

the oracles and the CS collection tool/instrument.

Oracles are extremely important for the replication of CS detection studies. However,

since oracles are usually built based on expert’s opinion, they are one of the major sources of

subjectivity in CS detection.

5https://users.encs.concordia.ca/ nikolaos/jdeodorant/
6http://loose.utt.ro/iplasma/

40

2.4. RESULTS AND ANALYSIS

As we have seen in section 2.4.3, only 10 studies present the available dataset, providing a

link to it, however 2 studies, [S28] and [S32], no longer have the active links. Thus, only 12.0%

of the studies (10 out of 83, [S18, S27, S38, S51, S56, S59, S69, S70, S74, S82]) makes the dataset

available, and are this candidates for replication.

Another of the important information for the replication is the existence of an artifact,

it happens that the studies [S70] amd [S74] does not present an artifact, therefore cannot be

replicated.

We conclude that only 9.6% of the studies (8 out of 83, [S18, S27, S38, S51, S56, S59, S69,

S82]) can be replicated according to Carver requirements [24].

It is noteworthy that [S51] makes available on the Internet a replication package composed

of Oracles, Change History of the Object systems, Identified Smells, Object systems, Additional

Analysis - Evaluating the HIST with Cassandra Releases.

2.4.12 Visualization techniques (F11)

CS visualization can be approached in two different ways, (i) CS detection is done through a

non-visual approach and the visualization shows the CS in the code, or (ii) the CS detection is

performed through a visual approach.

Regarding the first approach, we found 5 studies [S9, S40, S57, S72, S81], corresponding

to 6.0% of the studies analyzed in this SLR. Thus, we can conclude that most studies are only

dedicated to detecting CS, but do not pay much attention to visualization. Most of the proposed

CS visualization shows the CS inside the code itself. This approach works for some systems, but

when we are in the presence of large legacy systems, it is too detailed for a global refactoring

strategy. Thus, a more macro approach is required, without losing detail, to present CS in a

more aggregated form.

Regarding to the second approach, where a visualization-based approach is used to detect

CS, it represents 14.5% of the studies (12 out of 83, [S1, S2, S7, S11, S12, S16, S17, S19, S21, S39,

S46, S76]). One of the problems pointed to the visualization-based approach is the scalability

for large systems, since this type of approach is semi-automatic, requiring human intervention.

Nevertheless, we found 3 studies [S7, S17, S16] with solutions dedicated to large systems.

Most studies providing visualization feature show the system structure in packages, classes,

and methods. We could not find examples where view were adapted to the type of CS,for

example, in a CS detection context it is not necessary to show the parts of the software where

there are no CS, since it is only adding unnecessary complexity.

Combining the two types of approaches, we conclude that 20.5% of the studies (17 out of

83) use some kind of visualization in their approach.

As for code smells coverage, the Duplicated Code CS (aka Code Clones) is definitely the one

where more visualization techniques have been applied. Recall from Section 2.2 that Zhang

et al. [146] systematic review on CS revealed that Duplicated Code is the most widely studied

CS. Also in that section, we referred to Fernandes et al. [37] systematic review that concluded

that Duplicated Code was among the top-three CS detected by tools, due to its importance. The

application of visualization to the Duplicated Code CS ranges from 2D techniques (e.g. dot plots

/ scatterplots, wheel views / chord diagrams, and other graph-based and polymetric view-based

41

CHAPTER 2. STATE OF THE ART

Figure 2.8: Summary of main findings

42

2.5. DISCUSSION

ones) to more sophisticated techniques, such as those based on 3D metaphors and virtual reality.

A comprehensive mapping study on the topic of Duplicated Code visualization has just been

published [52].

2.5 Discussion

We now address our research questions, starting by discussing what we found for each of them,

mainly addressing the benefits and limitations of evidence of these findings. The mind map

in Figure 2.8 provides a summary of main findings. Finally, we discuss the validation and

limitations of this systematic review.

2.5.1 Research Questions (RQ)

This subsection aims to discuss the answers to the three research questions and how the findings

and selected documents addressed these issues. In figure 2.2 we show the selected studies and

the respective research questions they focus on. Regarding how findings (F) interrelate with

research questions, findings F1, F2, F3, F4, F5 support the answer of RQ1, findings F5, F6, F7,

F8, F9, F10, support the answer of RQ2, and, finally, F11 supports the answer of RQ3 (see figure

2.9).

Figure 2.9: Relations between findings and research questions

RQ1. Which techniques have been reported in the literature for the detection of CS?

To answer this research question, we classified the detection techniques in seven categories,

following the classification presented in Kessentini et al. [62] (see F1, subsection 2.4.2). The

Search-Based approach is applied in 30.1% studies. These types of approaches are inspired

by contributions in the domain of Search-Based Software Engineering (SBSE) and most tech-

niques in this category apply ML algorithms, with special incidence in the algorithms of genetic

programming, decision trees, and association rules. The second most used approach is the

43

CHAPTER 2. STATE OF THE ART

Metric-Based applied in 24.1% studies. The Metric-Based approach consists in the use of rules

based on a set of metrics and respective thresholds to detect specific CS. The third most used

approach, with 19.3% of studies, is the Symptom-Based approach. It consists of techniques that

describe the symptoms of CS and later translate these symptoms into detection algorithms.

Regarding datasets (see F2, subsection 2.4.3), more specifically the oracles used by the

different techniques, we concluded that only 10 studies (12.0% of studies) provided them. Most

studies, 83.1%, use open-source software, the most used systems being Apache Xerces (33.7%

of studies), GanttProject (16.9%), and ArgoUML with 13.3%.

Regarding the programming language used in the target software systems, Java is used

in 64 studies (77.1%) of the studies use Java as a support language for the detection of CS.

C# and C++ are the other two most commonly used programming languages in CS detection,

being used in 7.2% and 6.0% of studies respectively (see F3, subsection 2.4.4). Multi-language

support for CS detection is also very limited, with the majority (83.1%) of the studies analyzed

supporting only one language. The maximum number of supported languages is three, being

reported exclusively in [S28].

Regarding the most detected CS, God Class stands out with 51.8% (see F4, subsection 2.4.5).

Feature Envy and Long Method with 33.7% and 26.5%, respectively, are the next two most

commonly used CS. When we analyze the number of CS detected by each study, we found that

they detected on average 3 CS, but the most frequent case is the studies detect only 1 CS.

RQ2. What literature has reported on the effectiveness of techniques aiming at detecting CS?

Finding out the most effective technique to detect CS is not a trivial task. We have realized

that all identified approaches have pros and cons, presenting factors that can bias the results.

Although in the evaluation of the techniques (F6, subsection 2.4.7) we found that for 4 ap-

proaches (Probabilistic, Metric-Based, Symptom-Based, and Search-Based) there are reported

techniques with 100% Accuracy and Recall results, the detection problem is very far to be solved.

These results only apply to the detection of simpler CS, e.g. God Class, so it is not surprising

that 51.8% of the studies use this CS, as we can see in table 2.9. In relation to the more complex

CS, the results are much lower and very few studies use them. The fact that only one study

[S57] detects the 22 CS described by Fowler [43] is noteworthy.

The answer to RQ2 is that there is not just one technique, but several techniques, depending

on several factors such as:

• Code smell to detect - We found that there is no technique that generalizes to all CS. When

we analyzed the studies that detected the greatest number of CS, [S38, S53, S57, S63, S69]

(more than 10 CS), we find that Precision and Recall depend largely on the CS.

• Software systems - The same technique when detecting the same CS in different software

systems, presents a great discrepancy in the number of false positives and false negatives

and consequently in Precision and Recall.

• Threshold values - There is no consensus regarding the definition of threshold values. The

variation of this value causes more, or less, CS to be detected, thus varying the number of

false positives. Some authors try to define thresholds automatically, namely using genetic

programming algorithms.

44

2.5. DISCUSSION

• Oracle - Oracles are a key part of most CS detection processes, for example, in the training

of ML algorithms, and are fundamental for replication. However, there is no widespread

practice of oracle sharing.

Regarding the automation of CS detection processes, thus making them independent of

thresholds, we found that 35% of the studies used ML techniques. However, when we look at

how many of these studies do not require thresholds, we find that only 18.1% (15 out of 83,

[S22, S33, S34, S36, S40, S43, S53, S56, S66, S71, S74, S75, S77, S79, S83]) are truly automatic.

RQ3. What are the approaches and resources used to visualize CS and therefore support the
practitioners to identify CS occurrences?

The visualization and representation are of extreme importance, considering the variety

of CS, possibilities of location in code (within methods, classes, between classes, etc.), and

dimension of the code for a correct identification of the CS. Unfortunately, most of the studies

do not visually represent the detected CS. Within the 83 selected studies in the SLR, only 5 out

of the 71 that do not use Visualization-Based detection, visually represent the detected CS.

In the 14.5% studies (12 out of 83) that use visualization-based approaches to detect CS,

several methods are used to show the structure of the programs, such as: (1) city metaphors

[S7, S17]; (2) 3D visualization technique [S16, S17]; (3) interactive ambient visualization [S19,

S39, S46]; (4) multiple views adapted to CS [S12,S21]; (5) polymetric views [S2, S46]; (6) graph

model [S1]; (7) multivariate visualization techniques, such as parallel coordinates, and non-

linear projection of multivariate data onto a 2D space [S76]; (8) in [S46] several views are

displayed such as node-link-based dependency graphs, grids and spiral egocentric graphs, and

relationship matrices.

With respect to large systems, only three studies present dedicated solutions [S7, S17, S16].

2.5.2 SLR validation

To ensure the reliability of the SLR, we carried out validations in 3 stages:

i) The first validation was carried out in the application of the inclusion and exclusion

criteria, through the application of Fleiss’ Kappa [38]. Through this statistical measure, we

validated the level of agreement between the researchers in the application of the inclusion and

exclusion criteria.

ii) The second validation was carried out through a focus group, when the quality criteria

were applied in stage 4.

iii) To validate the results of the SLR we conducted 3 surveys, each divided into 2 parts, one

on CS detection and another on CS visualization. Each question in the surveys consisted of 3

parts: 1) the question itself about one of the findings being evaluated on a 6 point Likert scale

(Strong disagreement, Disagreement, Weak disagreement, Agreement, Strong agreement); 2) a

slider between 0 and 4 measuring the degree of confidence of the answer; 3) an optional field to

describe the justification of the answer or for comments.The three inquiries were intended to:

1) Pre-test, with the aim of identifying unclear questions and collecting suggestions for

improvement. The subjects chosen for the pre-test were Portuguese researchers with the most

relevant work in the area of software engineering, totaling 27;

45

CHAPTER 2. STATE OF THE ART

2) The subjects in the second survey were the authors of the studies that are part of this

SLR, totaling 193;

3) The third survey was directed at the software visualization community; we chose the

authors from all papers selected for the SLR on software visualization by Merino et al.[85]

that were taken exclusively from the SOFTVIS and VISSOFT conferences, totaling 380; we also

distributed this survey through a post on a Software Visualization blog7. The surveys were

deployed in the Qualtrics Online Plataform 8.

The structure of the surveys, collected responses, and descriptive statistics on the latter are

available at a github repository9 and Zenodo [111].

In table 2.15 we present a summary of the results of the responses from this SLR’ authors

(2nd survey) and from the visualization community (3rd survey). As we can see, using the

aforementioned scale, most participants agree with SLR results. The grayed cells in this table

represent, for each finding, the answer(s) that obtained the highest score. We can then observe

that: 10% of the findings had Strong agreement as its higher score, 80% of the findings had

Agreement and, 20% had Weak agreement.

Regarding the question, Please select the 3 most often detected code smells?, the answers placed

the Long Method as the most detected CS, followed by God Class and Feature Envy. In our SLR,

based on actual data, we concluded that the most detected CS is God Class, followed by Feature
Envy and Long Method. This mismatch is small, since it only concerns the relative order of those

3 code smells, and shows that the community is well aware of which are the most often detected

CS.

2.5.3 Validity threats

We now go through the types of validity threats and corresponding mitigating actions that were

considered in this study.

Conclusion validity. We defined a data extraction form to ensure consistent extraction of

relevant data for answering the research questions, therefore avoiding bias. The findings and

implications are based on the extracted data.

Internal validity. To avoid bias during the selection of studies to be included in this review,

we used a thorough selection process, comprised of multiple stages. To reduce the possibility

of missing relevant studies, in addition to the automatic search, we also used snowballing for

complementary search.

External validity. We have selected studies on code smells detection and visualization. The

exclusion of studies on related subjects (e.g. refactoring and technical debt) may have caused

some studies also dealing with code smells detection and visualization not to be included.

However, we have found this situation to occur in breadth papers (covering a wide range of

topics) rather than in depth ones (covering a specific topic). Since the latter are the more

important ones for primary studies selection, we are confident on the relevance of the selected

sample.

7https://softvis.wordpress.com/
8https://www.qualtrics.com/
9https://github.com/dataset-cs-surveys/Dataset-CS-surveys.git

46

2.5. DISCUSSION

Table 2.15: Summary of survey results

Resp. confidence
degree (1-4)

Question(finding)
Answer

Strong
agree-
ment

Agree-
ment

Weak
agree-
ment

Weak
dis-

agree-
ment

Dis-
agree-
ment

of
an-

swers
Average

Std.
devia-
tion

The most frequently used
CS detection techniques
are based on rule-based ap-
proaches (F1)

35.3% 47.1% 11.8% 5.9% 0.0% 34 3.2 0.8

Very few CS detection
studies provide their
oracles (a tagged dataset
for training detection
algorithms) (F2)

26.5% 58.8% 11.8% 2.9% 0.0% 34 3.1 0.7

In the detection of simpler
CS (e.g. Long Method or
God Class), the achieved
Precision and Recall of de-
tection techniques can be
very high (up to 100%)
(F6)

11.8% 44.1% 26.5% 0.0% 14.7% 34 3.2 0.5

When the complexity of
CS is greater (e.g. Di-
vergent Change or Shotgun
Surgery), the Precision and
Recall in detection are
much lower than in sim-
pler CS (F6)

11.8% 47.1% 26.5% 8.8% 5.9% 34 3.1 0.7

There are few oracles (a
tagged dataset for train-
ing detection algorithms)
shared and publicly avail-
able. The existence of
shared and collaborative
oracles could improve the
state of the art in CS detec-
tion research (F2)

60.0% 34.3% 2.9% 2.9% 0.0% 35 3.6 0.5

The vast majority of CS de-
tection studies do not pro-
pose visualization features
for their detection (F11)

15.4% 66.7% 10.3% 5.1% 2.6% 39 3.0 1.0

The vast majority of ex-
isting CS visualization
studies did not present
evidence of its usage upon
large software systems
(F11)

12.5% 43.8% 34.4% 6.3% 0.0% 32 2.9 0.9

Software visualization
researchers have not
adopted specific visualiza-
tion related taxonomies
(F11)

9.4% 28.1% 46.9% 9.4% 6.3% 32 2.0 1.2

If visualization related tax-
onomies were used in the
implementation of CS de-
tection tools, that could
enhance their effectiveness
(F11)

11.8% 38.2% 38.2% 5.9% 5.9% 34 2.8 1.1

The combined use of
collaboration (among
software developers) and
visual resources may in-
crease the effectiveness of
CS detection (F11)

23.5% 50.0% 26.5% 0.0% 0.0% 34 3.2 0.8

47

CHAPTER 2. STATE OF THE ART

Construct validity. The studies identified from the systematic review were accumulated

from multiple literature databases covering relevant journals and proceedings. In the selection

process the first author made the first selection and the remaining ones verified and confirmed

it. To avoid bias in the selection of publications we specified and used a research protocol

including the research questions and objectives of the study, inclusion and exclusion criteria,

quality criteria, search strings, and strategy for search and data extraction.

2.6 Conclusion

2.6.1 Conclusions on this SLR

This Systematic Literature Review has a twofold goal: the first is to identify the main CS

detection techniques, and their effectiveness, as discussed in the literature, and the second is to

analyze to which extent visual techniques have been applied to support practitioners in daily

activities related to CS. For this purpose, we have specified 3 research questions (RQ1 through

RQ3).

We applied our search string in six repositories (ACM Digital Library, IEEE Xplore, ISI Web

of Science, Science Direct, Scopus, Springer Link) and complemented it with a manual search

(backward snowballing), having obtained 1883 papers in total. After removing the duplicates,

applying the inclusion and exclusion criteria, and quality criteria, we obtained 83 studies

to analyze. Most of the studies were published in conference proceedings (76%), followed by

journals (23%), and books (1%). The 83 studies were analysed on the basis of 11 points (findings)

related to the approach used for CS detection, dataset availability, programming languages

supported, CS detected, evaluation of techniques, tools created, thresholds, validation and

replication, and use of visualization techniques.

Regarding RQ1, we conclude that the most frequently used detection techniques are based

on search-based approaches, which mainly apply ML algorithms, followed by metric-based

approaches. Very few studies provide the oracles used and most of them target open-source

Java projects. The most commonly detected CS are God Class, Feature Envy and Long Method, by

this order. On average, each study detects 3 CS, but the most frequent case is detecting only 1

CS.

As for RQ2, in the detection of simpler CS (e.g. God Class) 4 approaches are used (proba-

bilistic, metric-based, symptom-based, and search-based) and authors claim to achieve 100%

Precision and Recall results. However, when the complexity of CS is greater, the results have

much lower relevance and very few studies use them. Thus, the detection problem is very far to

be solved, depending on the detection results of the CS used, of the software systems in which

they are detected, of the threshold and oracle values.

Regarding RQ3, we found that most studies that detect CS do not put forward a correspond-

ing visualization feature. Several visualization approaches have been proposed for representing

the structure of programs, either in 2D (e.g. graph-based, polymetric views) or in 3D (e.g.

city metaphors), where the objective of allowing to identify potentially harmful design issues

is claimed. However, we only found three studies that proposed dedicated solutions for CS

visualization in large systems.

48

2.7. SUMMARY

2.6.2 Open issues

Detecting and visualizing CS are nontrivial endeavors. While producing this SLR we obtained

a comprehensive perspective on the past and ongoing research in those fields, that allowed the

identification of several open research issues. We briefly overview each of those issues to set

up a baseline for our own research presented in this thesis and also in the expectation it may

inspire new researchers in the field.

(1) Code smells subjective definitions hamper a shared interpretation across researchers’

and practitioners’ communities, thus delaying the advancement of the state-of-the-art and state-

of-the-practice; to mitigate this problem it has been suggested a formal definition of CS (see

[109]); a standardization effort, supported by an IT standards body, would certainly be a major

initiative in this context;

(2) Open-source CS detection tooling is poor, both in language coverage (Java is dominant),

and in CS coverage (e.g. only a small percentage of Fowler’s catalog is supported);

(3) Primary studies reporting experiments on CS often do not make the corresponding

scientific workflows and datasets available, thus not allowing their “reproduction", where the

goal is showing the correctness or validity of the published results;

(4) Replication of CS experiments, used to gain confidence in empirical findings, is also

limited due to the effort of setting up the tooling required to running families of experiments,

even when curated datasets on CS exist;

(5) Thresholds for deciding on CS occurrence are often arbitrary/unsubstantiated and

not generalizable; in mitigation, we foresee the potential for the application of multi-criteria

decision criteria approaches that take into account the scope and context of CS, as well as

approaches that explore the power of the crowd, such as the one proposed in [113];

(6) CS studies in mobile and web environments are still scarce; due to their importance of

those environments in nowadays life, we see a wide berth for CS research in those areas;

(7) CS visualization techniques seem to have great potential, especially in large systems, to

help developers in deciding if they agree with a CS occurrence suggested by an existing oracle;

a large research effort is required to enlarge CS visualization diversity, both in scope (single

method, single class, multiple classes) and coverage, since the existing literature only tackles a

small percentage of the cataloged CS.

2.7 Summary

This chapter presented the state-of-the-art techniques and tools used for code smells detection

and visualization and confirms the research problems addressed by this dissertation using an

SLR validated by online survey’s. We confirmed that the detection of code smells is a non trivial

task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated

with the definition and detection of code smells; increasing the diversity of detected code

smells and of supported programming languages; constructing and sharing oracles and datasets

to facilitate the replication of code smells detection and visualization techniques validation

experiments; performing replication studies.

49

[This page has been intentionally left blank]

P
a
r
t IIII II

CS Detection and Visualization

Introduction
Chapter 1

PART I: FUNDAMENTALS

State of the Art
Chapter 2

Crowdsmelling: The use of collective knowledge
in code smells detection
Chapter 3

PART II: CODE SMELLS DETECTION AND VISUALIZATION

Smelly Maps
Chapter 4

Crowdsmelling Tool
Chapter 5

PART III: CROWDSMELLING: A ML-BASED CROWDSOURCING
 APPROACH FOR CODE SMELLS DETECTION

Conclusion
Chapter 6

PART IV: CONCLUSION

This part presents the first results of our Crowdsmelling approach for detecting and visualizing

CS in a real context, and Smelly Maps, our proposed visualization of CS.

52

C
h
a
p
t
e
r

33 3

Crowdsmelling: The use of collective knowledge

in CS detection

Contents
3.1 Introduction . 55

3.2 Related Work . 55

3.2.1 Crowd and collaborative-based approaches 55

3.2.2 Multiple ML models based approaches 57

3.3 Experiment Planning . 58

3.3.1 Research Questions . 58

3.3.2 Participants . 58

3.3.3 Data . 59

3.3.4 CS . 61

3.3.5 Code Metrics . 61

3.3.6 Machine Learning Techniques Experimented 61

3.3.7 Model Evaluation . 62

3.3.8 Process . 63

3.4 Results . 67

3.4.1 RQ1. What is the performance of ML techniques when trained with
data from the crowd? . 67

3.4.2 RQ2. What is the best ML model to detect each one of the three CS? 70

3.4.3 RQ3. Is it possible to use Collective Knowledge for CS detection? 72

3.5 Discussion . 74

3.5.1 Research Questions (RQ) . 74

3.5.2 Implications and limitations of the Crowdsmelling Approach 76

3.5.3 Threats to validity . 77

3.6 Summary . 79

53

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

This chapter evaluates our approach, Crowdsmelling, in a real-world scenario to provide evi-

dence that this approach is feasible for detecting CS.

54

3.1. INTRODUCTION

3.1 Introduction

This chapter presents the results of a validation experiment for the Crowdsmelling approach

proposed in Chapter 1.2.3. The latter is based on supervised ML techniques, where the wisdom

of the crowd (of software developers) is used to collectively calibrate CS detection algorithms,

thereby lessening the subjectivity issue.

In the context of three consecutive years of a Software Engineering course, a total “crowd”

of around a hundred teams, with an average of three members each, classified the presence

of 3 CS (Long Method, God Class, and Feature Envy) in Java source code. These classifications

were the basis of the oracles used for training six ML algorithms. Over one hundred models

were generated and evaluated to determine which ML algorithms had the best performance in

detecting each CS mentioned above.

Good performances were obtained for God Class detection (ROC=0.896 for Naive Bayes)
and Long Method detection (ROC=0.870 for AdaBoostM1), but much lower for Feature Envy
(ROC=0.570 for Random Forest).

The results suggest that Crowdsmelling is a feasible approach for detecting CS. However, fur-

ther validation experiments based on dynamic learning are required to comprehensive coverage

of CS to increase external validity.

3.2 Related Work

The related work is organized in two subsections and chronologically within each one.

3.2.1 Crowd and collaborative-based approaches

Palomba et al. [99] presented LANDFILL, a Web-based platform for sharing code smell datasets,

and a set of Application Program Interface (API) for programmatically accessing LANDFILL’s

contents. This platform was created due to the lack of publicly available oracles (sets of anno-

tated CS). The web-based platform has a dataset of 243 instances of five types of CS (Divergent

Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy) identified from 20

open-source software projects and a systematic procedure for validating code smell datasets.

LANDFILL allows anyone to create, share, and improve code smell datasets.

Oliveira et al. [93] performed a controlled experiment involving 28 novice developers

aimed at assessing the effectiveness of collaborative practices in the identification of CS. The au-

thors used Pair Programming (PP) and Coding Dojo Randori (CDR), which are two increasingly

adopted practices for improving the effectiveness of developers with limited or no knowledge

in Software Engineering tasks, including code review tasks, and compared these two practices

(PP and CDR) with solo programming in order to better distinguish their impact on the effective

identification of CS. The results suggest that collaborative practices contribute to the effective-

ness of identifying a wide range of CS. For nearly all types of inter-class smells, the average of

CS identified by novice pairs or groups outperformed at least 40% of the corresponding average

of CS identified by individuals, and collaborative practices tend to increase the success rate in

identifying more complex ones. In the same year, [95] performed research based on a set of

controlled experiments conducted with more than 58 novice and professional developers, with

55

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

the aim of knowing how to improve the efficiency in the collaborative identification of CS, and

reached the same conclusions as to the first study.

Oliveira et al. [94] reported an industrial case study aimed at observing how 13 developers

individually and collaboratively performed smell identification in five software projects from

two software development organizations [94]. The results are in line with previous studies by

these authors, where they suggest that collaboration contributes to improving effectiveness in

identifying a wide range of CS [93, 95].

de Mello et al. [30] presented and discussed a set of context factors that may influence

the effectiveness of CS identification tasks. The authors presented an initial set of practical

suggestions for composing more effective teams for the identification of CS. These suggestions

were, i) be sure all team professionals are aware of the code smell concepts applied in the

review, ii) be sure all team professionals are aware of the relevance of identifying CS, iii) take

preference to use collaboration in the reviews, iv) include professionals that had worked in

the module and professionals without such experience, v) include professionals with different

professionals roles.

Tahir et al. [130] presented a study where they investigated how developers discuss CS and

anti-patterns over Stack Overflow to understand better their perceptions and understanding of

these two concepts. In this paper, both quantitative and qualitative techniques were applied

to analyze discussions containing terms associated with CS and anti-patterns. The authors

reached conclusions like: i) developers widely use Stack Overflow to ask for general assessments

of CS or anti-patterns, instead of asking for particular refactoring solutions, ii) developers very

often ask their peers ‘to smell their code’ (i.e., ask whether their own code ‘smells’ or not),

and thus, utilize Stack Overflow as an informal, crowd-based code smell/anti-pattern detector,

iii) developers often discuss the downsides of implementing specific design patterns, and ‘flag’

them as potential anti-patterns to be avoided. Conversely, the authors also found discussions on

why some anti-patterns previously considered harmful should not be flagged as anti-patterns,

iv) C#, JavaScript and Java were the languages with most questions on CS and anti-patterns,

constituting 59% of the total number of questions on these topics, v) Blob, Duplicated Code

and Data Class are the most frequently discussed smells in Stack Overflow, vi) when authors

analyzed temporal trends in posts on CS and anti-patterns in Stack Overflow, show that there

has been a steady increase in the numbers of questions asked by developers over time.

Oliveira et al. [96] have carefully designed and conducted a controlled experiment with

34 developers. The authors exploited a particular scenario that reflects various organizations:

novices and professionals inspecting systems they are unfamiliar with. They expected to mini-

mize some critical threats to the validity of previous work. Additionally, they interviewed five

project leaders aimed to understand the potential adoption of collaborative smell identification

in practice. Statistical testing suggested 27% more Precision and 36% more Recall through the

collaborative smell identification for both novices and professionals. The interviews performed

by the authors showed that leaders would strongly adopt collaborative smell identification.

However, some organization and tool constraints may limit such adoption.

Baltes and Treude [8] presented a study with similarities and differences between code

clones in general and code clones on Stack Overflow and point to open questions that need to be

addressed to be able to make data-informed decisions about how to properly handle clones on

56

3.2. RELATED WORK

this important platform. The results of his first preliminary investigation indicated that clones

in Stack Overflow are common, diverse, similar to clones in regular software projects, affect

the maintainability of posts, and can lead to licensing issues. The authors further point out to

specific challenges, including incentives for users to clone successful answers and difficulties

with bulk edits on the platform.

3.2.2 Multiple ML models based approaches

Regarding the use of the ML approach in the detection of CS, most studies only use one algo-

rithm, being the most usual algorithm the decision trees. Therefore, we will present below the

most relevant studies that use multiple ML algorithms.

Some of the most relevant studies in the area of ML were performed by Fontana et al. [6,

42]. Initially, Fontana et al. [42] outlined some common problems of code smell detectors and

described the approach they were following based on ML techniques. They, them focused on

four CS (Data Class, Large Class, Feature Envy, Long Method), considered 76 systems for analysis

and validation, and experimented with six different ML algorithms. The results with a use

of 10-fold cross-validation to assess the performance of predictive models showed that J48,

Random Forest, JRip, and SMO had Accuracy values greater than 90% for the four CS, and on

average, they had the best performances. In a following, Fontana et al. [6] performed the largest

experiment so far of applying ML algorithms in this context. They experimented with 16 differ-

ent machine-learning algorithms on the same four CS detected upon and 74 software systems,

with 1986 manually validated code smell samples. They found that all algorithms achieved

high performances in the cross-validation data set, yet the highest performances were obtained

by J48 and Random Forest, while support vector machines achieved the worst performance. The

authors concluded that the application of ML to detect these CS could provide high Accuracy
(>96 %), and only a hundred training examples are needed to reach such high Accuracy. The

authors interpret the results as indicating that “using ML algorithms for code smell detection

is an appropriate approach”.

Di Nucci et al. [31] replicated the Fontana et al. [6] study with a different dataset configura-

tion. The dataset contains instances of more than one type of smell, with a reduced proportion

of smelly components and a smoothed boundary between the metric distribution of smelly

and non-smelly components, and therefore more realistic. The results revealed that with this

configuration, the ML techniques reveal critical limitations in state-of-the-art, which deserve

further research. Furthermore, they concluded that when testing code smell prediction models

on the revised dataset, they noticed: i) Accuracy of all the models is still noticeably high when

compared to the results of the reference study (on average, 76% vs. 96%), ii) that performances

are up to 90% less accurate in terms of F-Measure than those reported in the Fontana et al. study.

Thus, the problem of detecting CS through the adoption of ML techniques may still be worthy

of further attention, e.g., in devising proper ML-based code smell detectors and datasets for

software practitioners.

To the best of our knowledge, namely obtained while performing a systematic literature

review on CS detection techniques (see chapter 2.1), there is no study that uses a collective

57

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

knowledge-based approach to detect CS automatically, i.e. based on ML, with a dataset incre-

ment over 3 years. The use of groups of people in CS detection is typically used in manual

detection approaches and in the construction of oracles (a tagged dataset for training detection

algorithms). A distinctive feature of our approach is the use of crowds. While in related work a

group of 3 to 5 people is typically used to build an oracle, we used hundreds, thus embodying

a much larger large diversity of opinions.

3.3 Experiment Planning

3.3.1 Research Questions

The concept of Crowdsmelling – the use of collective intelligence in detecting CS – aims to

mitigate the problems mentioned above of subjectivity and lack of calibration data required to

obtain accurate detection model parameters by using ML techniques. We have formulated the

following research questions to assess the feasibility of Crowdsmelling:

• RQ1: What is the performance of ML techniques when trained with data from the crowd

and hypothetically more realistic?

• RQ2: What is the best ML model to detect each one of the three CS?

• RQ3: Is it possible to use collective knowledge for CS detection?

The goal of these RQs is to understand if our Crowdsmelling approach is feasible. For this, it

is fundamental to understand the performance of ML techniques (RQ1), which will make our

approach feasible. However, it is always important to know, in addition to performance, if

that performance can optimized differently depending on the considered CS (RQ2). If it is

found that there is a tendency for one algorithm to overlap with the others, in the future, we

can simplify our research, focusing on fewer algorithms. This aspect will also propose the

simplification of an application that automates this approach. Finally, based on this data, we

intend to determine the feasibility of this approach in detecting CS (RQ3).

3.3.2 Participants

In our approach several teams use a tool, as an advisor, to detect CS and then manually confirm

the detection’s validity. In addition to the CS detected by the advisor tool, teams could always

add other CS manually. In the end, code identification, code metrics, and classification (pres-

ence or absence of CS) were saved by creating an oracle for each code smell. This oracle was

aimed at training ML algorithms for CS detection. These oracles were extended over a period

of three years. In each year the oracle was enriched with data from new teams, thus increasing

the variability of existing classifications, since different teams may interpret the definition of

CS differently.

Our subjects were finalists (3rd year) of a B.Sc. degree in Computer Science at the ISCTE-

IUL University, attending a compulsory Software Engineering course. They had similar back-

grounds, as they had been trained across the same set of courses along their academic path.

However, there were differences between the students, as the skills and experience in code

58

3.3. EXPERIMENT PLANNING

development were different. The knowledge about CS was acquired in the aforementioned

Software Engineering course.

Table 3.1: Teams whose CS detection was included in the oracles

Year Number of teams Total number of elements Average group size

2018 8 31 4
2019 51 152 3
2020 44 179 6

103 362

Teams had a variable size depending on the year (see Table 3.1), and the number of partici-

pants increased thought the observation period. In 2018, teams were formed, mostly with four

elements each, for a total of 73 elements, but in the end, only the data from 8 teams, for a total

of 31 elements, were used for the oracle. In subsection 3.3.3 we explain why the data from 11

teams were not used. In 2019 we had 51 teams, mainly made up of 3 members, with a total

of 152 members. In 2020 we had 44 teams, mainly made up of 6 members, with a total of 179

members. These teams were requested to complete a CS detection assignment.

3.3.3 Data

Participants were invited to perform the detection of 3 CS (God Class, Feature Envy, Long Method)

in a code extract (e.g., of their choice). They used JDeodorant1 as an auxiliary tool in the

detection. The use of tools to help detect CS in the process of creating oracles is usual. For

example, in the Fontana et al. [6] study, five advisors were used, depending on the code smell

that was intended to be detected. We chose JDeodorant because:

• Detects refactoring opportunities for the three CS used;

• Is one of the best known and used tools, as we can see in the paper by Tsantalis et al.

[133];

• Integrate nicely with the Eclipse IDE that all subjects were used to.

To account for individual judgement in the oracle, teams could either decide to accept (true

positives) or not (false positives) the tool suggestions or add additional manual detections (false

negatives).

In 2018, each team chose the Java project where they wanted to do CS detection from a list of

8 open-source projects. The latter had already been used in other studies, namely in those using

ML approaches mentioned in the related work section [6, 31, 42]. However, in the end, only

three projects/versions were considered: Jasml-0.102, Jgrapht-0.8.13 and Jfreechart-1.0.134. We

discarded the collected data from the other projects chosen by 11 teams (42 participants) since

those teams used diversified versions and, therefore, the collected metrics were not consistent

1https://users.encs.concordia.ca/ nikolaos/jdeodorant/
2http://jasml.sourceforge.net/
3https://jgrapht.org/
4https://www.jfree.org/

59

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

across versions, which would be a validity threat. We just used Jasml-0.10 in the following two

years to avoid this issue.

The results of each team’s detection were saved in a file with the following fields for each of

the CS Feature Envy and Long Method: team number, project, package, class, method, 82 metrics of
code, is code smell. In the case of the code smell God Class, as the scope is a class, the file did not

have the method field, and 61 code metrics were collected. So, in the end, we have three files,

one for each code smell.

The data obtained each year served to reinforce the calibration datasets of the ML algo-

rithms, with the objective of improving their detection performance over time. Having several

datasets allows determining the one that provides the best results for each code smell.

Table 3.2: Datasets (Oracles) and their composition

Dataset Code smell # Cases True % True False % False

2018 Feature Envy 10 3 30% 7 70%
2019 Feature Envy 197 110 56% 87 44%
2019+2018 Feature Envy 207 113 55% 94 45%
2020 Feature Envy 123 79 64% 44 36%
2020+2019 Feature Envy 320 189 59% 131 41%
2020+2019+2018 Feature Envy 330 192 58% 138 42%
2018 God class 22 8 36% 14 64%
2019 God class 129 74 57% 55 43%
2019+2018 God class 151 82 54% 69 46%
2020 God class 136 84 62% 52 38%
2020+2019 God class 265 158 60% 107 40%
2020+2019+2018 God class 287 166 58% 121 42%
2018 Long Method 59 24 41% 35 59%
2019 Long Method 414 180 43% 234 57%
2019+2018 Long Method 473 204 43% 269 57%
2020 Long Method 853 350 41% 503 59%
2020+2019 Long Method 1267 530 42% 737 58%
2020+2019+2018 Long Method 1326 554 42% 772 58%

In Table 3.2 we present the composition of the datasets, indicating the following elements,

i) name of the dataset, ii) code smell to which the dataset refers, iii) number of cases, iv) number

of true instances, v) percentage of true instances, vi) number of false instances, vii) percentage

of false instances. Each dataset is identified by the year, or the years that constitute it, for

example, 2019 is the dataset of the year 2019, and 2019+2020 is the dataset resulting from the

aggregation of the datasets of the years 2019 and 2020. Unlike several authors, such as Fontana

et al. [6], we do not normalize our datasets in size in order to balance the number of positive

and negative instances. Even with the risk of getting worse results, we used the datasets with

all the cases classified by the teams. Thus, we believe that we are reproducing the reality of the

teams’ thinking about CS. The size of the datasets varies widely depending on the type of code

smell. Since the datasets of the code smell Feature Envy are very small, i.e., for a code smell in

the scope of the method, they do not have a large enough variance of cases, it was not possible

to obtain good results. Even so, we intend to use all the datasets, as they represent the obtained

60

3.3. EXPERIMENT PLANNING

reality and serve as a basis for a future amplification and evolution of the crowd’s study in CS

detection.

The 18 datasets are available on GitHub5 and Zenodo [112].

3.3.4 CS

In this study, we considered three different types of CS defined by Fowler et al. [43]:

• Feature Envy. When a method is more interested in members of other classes than its own,

it is a clear sign that it is in the wrong class;

• Long Method. They usually are very large and complex and, therefore, difficult to under-

stand, extend and modify. It is very likely that they are implementing more than one

functionality, therefore hurting one of the principles of a good Object Oriented design,

the Single Responsibility Principle (SRP);

• God Class. This smell characterises classes having a large size, poor cohesion, and several

dependencies with other data classes of the system. Class that has many responsibilities

and therefore contains many variables and methods. The same SRP also applies in this

case;

The choice of these three codes smells was due to the fact that, according to the Systematic

Literature Review we conducted, they are the three most detected CS (see section 2.4.5). There-

fore, it is easier for teams to obtain documentation and understand these three CS for better

detection.

3.3.5 Code Metrics

In this study, we used the same metrics that were used in the study of Fontana et al. [6], since

the metrics values for 74 java projects are publicly available6.

The metrics extracted from the software, which constitute the independent variables in the

ML algorithms, are at class, method, package, and project level. For God Class, we used a set of

61 metrics, and for the other two CS, Feature Envy and Long Method, we used a set of 82 metrics.

Those metrics are listed in table B.1 and their definition and description can be found in the

study of Fontana et al. [6].

3.3.6 Machine Learning Techniques Experimented

The tool used in this experiment to train and evaluate ML algorithms was Weka (open-source

software from Waikato University) [51], and the following algorithms available in Weka were

used:

• J48 [106] is an implementation of the C4.5 decision tree and its three types of pruning

techniques: pruned, unpruned, and reduced error pruning;

5https://github.com/dataset-cs-surveys/Crowdsmelling
6https://essere.disco.unimib.it/machine-learning-for-code-smell-detection/

61

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

• Random Forest [14] consists of a large number of individual decision trees, a forest of

random trees, that operate as an ensemble;

• AdaBoostM1 [44] Boosting works by repeatedly running a given weak learning algorithm

on various distributions over the training data and then combining the classifiers pro-

duced by the weak learner into a single composite classifier. Weka uses the Adaboost M1
method;

• SMO [104] is a Sequential Minimal Optimization algorithm widely used for training

support vector machines. We use the Polynomial kernel;

• Multilayer Perceptron [115] is a classifier that uses backpropagation to learn a multi-layer

perceptron to classify instances;

• Naïve Bayes [56] is a probabilistic model based on the Bayes theorem.

Experiments were performed to evaluate the ML algorithms’ performance with their default

parameters for each type of code smell. Also, no feature selection technique was used.

3.3.7 Model Evaluation

To assess the capabilities of the ML model, we adopted 10-Fold Cross-Validation [128]. This

methodology randomly partitions the data into 10 folds of equal size, applying a stratified

sampling (e.g., each fold has the same proportion of code smell instances). A single fold is used

as a test set, while the remaining ones are used as a training set. The process was repeated ten

times, using a different fold each time as a test set. The result of the process described above

consisted of a confusion matrix for each code smell type, and each model [103].

Several evaluation metrics can be used to assess model quality in terms of false posi-

tives/negatives (FP/FN) and true classifications (TP/TN). However, commonly used measures,

such as Accuracy, Precision, Recall, and F-Measure as defined in equations 3.1, 3.2, 3.3, 3.4,

do not perform very well in the case of an imbalanced dataset, or they require the use of a min-

imum probability threshold to provide a definitive answer for predictions. For these reasons,

we used the ROC7, which is a threshold invariant measurement [18]. Nevertheless, for general

convenience, we provide all the evaluation metrics in the results tables.

Accuracy =
T P + TN

T P +FP +FN + TN
(3.1)

Precision =
T P

T P +FP
(3.2)

Recall =
T P

T P +FN
(3.3)

F-Measure = 2 ∗ Recall ∗Precision
Recall + Precision

(3.4)

7Receiver Operating Characteristic (ROC) is a curve that plots the true positive rates against the false positive
rates for all possible thresholds between 0 and 1.

62

3.3. EXPERIMENT PLANNING

ROC gives us a 2-D curve, which passes through (0, 0) and (1, 1). The best possible model

would have the curve close to y = 1, with an area under the curve (AUC) close to 1.0. AUC

always yields an area of 0.5 under random guessing. This enables comparing a given model

against random prediction without worrying about arbitrary thresholds or the proportion of

subjects on each class to predict [107].

3.3.8 Process

This subsection describes the three stages that constitute the process adopted in this exploratory

study.

3.3.8.1 Stage 1: Developer - Code smell classification

All Java developers used the Eclipse IDE with the JDeodorant plug-in installed.
Crowdsmelling (Developer) (Copy)

D
ev

el
op

er
's

 C
om

pu
te

r

O
pe

ra
ti

ng
 s

ys
te

m
Ec

lip
se

 ID
E

Ba
si

c
di

st
ri

bu
ti

on

Operating system - Eclipse IDE - Basic distribution

Java project
Import
project

CS
detection

Load plugin

JD
eo

do
ra

nt

Operating system - Eclipse IDE - JDeodorant

Load plugin
CS

identification
Detect CS

Exit command

Identified
CS (TXT)

Ed
it

or

Operating system - Editor

CS
classification

Classified
CS (TXT)

Developer Classify CS

Ends CS identificationIdentify CS

Start IDE

Figure 3.1: Process of CS classification by the developer

Figure 3.1 shows the CS classification process by the programmer, where we can see that

after importing the Java project, the participants were invited to perform the detection of 3

Code smells (Long Method, God Class, Feature Envy). In 2018, detections of CS were performed

in the 3 Java projects as follows:

a) Long Method, five teams detected this smell in jasml-0.10, two teams detected it in

jfreechart-1.0.13, and all detections performed in jgrapht-0.8. One was not used for the

reasons described in subsection 3.3.3;

63

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

b) God Class, four teams detected this smell in jasml-0.10, two teams detected it in jfreechart-

1.0.13, and one team detected it in jgrapht-0.8.1;

c) Feature Envy, only the detections made by four teams in jasml-0.10 were used, all other

detections were discarded for the reasons already mentioned.

In the following two years, all teams detected all three CS in jasml-0.10.

In this detection, the participants could use JDeodorant as an auxiliary tool to detect smells,

i.e., they first used JDeodorant as an advisor and then manually validated the result of the de-

tection by agreeing or not, with the detected CS. Furthermore, JDeodorant detects refactoring

opportunities (refactoring is a controlled technique for improving the design of an existing

code base [43]), consequently, when JDeodorant detects a refactoring opportunity, it is detecting

a code smell candidate. Finally, the use of JDeodorant also had the advantage that participants

could export the CS identified by this tool to a text file, where they later registered their agree-

ment or not with this identification, i.e., they performed the final classification.

Regardless of the use of JDeodorant, all participants could identify the CS directly in the

Java project code (using the code metrics) and record their occurrence or not in a text file. In

this case, the participants wrote in the text file the name of the class or method and if there

existed or not a code smell. The percentage of teams that performed CS detection without the

help of the JDeodorant advisor was 7%. Although the work of detecting CS without the use of

the advisor is higher, we found that, on average, the teams that did not use the advisor detected

30% more Long Methods and 20% more God Class. Regarding Feature Envy, the detection was

on average 16% less than the teams that used JDeodorant.
With the use of JDeodorant, as an advisor, in detecting smells, there is a risk that teams

will only classify CS resulting from advisor detection, in our case, CS candidates detected by

JDeodorant. The teams were asked to classify all classes and methods in a project package to

mitigate this risk, thus extending the classification to cases not detected by JDeodorant. Another

factor that minimizes this risk is the fact that JDeodorant identifies refactoring opportunities

in code that is clearly not code smell, but the code can still be improved. This fact causes

JDeodorant’s detection to result in a larger percentage of false positives and consequently a

larger disagreement between the teams’ classification and JDeodorant’s identification. In the

detection of the Long Method, the degree of disagreement with JDeodorant in the year 2018 was

66% (highest disagreement), and in the year 2019, it was 49% (lowest disagreement), being in

total for the three years 54%. For God Class, the disagreement with JDeodorant for the three

years was 47% and varied from 68% in the year 2018 to 40% in 2020. In Feature Envy, the

disagreement ranged from 70% in 2018 to 34% in 2020, being in the three years 45%.

Regarding the code classified by the teams, methods, and classes of the applications, we

found that the majority was classified by more than one team. In the first year, 2018, due to

the diversity of Java projects used, there was a greater dispersion of the code classified, with

most classes (75%) and methods (76%) classified by only one team. The most extreme cases

were a class classified by 4 teams and a method classified by 6 teams. The next two years saw

a reversal, with most classes and methods being classified by more than one team. Regarding

classes, 60% in the year 2019 and 75% in the year 2020 were classified by more than one team,

with the most extreme case was a class being classified by 43 teams. Regarding methods, 85%

64

3.3. EXPERIMENT PLANNINGCrowdsmelling (Researcher) (Copy)

Re
se

ar
ch

er
's

 C
om

pu
te

r

W
ek

a

Weka

Import
dataset

ML classification

Choose
algorithm

Train
algorithm

Cross
validation

testing ML classifier
output
(CSV)

Ex
ce

l
Excel

Data
preparation

Classified
CS (TXT)

CS
dataset

(CSV)

Code
metrics
(XLSX)

Output file
conversion

ML classifier
output
(XLSX)

Figure 3.2: Process of creation of the datasets and evaluation of the ML techniques by the
researcher

and 60% were classified by more than one team in 2020 and 2019, respectively, with the most

extreme case was a method being classified by 44 teams.

The time given to the teams to classify the three CS was three weeks, and no indication was

given on how they should work as a team, that is, how they should divide the CS classification

among the various team members. Hence, based on the data obtained from the experiment, we

cannot identify precisely which members performed a specific code analysis. However, we were

able to identify which CS were analyzed. For example, according to data available in GitHub8

and Zenodo [112], it is possible to identify that in the 2020 Long Method dataset, the private
void consumeDigits() method was classified by 37 teams by applying a filter to the method

field. Furthermore, we have made available on GitHub and Zenodo the file code-classification-
statistics.csv with a set of statistics about the percentages of teams that classified the methods

and classes. We also found that the teams divided the classification of the three CS among their

members, for example, when the team had six members, they created groups of two members,

and each group classified one code smell in the code. In this way, the teams increased the

reliability of the classification since two team members classified the code.

As a result of this stage, all teams produced three files - one for each code smell - with

the classification of a set of methods and classes of the Java project, i.e., with the record of the

existence or not of CS in those classes or methods. This stage was performed over three years,

2018, 2019, and 2020.

3.3.8.2 Stage 2: Researcher - Evaluation of ML models

After collecting data in three years, we proceeded to the second phase, which aimed to pro-

duce the datasets for the three CS and evaluate the different ML techniques. In figure 3.2 is

represented the whole process of this second stage.

The first task to be performed by the researcher was the creation of the datasets described

in section 3.3.3.

8https://github.com/dataset-cs-surveys/Crowdsmelling

65

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION
Crowdsmelling2 (Researcher) (Copy)

Re
se

ar
ch

er
 C

om
pu

te
r

SP
SS

SPSS

ANOVA

ANOVA
results

Ex
ce

l

Excel

Assess ML
algorithms

ML classifier
output
(XLSX)

Merge
classifier

output files
Merged ML

classifier

Figure 3.3: Process of testing the variance between ML models

The creation of the datasets was done by joining all the text files with the classifications of

a code smell produced by the teams of each year in a single Excel file. Then, to this Excel file

were added the code metrics for the methods or classes (see section 3.3.5), depending on the

scope of the code smell to which the dataset belongs. Thus, in a first step, datasets were created

- usually called oracles - with the data for each year, for each of the three CS, for a total of 6

datasets. These datasets were given the name of the year when they were collected, i.e., 2018,

2019, and 2020. In a second step, we aggregated the dataset of the year with those of previous

years to make the dataset larger, increasing the number of instances. In the end, we created six

datasets for each code smell, totalling 18 datasets (see table 3.2).

After creating the datasets, we proceeded to the creation and evaluation of the ML models

using Weka (open-source software from Waikato University) [51]. To import datasets into Weka,

we convert the datasets files from Excel XLSX to Comma Separated Values (CSV). With Weka we

trained the six algorithms described in section 3.3.6, with each of the 18 datasets, and evaluated

the model produced using the 10-Fold Cross-Validation methodology. In the end, 36 ML models

were created for each code smell, with a total of 108 models for the three CS. Finally, all the

metrics (Accuracy, Precision, Recall, F-Measure, and ROC) resulting from the evaluation of each

model were saved in the "ML classifier output"file (see section 3.3.7).

3.3.8.3 Stage 3: Researcher - Model variance test

To check if there were significant differences among the classifications presented by the different

models, we applied a one-way ANalysis Of VAriance (ANOVA) (see figure 3.3).

We used the ROC value to test the variance among the ML models. Thus, the first step was

to produce a data file, for each code smell, with the identification of the ML models and the

respective ROC. This file was created aggregating the results of the evaluations of all models

produced by Weka per code smell.

To analyze if there were differences between the classifications of the ML models for each

code smell, we performed an analysis of variance using a one-way analysis of variance (ANOVA)

test using the IBM SPSS Statistics 27 software.

66

3.4. RESULTS

3.4 Results

In this section, we present the experiment results with respect to our research questions.

3.4.1 RQ1. What is the performance of ML techniques when trained with data
from the crowd?

In this RQ we will evaluate the performance of the 36 models for each code smell in a total of

108 models. These models resulted from the training of the six ML algorithms (J48, Random
Forest, AdaBoostM1, SMO, Multilayer Perceptron, Naïve Bayes), described in section 3.3.6, by

the datasets presented in table 3.2. These algorithms were trained with the various datasets

resulting from the crowd and, as explained in 3.3.3, we expect these datasets to be realistic

because, to represent as faithfully as possible what the detection teams think about the CS.

We have chosen to use the ROC as the primary metric from the various existing metrics for

evaluating ML models, but we also use Accuracy, Precision, Recall, and F-Measure. For testing,

we used the 10-Fold Cross-Validation as justified in 3.3.7.

3.4.1.1 Performance of ML techniques for the code smell Long Method

Starting by analyzing the ML techniques for the Long Method data, described in Table 3.3, we

observed that the Random Forest and AdaBoostM1 algorithms obtained the best results. The

best result with a ROC of 0.870 was obtained by AdaBoostM1 when trained by the 2020 dataset,

followed by the Random Forest with a ROC of 0.869 for the same dataset. For the 2018 dataset,

the best result was also that of AdaBoostM1. However, the most uniform algorithm was Random
Forest, with the best results in 4 of the six datasets (2020+2019+2018, 2020+2019, 2019+2018,

2019), and for the 2020 dataset, the difference for AdaBoostM1 is insignificant (0.001). The

Multilayer Perceptron and J48 algorithms were two other algorithms to present ROC results

above 0.800. Especially the Multilayer Perceptron algorithm, which for the datasets of the year

2020 presented a ROC between 0.868 and 0.822.

Table 3.3: Long Method: ROC Area results for the ML algorithms trained by the 3 years datasets

year 2020 2019 2018

Algorithm
dataset

2020+2019+2018 2020+2019 2020 2019+2018 2019 2018

J48 0.792 0.801 0.832 0.677 0.678 0.617
Random Forest 0.828 0.828 0.869 0.684 0.679 0.671
AdaBoostM1 0.807 0.818 0.870 0.665 0.673 0.707
SMO 0.753 0.753 0.803 0.634 0.649 0.524
Multilayer Perceptron 0.822 0.822 0.868 0.683 0.667 0.604
Naïve Bayes 0.736 0.742 0.783 0.584 0.614 0.471

The worst results were obtained by the Naïve Bayes algorithm with ROC between 0.783 and

0.471. The second worst algorithm was SMO, with ROC results between 0.803 and 0.524.

In table 3.3, we can still observe that the best results were obtained when the algorithms

were trained with the 2020 datasets, with ROC of 0.870 for the 2020 dataset and ROC of 0.828

67

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

for the datasets 2020+2019+2018 and 2020+2019. In opposition is 2019, with the worst results,

ROC of 0.684 and 0.679 for the datasets 2019+2018, 2019, respectively.

3.4.1.2 Performance of ML techniques for the code smell God Class

Table 3.4 shows the results of the ML techniques for the God Class data. The best result was

obtained by the Naïve Bayes algorithm, when trained by the 2020 dataset, with the ROC value

of 0.896. The algorithms that obtained the best performances were Naïve Bayes and Multilayer
Perceptron, with the best result in 3 of the datasets, each one. Naïve Bayes obtained the best

results for the datasets 2020, 2020+2019, 2019, with ROC values of 0.896, 0.859, and 0.804,

respectively. Also, with the best result in 3 datasets (2020+2019+2018, 2019+2018, 2018),

the Multilayer Perceptron algorithm presented ROC values between 0.768 and 0.885. The Ran-
dom Forest and AdaBoostM1 algorithms presented their best ROC values of 0.893 and 0.876,

respectively, for the 2020 dataset.

Table 3.4: God Class: ROC Area results for the ML algorithms trained by the 3 years datasets

year 2020 2019 2018

Algorithm
dataset

2020+2019+2018 2020+2019 2020 2019+2018 2019 2018

J48 0.763 0.759 0.791 0.693 0.725 0.692
Random Forest 0.853 0.850 0.893 0.781 0.802 0.491
AdaBoostM1 0.854 0.857 0.876 0.771 0.793 0.571
SMO 0.815 0.800 0.857 0.716 0.751 0.741
Multilayer Perceptron 0.880 0.853 0.885 0.805 0.797 0.768
Naïve Bayes 0.731 0.859 0.896 0.669 0.804 0.651

The worst results were presented by J48 and SMO, with their best ROC values for the

dataset 2020 of 0.759 and 0.857, respectively.

Regarding the datasets that presented the best results were those of the year 2020, with the

dataset only with data of the year 2020 being the best (dataset 2020) with ROC values between

0.896 and 0.791. The dataset with the worst results was 2018, with a ROC between 0.491 and

.0768.

3.4.1.3 Performance of ML techniques for the code smell Feature Envy

The ROC results for the ML algorithms trained by the 3-year datasets for the code smell Feature
Envy are presented in table 3.5. Feature Envy detection results are low, with the Random Forest
algorithm having the best ROC value of 0.570 when trained by dataset 2019. As already ex-

plained in point 3.3.3, the datasets for Feature Envy are very small, considering the variance of

cases. However, we are convinced that the results will be better when we have bigger datasets.

The ML algorithms showed better results when trained with the datasets of the year 2019, with

ROC values between 0.570 and 0.508.

68

3.4. RESULTS

Table 3.5: Feature Envy: ROC Area results for the ML algorithms trained by the 3 years datasets

year 2020 2019 2018

Algorithm
dataset

2020+2019+2018 2020+2019 2020 2019+2018 2019 2018

J48 0.518 0.484 0.467 0.552 0.563 0
Random Forest 0.539 0.494 0.486 0.542 0.570 0
AdaBoostM1 0.498 0.437 0.468 0.554 0.548 0
SMO 0.520 0.491 0.500 0.551 0.508 0
Multilayer Perceptron 0.533 0.498 0.536 0.548 0.544 0
Naïve Bayes 0.524 0.519 0.482 0.548 0.547 0

3.4.1.4 The one-way analysis of variance (ANOVA)

To determine if there were significant differences among the performance of ML techniques

when trained with data from the crowd, a One-way ANOVA was conducted to compare the effect

of ML techniques on the ROC. Before performing the ANOVA, we checked all the assumptions

for its application, namely, the inexistence of outliers, the normality of the distribution (Shapiro-

Wilk test), and the homogeneity of variances (Levene’s test). All assumptions were fulfilled, and

the following results were obtained:

(i) For the code smell Long Method, an analysis of variance showed that the effect of the

performance of ML techniques on ROC value was not significant, F(5,30)=1.096, p=.383.

(ii) For the code smell God Class, an analysis of variance showed that the effect of the perfor-

mance of ML techniques on ROC value was not significant, F(5,30)=.655, p=.660.

(iii) For the code smell Feature Envy, an analysis of variance showed that the effect of the

performance of ML techniques on ROC value was not significant, F(5,24)=.585, p=.712.

The results of the variance tests showed there was no statistically significant difference between

the performance of the six ML models when trained with data from the crowd.

3.4.1.5 Summary of RQ1 results

For the code smell Long Method the best result with a ROC of 0.870 was obtained by Ad-
aBoostM1 when trained by the 2020 dataset, followed by the Random Forest with a ROC of 0.869

for the same dataset. The best result was obtained for the code smell God Class by the Naïve
Bayes algorithm, when trained by the 2020 dataset, with the ROC value of 0.896. On the other

hand, Feature Envy detection results are low, with the Random Forest algorithm having the best

ROC value of 0.570 when trained by dataset 2019.

The results of the variance tests (performed through One-way ANOVA) showed there was

no statistically significant difference between the performance of the six ML models when

trained with data from the crowd and therefore more realistic.

69

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

3.4.2 RQ2. What is the best ML model to detect each one of the three CS?

In this RQ, we wanted to know which is the best model to detect each CS. To do so, we analyzed

the various metrics that evaluated the performance of CS prediction models in detecting each

of the three CS. Of course, the best model will vary with the metric we choose to analyze the

model performance (Accuracy, Precision, Recall, F-Measure, ROC), but for the reasons described

in 3.3.7 we will use ROC as the main metric.

Tables 3.6, 3.7, and 3.8 present the performance of the prediction models for the 3 CS,

where the best values for each of the evaluation metrics are marked.

3.4.2.1 Best ML model for the code smell Long Method

For the code smell Long Method, the model best performs its detection is AdaBoostM1, presenting

the best values for all evaluation metrics. As we can see in the table 3.6, AdaBoostM1 obtained

a ROC value of 0.870, an Accuracy of 81.36%, a Precision of 82.90%, a Recall of 81.40%, and an

F-Measure of 81.50%. However, two more models present an almost equal ROC, Random Forest,
and Multilayer Perceptron, with ROC values of 0.869 and 0.868, respectively.

Except for Naïve Bayes, all the other five models have values higher than 0.803 for ROC and

values higher than 80.00% for F-Measure, Precision, and Recall in the detection of Long Method.

3.4.2.2 Best ML model for the code smell God Class

Table 3.7 presents the results of God Class detection using the 10-Fold Cross-Validation tech-

nique and where the best values are marked. As we can see in table 3.7, the model that presents

the best value for the ROC is Naive Bayes with a value of 0.896. For the remaining four evalua-

tion metrics, the Random Forest model presents the same values as the Naive Bayes. Thus, the

Naive Bayes and Random Forest models present an Accuracy value of 88.97%, a Precision value

of 89.70%, a Recall value of 89.00%, and an F-Measure value of 88.70%.

When we evaluated the models by the ROC value, we verified that, except for the J48 model,

all the other five models had values higher than 0.857. For the remaining evaluation metrics,

all six models have: a) Accuracy values higher or equal to 87.50%, b) Precision values higher or

equal to 87.80%, c) Recall values higher or equal to 87.50%, and d) F-Measure values higher or

equal to 87.20%.

When we compare the results of the code smell God Class detection with those of the Long
Method, we verify that the results of the God Class are better.

3.4.2.3 Best ML model for the code smell Feature Envy

Regarding the code smell Feature Envy, we present in table 3.8 the results of the evaluation of

the different models. For the 2018 dataset of Feature Envy, it was not possible to obtain Precision
and consequently F-Measure since all the instances classified as TRUE were poorly classified,

i.e., all the instances were classified as FALSE. For the 2020 dataset, we also did not obtain

Precision and F-Measure because all the instances classified as FALSE were badly classified, i. e.,

all the models, created from this dataset to classify the Future Envy, classified all its instances

70

3.4. RESULTS

Table 3.6: Long Method: Performance of the code smell prediction models

Dataset Classifier Accuracy TP Rate FP Rate Precision Recall F-Measure ROC Area

2018 J48 61.02% 61.00% 37.20% 63.40% 61.00% 61.30% 0.617
2018 Random Forest 61.02% 61.00% 45.10% 60.00% 61.00% 60.00% 0.671
2018 AdaBoostM1 67.80% 67.80% 36.50% 67.30% 67.80% 67.40% 0.707
2018 SMO 55.93% 55.90% 51.20% 54.30% 55.90% 54.50% 0.524
2018 Multilayer Perceptron 57.63% 57.60% 46.10% 57.40% 57.60% 57.50% 0.604
2018 Naïve Bayes 61.02% 61.00% 47.70% 59.40% 61.00% 58.70% 0.471
2019 J48 64.73% 64.70% 34.10% 66.10% 64.70% 64.90% 0.678
2019 Random Forest 66.18% 66.20% 34.50% 66.40% 66.20% 66.30% 0.679
2019 AdaBoostM1 66.67% 66.70% 29.60% 70.70% 66.70% 66.30% 0.673
2019 SMO 65.46% 65.50% 35.70% 65.50% 65.50% 65.50% 0.649
2019 Multilayer Perceptron 63.29% 63.30% 38.60% 63.10% 63.30% 63.10% 0.667
2019 Naïve Bayes 61.11% 61.10% 40.80% 60.90% 61.10% 61.00% 0.614

2019+2018 J48 65.75% 65.80% 33.20% 67.00% 65.80% 65.90% 0.677
2019+2018 Random Forest 65.33% 65.30% 35.30% 65.60% 65.30% 65.40% 0.684
2019+2018 AdaBoostM1 66.60% 66.60% 29.10% 71.40% 66.60% 66.20% 0.665
2019+2018 SMO 63.85% 63.80% 37.10% 64.00% 63.80% 63.90% 0.634
2019+2018 Multilayer Perceptron 63.00% 63.00% 39.40% 62.70% 63.00% 62.80% 0.683
2019+2018 Naïve Bayes 58.35% 58.40% 43.70% 58.20% 58.40% 58.30% 0.584

2020 J48 79.95% 80.00% 20.30% 80.30% 80.00% 80.00% 0.832
2020 Random Forest 80.66% 80.70% 20.70% 80.60% 80.70% 80.70% 0.869
2020 AdaBoostM1 81.36% 81.40% 16.70% 82.90% 81.40% 81.50% 0.870
2020 SMO 80.77% 80.80% 20.20% 80.90% 80.80% 80.80% 0.803
2020 Multilayer Perceptron 80.07% 80.10% 21.50% 80.00% 80.10% 80.00% 0.868
2020 Naïve Bayes 73.39% 73.40% 33.00% 73.70% 73.40% 72.30% 0.783

2020+2019 J48 76.32% 76.30% 22.10% 77.80% 76.30% 76.50% 0.801
2020+2019 Random Forest 77.19% 77.20% 22.60% 77.70% 77.20% 77.30% 0.828
2020+2019 AdaBoostM1 76.80% 76.80% 20.30% 79.40% 76.80% 76.90% 0.818
2020+2019 SMO 75.53% 75.50% 25.00% 75.80% 75.50% 75.60% 0.753
2020+2019 Multilayer Perceptron 75.85% 75.80% 24.60% 76.10% 75.80% 75.90% 0.822
2020+2019 Naïve Bayes 68.43% 68.40% 35.70% 68.00% 68.40% 67.90% 0.742

2020+2019+2018 J48 76.40% 76.40% 22.70% 77.40% 76.40% 76.50% 0.792
2020+2019+2018 Random Forest 76.77% 76.80% 22.70% 77.50% 76.80% 76.90% 0.828
2020+2019+2018 AdaBoostM1 76.40% 76.40% 20.50% 79.30% 76.40% 76.50% 0.807
2020+2019+2018 SMO 75.19% 75.20% 24.60% 75.80% 75.20% 75.30% 0.753
2020+2019+2018 Multilayer Perceptron 76.92% 76.90% 22.50% 77.70% 76.90% 77.10% 0.822
2020+2019+2018 Naïve Bayes 68.18% 68.20% 35.70% 67.80% 68.20% 67.70% 0.736

as TRUE. For this reason, we will not consider in the response to the RQ the models resulting

from the training by these two datasets.

When we evaluate the models by the ROC metric, we find that the best model is the Random
Forest with a ROC of 0.570. However, if we compare the various evaluation metrics, we find that

all the other evaluation metrics have better values than the ROC metric. The best performance

in the detection of Feature Envy is obtained by the Naive Bayes model for Precision with a value

of 61.40%. The Random Forest model also obtains the best Accuracy with 59.69% and Recall
with a value of 59.70%.

When we compare the results of the models for the detection of the three smells, we verify

that the Feature Envy detection models obtain the worst results.

3.4.2.4 Summary of RQ2 results

For the code smell Long Method, the model that best performs its detection is AdaBoostM1,

presenting the best values for all evaluation metrics. For the God Class, the model that presents

the best value for the ROC is Naive Bayes, with a value of 0.896. For Feature Envy, when we

71

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

Table 3.7: God Class: Performance of the code smell prediction models

Dataset Classifier Accuracy TP Rate FP Rate Precision Recall F-Measure ROC Area

2018 J48 81.82% 81.80% 26.50% 82.00% 81.80% 81.10% 0.692
2018 Random Forest 63.64% 63.60% 47.60% 61.90% 63.60% 62.30% 0.491
2018 AdaBoostM1 68.18% 68.20% 39.60% 67.40% 68.20% 67.70% 0.571
2018 SMO 77.27% 77.30% 29.10% 76.90% 77.30% 76.90% 0.741
2018 Multilayer Perceptron 72.73% 72.70% 31.70% 72.70% 72.70% 72.70% 0.768
2018 Naïve Bayes 68.18% 68.20% 45.00% 66.70% 68.20% 66.10% 0.651
2019 J48 72.87% 72.90% 29.50% 72.70% 72.90% 72.70% 0.725
2019 Random Forest 73.64% 73.60% 28.50% 73.50% 73.60% 73.50% 0.802
2019 AdaBoostM1 72.87% 72.90% 29.50% 72.70% 72.90% 72.70% 0.793
2019 SMO 76.74% 76.70% 26.60% 76.90% 76.70% 76.30% 0.751
2019 Multilayer Perceptron 75.97% 76.00% 27.70% 76.10% 76.00% 75.50% 0.797
2019 Naïve Bayes 76.74% 76.70% 26.60% 76.90% 76.70% 76.30% 0.804

2019+2018 J48 70.86% 70.90% 30.00% 70.80% 70.90% 70.80% 0.693
2019+2018 Random Forest 67.55% 67.50% 32.40% 67.80% 67.50% 67.60% 0.781
2019+2018 AdaBoostM1 69.54% 69.50% 30.90% 69.50% 69.50% 69.50% 0.771
2019+2018 SMO 72.19% 72.20% 28.90% 72.10% 72.20% 72.00% 0.716
2019+2018 Multilayer Perceptron 71.52% 71.50% 29.00% 71.50% 71.50% 71.50% 0.805
2019+2018 Naïve Bayes 74.83% 74.80% 26.50% 74.90% 74.80% 74.60% 0.669

2020 J48 87.50% 87.50% 17.30% 87.80% 87.50% 87.20% 0.791
2020 Random Forest 88.97% 89.00% 16.40% 89.70% 89.00% 88.70% 0.893
2020 AdaBoostM1 88.24% 88.20% 16.80% 88.70% 88.20% 87.90% 0.876
2020 SMO 88.24% 88.20% 16.80% 88.70% 88.20% 87.90% 0.857
2020 Multilayer Perceptron 88.24% 88.20% 16.80% 88.70% 88.20% 87.90% 0.885
2020 Naïve Bayes 88.97% 89.00% 16.40% 89.70% 89.00% 88.70% 0.896

2020+2019 J48 82.64% 82.60% 21.70% 82.90% 82.60% 82.30% 0.759
2020+2019 Random Forest 83.02% 83.00% 21.50% 83.40% 83.00% 82.60% 0.850
2020+2019 AdaBoostM1 82.64% 82.60% 21.70% 82.90% 82.60% 82.30% 0.857
2020+2019 SMO 82.26% 82.30% 22.30% 82.60% 82.30% 81.90% 0.800
2020+2019 Multilayer Perceptron 82.26% 82.30% 22.30% 82.60% 82.30% 81.90% 0.853
2020+2019 Naïve Bayes 83.02% 83.00% 21.50% 83.40% 83.00% 82.60% 0.859

2020+2019+2018 J48 81.88% 81.90% 21.70% 82.30% 81.90% 81.50% 0.763
2020+2019+2018 Random Forest 81.53% 81.50% 22.00% 81.90% 81.50% 81.20% 0.853
2020+2019+2018 AdaBoostM1 80.84% 80.80% 22.70% 81.20% 80.80% 80.50% 0.854
2020+2019+2018 SMO 83.28% 83.30% 20.30% 83.80% 83.30% 82.90% 0.815
2020+2019+2018 Multilayer Perceptron 82.23% 82.20% 20.10% 82.20% 82.20% 82.10% 0.880
2020+2019+2018 Naïve Bayes 81.88% 81.90% 21.30% 82.10% 81.90% 81.60% 0.731

evaluate the models by the ROC metric, we find that the best model is Random Forest. However,

for this code smell, the best performance is obtained by the Naive Bayes model, for the Precision
metric, with a value of 61.40%. When we compare the results of the models for the detection

of the three smells, we verify that the worst results are obtained by the Feature Envy detection

models and the best results by God Class.

3.4.3 RQ3. Is it possible to use Collective Knowledge for CS detection?

Several studies present CS detection results through ML techniques with Accuracy, Precision,

Recall, and F-Measure, close to 100%. However, these studies use very treated datasets to obtain

good results, making the datasets unrealistic. A proof of this is the replication of one of the

most important studies on CS detection using ML techniques by Di Nucci et al. [31], where

more realistic datasets were used in this replication. The results of this replication showed that

the Accuracy value, on average, decreased from 96% to 76%, but the F-measure presented results

90% lower than in the reference work. When we compare our results with the Di Nucci et al.

[31] study, we find that the results are similar in some metrics and better in others.

72

3.4. RESULTS

Table 3.8: Feature Envy: Performance of the code smell prediction models

Dataset Classifier Accuracy TP Rate FP Rate Precision Recall F-Measure ROC Area

2018 J48 70.00% 70.00% 70.00% - 70.00% - 0.000
2018 Random Forest 70.00% 70.00% 70.00% - 70.00% - 0.000
2018 AdaBoostM1 70.00% 70.00% 70.00% - 70.00% - 0.000
2018 SMO 70.00% 70.00% 70.00% - 70.00% - 0.000
2018 Multilayer Perceptron 70.00% 70.00% 70.00% - 70.00% - 0.000
2018 Naïve Bayes 30.00% 30.00% 87.10% 35.00% 30.00% 32.30% 0.000
2019 J48 56.85% 56.90% 46.10% 56.20% 56.90% 56.20% 0.563
2019 Random Forest 58.38% 58.40% 44.70% 57.80% 58.40% 57.70% 0.570
2019 AdaBoostM1 54.82% 54.80% 51.40% 52.90% 54.80% 51.40% 0.548
2019 SMO 52.79% 52.80% 51.30% 51.50% 52.80% 51.40% 0.508
2019 Multilayer Perceptron 51.78% 51.80% 52.30% 50.40% 51.80% 50.40% 0.544
2019 Naïve Bayes 52.28% 52.30% 45.40% 54.30% 52.30% 52.00% 0.547

2019+2018 J48 57.97% 58.00% 42.80% 57.90% 58.00% 58.00% 0.552
2019+2018 Random Forest 57.49% 57.50% 43.80% 57.30% 57.50% 57.30% 0.542
2019+2018 AdaBoostM1 53.62% 53.60% 48.80% 52.90% 53.60% 52.90% 0.554
2019+2018 SMO 55.56% 55.60% 45.40% 55.50% 55.60% 55.50% 0.551
2019+2018 Multilayer Perceptron 53.62% 53.60% 47.50% 53.50% 53.60% 53.50% 0.548
2019+2018 Naïve Bayes 51.69% 51.70% 47.30% 52.60% 51.70% 51.70% 0.548

2020 J48 64.23% 64.20% 64.20% - 64.20% - 0.467
2020 Random Forest 64.23% 64.20% 64.20% - 64.20% - 0.486
2020 AdaBoostM1 64.23% 64.20% 64.20% - 64.20% - 0.468
2020 SMO 64.23% 64.20% 64.20% - 64.20% - 0.500
2020 Multilayer Perceptron 64.23% 64.20% 64.20% - 64.20% - 0.536
2020 Naïve Bayes 51.22% 51.20% 38.20% 61.40% 51.20% 50.90% 0.482

2020+2019 J48 59.38% 59.40% 56.70% 57.00% 59.40% 48.40% 0.529
2020+2019 Random Forest 59.69% 59.70% 56.10% 58.00% 59.70% 49.40% 0.548
2020+2019 AdaBoostM1 58.75% 58.80% 59.30% 34.80% 58.80% 43.70% 0.519
2020+2019 SMO 59.06% 59.10% 56.50% 55.70% 59.10% 49.10% 0.513
2020+2019 Multilayer Perceptron 57.50% 57.50% 56.40% 52.80% 57.50% 49.80% 0.545
2020+2019 Naïve Bayes 52.81% 52.80% 40.70% 58.70% 52.80% 51.90% 0.532

2020+2019+2018 J48 57.58% 57.60% 57.80% 50.50% 57.60% 44.50% 0.518
2020+2019+2018 Random Forest 58.48% 58.50% 55.90% 56.20% 58.50% 47.70% 0.539
2020+2019+2018 AdaBoostM1 57.88% 57.90% 58.40% 33.80% 57.90% 42.70% 0.498
2020+2019+2018 SMO 58.79% 58.80% 54.70% 56.90% 58.80% 49.70% 0.520
2020+2019+2018 Multilayer Perceptron 54.85% 54.80% 58.50% 46.80% 54.80% 45.50% 0.533
2020+2019+2018 Naïve Bayes 51.82% 51.80% 43.20% 56.10% 51.80% 51.10% 0.524

As reported in the answers to RQ1 and RQ2, we obtained values for some ML models close

to 90%, which can be considered very good. However, the fact that the most recent datasets are

the ones that usually present the best results, mainly the one from 2020, is a good indicator of

the feasibility of future improvement, by further advancements in the methodological process,

which has been progressively refined each year. Thus, the answer to this RQ is yes, it is possible

to use collective knowledge for CS detection.

3.4.3.1 Summary of RQ3 results

The answer to this RQ is yes, it is possible to use collective knowledge for CS detection. The

Crowdsmelling approach obtained values for some ML models close to 90%, which can be

considered very good. Overall our results are similar to those of Di Nucci et al. [31]’s study and

are even better in some metrics. The fact that the most recent datasets are the ones that usually

show the best results, mainly the one from 2020, is a good indicator of the feasibility of future

improvement.

73

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

3.5 Discussion

3.5.1 Research Questions (RQ)

In this section, we present the discussion of the results considering the three RQs. Regarding

the comparison of our results with existing works, we will compare with [31] study, since it is

the one that presents more similarities with ours, also using more realistic datasets.

For the Long Method, the model with the best prediction is AdaBoostM1, trained on the 2020

dataset, with a ROC of 0.870 (see Table 3.3), but also F-Measure and Accuracy show values higher

than 80%, namely 81.50%, and 81.36%, respectively (see Table 3.6). Random Forest, with a ROC
of 0.869, shows a value almost equal to AdaBoostM1. These two models show good results, in

line with the results presented in Di Nucci et al. [31]’s study. The Multilayer Perceptron and J48
models also show good results with the best ROC of 0.868 and 0.832, respectively, for the 2020

dataset. Namely, Multilayer Perceptron is the second-best model for three datasets (2019+2018,

2020+2019, 2020+2019+2018). In opposition is Naïve Bayes and SMO, which show the worst

results for all datasets, for example, for the 2020 dataset where they have their best values, the

ROC is 0.783 for Naïve Bayes, and 0.803 for SMO.

Also, regarding the Long Method, the models trained with the most recent dataset, the year

2020, have the best values, with a ROC greater than or equal to 0.803 for five models (J48,

Random Forest, AdaBoostM1, SMO, Multilayer Perceptron) out of the six we used. Only the Naïve
Bayes model has a ROC lower than 0.800, more precisely 0.783, but still higher than all models

trained with datasets from previous years. The fact that the models trained on the most recent

dataset show the best results is important because it means that there has been an evolution in

the production of the datasets over the three years by this approach.

For the God Class, prediction values very close to 90% were obtained. As such, we consider

these to be good values compared to similar studies. The model that presented the best ROC

value was Naïve Bayes with 0.896, followed by Random Forest with 0.893 (see Table 3.4) for the

2020 dataset. These two models also had the best values for the other metrics, with both having

equal values for F-Measure 88.70% and Accuracy of 88.97% (see Table 3.7) for the 2020 dataset.

For the Multilayer Perceptron model, good results were also obtained, with a ROC of 0.885, for

the 2020 dataset and a ROC of 0.880 for the 2020+2019+2018 dataset. This model presented

the third and fourth best values. The AdaBoostM1 and the SMO models obtained their best

values with the 2020 dataset, with a ROC value of 0.876 and 0.857, respectively. The worst

values were presented by the J48 model, with its best ROC value of 0.791, thus being the only

model that failed to exceed the ROC value of 0.800. For the code smell God Class it happened

the same as for the code smell Long Method, all models presented their best ROC values when

trained with the most recent datasets (from 2020).

For the Feature Envy, it was not possible to obtain the values for all the evaluation metrics

for the aforementioned reasons (see subsection 3.4.2.3). The models for this code smell showed

low results, being the worst results of the three CS. Thus, the best ROC value was 0.570 for

Random Forest, but far from the values obtained for God Class and Long Method, 0.896 and 0.870,

respectively. The Naïve Bayes model showed the best result of all the evaluation metrics with a

value of 61.40% for Precision. Random Forest again presented the best value for Recall 59.70%

74

3.5. DISCUSSION

and Accuracy 59.69%. For F-Measure, the best value of 58.00% is obtained with the J48 model.

Regarding the datasets that show better results for Feature Envy, the Accuracy, Precision, and

Recall metrics were the 2020+2019, for the F-Measure and ROC metrics were the 2019+2018

and 2019, respectively. Hence, no dataset concentrates most of the best values for the various

metrics.

3.5.1.1 RQ1. What is the performance of ML techniques when trained with data from the

crowd?

The best result was obtained for the God Class with a ROC value of 0.896, however, the

Long Method with a ROC of 0.870 is very close. The worst result was obtained for Feature

Envy with a ROC of 0.570. The difference in ROC value between the best and worst code smell

is 0.326. This considerable difference is due to the composition of the Feature Envy datasets.

When we analyze it, we see that the diversity of cases (classified methods) is much smaller

compared to that of the Long Method datasets, which is also a code smell in the method scope,

and consequently uses the same code metrics. The solution to this problem is to continue to

grow the dataset by classifying methods that are not already part of it. However, this problem

alerts us to the classification of more complex CS, as such, with fewer occurrences in the code

and where programmers tend to follow more of the advisors’ detection results.

When we compare our ROC values with those obtained by Di Nucci et al.[31], we find that

for the CS God Class and Long Method, we obtain similar values in the range of 0.89 and 0.87,

respectively. Regarding the code smell Feature Envy, for the reasons already presented, our

value of 0.57 is considerably lower than the one presented by Di Nucci et al.[31], which is 0.89.

3.5.1.2 RQ2. What is the best ML model to detect each one of the three CS?

Having the ROC as the reference metric, for the Long Method, the best models were Ad-

aBoostM1 and Random Forest, for the God Class, it was Naive Bayes and Random Forest

that presented the best values, and for the Feature Envy, it was Random Forest and Naive

Bayes models. Thus, we can conclude that regarding which is the best ML model for the de-

tection of the three CS, we do not have a model that guarantees the best detection value in the

three smells, however, Random Forest stands out.

When we compare the results of the models for the detection of the three smells, we verify

that the best results are obtained by the God Class detection models, and the Feature Envy
detection models obtain the worst results.

In the Di Nucci et al.[31] study, the best performances (for all CS) were obtained by the

Random Forest and J48 models. These two models have in common that they are based on

decision trees. When we compare them to our models, we can conclude, i) Random Forest
was also the model with which we obtained the best results when considering all smells, ii)

regarding J48, it was not one of our best models, because only for the F-Measure in the Feature
Envy code smell it presented the best value, iii) Naive Bayes, which was one of our best models,

did not present significant results in the Di Nucci et al.[31] study.

75

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

3.5.1.3 RQ3. Is it possible to use Collective Knowledge for CS detection?

Crowdsmelling is a pioneering approach for code smell detection. As such, there are always

methodological aspects that can be improved, such as the ones we present in this discussion.

When we have dozens of participants, it is not possible to have total control over the actions

of each participant. In our case, this was reflected in the non-use, in the first year, of data from

11 teams, out of a total of 42 participants. To have better control over the participants’ actions,

we removed the possibility for them to choose the Java project on which to detect the CS, and

all the teams started using the same project. This decision resulted in a lack of diversity of

cases when a code smell is more complex and consequently has fewer existences in the code (in

our case, Feature Envy). Another consequence was that the participants started to follow the

advisor’s suggestions more since this code smell is more complex then Long Method and God
Class.

In this experiment, we performed many processes manually, such as the data aggregation

process, which were very time consuming tasks and, therefore, impractical to implement in a

company’s reality. However, our goal was to perform the first experiment to verify the potential

of this approach.

This first study presents promising results, therefore, corroborating the feasibility of

Crowdsmelling. It allowed us to gather in the datasets a wide variety of opinions (than 350 par-

ticipants) regarding the classification of CS. Another reason is that the datasets have borderline

smells (where it is not clear whether it is a smell or not), making them harder to detect. Finally,

the fact that the datasets are not balanced also contributes to a more realistic setup.

We have organized the datasets by year to compare the results of each year and thus un-

derstand the progress in implementing this approach. The results obtained show progress over

these years, with the best values being obtained in 2020. Thus, we are led to conclude that we

are on the right track and that we can improve these results much more.

From a methodological point of view, more validation experiments are needed to cover more

CS, build more broad datasets, and increase external validity. To address many of the issues pre-

sented, a microservice-based architecture to automate the whole process of the Crowdsmelling
approach, from the extraction of metrics from the Java project code to the validation of CS by

the developers is proposed in chapter 5.

3.5.2 Implications and limitations of the Crowdsmelling Approach

The Crowdsmelling approach has several advantages for developers and researchers because it

is a dynamic approach that does not require the definition of rules for the detection of each

code smell and its thresholds. Through the input given by developers, this approach produces

datasets more and more adapted to the developers’ reality, which implies the production of

better ML models and, consequently, better detection of CS. This dynamics presented by the

approach has two main advantages: i) although we have used only three CS in this study, it is

not limited to these CS and can be generalized to other CS; ii) it makes the detection Accuracy
improve as the feedback from the developers grows (by improving the learning datasets) and

leads the ML models to converge to maximum Accuracy.

76

3.5. DISCUSSION

The learning dynamics presented in the previous paragraph is also the main limitation

of the approach because it depends on developers’ feedback, and it is not possible to predict

exactly how much convergence in learning can be achieved, i.e., what is the maximum detection

Accuracy.

To better demonstrate our approach, we will exemplify two scenarios:

(i) A company where there is a set of development rules, namely, CS, that is known and

respected by all developers. In this scenario, all developers are aligned with the CS rules,

thus contributing to a clear definition of what a code smell is in the datasets. In this

scenario, we have faster convergence and will achieve higher detection Accuracy;

(ii) A successful open-source project, where many developers contribute. In this scenario,

it will be more complicated for all developers to respect the rules since there will be

less alignment among developers, and therefore more divergence on recognizing the

occurrence of each code smell type. Our approach will always translate in the datasets

what the developers understand to be a code smell, but the convergence will take longer,

and the detection Accuracy will be lower.

In both scenarios, the Crowdsmelling approach learns from the context in which it is used

by learning the CS detection rules used, thus always translating the developers’ reality. The

more precise the detection rules, the higher the detection Accuracy.

3.5.3 Threats to validity

In our study, we made assumptions that may threaten the validity of our results. This section

discusses possible sources of threats and how we mitigated them.

3.5.3.1 Conclusion Validity

Threats in this category impact the relation between treatment and outcome.

The first threat is in the evaluation methodology, so we adopted the 10-Fold Cross-

Validation, which is one of the most used in ML, and directly compared our results with those

achieved in the other studies.

As for the evaluation metrics adopted to interpret the performance of the experimented

models, we have adopted the most common ML metrics, which have been used in other studies

with some similarities.

To test if there was a statistically significant difference between the performance of the six

ML models, we used the one-way analysis of variance (ANOVA).

3.5.3.2 Construct Validity

As for potential issues related to the relationship between theory and observation, we may have

been the subject of problems in the adopted methodology. To avoid bias in the process, we

elaborated a script in which we detailed all the steps that the teams had to carry out to detect

CS so that there would be uniformity in the process. However, we cannot guarantee the correct

use of this script by all the teams.

77

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

Code metrics are vital because they play the role of independent variables in ML algorithms.

To avoid bias in metrics extraction, we used the same metrics as in Fontana et al. [6], since they

are publicly available.

As for the experimented prediction models, we exploited the implementation provided

by the Weka framework [51], which is widely considered a reliable tool. To avoid bias in the

parameterization of the Weka algorithms, we used the default values for the parameters.

3.5.3.3 Internal Validity

This threat is related to the correctness of the experiments’ outcome. Since the definition of

CS is subjective, it may cause different interpretations, so the manual evaluation is not entirely

reliable. To mitigate this problem, an advisor is used in the experiment to serve as a basis

for identifying CS, although each team was always in charge of the final decision.Teams were

composed of several developers, and all had the same training.

To avoid participants only classifying CS detected by the JDeodorant advisor (although it

was optional to use it), it was indicated that they would have to classify at least one package,

however, not all teams did so. This required teams to manually classify, based directly on code

metrics, a set of false positive and negative CS detected by JDeodorant.

The participants in this study were students attending a compulsory Software Engineering

course. In the scope of this course, an optional assignment was done where this experiment was

carried out. To have rigor in the accomplishment of this work, since it was optional, the works

were evaluated by the teachers, and a grade was assigned according to the quality demonstrated.

The fact that only students were used can be a threat, however, these are finalists who in three

months will be working in companies. On the other hand, the use of students has advantages

and disadvantages, as we can see in the paper by Feldt et al. [36].

The team members’ maturity, experience, and knowledge about CS is a variable that we

cannot control. As such, there may be variations in the Accuracy and Precision of CS detection.

To minimize the possible bias, the decisions were not individual but taken by the team. The

time given to do this work was three weeks, which may have been a reason for bias, but we

thought it was sufficient considering it was a team effort.

Because CS are only detected in three Java projects, there may be some bias about the

number and type of CS existing in these Java projects. However, we chose these projects because

they are open-source, are widely used in CS detection, and are not toy examples due to their

considerable dimension.

3.5.3.4 External Validity

Finally, external validity is concerned with whether we can generalize the results outside the

scope of our study.

With respect to generalizability, we used the three most common CS in this type of study.

Regarding the code metrics, we used a high number, 61 metrics for God Class and 82 metrics

for Feature Envy and Long Method, thus ensuring a broad scope.

In terms of programming languages, we only used Java projects, but Java is by far the most

used language in CS detection studies, accounting for 77.1% of the cases (see section 2.4.4).

78

3.6. SUMMARY

The fact that this study has a manual component hampers its replication. However, all

the necessary indications are in the study, and a set of materials is available on GitHub9 and

Zenodo [112].

3.6 Summary

Main conclusions. We have proposed the Crowdsmelling approach – use of collective intelli-

gence in the detection of CS – to mitigate the problems described above of subjectivity and lack

of calibration data required to obtain accurate detection model parameters. Crowdsmelling is

a collaborative crowdsourcing approach based in ML, where the wisdom of the crowd (of soft-

ware developers) will be used to collectively calibrate CS detection algorithms. In this chapter,

we reported the results of a study investigating the feasibly of its application.

For three years, we collected CS detection data by several teams manually, although they

could use JDeodorant as an advisor if they wanted. Combining the data from each year with

the previous ones, we created several oracles for each of the three CS (Long Method, God Class,
Feature Envy). The latter was used to train a set of ML algorithms, creating the detection models

for each of the three CS, in a total of 108 models. Finally, to evaluate the models, we tested them

using the 10-Fold Cross-Validation methodology and analyzed the metrics Accuracy, Precision,

Recall, and F-Measure, with particular emphasis on ROC, because the datasets were not treated,

for example, balanced. This way, we created the most realistic datasets possible. To check if

there were significant differences between the classifications presented by the different models,

we proceeded to the analysis of variance through a one-way analysis of variance (ANOVA).

Regarding RQ1, we conclude that the Random Forest and AdaBoostM1 algorithms obtained

the best results for the code smell Long Method. The best result with a ROC of 0.870 was

obtained by AdaBoostM1 when trained by the dataset 2020, followed by the Random Forest with

a ROC of 0.869 for the same dataset. The best result for the code smell God Class was obtained

by the Naïve Bayes algorithm, when trained by the dataset 2020, with the ROC value of 0.896.

For Feature Envy, the results are low, with the Random Forest algorithm having the best ROC
value of 0.570 when trained by dataset 2019. The results of the variance tests (ANOVA) show

there was no statistically significant difference between the performance of the six ML models

when trained with data from the crowd and, therefore, more realistic.

As for RQ2, the best ML model for Long Method detection is AdaBoostM1, presenting the

best values for all evaluation metrics, a ROC value of 0.870, an Accuracy of 81.36%, a Precision
of 82.90%, a Recall of 81.40%, and F-Measure of 81.50%. For the God Class, the model that

presents the best value for the ROC is Naive Bayes, with a value of 0.896. the Naive Bayes and

Random Forest models present an Accuracy value of 88.97%, a Precision value of 89.70%, a Recall
value of 89.00%, and an F-Measure value of 88.70%. For the Feature Envy, the best model is the

Random Forest with a ROC of 0.570. However, the best performance in the detection of Feature
Envy is obtained by the Naive Bayes model for Precision with a value of 61.40%.

Regarding RQ3, it is possible to use Crowdsmelling – use of collective intelligence in the

detection of CS – as a good approach for the detection of CS because we obtained values for some

9https://github.com/dataset-cs-surveys/Crowdsmelling

79

CHAPTER 3. CROWDSMELLING: THE USE OF COLLECTIVE KNOWLEDGE IN CS

DETECTION

ML models close to 90%, which can be considered very good, for realistic datasets, which reflect

the detection performed by developers. The fact that the most recent datasets, the year 2020,

are the ones that usually present the best results leaves us with great motivation to continue

developing this detection approach because we think that we can even better the results.

The results suggest that Crowdsmelling is a feasible approach for the detection of CS.

80

C
h
a
p
t
e
r

44 4

Code Smells Visualization

Contents
4.1 Introduction . 82

4.2 Visualization Survey . 82

4.2.1 Survey and Samples . 83

4.2.2 Survey Results . 83

4.3 Smelly Maps as SourceMiner Views . 89

4.4 Summary . 91

In this chapter, we present our approach to visualizing code smells, Smelly Maps, and the survey

results of the community working on software visualization.

81

CHAPTER 4. CODE SMELLS VISUALIZATION

4.1 Introduction

Code smells awareness features should be in place in the IDE itself since that is the program-

mer’s workbench. These features are particularly important to spot code smells in large, com-

plex software systems, where their distribution and collateral effects may spread a lot. Effective,

yet non-intrusive, visualization features should allow to (i) spot the location of code smells,

(ii) diagnose their cause, and (iii) warn of their potential hazardous consequences. The latter

requirement seems trivial since there is abundant corroborating published evidence that can

be used for providing contextual warnings. As for the former two are much more demanding

since they require finding out which are the adequate levels of granularity to visualize code

smells to their full extent.

Code smells visualization features should be built on top of software visualization grounds

since we need to superimpose information regarding the smell on top of the software structure

visualization itself. We may see it as something that resembles augmented reality, where the

“reality” here is the code itself being developed or maintained.

Many software visualization metaphors have been proposed in the literature [32]. Consider,

for instance, one of the most sophisticated ones: a software system as a city [139]. There,

packages are represented as neighborhoods, classes as buildings, and methods as floors of those

buildings. In such a setup, it would not be upfront to represent, for instance, code smells

that occur within a hierarchy, simply because class hierarchies are not clearly mapped into

this appealing city metaphor. This counterexample highlights the need to further research to

determine which metaphor is the most appropriate for each code smell.

In our SLR on chapter 2, we classified CS visualization techniques into two categories

(see 2.4.12: (i) the detection is done through a non-visual approach, the visualization being

performed to show CS location in the code itself, (ii) the detection is performed through a visual

approach. In this chapter, we present our proposal of feature work - Smelly Maps - to visualize

code smells, which falls into the first category. Our proposal first detects the code smells with

the Crowdsmelling approach and then visualizes them using the Smelly Map corresponding to

the type of code smell.

Finally, we present the results of a survey on visualizing code smells conducted among the

academic community.

4.2 Visualization Survey

As mentioned in the validation of the SLR (see section 2.5.2), we conducted three surveys. A

pre-test, a survey addressed to the authors of the studies that are part of the SLR presented

in chapter 2, and the third one was addressed to the software visualization community. These

surveys aimed at understanding the perception and opinion of these communities about the

detection and visualization of code smells. In the SLR validation section, we presented a

summary of the results of the second and third aggregate surveys. In this section, we look in

more detail at the results from the part of the survey on visualization of code smells.

82

4.2. VISUALIZATION SURVEY

4.2.1 Survey and Samples

The questionnaire consists of a Cover Letter and a Consent Information Letter, followed by two

parts, Part I - Code smells visualization and Part II - Code smells detection. This section will

only look at the part about code smells visualization, which corresponds to 6 questions.

The answer to each question consists of 3 components:

1. The answer itself, on a 6-point Likert scale (Strong disagreement, Disagreement, Weak

disagreement, Weak agreement, Agreement, Strong agreement);

2. A slider between 0 and 4 that measures the degree of confidence of the answer;

3. An optional field to describe the justification of the answer or for comments.

The subjects invited for the survey were researchers with the most relevant work in code

smells detection and software visualization. Regarding code smells detection, we chose to

send the questionnaire to the 193 authors of the papers that were part of the SLR presented

in chapter 2.Regarding software visualization community we invited the 380 authors of the

papers from the SLR by Merino et al. [85] on software visualization that consists exclusively

of papers presented at the SOFTVIS and VISSOFT conferences. Besides sending the link to

the survey to the aforementioned 380, we also publicized the survey through a post on the

software visualization blog1. A total of 74 subjects answered these questionnaires. However,

most did not answer all the questions. The most answered question had 39 responses, and the

least answered question had 23 responses.

The survey was conducted online in the first half of 2019.

The structure of the surveys, collected responses, and descriptive statistics on the latter are

available at a GitHub repository2 and Zenodo [111].

4.2.2 Survey Results

The survey responses confirm the conclusions obtained through the SLR, presented 2.6 section.

As far as visualization is concerned, we will look at each of the questions in more detail below.

These questions correspond to SLR finding F11, and the results are presented in the Table 2.15.

In each of the questions, we will include some of the comments inserted by the researchers

because they complement the answers and reveal what they think of the question’s theme.

4.2.2.1 Question - The vast majority of code smells detection studies do not propose

visualization features for their detection

This question showed the highest level of agreement with the conclusions we drew from the SLR.

To this question, 66.7% of the participants showed agreement and 15.4% strong agreement (see

Figure 4.1). In addition, the confidence level with which they responded was also high, 3.0,

with a standard deviation of 1.0. It is also worth noting that this question received the highest

number of responses from the academic communities.

1https://softvis.wordpress.com/
2https://github.com/dataset-cs-surveys/Dataset-CS-surveys.git

83

CHAPTER 4. CODE SMELLS VISUALIZATION

Figure 4.1: Answers to the question: "The vast majority of code smells detection studies do not
propose visualization features for their detection"

When we add up the answers corresponding to "Strong agreement"and "Agreement,"we get

82.1%, which provides a sound evidence that the absolute majority of the studies only do code

smells detection and do not present visualization strategies.

Comments inserted by the researchers to this question:

1. Detection and visualization are separate issues. A paper should generally focus on only one of
these aspects (separation of concerns holds true also for research papers). Papers are limited
in space and generally you cannot do a good job in covering both aspects. For clone detection,
there are quite a few visualization papers. Moreover, first things first. First we need to solve the
problem of detection code smells, then only we can try to visualize them. Hence, it may not be
surprising that we have fewer visualizations than detection techniques at this stage of research
maturity.

2. It depends by what we mean by "visualization". I am not sure that developers would need such
features (if they would, the features would be implemented).

3. Depends what you mean by visualization. Is a simple scatterplot or bar chart also a visualiza-
tion? If not (i.e. we consider only more ’advanced’ visualizations), then I am quite confident
about my answer.

4.2.2.2 Question - The vast majority of existing code smells visualization studies did not

present evidence of its usage upon large software systems

Figure 4.2 shows the percentages of responses to this question. We can see that the option with

the highest number of answers is "Agreement"with 43.8%, followed by "Weak agreement"with

34.4% and "Strong agreement"with 12.5%. The confidence level of the answers is 2.9, which is

about average, which is 3.

The visualization of code smells in large systems is an important point due to the complexity

of the systems and some code smells, especially those that cross several classes. However, it

should be noted that in the SLR, we only found three studies [S7, S17, S16] with solutions

dedicated to large systems.

Comments inserted by the researchers to this question:

84

4.2. VISUALIZATION SURVEY

Figure 4.2: Answers to the question: "The vast majority of existing code smells visualization
studies did not present evidence of its usage upon large software systems"

1. it would be better to have an option called I do not know because for this question for instance
I don’t have the right answer.

2. To be honest, I don’t know.

3. Do not know enough code smells visualization studies to make a statement on that.

4. Unfortunately, that is true for most visualization papers. It is certainly true for visualization of
software clones. We are currently working on a systematic mapping study on clone visualization
and have found hardly any kind of empirical evaluation of the proposed visualization techniques.

5. It is difficult to properly assess a visualization approach.

6. I cannot answer the question because I only know few of the respective visualizations.

7. Depends what you mean by ’large’: 10K lines of code? 100K? More than 1 million? If more
than say 200..400K, then I would agree..strongly agree with the question.

4.2.2.3 Question - Software visualization researchers have not adopted specific

visualization related taxonomies, such as the ones below, to support the

identification of code smells: B. Price, R. Baecker, I. Small, A principled taxonomy

of software visualization, Journal of Visual Languages and Computing 4 (3)

(1993) 211–266. Roman, G. C., & Cox, K. C. (1993).A taxonomy of program

visualization systems. Computer, 26(12), 11-24. Maletic, J. I., Marcus, A., &

Collard, M. L. (2002). A task oriented view of software visualization. In

Proceedings First International Workshop on Visualizing Software for

Understanding and Analysis (pp.32-40). IEEE. Gallagher, K., Hatch, A., & Munro,

M. (2008). Software architecture visualization: An evaluation framework and its

application. IEEE Transactions on Software Engineering, 34(2), 260-270. Myller,

N., Bednarik, R., Sutinen, E., & Ben-Ari, M. (2009). Extending the engagement

taxonomy: Software visualization and collaborative learning. ACM Transactions

on Computing Education (TOCE), 9(1), 7.

This question obtained the lowest level of agreement, with the most voted answer being "Weak

agreement"with 46.9%, followed by "Agreement"and "Strong Agreement", respectively with

85

CHAPTER 4. CODE SMELLS VISUALIZATION

28.1% and 9.4% (see Figure 4.3. However, it should be noted that this was the answer with the

lowest confidence level, 2.0.

Figure 4.3: Answers to the question: "Software visualization researchers have not adopted
specific visualization related taxonomies to support the identification of code smells"

Looking at figure 4.3, we can conclude that the adoption of taxonomies by software visual-

ization researchers is not yet a common practice.

Comments inserted by the researchers to this question:

1. Don’t know.

2. Do not know enough about Software visualization studies wrt. code smells to answer this
question.

3. Why should one adopt a visualization taxonomy for *detection* of code smells? Visualization
comes after detection. I am neither sure what it means precisely to adopt a visualization tax-
onomy. Do you mean the researchers should classify their new visualization into one of those
taxonomies?

4. Not convinced that the referenced papers are (still) relevant. I know the one of Maletic et al. -
it’s okay, but does not go into details. I don’t use it for my own papers.

5. I know of quite a large number of software vis papers (and researchers) who have adopted at
least one of the above mentioned taxonomies.

4.2.2.4 Question - If visualization related taxonomies were used in the implementation

of code smells detection tools, that could enhance their effectiveness.

Most participants split between the response "Agreement"and "Weak agreement", both with

38.2%. The third most chosen response was "Strong agreement"with 11.8% (see Figure 4.4).

The confidence rating of the responses was 2.8, very close to the overall average of 3.

We can conclude that while the majority agree that if visualization-related taxonomies were

used in the implementation of code smell detection tools, this could increase their effectiveness,

there is no firm agreement.

Comments inserted by the researchers to this question:

86

4.2. VISUALIZATION SURVEY

Figure 4.4: Answers to the question: "If visualization related taxonomies were used in the
implementation of code smells detection tools, that could enhance their effectiveness."

1. Simply, each problem has its own characteristics and the problem of smell detection would
deserve independent studies aimed at understanding how developers would actually visualize
them.

2. There is a need to show the symptoms of goat smells and visualization can definitely help.

3. Definitely. The taxonomies, to prove their usefulness, have to be implemented in tools.

4. Do not know enough about Software visualization wrt. code smells to answer this question.

5. Maybe it could help to think about the requirements and properties of those new visualizations.
Quite likely, a groundbreaking new visualization is not even necessary. There are already so
many ideas that might be used. My impression is that there is generally very little space left for
truly new types of visualization. There are only small incremental improvements and generally
only adaptation and combinations of existing visualization techniques. The question must be
asked what radically new requirements need to be fulfilled for visualizing code smells going way
beyond the requirements for visualization of software aspects in general.

6. Probably, yes. I think the main problem is that software engineering researchers lack of HCI
experience.

7. Taxonomies, in general, can help to compare approaches, not sure they are that helpful for
developing tools/approaches.

8. I’m not sure that a taxonomy is directly contributing to an implementation as such. A taxonomy
helps to organize related work, ideas, etc, and present/frame one’s own work, but doesn’t help
directly when implementing a new method.

4.2.2.5 Question - Which of the following visual attributes have you implemented in

tools targeting the support of code smells identification?

Regarding the visual attributes implemented, this question received the least number of re-

sponses, 23. This is mainly due to 2 factors: the question’s specificity, and the fact that there are

few visual approaches. As such, not many researchers have used visual attributes. Figure 4.5

87

CHAPTER 4. CODE SMELLS VISUALIZATION

presents the main resources discussed in the literature [83], and the percentage of implemen-

tation of the same in tools. We can see that the most used visual feature is Color: Hue used by

62.5% of the researchers, followed by Form: Collinearity used by 52.2% and by Spatial position:

2D and Color: Intensity, both with 43.5%.

Overall the most used visual resources are color and shape. In the case of shape, its proper-

ties include spatial grouping, size, length, shape, orientation, and width.

Figure 4.5: Answers to the question: "Which of the following visual attributes have you imple-
mented in tools targeting the support of code smells identification?"

Comments inserted by the researchers to this question:

1. N/A. I didn’t implement visualization features in my smell detectors.

2. Not applicable: I have not implemented tools with visual attributes.

3. Do not know.

4. I have co-authored one publication in this area using Parallel coordinates and scatterplots. Of
course, these visualization relate to the above encodings, but it’s not clear in all cases how. The
above encodings seem a bit too low-level to make an appropriate classification here.

4.2.2.6 Question - The combined use of collaboration (among software developers) and

visual resources may increase the effectiveness of code smells detection.

This question was the only one in which no disagreement was recorded, as can be seen in Figure

4.6. "Agreement"was the most given answer with a percentage of 50.0%. "Weak agreement"was

answered by 26.5% of the subjects, and "Strong agreement"by 23.5%.

88

4.3. SMELLY MAPS AS SOURCEMINER VIEWS

We can see the importance of collaboration between software developers and visual re-

sources in answering this question. Of course, the detection of code smells is the principal

component, but visualization is also important for a better understanding of the more complex

smells.

Figure 4.6: Answers to the question: "The combined use of collaboration (among software
developers) and visual resources may increase the effectiveness of code smells detection."

Comments inserted by the researchers to this question:

1. I strongly agree and if you need any further assistance or help I would be glad to support such
research and efforts.

2. Well, both factors help, but I do not see an explicit synergistic effect between them.

3. It is a strong belief of mine, yet only a belief until we have empirical evidence.

4. People with visual impairment will have problems.

5. Not sure I understand the question.

4.3 Smelly Maps as SourceMiner Views

Code smells are defined at different scopes, as represented in Table 4.1. A visualization feature

for a code smell of the first kind (within one method) seems straightforward: the best way is

adding some type of flag, usually in the code editor’s margin, in the place where it was found.

Even though classes may be large (i.e., spread across several screen heights), it is still acceptable

to use the flagging technique for representing the location of code smells of the second kind

(within one class), for instance, close to the class header. As for the other three kinds of code

smells, we need to identify adequate visualization mechanisms since they may spread across a

large number of methods or classes.

We hypothesize that at least as many visualization metaphors (or views) as the aforemen-

tioned code smells scopes are required. In the scope of this thesis, we will call Smelly Maps to

these views. Smelly Maps will act as a front-end for the more complex code smells, facilitating

the understanding of their side-effects and the diagnosis of their cure.

Based on a well-known reference model for information visualization from Card et al. [20],

Carneiro and Mendonça extended and adapted it to the context of Multiple Views Interactive

Environments (MVIE) [21], as portrayed in Figure 4.7.

89

CHAPTER 4. CODE SMELLS VISUALIZATION

Table 4.1: Different scopes of code smells

Scope Code Smells from Fowler [43]

Within one method Comments, Long Method, Long Parameter List, Primitive Obses-
sion, Speculative Generality, Switch Statements, Temporary Field

Within one class Comments, Data Class, Data Clumps, Large Class, Lazy Class,
Speculative Generality

Within a class hierarchy Inappropriate Intimacy, Refused Bequest

Across several methods Feature Envy, Message Chains, Middle Man, Shotgun Surgery

Across several classes Alternative Classes with Different Interfaces, Divergent Change,
Duplicated Code

Figure 4.7: An extended reference model for MVIEs (from [23])

The process starts with original (raw) data obtained from a repository that undergoes a

set of transformations, which is then organized into data structures suitable for information

exploration. This process is called data transformation. Next, the aforementioned data struc-

tures are used to assemble visual data structures. Those structures organize data properties

and visual information properties to facilitate the construction of visual metaphors. This step

defines the mapping from real attributes – which are derived from the data properties (software

attributes, in our case) – to visual attributes such as shapes, colors, and positions on the screen.

This process is called visual mapping. The final step in Figure 4.7 is the visual transformation,

aimed at drawing the information on the screen to produce the views.

The aforementioned extended reference model was used to build a Java MVIE called

SourceMiner3, which was implemented as an Eclipse plugin in the co-supervisor’s team [21,

22]. We propose to offer Smelly Maps as a set of new views in SourceMiner, which will work in

cooperation with the CrowdSmelling Checker plugin described in chapter 5. SourceMiner allows

visualizing software attributes at different levels of abstraction (packages, types, and opera-

tions). Our objectives for the Smelly Maps include the ability to: (i) represent the distribution

3http://sourceminer.sourceforge.net

90

4.4. SUMMARY

of code smells evidence; (ii) show the coverage of the assessment process of code smells occur-

rences, as aforementioned; (iii) represent the intensity of each code smell occurrence (using a

color scheme); (iv) interactively browse the whole system.

4.4 Summary

Code smells are defined in different scopes (Within one method, Within one class, Within a

class hierarchy, Across several methods, Across several classes), which means that in order to

visualize them, it is necessary to adapt the visualization features according to the scope of the

code smell. Viewing a within one method and within one class code smells is simple, by just

tagging, usually in the margin of the code editor where the CS was found. For code smells

Within a class hierarchy, Across several methods, and Across several classes it is more complicated.

For these last three cases, we need to identify adequate visualization mechanisms since they

may spread across a large number of methods or classes.In large and more complex systems,

the problem described takes on an even greater dimension.

To mitigate the problem described above, have the intention of developing the concept of

Smelly Maps. Smelly Maps will act as a front end to the more complex code smells, making

it easier to understand their side effects and diagnose their cure. Smelly Maps will be a set of

new views in the SourceMiner (Java Multiple Views Interactive Environments (MVIE) [21]) toll,

which will work in cooperation with the CrowdSmelling plugin.

In conjunction with the SLR, present in chapter 2, a set of surveys was conducted in order to

validate the findings of the SLR. The surveys consisted of collecting the degree of agreement of

the academic community with the set of findings of the SLR. In this chapter, we presented the

results in more detail of the visualization part of the survey. The degree of agreement between

our findings and the opinion of the survey participants is high and was sometimes highlighted

in the written comments in the survey.

Some of the conclusions are: most studies of code smell detection do not present visual-

ization; for large systems, the scenario is even worse, as we only found three studies that refer

to large systems; the use of taxonomies and other visualization features, when implemented

together with detection, may increase the effectiveness of the CS detection tools.

This survey validates our proposal for visualization using Smelly Maps as a complement to

our Crowdsmelling detection approach.

91

[This page has been intentionally left blank]

P
a
r
t IIIIII III

Crowdsmelling: a ML-based crowdsourcing

approach for code smells detection

Introduction
Chapter 1

PART I: FUNDAMENTALS

State of the Art
Chapter 2

Crowdsmelling: The use of collective knowledge
in code smells detection
Chapter 3

PART II: CODE SMELLS DETECTION AND VISUALIZATION

Smelly Maps
Chapter 4

Crowdsmelling Tool
Chapter 5

PART III: CROWDSMELLING: A ML-BASED CROWDSOURCING
 APPROACH FOR CODE SMELLS DETECTION

Conclusion
Chapter 6

PART IV: CONCLUSION

This part implements the CrowdSmelling approach in a tool and scenarios of its use to detect

code smells.

94

C
h
a
p
t
e
r

55 5

Crowdsmelling Tool

Contents
5.1 Introduction . 96

5.2 Motivation . 96

5.3 Related work . 96

5.3.1 Code smells detection tools . 97

5.3.2 ML-based code smells detection . 98

5.4 Crowdsmelling . 100

5.4.1 Proposed approach . 100

5.4.2 Proposed architecture for an application using approach 101

5.4.3 Application usage scenarios . 102

5.5 Summary . 106

This chapter proposesa tool for crowdsourcing approach based on supervised machine learning

(ML) algorithms to mitigate the subjectivity problem of detecting code smells. We propose

implementing the CrowdSmelling approach in a tool and presenting its use scenarios to detect

code smells.

95

CHAPTER 5. CROWDSMELLING TOOL

5.1 Introduction

The first results of applying CrowdSmelling suggest it is a viable approach (see chapter 3). In

this chapter, we present a tool to support it. Developers use it through an Eclipse IDE plugin

connected to a microservices architecture, composed of a scientific workflow management

system (Taverna 2), an ML algorithms execution platform (Weka), and a database management

system that communicate through REST interfaces.

The front-end of the proposed tool is a plugin installed in each developer’s IDE that com-

putes metrics from the source code and sends them to the back-end, requesting the location of

detected code smells.

Crowdsourcing is fundamental in this approach since the feedback received from the crowd

of software developers on false negatives and true and false positives is used to train multiple

ML algorithms, allowing the dynamic calibration and choice of the best alternative for the

detection of code smells.

This chapter will present the latest version of the code smells detection tool that implements

the CrowdSmelling approach under development. Appendix C shows the evolution of the

architectures of the CrowdSmelling tool versions.

5.2 Motivation

There are several tools for detecting code smells (see section 5.3), but often there is no consis-

tency among then regarding their results [37, 109, 114] for the same code smell. One of the

causes of getting different detection results is the detection technology used.

One of the most used approaches in smells detection tools is rule-based, so it is necessary to

define the rules’ thresholds, which is not an easy task. Logically, if we set different thresholds on

rules that detect the same code smell, they will produce different detections. Therefore, many

tools have let the user set their thresholds to mitigate this problem. However, this solution

raises another problem, which is the knowledge that users need to have about code smells to

set the thresholds.

ML-based approaches allow mitigating the problem of thresholds. However, the identifica-

tion of code smells by ML-based approaches depends on the oracles used, namely for training

and testing the algorithms. Unfortunately, there are few publicly available oracles, which

represents a problem in ML-Based approaches.

This is where our motivation comes from, to build a tool that can reduce the subjectivity of

code smells, produce oracles collectively, and perform the detection automatically through ML

techniques. The reduction of subjectivity is achieved through a crowdsourcing process.

5.3 Related work

To the best of our knowledge, there are no crowdsourcing tools for automatic code smells

detection, i.e., based on machine learning. Thus, this section describes the main tools available

in code smells detection and techniques that use machine learning.

96

5.3. RELATED WORK

5.3.1 Code smells detection tools

Fernandes et al. [37] presented a systematic literature review (SLR) of CS detection tools. As

a result of this SLR, 84 tools were discovered, 29 of which were available online for download.

According to these authors, tools were available for nine programming languages, but the most

significant number is for Java, C, and C++, with 56, 16, and 15 tools, respectively. Regarding

the detection strategies used by the tools, 37% (31 out of the 84 tools) are metric-based, 13%

(11 out of the 84 tools) use other detection strategies such as Machine Learning and Logic Meta-
programming. It should be noted that the authors of this SLR were unable to discover the

detection technique applied by 20% of the tools. Regarding the use of crowdsourcing in these

tools, nothing is mentioned. Finally, a study comparing four tools (inFusion, JDeodorant, PMD,

and JSpIRIT) in the detection of 2 code smells (Large Class and Long Method) was performed.

The results of this comparative study indicated that the four tools showed redundant detection

results due to the high agreement coefficient computed.

The only tool we know that uses crowdsourcing in code smells detection is presented

by Paramita and Candra [102], but the detection is manual, with all the disadvantages that

this technique presents, such as human-centric, tedious, time-consuming, and error-prone.

Paramita and Candra [102] developed a code smell detection platform based on crowdsourcing,

which they called CODECOD (an abbreviation of Code Smell Detection through crowdsourcing

method), whose main objective is to facilitate and improve the quality of manual code smells

detection. This platform decomposes a task (a source code file grouping in zip files) into

microtasks (a single method or a single class), which are sent to the workers (someone who

solves and understands the code). The quality control phase is based on a technique authors

call Find, Vote, Verify, which is responsible for implementing the output agreement and majority

vote methods to determine code smells candidates. The evaluation of the platform, performed

by the authors, showed that using the CODECOD platform improves Accuracy compared to the

traditional manual techniques.

We now describe other code smells detection tools without using a crowd-based approach.

Marinescu et al. [81] presented iPlasma, an integrated environment for quality analysis

of object-oriented software systems. This tool detects code smell in Java and C++ and uses a

metric-based detection approach. Like any approach of this type, it needs to calibrate thresh-

olds in the detection rules. Thus, to establish the appropriate value of thresholds for detection

strategy, they use DSTM (Detection Strategy Tuning Machine). This tool presents the advan-

tage of calibrating thresholds specifically for a given development environment. The great

disadvantage of this method is that it requires human feedback over a period of time.

JDeodorant [39, 132] is a tool that detects four code smells (Long Method, God Class, Feature
Envy, and Type-Checking) and sugests refactoring opportunities.

Moha et al. [88] developed the DECOR tool that detects four antipatterns and 15 code

smells, based on a symptom-based approach.

Stench Blossom is a smell detector proposed by Murphy-Hill [90] that uses an interactive

ambient visualization to represent the smells detected in the code. The smells are represented

by sectors in a semicircle, which the authors call petals. The direction, radius, and other at-

tributes of the petals represent characteristics of the smells, such as type and strength.

97

CHAPTER 5. CROWDSMELLING TOOL

Vidal et al. [134] proposed JSpIRIT (Java Smart Identification of Refactoring opportunITies),

a tool that allows users to define their strategy to detect code smells, as well as prioritize their

classification.

Palomba et al. [97] presented HIST (Historical Information for Smell deTection) which uses

version control systems to look for changes in the code between different versions to detect five

code smells. There are also other commercial tools, such as SonarQube 1, that work in the area

of application maintenance, detecting code smells.

5.3.2 ML-based code smells detection

Machine learning-based approaches are more recent, Kreimer[69] being one of the first authors

to use this type of detection technique. The most relevant studies that use ML algorithms to

detect code smells are presented below.

Kaur et al. [60] presented a Review on Machine-Learning Based Code Smell Detection

Techniques from the year 2005 to 2020. The main conclusions of the review were: more free

ML techniques need to be made available so that researchers can evaluate their results and

make comparisons more quickly; the code smells most used by researchers are Feature Envy,

Long Method, God Class, and Blob; more open source applications are used in evaluating

ML techniques than industrial projects, but it is essential to test the approaches with real-life

datasets; few researchers use large datasets, being the most used ones small or medium-sized;

Java is the most used programming language, and the use of ML approaches in other languages

is still an open research area.

Caram et al. [19] conducted a Systematic Mapping Study on ML techniques for code smell

detection and found that Feature Envy was the most commonly used code smell. Regarding ML

algorithms, the most used is Genetic Algorithms (GA), used in 22.22% of papers, followed by

Naive Bayes Classifiers. The reason GA is the most used is that it is used to optimize metrics,

such as the calculation of thresholds. Decision Tree and Random Forest are the best performing

algorithms.

According to Caram et al. [19], and Reis et al. [114] the most widely used ML algorithm in

code smells detection were Genetic Algorithms (GA), mainly for defining smells detection rules

and thresholds for rules. Mahouachi et al.[75] used GA to combine detection and correction

steps to generate classification rules. Boussaa et al. [13] e Sahin et al.[117] presented GA-based

solutions that propose the simultaneous evolution of 2 populations where the first one gener-

ates detection rules (based on code metrics) and the second one generates examples of code

smells that are not detected by the first population. Thus, these two populations are evolved

in parallel, producing the evolution of smells detection rules. Kessentini et al. [62] used a set

of evolutionary algorithms, through Parallel Evolutionary Algorithms (P-EA), where each algo-

rithm presents a different adaptation (fitness functions, solution representations, and change

operators), with the common goal of performing smells detection. Mansoor et al.[78] used

multi-objective genetic programming (MOGP) to identify code smells. The process consisted of

using two sets of code examples, one with code smells and the other with well-designed code, to

generate detection rules. The goal was to find the best combination of metrics that maximizes

1https://www.sonarqube.org/

98

5.3. RELATED WORK

the first set of examples’ coverage and minimizes the second set’s detection. Mkaouer [86]

proposes the creation of detection rules adapted to the developer’s preference. The technique

uses a GP algorithm, which converges the detection rules to the developer’s preference through

feedback from the developer. The developer rejects or approves the code smells presented to

him, using this feedback to evolve the algorithm. Saranya et al.[119] suggested for smell detec-

tion the use of similarity between the code being analyzed and a set of example defects. This

similarity was calculated through the Euclidean distance-based Genetic Algorithm and Particle

Swarm Optimization - EGAPSO.

Decision trees are one of the most used algorithms in ML approaches for detecting code

smells, and it is noteworthy that the first algorithm used in ML approaches was a decision tree

by Kreimer in 2005. Kreimer[69] used a decision tree (C4.5 algorithm) to detect the code smells

Long Method and Big Class and developed an Eclipse plugin to perform this detection. Zibran

and Roy [147] have developed a plugin for the Eclipse IDE, based on a suffix-tree, to detect

type-1, type-2, and type-3 code clones. Rajakumari and Jebarajan [108] presented a technique

based on the Frequent Pattern Growth Method (FP-Growth), where they construct an FP-Tree.

The goal was the detection of type-1 and type-4 code clones. Amorim et al. [5] reported an

experiment on smells detection via decision trees with the C5.0 algorithm. The features used in

the construction of the tree were code metrics. The authors also concluded that if the features

were selected using a Genetic Algorithm, the effectiveness of the Decision was improved. Kaur

et al.[59] proposed a hybrid algorithm based on the Sandpiper Optimization Algorithm (SPOA)
and the B-J48. SPOA will optimize the parameters of the B-J48 tree for the detection of 5 code

smells.

Support Vector Machines (SVM) is another of the ML techniques used in code smells de-

tection. Maiga et al.[76, 77] presented two studies that used SVM for the detection of four

Anti-Patterns (Blob, Spaghetti Code, Functional Decomposition, and Swiss Army Knife). Kaur

et al.[58] developed a detection technique based on the SVM algorithm using the polynomial

kernel, which detects four smells (Long Method, God Class, Data Class, and Feature Envy). The

author called this technique Support Vector Machine Code Smell Detection (SVMCSD).

The use of Association Rules algorithms is common in ML, and authors like Palomba et

al.[101] present the HIST (Historical Information for Smell deTection) approach, where they

extract change history information from version control systems and then use Association Rules

to do smells detection. Fu and Shen[45] also use change history information extracted from

version control systems, which they combine with Association Rules (using algorithms such

as Apriori or FP-growth) for the detection of 3 smells (Duplicated Code, Shotgun Surgery, and

Divergent Change). Czibula et al.[29] based on the relational association rule mining, proposed

the detection of the defective classes.

Khomh et al.[63, 65] proposed CS detection using Bayesian belief networks (BBN). This

approach aims to manage the uncertainty inherent in the detection process.

More recently, detection techniques based on Artificial Neural Network algorithms have

been used. Kim [66] used neural network models to detect six code smells (God Class, Large Class,
Feature Envy, Parallel Inheritance Hierarchies, Data Class, Lazy Class), using a dataset consisting

of 8 code metrics extracted from twenty Java projects shared on the GitHub repositories for

training and testing. Hadj-Kacem and Bouassida[50] and Liu[74] used Deep Learning techniques

99

CHAPTER 5. CROWDSMELLING TOOL

in CS detection, which allows them to automatically select code features and build neural

networks for detection.

Other ML algorithms are less used in smells detection, such as Binary Logistic Regression

or Artificial Immune Systems (AIS). Bryton et al.[17] used code metrics to calibrate a Binary

Logistic Regression model that estimates the probability of a method being a Long Method.

Hassaine et al. proposed using AIS for the detection of 3 design smells (Blob, Functional

Decomposition, and Spaghetti Code) [53].

Most studies using the ML approach only use one algorithm. We now present the three

most relevant studies that use multiple ML algorithms. Fontana et al.[6, 42] presented two

studies where in the first [42] used six different ML algorithms to detect four code smells (Data

Class, Large Class, Feature Envy, Long Method). The second study [6] used 16 ML algorithms

to detect the same four code smells. In both studies, the results using 10-fold cross-validation

to assess the performance of predictive models showed that J48, Random Forest presented the

best results, with Accuracy values greater than 90%. Nucci et al.[31] replicated the Fontana

et al. study [6] with a more realistic dataset configuration and obtained results with lower

performance, e.g., the Accuracy of all models on average decreased from 96% to 76%.

This thesis presents a tool that can be configured with the ML algorithms you want since it

is composed of microservices, and one of the microservices is responsible for managing the ML

component.

5.4 Crowdsmelling

5.4.1 Proposed approach

This approach includes a code metrics extractor. For that purpose, we will use the Eclipse

Java metamodel (EJMM) defined in [55]. The EJMM was obtained by reverse engineering and

composing two Eclipse JDT components: the Eclipse Java Model (EJM) and the Eclipse Abstract

Syntax Tree (or AST, for short). The EJM contains several interfaces that provide a vision over

a Java project’s structure under a tree architecture. The AST, on the other hand, deals with

parsed source code. It allows the analysis of a source code file, also represented as a tree, down

to each statement and expression that compose the methods of a class. Although the EJM

already provides a fairly complete vision of the software’s structure (including, for instance,

which classes are declared and their attributes and methods), the AST provides the minutia

of a software application that can only be found within the code itself. The two components

complement each other to create a highly detailed Java metamodel.

The metrics are formalized using Object Constraint Language (OCL) [137] expressions

upon the EJMM. We claim that this approach will allow a much better clarification of the

influential factors used to build code smells detection algorithms. A further advantage of this

metamodel-based approach is that the OCL formalization of the metrics, whatever their scale

type is (e.g., ordinal, interval, absolute, or ratio), is executable upon the EJMM instantiation,

using an approach similar to that of M2DM (Metamodel Driven Measurement), that was initially

proposed in [1] and has, since then, been successfully applied in several contexts, such as [47]

or [28].

100

5.4. CROWDSMELLING

5.4.2 Proposed architecture for an application using approach

In this section, we will describe the architecture of the CrowdSmelling tool with the presentation

of its component diagram in UML.

CrowdSmelling’s architecture is based on a set of microservices that communicate through

a RESTful API (Application Program Interface). It is composed of three nodes (see figure

5.1): i) Developer Client, the developer’s computer where the Eclipse IDE plugin is installed, ii)

CrowdSmelling Server, hosted in a cloud sever contains several docker containers, iii) Researcher
Client, the researcher’s computer component responsible for managing the system.

Figure 5.1: Component Diagram

The plugin for the Eclipse IDE, which is installed on the developer’s client, consists of

two main components, M2DM (Metamodel Driven Measurement) and Smells Maker. The M2DM

(Metamodel Driven Measurement) component is responsible for collecting the metrics, previ-

ously defined in OCL, of the active Java project in the IDE’s editor. M2DM interacts with the

USE (UML-based Specification Environment)2 component - USE is an interpreter for a subset of

UML and OCL- through the JUSE interface. The Metrics Visualization component, as the name

suggests, serves to perform the visualization of code metrics. The Smells Maker component

is responsible for showing the localization of the code smells detected by the application and

interacts with the programmer, allowing him to express his agreement or disagreement with

the detection. Finally, we have the Smells Visualization component, responsible for presenting

the code smells in different views.

2https://sourceforge.net/projects/useocl/

101

CHAPTER 5. CROWDSMELLING TOOL

The cloud-hosted CrowdSmelling Server node consists of four components, present in the

cloud and running on docker containers. The Database component is responsible for managing

the MySQL database where all the information is stored, namely, code metrics, code smells

detection, code smells classification by programmers, list of ML models created, and users. The

Weka Server component is composed of the JGU WEKA REST Service - RESTful API Webservice

to Weka Machine Learning Algorithms 3 - responsible for the machine learning services, i.e.,

training and testing algorithms and models for code smells detection. The Taverna Server[141]

component is responsible for managing and executing the workflows for training and classifying

code smells through interaction with the Weka Server. The last component of this node is

the Retraining Algorithms, which will periodically create and test new code smells detection

models, using new datasets resulting from programmers’ feedback. This component extracts

the datasets from the Database component and runs the existing training workflow in the

Taverna Server.

The third node is the Researcher Client, whose function is to monitor the system, ensuring

that none of the micro-services in the CrowdSmelling server fail since we are using a microser-

vices architecture. It also has installed the Taverna workbench application that allows us to

design the workflows present in the Taverna Server and perform the first tests, ensuring that

these workflows work.

5.4.3 Application usage scenarios

In this section, we will describe the use cases, followed by a description of Business Process

Model (BPMN) processes, and at last, we present a usage example.

5.4.3.1 Use case scenarios

There are two players in the use of this tool, the researchers and the developers (see figure

5.2). The researchers are responsible for two functions: i) the creation and placement in the

taverna server (workflow management system) of the training workflows and workflows for the

detection of code smells; ii) the monitoring of the system, ensuring that all components are

working correctly (we are working with microservices, where some may stop.), visualizing on

indicators.

As the primary goal of this tool is to provide developers with code quality improvement,

the following three main functionalities are implemented: i) collect and visualize code metrics;

ii) perform code smell detection and visualization; iii) perform manual classification of code

smells. The code metrics are the basis for detecting code smells, and by analyzing the metrics,

the developer can assess the quality of his code. Furthermore, in the code smells classification

functionality, the developer will express his opinion regarding the detection presented by the

tool, saying whether he agrees or disagrees with the tool’s classification.

3This application is developed by the Institute of Computer Science at the Johannes Gutenberg University Mainz,
inserted in the open risk project.

102

5.4. CROWDSMELLING

Figure 5.2: Use Case Diagram

5.4.3.2 Scenarios’ process

As we are in the presence of a tool with a microservices architecture, the first process to be

executed is by the researcher. First, the researcher has to create, through the Taverna workbench

application, the workflows for training and classification (see figure 5.3). These workflows are

then placed on the Taverna Server, present in the Crowdsmelling Server.

As already mentioned, the CrowdSmelling tool, for the developer, consists of a plugin for

the Eclipse IDE, which is run by the developer whenever he/she wants to test the code present

in the editor. In figure 5.3 we represent the process of the CrowdSmelling approach for the

detection and classification of code smells, which consists of the following phases:

i) The first thing the plugin does is collect the code metrics and send them to the code

smells detection component of the CrowdSmelling Server. The metrics are the input parameters

of the ML models in the detection of code smells.

ii) The code smells detection process uses two microservices, Taverna Server and Weka

Server, as described in the figure 5.4 in more detail. In the Taverna Server, the workflow for

classifying code smells is executed. This workflow interacts with the Weka Server, passing it the

code metrics and the ID of the ML model that will be used in the classification (there are several

models, depending on the code smell). Each set of metrics of a method or class (depending

on the scope of the code smell being detected) is a case to be classified. After performing the

classification, the Weka Server returns a file containing the classification of all the metric sets.

In the end, this file is returned by the Taverna Server to the Crowdsmelling plugin.

iii) The set of code metrics and their respective classification returned by the Taverna Server

constitutes a dataset that also includes the location of code smells in the code. This dataset will

be presented to the programmer and will be stored in the Crowdsmelling server’s database.

iv) After presenting the dataset with the code smells detections, the programmer can view

the code smells in a specific view for that code smell, choose to view the code metrics, or classify

the code smells.

v) The classification of code smells by the developer is one of the most important tasks of

this approach. Through this classification, the programmer gives his opinion about what a code

smell is. Figure 5 represents the process of code smells classification by the developer. The

103

CHAPTER 5. CROWDSMELLING TOOLCrowdsmelling Flows

Cr
ow

ds
m

el
lin

g
Se

rv
er

Crowdsmelling Server

Detect code
smells

Detection
request

Crowdsmelling
database

Store
dataset

Store
request

Classification
Workflows Training

Workflows

Re
se

ar
ch

er
 C

lie
nt

Ta
ve

rn
a

W
or

kb
en

ch

Taverna Workbench

Create Training
Workflow

Create
classification

workflow

D
ev

el
op

er
 C

lie
nt

O
pe

ra
ti

ng
 s

ys
te

m
Ec

lip
se

 ID
E

Co
de

 e
di

to
r

Operating system - Eclipse IDE - Code editor

Open
editor

Write source
code

Cr
ow

ds
m

el
lin

g
pl

ug
in

Operating system - Eclipse IDE - Crowdsmelling plugin

Run plugin

Collect
metrics

Visualize
code smells

Classify
code smells

Visualize
metrics

Fi
le

sy
st

em

Operating system - File system

Eclipse workspace

source code
metrics

code smells
location

code smells
location

Figure 5.3: The CrowdSmelling approach process

classification displayed is the result of the ML model used, and the developer is now asked to

express his opinion by identifying the false positives and false negatives. When the classification

of all cases is finished, it is stored in the Crowdsmelling database.

vi) After several developers have given their opinion, manually classifying the code smells,

we have new datasets to train the ML algorithms. As a result of this training, new ML models

will be created that are better adapted to reality, thus continuously evolving the detection

process. This process is performed automatically by the Retraining Algorithms component

present in the Crowdsmelling Server and is represented in Figure 5.4. Whenever there is a

substantial change in the datasets, the process is triggered by calling the training workflow

existing in the Taverna Server. This workflow will interact with the Weka Server creating new

models that are stored in the Weka Server database. In the end, the workflow returns the model

ID that will be saved in the Crowdsmelling database.

104

5.4. CROWDSMELLINGDetect code smells

W
ek

a
Se

rv
er

Weka Server

ML Models
Creates

ML model Classify CS
occurrence

Ta
ve

rn
a

Se
rv

er

Taverna Server

Classification
Workflows

Classify CS

Create model

Training
Workflows

Classified
dataset

Crowdsmelling
database

Developper Client

Retraining
required?

Model_Id

ModelID,
Code metrics

Classification
file

Algorithm,
Dataset

Algorithm,
Dataset

Model_Id

Model_Id

Figure 5.4: The Code smells detection process
Classify code smells

Discard
code smell

Add code
smell

False positive
found?

False negative
found?

Classification
concluded?

Display
ML-based

classification

Cr
ow

ds
m

el
lin

g
Se

rv
er

Crowdsmelling
Database

Updated
classification

No

Ye
s

N
o

Yes

Ye
s

No

Figure 5.5: The code smells classification process

5.4.3.3 An example of the Crowdsmelling approach usage

In chapter 3 we present an example of using the Crowdsmelling approach, although the process

is manual, with the tool proposed in this thesis, we can automate the whole process, starting

with extracting the metrics in OCL by navigating the Java Metamodel shown in appendix D.

An example of the calculation of the cyclomatic complexity (CYCLO) and lines of code

(LOC) metrics:

105

CHAPTER 5. CROWDSMELLING TOOL

OCL expression to calculate the cyclomatic complexity (LOC) metric

CYCLO() : Integer=1+self.getAllStatements()→select(s|not(s.oclIsKindOf(ReturnStatement))).
conditionalOperatorCount→excluding(oclUndefined(Integer))→sum+self.getAllStatements()→
select(s|s.oclIsKindOf (CatchClause) or s.oclIsKindOf(DoStatement) or
s.oclIsKindOf(ForStatement) or s.oclIsKindOf(IfStatement) or (s.oclIsKindOf(SwitchCase)
and not(s.oclAsType(SwitchCase). isDefault)) or s.oclIsKindOf(WhileStatement))→size

OCL expression to calculate the lines of code (LOC) metric

LOC() : Integer = self.getAllStatements()→ size +self.getAllStatements()→
select(oclIsTypeOf(Block))→ size

Since the metrics are defined in OCL, we can create the ones that are important for the

quality of the code. Appendix B.1 presents a table with the main code metrics.

In chapter 3 were built a total of 108 models for detecting code smells. All these models

were created and evaluated in WEKA (open-source software from Waikato University), and it

was concluded that the results obtained were promising, as they were in line with the results

obtained by Nucci [31]. The Nucci study uses more realistic datasets, and therefore more similar

to ours. With this tool, we are sure that we will considerably improve these results since we

will be able to greatly increase the number of models that we will produce and test.

5.5 Summary

Main conclusions. Code smells’ negative impact on code quality has been known for several

years. In addition, code smells are a major source of technical debt, causing high costs in

software maintenance. Although there are several approaches to detecting code smells, the

subjectivity of the detection methods has been an impeding factor in mitigating code smells’

impact on code. Machine learning-based detection approaches have started to be used more

recently and have advantages over other approaches, such as rule-based approaches, because

they do not require the definition of thresholds. However, the detection algorithms of ML tech-

niques need to be trained with realistic oracles. As it happens, there are few publicly available

oracles, namely realistic oracles, that is, oracles that reflect the reality of what programmers

think about code smells.

To mitigate this problem, we proposed CrowdSmelling (see chapter 1), a collaborative crowd-

sourcing approach based on machine learning, where the wisdom of the crowd (of software

developers) is used to collectively calibrate code smells detection algorithms. The first results

obtained by this approach showed promise (see chapter 3), but they were obtained through a

very manual process, which makes it impractical to apply the CrowdSmelling approach on a

large scale. Thus, it is necessary to have a tool to apply this approach.

106

5.5. SUMMARY

In this chapter, we presented a tool that implements the CrowdSmelling approach. This tool

is composed of microservices-based architecture and is essentially composed of a plugin for the

Eclipse IDE and a cloud-based server hosting a micro-services architecture. The Eclipse IDE

plugin is where the developer detects and visualizes the code smells, visualizes the code metrics

(collected through the Eclipse Java metamodel obtained by reverse engineering), and classifies

the code smells detected by the ML component. Through this classification (agreeing or not with

the tool’s classification), the developer gives feedback, thus contributing to the enrichment of

the datasets. In addition, the ML algorithms are periodically retrained with these new datasets,

thus producing models better adapted to reality. This approach can detect any code smells as

long as developers can classify examples in the code. The Taverna Server contains the training

and classification workflows, and these workflows interact with the machine learning server, in

this case, a WEKA Server. There are specific detection models for each code smell, and it is on

the Weka server that all these models are created, tested, and used for detection.

107

[This page has been intentionally left blank]

P
a
r
t IVIV IV

Conclusion

Introduction
Chapter 1

PART I: FUNDAMENTALS

State of the Art
Chapter 2

Crowdsmelling: The use of collective knowledge
in code smells detection
Chapter 3

PART II: CODE SMELLS DETECTION AND VISUALIZATION

Smelly Maps
Chapter 4

Crowdsmelling Tool
Chapter 5

PART III: CROWDSMELLING: A ML-BASED CROWDSOURCING
 APPROACH FOR CODE SMELLS DETECTION

Conclusion
Chapter 6

PART IV: CONCLUSION

This Part concludes this thesis.

110

C
h
a
p
t
e
r

66 6

Conclusion and Future Work

Contents
6.1 Introduction . 112

6.2 Thesis Synthesis . 112

6.3 Main Contributions . 113

6.4 Research Opportunities . 114

This chapter summarizes the main contributions of this work, draw opportunities for further

research and conclude the thesis.

111

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Introduction

In software development and maintenance, especially in complex systems, the existence of code

smells jeopardizes software quality and hinders several operations, such as code reuse. Code

smells are not bugs since they do not prevent a program from functioning, but rather symptoms

of software maintainability problems.

The problems start with the definition of a code smell because the absence of a formal

definition, making the definition subjective and dependent on developer experience, hampers

its detection. Thus, the greater is the experience of the developer, the easiest is code smells

detection, as well as the greater complexity of the detected code.

The subjectivity in detection has led to several approaches for detecting code smells. The

most widely used approach uses code metrics to create rules. However, these techniques present

some problems, such as subjective interpretation, a low agreement between detectors, and

threshold dependability. To overcome the aforementioned limitations of code smells detection,

researchers recently applied supervised machine learning techniques that can learn from previ-

ous datasets without needing any threshold definition. Thus, the main problem of automation

is the lack of reliable data to calibrate detection algorithms.

In addition to automatic detection, to alert developers to the presence of smells, the exis-

tence of a tool with a visual component is needed to help developers to identify the existence

and causes of code smells. However, there is still a significant improvement in the visualization

area since the existing solutions require some development, especially for more complex code

smells.

This thesis proposes the Crowdsmelling approach, a crowdsourcing-based mechanism for

obtaining data, allowing dynamically calibrating the Machine Learning algorithms of code

smells detection. On the other hand, it is proposed to integrate a visualization tool based on

Smelly Maps with the detection, thus creating an interactive environment to help programmers

in code smells identification.

With this thesis, we hope that our research can create new research topics that contribute

to the mitigation of the problems both for developers and their organizations face regarding

software quality. The following section summarizes the contributions of each chapter, and

provides a roadmap for future work.

6.2 Thesis Synthesis

In chapter 1, we presented the scope, importance of the topic, the research problems and their

importance, and the related questions to support the purpose of this dissertation: i) the problem

of the subjectivity of defining code smells, ii) the difficulty of detecting code smells and existing

approaches, iii) our proposal for detecting and visualizing code smells.

Chapter 2 performed a systematic literature review to characterize the current state of the

art in code smells detection and visualization. We concluded that several open issues still exist,

such as (i) the definition of code smells, (ii) open-source code smells detection tools are mainly

for Java and only detect a small percentage of Fowler’s catalog, (iii) there are few publicly

available oracles for training ML algorithms, (iv) code smells visualization techniques seem to

112

6.3. MAIN CONTRIBUTIONS

have great potential, especially in large systems, to help developers in deciding if they agree

with a code smells occurrence suggested by an existing oracle, but there is a need to increase

their diversity. Finally, we conducted surveys of the detection and visualization communities

to validate our findings.

In order to validate our CrowdSmelling approach, we conducted an experiment over three

years. In Chapter 3, we presented the results of this experiment. This experiment involved

about 100 teams, with an average of 3 elements, which classified the existence of 3 code smells.

With this data, we created a set of oracles used to train six ML algorithms. In the end, more

than 100 ML models were evaluated to determine the best model to detect each code smell.

Good performances were obtained for God Class and Long Method detection, and lower ones

for Feature Envy. The results suggest that CrowdSmelling is a feasible approach for detecting

code smells.

After detecting code smells, we can proceed to their visualization to better understand

their side effects and the diagnosis of their cure. In Chapter 4, we propose the concept of Smelly
Maps. Smelly Maps will act as a front-end for the more complex code smells, making it easier to

understand their side effects and diagnose their cure. We propose to offer Smelly Maps as a set

of new views in SourceMiner, which will work in cooperation with CrowdSmelling.

In chapter Chapter 5, we presented a tool to implement the CrowdSmelling approach. It

consists of a plugin for the Eclipse IDE, connected to a microservices architecture, composed

of a scientific workflow management system (Taverna 2), an ML algorithm execution platform

(Weka), and a database management system that communicate through REST interfaces. Our

goal is to obtain real datasets and thus adjust the code smells detection models to the industrial

reality, mitigating the problem of detection subjectivity.

Chapter 6 presents a summary of each chapter of the thesis, a summary of the main contri-

butions, and finally, research opportunities in the detection and visualization of code smell.

6.3 Main Contributions

This section presents a summary of the main contributions to quality in software design pro-

posed by this thesis:

• Crowdsmelling approach for Code smells detection. Using the concept of Crowdsourc-

ing, we propose a new approach for detecting code smells. This approach uses crowd

wisdom to create oracles (a tagged dataset for training detection algorithms) that will

train a set of machine learning algorithms, thus producing a set of detection models. The

last step is to evaluate which model best detects each code smell. The goal is to mitigate

the subjectivity of code smells detection through an automatic, dynamic approach that

can detect any code smell.

• Smelly Maps for Code smells visualization. For a better identification and understand-

ing of code smells, especially in large or more complex systems, we propose the concept

of Smelly Map as a complement to detection. Smelly Maps are sets of specific views to

visualize each type of code smell. The implementation of the Smelly Maps is based on the

113

CHAPTER 6. CONCLUSION AND FUTURE WORK

use of SourceMiner, a Multiple Views Interactive Environments (MVIE) implemented as

an Eclipse plugin.

• ML-based crowdsourcing approach for code smells detection. We present the architec-

ture of a microservices-based code smells detection and visualization tool with an IDE

plugin as its front-end and a cloud backend. This tool makes it possible to automate the

entire CrowdSmelling process, from code metrics extraction, detection, classification, ML

model creation to code smells visualization.

• Lack of publicly available datasets. One of the problems in using machine learning tech-

niques in code smells detection is that few oracles (a tagged dataset for training detection

algorithms) are publicly available. In the context of the experiment we conducted to vali-

date our CrowdSmelling approach, we produced a set of 18 Oracles that we made publicly

available at GitHub1 and Zenodo [112], helping to mitigate the scarcity of open-access

datasets.

• Systematic Literature Review (SLR). We chose to perform an SLR, as this provides a fair

evaluation of the current state of the art on code smells detection and visualization, using

a trustworthy, rigorous, and auditable methodology.

• Implications for researchers and practitioners. Unlike most existing approaches, the

CrowdSmelling approach does not require the definition of detection rules and thresholds,

so it is easy to use without needing to be an expert in code smells. Furthermore, when

users validate the detection produced, giving their opinion, they contribute to dynamic

learning that is progressively better adapted to the users’ reality. Although the results

obtained are good (ROC of 0.870 for the long Method and 0.896 for the God Class, further

validation of the approach in a professional environment is necessary. Furthermore, this

approach is not limited to the three code smells studied; it can learn to detect other code

smells simply by users classifying them. Thus, it is intended to perform the study for

more code smells, but the involvement of researchers and practitioners is needed. In

point 3.5.2 - Implications and limitations of the CrowdSmelling Approach, point 3.5 -

Discussion, is more information about the implication of this approach for researchers

and practitioners.

6.4 Research Opportunities

In the future, we intend to continue to develop the CrowdSmelling approach by using this tool

in an enterprise environment. Our goal is to obtain real datasets and thus adjust the code smells

detection models to the industrial reality, mitigating the problem of detection subjectivity. One

of the problems with using ML techniques to detect code smells is that there are few publicly

available oracles and for few codes smells. We intend to make the oracles produced available

to the entire academic community so that ML techniques based on more realistic datasets can

be further developed.

1https://github.com/dataset-cs-surveys/Crowdsmelling

114

6.4. RESEARCH OPPORTUNITIES

Other research opportunities that we have detected and that are worth exploring in the

future are as follows:

• The Java language is dominant, with most open-source tools being for Java. Thus, there is

a need to extend the coverage of detection tools to other languages, such as Phyton.

• Regarding the coverage of detected code smells, only a small percentage of Fowler’s cata-

log is supported, so it is essential to increase research into other less studied but equally

important code smells.

• Studies of code smells in mobile and web environments are still scarce. However, because

of the importance of these environments in today’s life, we see a wide berth for code

smells research in these areas.

• Further validation experiments based on dynamic learning are required to a comprehen-

sive coverage of CS to increase external validity. Since the CrowdSmelling approach can

be used to detect any code smell, we intend to extend the detection to other CS. In the

future, we also plan to apply this new approach in an even more real-world, industrial

context, by having companies use the detection tool.

• Visualization of code smells still an area that should be further explored, namely by

creating interactive environments that facilitate the interaction between developer and

visualization tools. The development environment is sometimes already very overloaded,

so it is necessary to create visualization techniques that do not overload the IDE even

more. Augmented reality-based techniques can provide an extra set of information to the

developer without overloading the development environment.

115

Bibliography

[1] F. Brito e Abreu. Using OCL to Formalize Object-Oriented Design Metrics Definitions. Tech.

rep. ES007. Lisboa: INESC, 2001. doi: 10.5281/zenodo.1217095.

[2] F. Brito e Abreu, M. Goulão, and R. Esteves. “Toward the Design Quality Evaluation of

Object-Oriented Software Systems.” In: 5th International Conference on Software Quality.

American Society for Quality. Austin, Texas, EUA: American Society for Quality, 1995,

pp. 44–57. doi: 10.5281/zenodo.1217073.

[3] J. Al Dallal. “Identifying refactoring opportunities in object-oriented code: A systematic

literature review.” In: Information and Software Technology 58 (2015), pp. 231–249. issn:

09505849. doi: 10.1016/j.infsof.2014.08.002.

[4] K. Alkharabsheh, Y. Crespo, E. Manso, and J. A. Taboada. “Software Design Smell

Detection: a systematic mapping study.” In: Software Quality Journal (Oct. 2018). issn:

1573-1367. doi: 10.1007/s11219-018-9424-8.

[5] L Amorim, E Costa, N Antunes, B Fonseca, and M Ribeiro. “Experience report: Evaluat-

ing the effectiveness of decision trees for detecting code smells.” In: 26th International
Symposium on Software Reliability Engineering (ISSRE 2015). IEEE, 2015, pp. 261–269.

doi: 10.1109/ISSRE.2015.7381819.

[6] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino. “Comparing and experi-

menting machine learning techniques for code smell detection.” In: Empirical Software
Engineering 21.3 (June 2016), pp. 1143–1191. issn: 15737616. doi: 10.1007/s10664-

015-9378-4.

[7] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang. “Machine learning techniques for code

smell detection: A systematic literature review and meta-analysis.” In: Information
and Software Technology 108 (2019), pp. 115–138. issn: 0950-5849. doi: 10.1016/j.

infsof.2018.12.009.

[8] S. Baltes and C. Treude. “Code Duplication on Stack Overflow.” In: 42nd Inter-
national Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER). Seoul, South Korea: Association for Computing Machinery, 2020, 13––16. isbn:

9781450371261. doi: 10.1145/3377816.3381744.

[9] G. Bavota and B. Russo. “A large-scale empirical study on self-admitted technical debt.”

In: 13th International Conference on Mining Software Repositories (MSR). Austin, Texas,

USA: IEEE, 2016, pp. 315–326.

117

https://doi.org/10.5281/zenodo.1217095
https://doi.org/10.5281/zenodo.1217073
https://doi.org/10.1016/j.infsof.2014.08.002
https://doi.org/10.1007/s11219-018-9424-8
https://doi.org/10.1109/ISSRE.2015.7381819
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1016/j.infsof.2018.12.009
https://doi.org/10.1016/j.infsof.2018.12.009
https://doi.org/10.1145/3377816.3381744

BIBLIOGRAPHY

[10] A. Belikov and V. Belikov. “A citation-based, author- and age-normalized, logarith-

mic index for evaluation of individual researchers independently of publication.” In:

F1000Research 4.884 (2015). doi: 10.12688/f1000research.7070.1.

[11] J. Bentzien, I. Muegge, B. Hamner, and D. C. Thompson. “Crowd computing: Using

competitive dynamics to develop and refine highly predictive models.” In: Drug Dis-
covery Today 18.9-10 (2013), pp. 472–478. issn: 1359-6446. doi: 10.1016/j.drudis.

2013.01.002.

[12] J. P. Bigham, M. S. Bernstein, and E. Adar. “Human-Computer Interaction and Collective

Intelligence.” In: The Collective Intelligence Handbook. Ed. by T. W. Malone and M. S.

Bermstein. CMU, 2014.

[13] M Boussaa, W Kessentini, M Kessentini, S Bechikh, and S Ben Chikha. “Competitive

coevolutionary code-smells detection.” In: 5th International Symposium on Search-Based
Software Engineering (SSBSE). Ed. by Ucl, Crest, M. Berner and, and Ibm. Vol. 8084

LNCS. 2013, pp. 50–65. isbn: 9783642397417. doi: 10.1007/978-3-642-39742-4_6.

[14] L. Breiman. “Random Forests.” In: Machine Learning 45.1 (Oct. 2001), 5––32. doi:

10.1023/A:1010933404324.

[15] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil. “Lessons from

applying the systematic literature review process within the software engineering do-

main.” In: Journal of systems and software 80.4 (2007), pp. 571–583. doi: 10.1016/j.

jss.2006.07.009.

[16] W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray. AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. 1st. USA: John Wiley & Sons,

1998. isbn: 0471197130.

[17] S. Bryton, F. Brito e Abreu, and M. Monteiro. “Reducing subjectivity in code smells

detection: Experimenting with the Long Method.” In: 7th International Conference on
the Quality of Information and Communications Technology (QUATIC 2010). 3. 2010,

pp. 337–342. isbn: 9780769542416. doi: 10.1109/QUATIC.2010.60.

[18] J. Caldeira, F. Brito e Abreu, J. Cardoso, and J. Pereira dos Reis. “Unveiling pro-

cess insights from refactoring practices.” In: Computer Standards Interfaces 81 (2022),

p. 103587. issn: 0920-5489. doi: 10.1016/j.csi.2021.103587.

[19] F. L. Caram, B. R. D. O. Rodrigues, A. S. Campanelli, and F. S. Parreiras. “Machine

Learning Techniques for Code Smells Detection: A Systematic Mapping Study.” In:

International Journal of Software Engineering and Knowledge Engineering 29.02 (2019),

pp. 285–316. doi: 10.1142/S021819401950013X.

[20] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information Visualization:
Using Vision to Think. Morgan Kaufmann, 1999, p. 686. isbn: 1558605339.

[21] G. d. F. Carneiro, M Silva, L Mara, E Figueiredo, C Sant’Anna, A Garcia, and M Men-

donca. “Identifying Code Smells with Multiple Concern Views.” In: Software Engineering
(SBES), 2010 Brazilian Symposium on. 2010, pp. 128–137. doi: 10.1109/SBES.2010.21.

118

https://doi.org/10.12688/f1000research.7070.1
https://doi.org/10.1016/j.drudis.2013.01.002
https://doi.org/10.1016/j.drudis.2013.01.002
https://doi.org/10.1007/978-3-642-39742-4_6
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1109/QUATIC.2010.60
https://doi.org/10.1016/j.csi.2021.103587
https://doi.org/10.1142/S021819401950013X
https://doi.org/10.1109/SBES.2010.21

BIBLIOGRAPHY

[22] G. d. F. Carneiro, M. Mendonca, and R. Magnavita. “An experimental platform to

characterize software comprehension activities supported by visualization.” In: 31st
International Conference on Software Engineering (ICSE 2009) - Companion Volume. IEEE,

2009, pp. 441–442. isbn: 978-1-4244-3495-4. doi: 10.1109/ICSE-COMPANION.2009.

5071052.

[23] G. D. F. Carneiro, M. G. de Mendonça, and Neto. “SourceMiner: Towards an Extensible

Multi-perspective Software Visualization Environment.” In: International Conference on
Enterprise Information Systems. Vol. 190. 2014, pp. 242–263. isbn: 978-3-319-09491-5.

doi: 10.1007/978-3-319-09492-2.

[24] J. C. Carver. “Towards reporting guidelines for experimental replications: A proposal.”

In: 1st international workshop on replication in empirical software engineering (RESER’10).
2010, pp. 1–4.

[25] J. C. Carver, N. Juristo, M. T. Baldassarre, and S. Vegas. “Replications of software

engineering experiments.” In: Empirical Software Engineering 19.2 (2014), pp. 267–276.

issn: 15737616. doi: 10.1007/s10664-013-9290-8.

[26] L. Chen and M. A. Babar. “A systematic review of evaluation of variability management

approaches in software product lines.” In: Information and Software Technology 53.4

(2011), pp. 344–362. doi: 10.1016/j.infsof.2010.12.006.

[27] Z Chen, L Chen, W Ma, and B Xu. “Detecting Code Smells in Python Programs.” In:

2016 International Conference on Software Analysis, Testing and Evolution (SATE). 2016,

pp. 18–23. doi: 10.1109/SATE.2016.10.

[28] A. Correia and F. Brito e Abreu. “Enhancing the Correctness of BPMN Models.” In: Im-
proving Organizational Effectiveness with Enterprise Information Systems. Ed. by J. Varajão,

M. M. Cruz-Cunha, and R. Martinho. Advances in Business Information Systems and

Analytics (ABISA) Book Series. Hershey, PA, USA: IGI-Global, 2015, pp. 241–261. doi:

10.4018/978-1-4666-8368-6.Ch015.

[29] G. Czibula, Z. Marian, and I. G. Czibula. “Detecting software design defects using

relational association rule mining.” In: Knowledge and Information Systems 42.3 (2014),

pp. 545–577. issn: 02193116. doi: 10.1007/s10115-013-0721-z.

[30] R. de Mello, R. Oliveira, L. Sousa, and A. Garcia. “Towards Effective Teams for the

Identification of Code Smells.” In: 10th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE 2017). IEEE, 2017, pp. 62–65. doi: 10.1109/

CHASE.2017.11.

[31] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia. “Detecting

code smells using machine learning techniques: Are we there yet?” In: 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER 2018). IEEE, 2018,

pp. 612–621. doi: 10.1109/SANER.2018.8330266.

[32] S. Diehl. Software Visualization - Visualizing the Structure, Behaviour, and Evolution of
Software. Springer, 2007.

119

https://doi.org/10.1109/ICSE-COMPANION.2009.5071052
https://doi.org/10.1109/ICSE-COMPANION.2009.5071052
https://doi.org/10.1007/978-3-319-09492-2
https://doi.org/10.1007/s10664-013-9290-8
https://doi.org/10.1016/j.infsof.2010.12.006
https://doi.org/10.1109/SATE.2016.10
https://doi.org/10.4018/978-1-4666-8368-6.Ch015
https://doi.org/10.1007/s10115-013-0721-z
https://doi.org/10.1109/CHASE.2017.11
https://doi.org/10.1109/CHASE.2017.11
https://doi.org/10.1109/SANER.2018.8330266

BIBLIOGRAPHY

[33] T. Dyba and T. Dingsøyr. “Empirical studies of agile software development: A system-

atic review.” In: Information and Software Technology 50.9-10 (2008), pp. 833–859. issn:

09505849. doi: 10.1016/j.infsof.2008.01.006.

[34] E van Emden and L Moonen. “Java quality assurance by detecting code smells.” In:

Ninth Working Conference on Reverse Engineering (WCRE’2002). 2002, pp. 97–106. isbn:

1095-1350 VO -. doi: 10.1109/WCRE.2002.1173068.

[35] A. M. Fard and A Mesbah. “JSNOSE: Detecting JavaScript Code Smells.” In: 13th
International Working Conference on Source Code Analysis and Manipulation (SCAM 2013).
IEEE, 2013, pp. 116–125. doi: 10.1109/SCAM.2013.6648192.

[36] R. Feldt, T. Zimmermann, G. R. Bergersen, D. Falessi, A. Jedlitschka, N. Juristo, J. Münch,

M. Oivo, P. Runeson, M. Shepperd, D. I. Sjøberg, and B. Turhan. “Four commentaries on

the use of students and professionals in empirical software engineering experiments.”

In: Empirical Software Engineering 23.6 (2018), pp. 3801–3820. issn: 15737616. doi:

10.1007/s10664-018-9655-0.

[37] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo. “A review-based compar-

ative study of bad smell detection tools.” In: 20th International Conference on Evaluation
and Assessment in Software Engineering (EASE 2016). Limerick, Ireland: ACM, 2016.

doi: 10.1145/2915970.2915984.

[38] J. L. Fleiss, B. Levin, and M. C. Paik. Statistical Methods for Rates and Proportions. Third.

John Wiley & Sons, 2013, p. 723. isbn: 9781118625613.

[39] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou. “JDeodorant: Identification and Re-

moval of Feature Envy Bad Smells.” In: International Conference on Software Maintenance
(ICSM 2007). IEEE, Oct. 2007, pp. 519–520. doi: 10.1109/ICSM.2007.4362679.

[40] F. A. Fontana, P. Braione, and M. Zanoni. “Automatic detection of bad smells in code: An

experimental assessment.” In: Journal of Object Technology 11.2 (2012). doi: 10.5381/

jot.2012.11.2.a5..

[41] F. A. Fontana, M. Mangiacavalli, D. Pochiero, and M. Zanoni. “On experimenting

refactoring tools to remove code smells.” In: Scientific Workshop Proceedings of the
XP2015 Conference. New York, New York, USA: ACM Press, May 2015, pp. 1–8. isbn:

9781450334099. doi: 10.1145/2764979.2764986.

[42] F. A. Fontana, M. Zanoni, A. Marino, and M. V. M??ntyl?? “Code smell detection: To-

wards a machine learning-based approach.” In: International Conference on Software
Maintenance (ICSM 2013). IEEE, 2013, pp. 396–399. isbn: 978-0-7695-4981-1. doi:

10.1109/ICSM.2013.56.

[43] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: improving the
design of existing code. Addison-Wesley Longman Publishing Co., Inc., July 1999. isbn:

0-201-48567-2.

[44] Y. Freund and R. E. Schapire. “Experiments with a New Boosting Algorithm.” In: Thir-
teenth International Conference on International Conference on Machine Learning (ICML’96).
Bari, Italy: Morgan Kaufmann Publishers Inc., 1996, 148––156. isbn: 1558604197.

120

https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1109/WCRE.2002.1173068
https://doi.org/10.1109/SCAM.2013.6648192
https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.1145/2915970.2915984
https://doi.org/10.1109/ICSM.2007.4362679
https://doi.org/10.5381/jot.2012.11.2.a5.
https://doi.org/10.5381/jot.2012.11.2.a5.
https://doi.org/10.1145/2764979.2764986
https://doi.org/10.1109/ICSM.2013.56

BIBLIOGRAPHY

[45] S. Fu and B. Shen. “Code Bad Smell Detection through Evolutionary Data Mining.”

In: International Symposium on Empirical Software Engineering and Measurement (ESEM
2015). IEEE, 2015, pp. 1–9. isbn: 1949-3770 VO -. doi: 10.1109/ESEM.2015.7321194.

[46] T. Gerlitz, Q. M. Tran, and C. Dziobek. “Detection and Handling of Model Smells for

MATLAB/Simulink models.” In: Modelling in Automotive Software Engineering (MASE)
MODELS’2015. Vol. 1487. CEUR Workshop Proceedings, 2015, pp. 13–22.

[47] M. Goulão and F. Brito e Abreu. “Formal definition of metrics upon the CORBA com-

ponent model.” In: First International Conference on the Quality of Software Architectures
(QoSA’2005). Vol. 3712. Lecture Notes in Computer Science. Erfurt, Germany: Springer,

Sept. 2005, pp. 88–105. doi: 10.1007/11558569_8.

[48] A. Gupta, B. Suri, V. Kumar, S. Misra, T. Blažauskas, and R. Damaševičius. “Software

code smell prediction model using Shannon, Rényi and Tsallis entropies.” In: Entropy
20.5 (2018), pp. 1–20. issn: 10994300. doi: 10.3390/e20050372.

[49] A. Gupta, B. Suri, and S. Misra. “A Systematic Literature Review: Code Bad Smells in

Java Source Code.” In: ICCSA 2017. Vol. 10409. 2017, pp. 665–682. isbn: 978-3-319-

62406-8. doi: 10.1007/978-3-319-62407-5.

[50] M. Hadj-Kacem and N. Bouassida. “A Hybrid Approach To Detect Code Smells Using

Deep Learning.” In: 13th International Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE 2018). Funchal, Madeira, Portugal: SCITEPRESS -

Science and Technology Publications, Lda, 2018, 137––146. isbn: 9789897583001. doi:

10.5220/0006709801370146.

[51] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. “The

WEKA Data Mining Software: An Update.” In: SIGKDD Explorations Newsletter 11.1

(Nov. 2009), 10––18. issn: 1931-0145. doi: 10.1145/1656274.1656278.

[52] M. Hammad, H. A. Basit, S. Jarzabek, and R. Koschke. “A systematic mapping study of

clone visualization.” In: Computer Science Review 37 (2020), p. 100266. doi: 10.1016/j.

cosrev.2020.100266.

[53] S Hassaine, F Khomh, Y. G. Guéhéneucy, and S Hamel. “IDS: An immune-inspired

approach for the detection of software design smells.” In: 7th International Conference
on the Quality of Information and Communications Technology, QUATIC 2010. Ed. by I.

Porto, Microsoft, Tice.Pt, and Ibm. 2010, pp. 343–348. isbn: 9780769542416 (ISBN).

doi: 10.1109/QUATIC.2010.61.

[54] W. S. Humphrey. The Future of Software Engineering: I in The Watts New? Collection:
Columns by the SEI’s Watts Humphrey. Tech. rep. CMU/SEI-2009-SR-024. Pitsburgh,

USA: Software Engineering Institute Carnegie mellon University, Nov. 2009.

[55] P. Janeiro Coimbra and F. Brito e Abreu. “The Eclipse Java Metamodel - Scaffolding

Software Engineering Research on Java Projects with MDE Techniques.” In: 2nd In-
ternational Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD’2014). Lisbon, Portugal, 2014, pp. 392–399. doi: 10.5220/0004715303920399.

121

https://doi.org/10.1109/ESEM.2015.7321194
https://doi.org/10.1007/11558569_8
https://doi.org/10.3390/e20050372
https://doi.org/10.1007/978-3-319-62407-5
https://doi.org/10.5220/0006709801370146
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1016/j.cosrev.2020.100266
https://doi.org/10.1016/j.cosrev.2020.100266
https://doi.org/10.1109/QUATIC.2010.61
https://doi.org/10.5220/0004715303920399

BIBLIOGRAPHY

[56] G. John and P. Langley. “Estimating Continuous Distributions in Bayesian Classifiers.”

In: Eleventh Conference on Uncertainty in Artificial Intelligence (UAI’95). San Mateo:

Morgan Kaufmann, 1995, pp. 338–345. doi: 10.5555/2074158.2074196.

[57] A. Kaur. “A Systematic Literature Review on Empirical Analysis of the Relationship

Between Code Smells and Software Quality Attributes.” In: Archives of Computational
Methods in Engineering (2019). doi: 10.1007/s11831-019-09348-6.

[58] A. Kaur, S. Jain, and S. Goel. “A Support Vector Machine Based Approach for Code

Smell Detection.” In: 2017 International Conference on Machine Learning and Data Science
(MLDS). 2017, pp. 9–14. doi: 10.1109/MLDS.2017.8.

[59] A. Kaur, S. Jain, and S. Goel. “SP-J48: a novel optimization and machine-learning-based

approach for solving complex problems: special application in software engineering

for detecting code smells.” In: Neural Computing and Applications 32 (June 2020). doi:

10.1007/s00521-019-04175-z.

[60] A. Kaur, S. Jain, S. Goel, and G. Dhiman. “A Review on Machine-Learning Based

Code Smell Detection Techniques in Object-Oriented Software System(s).” In: Re-
cent Advances in Electrical and Electronic Engineering (Sept. 2020). doi: 10 . 2174 /

2352096513999200922125839.

[61] M. Kessentini and A. Ouni. “Detecting Android Smells Using Multi-objective Genetic

Programming.” In: 4th International Conference on Mobile Software Engineering and Sys-
tems (MOBILESoft’17). Piscataway, NJ, USA: IEEE, May 2017, pp. 122–132. isbn: 978-

1-5386-2669-6. doi: 10.1109/MOBILESoft.2017.29.

[62] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni. “A Cooperative

Parallel Search-Based Software Engineering Approach for Code-Smells Detection.” In:

Transactions on Software Engineering 40.9 (Sept. 2014), pp. 841–861. issn: 0098-5589.

doi: 10.1109/TSE.2014.2331057.

[63] F Khomh, S Vaucher, Y. G. Guéhéneuc, and H Sahraoui. “BDTEX: A GQM-based

Bayesian approach for the detection of antipatterns.” In: Journal of Systems and Software
84.4 (2011), pp. 559–572. issn: 01641212 (ISSN). doi: 10.1016/j.jss.2010.11.921.

[64] F. Khomh, M. D. Penta, Y. G. Guéhéneuc, and G. Antoniol. “An exploratory study of

the impact of antipatterns on class change- and fault-proneness.” In: Empirical Software
Engineering 17.3 (2012), pp. 243–275. issn: 13823256. doi: 10.1007/s10664-011-

9171-y.

[65] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui. “A Bayesian Approach for the

Detection of Code and Design Smells.” In: 2009 Ninth International Conference on Quality
Software. 2009, pp. 305–314. isbn: 978-1-4244-5912-4. doi: 10.1109/QSIC.2009.47.

[66] D. Kim. “Finding bad code smells with neural network models.” In: International Journal
of Electrical and Computer Engineering 7.6 (2017), pp. 3613–3621. doi: 10.11591/ijece.

v7i6.pp3613-3621.

122

https://doi.org/10.5555/2074158.2074196
https://doi.org/10.1007/s11831-019-09348-6
https://doi.org/10.1109/MLDS.2017.8
https://doi.org/10.1007/s00521-019-04175-z
https://doi.org/10.2174/2352096513999200922125839
https://doi.org/10.2174/2352096513999200922125839
https://doi.org/10.1109/MOBILESoft.2017.29
https://doi.org/10.1109/TSE.2014.2331057
https://doi.org/10.1016/j.jss.2010.11.921
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1109/QSIC.2009.47
https://doi.org/10.11591/ijece.v7i6.pp3613-3621
https://doi.org/10.11591/ijece.v7i6.pp3613-3621

BIBLIOGRAPHY

[67] B. Kitchenham. “The Role of Replications in Empirical Software Engineering–a Word

of Warning.” In: Empirical Software Engineering 13.2 (Apr. 2008), pp. 219–221. issn:

1382-3256. doi: 10.1007/s10664-008-9061-0.

[68] B. Kitchenham and S. Charters. Guidelines for performing systematic literature reviews in
software engineering. Tech. rep. EBSE Ver. 2.3. Keele University and Durham University,

2007, pp. 1–57.

[69] J. Kreimer. “Adaptive Detection of Design Flaws.” In: Electronic Notes in Theoretical
Computer Science 141.4 (2005). Fifth Workshop on Language Descriptions, Tools, and

Applications (LDTA 2005), pp. 117–136. issn: 1571-0661. doi: 10.1016/j.entcs.

2005.02.059.

[70] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc. “Code smells and refactoring:

A tertiary systematic review of challenges and observations.” In: Journal of Systems and
Software 167 (2020), p. 110610. issn: 0164-1212. doi: 10.1016/j.jss.2020.110610.

[71] J. R. Landis and G. G. Koch. “The Measurement of Observer Agreement for Categorical

Data.” In: Biometrics 33.1 (Mar. 1977), pp. 159–174. issn: 0006341X. doi: 10.2307/

2529310.

[72] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice. Vol. 1. Springer, 2006,

p. 213. isbn: 9788578110796. doi: 10.1017/CBO9781107415324.004. eprint: arXiv:

1011.1669v3.

[73] J. M. Leimeister. “Collective Intelligence.” In: Business Information Systems Engineering
2.4 (2010), pp. 245–248. doi: 10.1007/s12599-010-0114-8.

[74] H. Liu, Z. Xu, and Y. Zou. “Deep Learning Based Feature Envy Detection.” In: 33rd
International Conference on Automated Software Engineering (ASE 2018). Montpellier,

France: Association for Computing Machinery, 2018, 385––396. isbn: 9781450359375.

doi: 10.1145/3238147.3238166.

[75] R. Mahouachi, M. Kessentini, and K. Ghedira. “A new design defects classification: Mar-

rying detection and correction.” In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7212 LNCS.

2012, pp. 455–470. isbn: 9783642288715. doi: 10.1007/978-3-642-28872-2_31.

[76] A. Maiga, N. Ali, N. Bhattacharya, A. Saban, and E. Aimeur. “SMURF : A SVM-based

Incremental Anti-pattern Detection Approach.” In: 19th Working Conference on Reverse
Engineering (WCRE 2012). IEEE, 2012, pp. 466–475. doi: 10.1109/WCRE.2012.56.

[77] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-g. Guéhéneuc, G. Antoniol, and E.

Aimeur. “Support Vector Machine for Anti-Pattern Detection.” In: 27th International
Conference on Automated Software Engineering (ASE 2012). Association for Computing

Machinery, 2012, pp. 278–281. doi: 10.1145/2351676.2351723.

[78] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb. “Multi-objective code-smells

detection using good and bad design examples.” In: Software Quality Journal 25.2 (2017),

pp. 529–552. issn: 15731367. doi: 10.1007/s11219-016-9309-7.

123

https://doi.org/10.1007/s10664-008-9061-0
https://doi.org/10.1016/j.entcs.2005.02.059
https://doi.org/10.1016/j.entcs.2005.02.059
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1017/CBO9781107415324.004
arXiv:1011.1669v3
arXiv:1011.1669v3
https://doi.org/10.1007/s12599-010-0114-8
https://doi.org/10.1145/3238147.3238166
https://doi.org/10.1007/978-3-642-28872-2_31
https://doi.org/10.1109/WCRE.2012.56
https://doi.org/10.1145/2351676.2351723
https://doi.org/10.1007/s11219-016-9309-7

BIBLIOGRAPHY

[79] M. Mantyla, J. Vanhanen, and C. Lassenius. “A taxonomy and an initial empirical study

of bad smells in code.” In: International Conference on Software Maintenance (ICSM 2003).
IEEE, 2003, pp. 381–384. doi: 10.1109/ICSM.2003.1235447.

[80] M. Mantyla, J. Vanhanen, and C. Lassenius. “Bad smells - humans as code critics.” In:

20th International Conference on Software Maintenance (ICSM 2004). IEEE, 2004, pp. 399–

408. isbn: 0-7695-2213-0. doi: 10.1109/ICSM.2004.1357825.

[81] C. Marinescu, R. Marinescu, P. F. Mihancea, and R. Wettel. “iplasma: An integrated

platform for quality assessment of object-oriented design.” In: International Conference
on Software Maintenance (ICSM 2005) - Industrial and Tool Volume. IEEE, 2005, pp. 77–

80.

[82] R. C. Martin. Agile Software Development: Principles, Patterns, and Practices. 1st Edition.

Prentice Hall, 2002.

[83] R. Mazza. Introduction to Information Visualization. 1st ed. Springer, 2009. isbn:

1848002181.

[84] M. L. McHugh. “Interrater reliability : the kappa statistic.” In: Biochemica Medica 22.3

(2012), pp. 276–282.

[85] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz. “A systematic literature review

of software visualization evaluation.” In: Journal of Systems and Software 144 (2018),

pp. 165–180. issn: 0164-1212. doi: 10.1016/j.jss.2018.06.027.

[86] M. W. Mkaouer. “Interactive Code Smells Detection: An Initial Investigation.” In: Search
Based Software Engineering. Ed. by F. Sarro and K. Deb. Vol. 9962. Lecture Notes in

Computer Science. NSF; CREST; Ford; Springer; Univ Michigan; Univ Michigan, Coll

Engn & Comp Sci. Raleigh, NC, USA: Springer International Publishing, 2016, pp. 281–

287. isbn: 978-3-319-47106-8. doi: 10.1007/978-3-319-47106-8_24.

[87] N Moha, Y. G. Guéhéneuc, L Duchien, and A. F. Le Meur. “DECOR: A method for

the specification and detection of code and design smells.” In: Transactions on Software
Engineering 36.1 (2010), pp. 20–36. issn: 00985589 (ISSN). doi: 10.1109/TSE.2009.

50.

[88] N Moha, Y. G. Guéhéneuc, A. F. Le Meur, L Duchien, and A Tiberghien. “From a

domain analysis to the specification and detection of code and design smells.” In: Formal
Aspects of Computing 22.3-4 (2010), pp. 345–361. issn: 09345043 (ISSN). doi: 10.1007/

s00165-009-0115-x.

[89] M. Monperrus, M. Bruch, and M. Mezini. “Detecting Missing Method Calls in Object-

Oriented Software.” In: 24th European Conference on Object-Oriented Programming
(ECOOP 2010). Ed. by T. D’Hondt. Berlin, Heidelberg: Springer Berlin Heidelberg,

2010, pp. 2–25. doi: 10.5555/1883978.1883982.

[90] E. Murphy-Hill, T. Barik, and a. P. Black. “Interactive ambient visualizations for soft

advice.” In: Information Visualization 12.2 (2013), pp. 107–132. issn: 1473-8716. doi:

10.1177/1473871612469020.

124

https://doi.org/10.1109/ICSM.2003.1235447
https://doi.org/10.1109/ICSM.2004.1357825
https://doi.org/10.1016/j.jss.2018.06.027
https://doi.org/10.1007/978-3-319-47106-8_24
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1007/s00165-009-0115-x
https://doi.org/10.1007/s00165-009-0115-x
https://doi.org/10.5555/1883978.1883982
https://doi.org/10.1177/1473871612469020

BIBLIOGRAPHY

[91] G. Noblit and R. Hare. Meta-Ethnography: Synthesizing Qualitative Studies. Qualitative

Research Methods. SAGE, 1988. isbn: 9781506349824.

[92] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjøberg. “Are all code smells harmful? A study

of God Classes and Brain Classes in the evolution of three open source systems.” In:

International Conference on Software Maintenance (ICSM 2010). IEEE, 2010, pp. 1–10.

doi: 10.1109/ICSM.2010.5609564.

[93] R. Oliveira, B. Estácio, A. Garcia, S. Marczak, R. Prikladnicki, M. Kalinowski, and C.

Lucena. “Identifying Code Smells with Collaborative Practices: A Controlled Experi-

ment.” In: 2016 X Brazilian Symposium on Software Components, Architectures and Reuse
(SBCARS). 2016, pp. 61–70. doi: 10.1109/SBCARS.2016.18.

[94] R. Oliveira, L. Sousa, R. de Mello, N. Valentim, A. Lopes, T. Conte, A. Garcia, E. Oliveira,

and C. Lucena. “Collaborative Identification of Code Smells: A Multi-Case Study.” In:

39th International Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP 2017). IEEE, 2017, pp. 33–42. doi: 10.1109/ICSE-SEIP.2017.7.

[95] R. Oliveira. “When More Heads Are Better than One? Understanding and Improving

Collaborative Identification of Code Smells.” In: 38th International Conference on Soft-
ware Engineering Companion (ICSE-C 2016). IEEE, 2016, pp. 879–882. doi: 10.1145/

2889160.2889272.

[96] R. Oliveira, R. de Mello, E. Fernandes, A. Garcia, and C. Lucena. “Collaborative or

individual identification of code smells? On the effectiveness of novice and professional

developers.” In: Information and Software Technology 120 (2020), p. 106242. issn: 0950-

5849. doi: 10.1016/j.infsof.2019.106242.

[97] F Palomba, G Bavota, M. D. Penta, R Oliveto, D Poshyvanyk, and A. D. Lucia. “Mining

Version Histories for Detecting Code Smells.” In: Transactions on Software Engineering
41.5 (2015), pp. 462–489. issn: 0098-5589. doi: 10.1109/TSE.2014.2372760.

[98] F Palomba, D Di Nucci, A Panichella, A Zaidman, and A De Lucia. “Lightweight de-

tection of Android-specific code smells: The aDoctor project.” In: 24th International
Conference on Software Analysis, Evolution, and Reengineering (SANER 2017). IEEE, Feb.

2017, pp. 487–491. doi: 10.1109/SANER.2017.7884659.

[99] F. Palomba, D. Di Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshyvanyk, and A. De

Lucia. “Landfill: An Open Dataset of Code Smells with Public Evaluation.” In: 12th
Working Conference on Mining Software Repositories (MSR 2015). IEEE, 2015, pp. 482–

485. doi: 10.1109/MSR.2015.69.

[100] F Palomba, A Panichella, A. D. Lucia, R Oliveto, and A Zaidman. “A textual-based tech-

nique for Smell Detection.” In: 24th International Conference on Program Comprehension
(ICPC 2016). IEEE, 2016, pp. 1–10. isbn: VO -. doi: 10.1109/ICPC.2016.7503704.

[101] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk. “De-

tecting bad smells in source code using change history information.” In: 28th Inter-
national Conference on Automated Software Engineering (ASE 2013). IEEE, 2013. isbn:

9781479902156. doi: 10.1109/ASE.2013.6693086.

125

https://doi.org/10.1109/ICSM.2010.5609564
https://doi.org/10.1109/SBCARS.2016.18
https://doi.org/10.1109/ICSE-SEIP.2017.7
https://doi.org/10.1145/2889160.2889272
https://doi.org/10.1145/2889160.2889272
https://doi.org/10.1016/j.infsof.2019.106242
https://doi.org/10.1109/TSE.2014.2372760
https://doi.org/10.1109/SANER.2017.7884659
https://doi.org/10.1109/MSR.2015.69
https://doi.org/10.1109/ICPC.2016.7503704
https://doi.org/10.1109/ASE.2013.6693086

BIBLIOGRAPHY

[102] A. J. Paramita and M. Z. Catur Candra. “CODECOD: Crowdsourcing Platform for Code

Smell Detection.” In: 2018 5th International Conference on Data and Software Engineering
(ICoDSE). 2018, pp. 1–6. doi: 10.1109/ICODSE.2018.8705923.

[103] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia. “On the Role of Data Balancing

for Machine Learning-Based Code Smell Detection.” In: 3rd ACM SIGSOFT International
Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE
2019). Tallinn, Estonia: Association for Computing Machinery, 2019, pp. 19–24. doi:

10.1145/3340482.3342744.

[104] J. C. Platt. “Fast training of support vector machines using sequential minimal opti-

mization.” In: Advances in Kernel Methods - Support Vector Learning. MIT Press, 1999,

185––208. doi: 10.5555/299094.299105.

[105] S. Proksch, S. Amann, and M. Mezini. “Towards standardized evaluation of developer-

assistance tools.” In: 4th International Workshop on Recommendation Systems for Software
Engineering (RSSE 2014). New York, New York, USA: ACM Press, 2014, pp. 14–18. isbn:

9781450328456. doi: 10.1145/2593822.2593827.

[106] J. R. Quinlan. C4.5: Programs for Machine Learning. Elsevier, 2014, p. 302.

[107] F. Rahman and P. Devanbu. “How, and why, process metrics are better.” In: International
Conference on Software Engineering (ICSE 2013). ICSE ’13. San Francisco, CA, USA: IEEE,

2013, 432––441. isbn: 9781467330763. doi: 10.1109/ICSE.2013.6606589.

[108] K. E. Rajakumari and T. Jebarajan. “A novel approach to effective detection and analysis

of code clones.” In: Third International Conference on Innovative Computing Technology
(INTECH 2013). 2013, pp. 287–290. isbn: 978-1-4799-0048-0. doi: 10.1109/INTECH.

2013.6653701.

[109] G. Rasool and Z. Arshad. “A review of code smell mining techniques.” In: Journal
of Software: Evolution and Process 27.11 (2015), pp. 867–895. issn: 2047-7473. doi:

10.1002/smr.1737.

[110] D. Rattan, R. Bhatia, and M. Singh. “Software clone detection: A systematic review.” In:

Information and Software Technology 55.7 (2013), pp. 1165–1199. issn: 09505849. doi:

10.1016/j.infsof.2013.01.008.

[111] J. Pereira dos Reis, F. Brito e Abreu, and G. Figueiredo Carneiro. Dataset on Code Smells
Surveys. July 2020. doi: 10.5281/zenodo.3936663.

[112] J. Pereira dos Reis, F. Brito e Abreu, and G. Figueiredo Carneiro. Code Smells Dataset
(oracles). May 2022. doi: 10.5281/zenodo.6555241.

[113] J. Pereira dos Reis, F. Brito e Abreu, and G. de Figueiredo Carneiro. “Code smells

detection 2.0: Crowdsmelling and visualization.” In: 2017 12th Iberian Conference on
Information Systems and Technologies (CISTI). June 2017, pp. 1–4. doi: 10.23919/CISTI.

2017.7975961.

126

https://doi.org/10.1109/ICODSE.2018.8705923
https://doi.org/10.1145/3340482.3342744
https://doi.org/10.5555/299094.299105
https://doi.org/10.1145/2593822.2593827
https://doi.org/10.1109/ICSE.2013.6606589
https://doi.org/10.1109/INTECH.2013.6653701
https://doi.org/10.1109/INTECH.2013.6653701
https://doi.org/10.1002/smr.1737
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.5281/zenodo.3936663
https://doi.org/10.5281/zenodo.6555241
https://doi.org/10.23919/CISTI.2017.7975961
https://doi.org/10.23919/CISTI.2017.7975961

BIBLIOGRAPHY

[114] J. Pereira dos Reis, F. Brito e Abreu, G. de Figueiredo Carneiro, and C. Anslow. “Code

Smells Detection and Visualization: A Systematic Literature Review.” In: Archives of
Computational Methods in Engineering (2021). issn: 1886-1784. doi: 10.1007/s11831-

021-09566-x.

[115] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning Internal Representations by

Error Propagation.” In: Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, Vol. 1: Foundations. Cambridge, MA, USA: MIT Press, 1986, 318––362.

isbn: 026268053X.

[116] F. Sabir, F. Palma, G. Rasool, Y.-G. Guéhéneuc, and N. Moha. “A systematic literature

review on the detection of smells and their evolution in object-oriented and service-

oriented systems.” In: Software: Practice and Experience 49.1 (2019), pp. 3–39. doi:

10.1002/spe.2639.

[117] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb. “Code-Smell Detection as a Bilevel

Problem.” In: Transactions on Software Engineering and Methodology 24.1 (2014). issn:

1049331X. doi: 10.1145/2675067.

[118] J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S. do Nascimento, M. F. Freitas,

and M. G. de Mendonça. “A systematic review on the code smell effect.” In: Journal of
Systems and Software 144 (2018), pp. 450–477. issn: 0164-1212. doi: 10.1016/j.jss.

2018.07.035.

[119] G. Saranya, H. Khanna Nehemiah, A. Kannan, and V. Nithya. “Model level code smell

detection using EGAPSO based on similarity measures.” In: Alexandria Engineering
Journal 57.3 (2018), pp. 1631–1642. doi: 10.1016/j.aej.2017.07.006.

[120] M. Sharma and R. Padmanaban. Leveraging the wisdom of the crowd in software testing.

CRC Press, 2014. isbn: 9781482254495.

[121] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo. “The Role of Replications in Empirical

Software Engineering.” In: Empirical Software Engineering 13.2 (Apr. 2008), pp. 211–218.

issn: 1382-3256. doi: 10.1007/s10664-008-9060-1.

[122] S. Singh and S. Kaur. “A systematic literature review: Refactoring for disclosing code

smells in object oriented software.” In: Ain Shams Engineering Journal (2017). issn:

20904479. doi: 10.1016/j.asej.2017.03.002.

[123] K Sirikul and C Soomlek. “Automated detection of code smells caused by null checking

conditions in Java programs.” In: 2016 13th International Joint Conference on Computer
Science and Software Engineering (JCSSE). 2016, pp. 1–7. isbn: VO -. doi: 10.1109/

JCSSE.2016.7748884.

[124] E. V. d. P. Sobrinho, A. De Lucia, and M. d. A. Maia. “A Systematic Literature Review on

Bad Smells–5 W’s: Which, When, What, Who, Where.” In: IEEE Trans. Softw. Eng. 47.1

(Jan. 2021), 17–66. issn: 0098-5589. doi: 10.1109/TSE.2018.2880977.

[125] R. Spence. Information Visualization: Design for Interaction. 2nd ed. Prentice Hall, 2007,

p. 282.

[126] Stack overflow. 2008 Accesssed: 2022-05-01.

127

https://doi.org/10.1007/s11831-021-09566-x
https://doi.org/10.1007/s11831-021-09566-x
https://doi.org/10.1002/spe.2639
https://doi.org/10.1145/2675067
https://doi.org/10.1016/j.jss.2018.07.035
https://doi.org/10.1016/j.jss.2018.07.035
https://doi.org/10.1016/j.aej.2017.07.006
https://doi.org/10.1007/s10664-008-9060-1
https://doi.org/10.1016/j.asej.2017.03.002
https://doi.org/10.1109/JCSSE.2016.7748884
https://doi.org/10.1109/JCSSE.2016.7748884
https://doi.org/10.1109/TSE.2018.2880977

BIBLIOGRAPHY

[127] K.-J. Stol and B. Fitzgerald. “Researching Crowdsourcing Software Development: Per-

spectives and Concerns.” In: 1st International Workshop on CrowdSourcing in Software
Engineering (CSI-SE 2014). Association for Computing Machinery, 2014, 7––10. isbn:

9781450328579. doi: 10.1145/2593728.2593731.

[128] M. Stone. “Cross-Validatory Choice and Assessment of Statistical Predictions.” In: Jour-
nal of the Royal Statistical Society. Series B (Methodological) 36.2 (1974), pp. 111–147.

issn: 0035-9246.

[129] J. Surowiecki. The Wisdom of Crowds. Anchor, 2005. isbn: 0385721706.

[130] A. Tahir, A. Yamashita, S. Licorish, J. Dietrich, and S. Counsell. “Can You Tell Me

If It Smells? A Study on How Developers Discuss Code Smells and Anti-Patterns in

Stack Overflow.” In: International Conference on Evaluation and Assessment in Software
Engineering (EASE). Christchurch, New Zealand: Association for Computing Machinery,

2018, 68––78. isbn: 9781450364034. doi: 10.1145/3210459.3210466.

[131] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili. “Detecting defects in object-

oriented designs: Using reading techniques to increase software quality.” In: 14th confer-
ence on object oriented programming, systems, languages, and applications (OOPSLA). New

York, NY, USA: ACM Press, 1999, pp. 47–56. doi: 10.1145/320384.320389.

[132] N Tsantalis, T Chaikalis, and A Chatzigeorgiou. “JDeodorant: Identification and re-

moval of type-checking bad smells.” In: CSMR 2008 - 12th European Conference on
Software Maintenance and Reengineering. 2008, pp. 329–331. isbn: 15345351 (ISSN);

9781424421572 (ISBN). doi: 10.1109/CSMR.2008.4493342.

[133] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. “Ten years of JDeodorant: Lessons

learned from the hunt for smells.” In: 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER 2018). IEEE, 2018, pp. 4–14. doi: 10.1109/SANER.

2018.8330192.

[134] S Vidal, H Vazquez, J. A. Diaz-Pace, C Marcos, A Garcia, and W Oizumi. “JSpIRIT: a

flexible tool for the analysis of code smells.” In: 2015 34th International Conference of
the Chilean Computer Science Society (SCCC). 2015, pp. 1–6. doi: 10.1109/SCCC.2015.

7416572.

[135] W. C. Wake. Refactoring Workbook. Boston, MA, USA: Addison-Wesley Longman Pub-

lishing Co., 2003.

[136] C. Wang, S. Hirasawa, H. Takizawa, and H. Kobayashi. “Identification and Elimination

of Platform-Specific Code Smells in High Performance Computing Applications.” In:

International Journal of Networking and Computing 5.1 (Jan. 2015), pp. 180–199. issn:

2185-2847.

[137] J. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling with UML.

1st. Addison-Wesley Object Technology Series, 1998, p. 144.

128

https://doi.org/10.1145/2593728.2593731
https://doi.org/10.1145/3210459.3210466
https://doi.org/10.1145/320384.320389
https://doi.org/10.1109/CSMR.2008.4493342
https://doi.org/10.1109/SANER.2018.8330192
https://doi.org/10.1109/SANER.2018.8330192
https://doi.org/10.1109/SCCC.2015.7416572
https://doi.org/10.1109/SCCC.2015.7416572

BIBLIOGRAPHY

[138] A. Wasylkowski, A. Zeller, and C. Lindig. “Detecting object usage anomalies.” In: 6th
joint meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). Dubrovnik, Croatia:

ACM, 2007. doi: 10.1145/1287624.1287632.

[139] R. Wettel, M. Lanza, and R. Robbes. “Software systems as cities: a controlled experi-

ment.” In: Proceeding of the 33rd international conference on Software engineering - ICSE
’11, ACM. New York, New York, USA: ACM Press, May 2011, pp. 551–560. isbn:

9781450304450. doi: 10.1145/1985793.1985868.

[140] C. Wohlin. “Guidelines for snowballing in systematic literature studies and a replication

in software engineering.” In: 18th International Conference on Evaluation and Assessment
in Software Engineering (EASE’14). ACM, 2014, pp. 1–10. isbn: 9781450324762. doi:

10.1145/2601248.2601268.

[141] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-

Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty, A.

Nieva de la Hidalga, M. P. Balcazar Vargas, S. Sufi, and C. Goble. “The Taverna workflow

suite: designing and executing workflows of Web Services on the desktop, web or in

the cloud.” In: Nucleic Acids Research 41.Web Server issue (2013), pp. 557–561. issn:

13624962. doi: 10.1093/nar/gkt328.

[142] A. Yamashita. “Assessing the capability of code smells to support software maintainabil-

ity assessments: Empirical inquiry and methodological approach.” Doctoral dissertation.

Faculty of Mathematics and Natural Sciences, University of Oslo, 2012.

[143] A. Yamashita and L. Moonen. “Do code smells reflect important maintainability as-

pects?” In: International Conference on Software Maintenance (ICSM 2012). IEEE, 2012,

pp. 306–315. isbn: 9781467323123. doi: 10.1109/ICSM.2012.6405287.

[144] A. Yamashita and L. Moonen. “To what extent can maintenance problems be predicted

by code smell detection? - An empirical study.” In: Information and Software Technology
55.12 (Dec. 2013), pp. 2223–2242. issn: 09505849. doi: 10.1016/j.infsof.2013.08.

002.

[145] H. Zhang, M. A. Babar, and P. Tell. “Identifying relevant studies in software engineer-

ing.” In: Information and Software Technology 53.6 (2011), pp. 625–637. doi: 10.1016/j.

infsof.2010.12.010.

[146] M. Zhang, T. Hall, and N. Baddoo. “Code Bad Smells: a review of current knowledge.”

In: Journal of Software Maintenance and Evolution 26.12 (2010), pp. 1172–1192. doi:

10.1002/smr.521.

[147] M. F. Zibran and C. K. Roy. “IDE-based real-time focused search for near-miss clones.”

In: 7th Annual ACM Symposium on Applied Computing (SAC 2012). Trento, Italy: ACM,

2012. doi: 10.1145/2245276.2231970.

129

https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1093/nar/gkt328
https://doi.org/10.1109/ICSM.2012.6405287
https://doi.org/10.1016/j.infsof.2013.08.002
https://doi.org/10.1016/j.infsof.2013.08.002
https://doi.org/10.1016/j.infsof.2010.12.010
https://doi.org/10.1016/j.infsof.2010.12.010
https://doi.org/10.1002/smr.521
https://doi.org/10.1145/2245276.2231970

BIBLIOGRAPHY

[148] E Zitzler, L Thiele, M Laumanns, C. M. Fonseca, and V. G. da Fonseca. “Performance

Assessment of Multiobjective Optimizers: An Analysis and Review.” In: Transactions
on Evolutionary Computation 7.2 (2003), pp. 117–132. issn: 1089-778X. doi: 10.1109/

TEVC.2003.810758.

130

https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1109/TEVC.2003.810758

A
p
p
e
n
d
i
x

AA A

Systematic Literature Review Materials

131

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

A.1 Studies included in the review

ID Title Authors Year Publish type Source title

S1 Java quality assurance by

detecting code smells

E. van Emden; L.

Moonen

2002 Conference 9th Working Conference on Re-

verse Engineering (WCRE)

S2 Insights into system-

wide code duplication

Rieger, M.,

Ducasse, S.,

Lanza, M.

2004 Conference Working Conference on Reverse

Engineering, IEEE Computer So-

ciety Press

S3 Detection strategies:

Metrics-based rules for

detecting design flaws

R. Marinescu 2004 Conference 20th International Conference

on Software Maintenance

(ICSM). IEEE Computer Society

Press

S4 Product metrics for au-

tomatic identification of

"bad smell"design prob-

lems in Java source-code

M. J. Munro 2005 Conference 11th IEEE International Soft-

ware Metrics Symposium (MET-

RICS’05)

S5 Multi-criteria detection

of bad smells in code

with UTA method

Walter B.,

Pietrzak B.

2005 Conference International Conference on Ex-

treme Programming and Agile

Processes in Software Engineer-

ing (XP)

S6 Adaptive detection of de-

sign flaws

Kreimer J. 2005 Conference Fifth Workshop on Language De-

scriptions, Tools, and Applica-

tions (LDTA)

S7 Visualization-Based

Analysis of Quality for

Large-Scale Software

Systems

G. Langelier,

H.A. Sahraoui,; P.

Poulin

2005 Conference 20th International Conference

on Automated Software Engi-

neering (ASE)

S8 Automatic generation of

detection algorithms for

design defects

Moha N.,

Guéhéneuc Y.-

G., Leduc P.

2006 Conference 21st IEEE/ACM International

Conference on Automated Soft-

ware Engineering (ASE)

S9 Object - Oriented Metrics

in Practice

M. Lanza; R.

Marinescu

2006 Book Springer-Verlag

S10 Detecting Object Usage

Anomalies

Andrzej Wa-

sylkowski; An-

dreas Zeller;

Christian Lindig

2007 Conference 6th Joint Meeting of the Euro-

pean Software Engineering Con-

ference and the ACM SIGSOFT

Symposium on the Foundations

of Software Engineering (ES-

EC/FSE)

S11 Empirically evaluat-

ing the usefulness of

software visualization

techniques in program

comprehension activities

De F. Carneiro G.,

Orrico A.C.A., De

Mendonça Neto

M.G.

2007 Conference VI Jornadas Iberoamericanas de

Ingenieria de Software e Inge-

nieria del Conocimiento (JIISIC)

S12 A Catalogue of

Lightweight Visual-

izations to Support Code

Smell Inspection

Chris Parnin;

Carsten Gorg;

Ogechi Nnadi

2008 Conference 4th ACM Symposium on Soft-

ware Visualization (SoftVis)

S13 A domain analysis to

specify design defects

and generate detection

algorithms

Moha N.,

Guéhéneuc Y.-

G., Le Meur A.-F.,

Duchien L.

2008 Conference International Conference on

Fundamental Approaches to

Software Engineering (FASE)

132

A.1. STUDIES INCLUDED IN THE REVIEW

S14 JDeodorant: Identifica-

tion and removal of type-

checking bad smells

Tsantalis N.,

Chaikalis T.,

Chatzigeorgiou

A.

2008 Conference European Conference on Soft-

ware Maintenance and Reengi-

neering (CSMR)

S15 Empirical evaluation of

clone detection using

syntax suffix trees

Raimar Falk,

Pierre Frenzel,

Rainer Koschke

2008 Journal Empirical Software Engineering

S16 Visual Detection of De-

sign Anomalies

K. Dhambri,

H. Sahraoui,; P.

Poulin

2008 Conference 12th European Conference

on Software Maintenance and

Reengineering (CSMR)

S17 Visually localizing de-

sign problems with

disharmony maps

Richard Wettel;

Michele Lanza

2008 Conference 4th ACM Symposium on Soft-

ware Visualization (SoftVis)

S18 A Bayesian Approach for

the Detection of Code

and Design Smells

F. Khomh; S.

Vaucher; Y. G.

Gueheneuc; H.

Sahraoui

2009 Conference 9th International Conference on

Quality Software (QSIC)

S19 An Interactive Ambient

Visualization for Code

Smells

Emerson Murphy-

Hill; Andrew P.

Black

2010 Conference 5th International Symposium on

Software Visualization (SoftVis)

S20 Learning from 6,000

Projects: Lightweight

Cross-project Anomaly

Detection

Natalie Gruska;

Andrzej Wa-

sylkowski; An-

dreas Zeller

2010 Conference 19th International Symposium

on Software Testing and Analy-

sis

S21 Identifying Code Smells

with Multiple Concern

Views

G. d. F. Carneiro;

M. Silva; L. Mara;

E. Figueiredo;

C. Sant’Anna; A.

Garcia; M. Men-

donca

2010 Conference Brazilian Symposium on Soft-

ware Engineering (SBES)

S22 Reducing Subjectivity in

Code Smells Detection:

Experimenting with the

Long Method

S. Bryton; F. Brito

e Abreu; M. Mon-

teiro

2010 Conference 7th International Conference on

the Quality of Information and

Communications Technology

(QUATIC)

S23 DECOR: A method for

the specification and de-

tection of code and de-

sign smells

Moha N.,

Guéhéneuc Y.-

G., Duchien L., Le

Meur A.-F.

2010 Journal IEEE Transactions on Software

Engineering

S24 IDS: An immune-

inspired approach for

the detection of software

design smells

Hassaine S.,

Khomh F.,

Guéhéneucy

Y.-G., Hamel S.

2010 Conference 7th International Conference on

the Quality of Information and

Communications Technology

(QUATIC)

S25 Detecting Missing

Method Calls in Object-

Oriented Software

Martin Monper-

rus Marcel Bruch

Mira Mezini

2010 Conference European Conference on

Object-Oriented Programming

(ECOOP)

133

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

S26 From a domain analysis

to the specification and

detection of code and de-

sign smells

Naouel Moha,

Yann-Gaël

Guéhéneuc,

Anne-Françoise

Le Meur, Lau-

rence Duchien,

Alban Tiberghien

2010 Journal Formal Aspects of Computing

S27 BDTEX: A GQM-based

Bayesian approach for

the detection of antipat-

terns

Khomh F.,

Vaucher S.,

Guéhéneuc Y.-

G., Sahraoui

H.

2011 Journal Journal of Systems and Software

S28 IDE-based Real-time Fo-

cused Search for Near-

miss Clones

Minhaz F. Zibran;

Chanchal K. Roy

2012 Conference 27th Annual ACM Symposium

on Applied Computing (SAC)

S29 Detecting Bad Smells

with Weight Based

Distance Metrics Theory

J. Dexun; M. Pei-

jun; S. Xiaohong;

W. Tiantian

2012 Conference 2nd International Conference on

Instrumentation, Measurement,

Computer, Communication and

Control (IMCCC)

S30 Analytical learning

based on a meta-

programming approach

for the detection of

object-oriented design

defects

Mekruksavanich

S., Yupapin P.P.,

Muenchaisri P.

2012 Journal Information Technology Journal

S31 A New Design Defects

Classification: Marrying

Detection and Correction

Rim Mahouachi,

Marouane Kessen-

tini, Khaled

Ghedira

2012 Conference Fundamental Approaches to

Software Engineering

S32 Clones in Logic Programs

and How to Detect Them

Céline Dandois,

Wim Vanhoof

2012 Conference Logic-Based Program Synthesis

and Transformation

S33 Smurf: A svm-based

incremental anti-pattern

detection approach

Maiga, A., Ali,

N., Bhattacharya,

N., Sabane, A.,

Guéhéneuc, Y-G,

& Aimeur, E

2012 Conference 19th Working Conference on Re-

verse Engineering (WCRE)

S34 Support vector machines

for anti- pattern detec-

tion

Maiga A, Ali N,

Bhattacharya

N, Sabané A,

Guéhéneuc Y-

G, Antoniol G,

Aïmeur E

2012 Conference 27th IEEE/ACM International

Conference on Automated Soft-

ware Engineering (ASE)

S35 Detecting Missing

Method Calls As Vio-

lations of the Majority

Rule

Martin Mon-

perrus; Mira

Mezini

2013 Journal ACM Transactions on Software

Engineering Methodology

S36 Code Smell Detection:

Towards a Machine

Learning-Based Ap-

proach

F. A. Fontana;

M. Zanoni; A.

Marino; M. V.

Mantyla;

2013 Conference 29th IEEE International Confer-

ence on Software Maintenance

(ICSM)

134

A.1. STUDIES INCLUDED IN THE REVIEW

S37 Identification of Refused

Bequest Code Smells

E. Ligu; A.

Chatzigeorgiou;

T. Chaikalis; N.

Ygeionomakis

2013 Conference 29th IEEE International Confer-

ence on Software Maintenance

(ICSM)

S38 JSNOSE: Detecting

JavaScript Code Smells

A. M. Fard; A.

Mesbah

2013 Conference 13th International Working Con-

ference on Source Code Analysis

and Manipulation (SCAM)

S39 Interactive ambient visu-

alizations for soft advice

Murphy-Hill E.,

Barik T., Black

A.P.

2013 Journal Information Visualization

S40 A novel approach to effec-

tive detection and analy-

sis of code clones

Rajakumari K.E.,

Jebarajan T.

2013 Conference 3rd International Conference on

Innovative Computing Technol-

ogy (INTECH)

S41 Competitive coevolution-

ary code-smells detection

Boussaa M.,

Kessentini W.,

Kessentini M.,

Bechikh S., Ben

Chikha S.

2013 Conference International Symposium on

Search Based Software Engineer-

ing (SSBSE)

S42 Detecting bad smells in

source code using change

history information

Palomba F.,

Bavota G., Di

Penta M., Oliveto

R., De Lucia A.,

Poshyvanyk D.

2013 Conference 28th International Conference

on Automated Software Engi-

neering (ASE). IEEE/ACM

S43 Code-Smell Detection As

a Bilevel Problem

Dilan Sahin;

Marouane

Kessentini;

Slim Bechikh;

Kalyanmoy Deb

2014 Journal ACM Transactions on Software

Engineering Methodology

S44 Two level dynamic ap-

proach for Feature Envy

detection

S. Kumar; J. K.

Chhabra

2014 Conference International Conference on

Computer and Communication

Technology (ICCCT).

S45 A Cooperative Parallel

Search-Based Software

Engineering Approach

for Code-Smells Detec-

tion

Kessentini W.,

Kessentini M.,

Sahraoui H.,

Bechikh S., Ouni

A.

2014 Journal IEEE Transactions on Software

Engineering

S46 SourceMiner: Towards

an Extensible Multi-

perspective Software

Visualization Environ-

ment

Glauco de

Figueiredo

Carneiro, Ma-

noel Gomes de

Mendonça Neto

2014 Conference International Conference on En-

terprise Information Systems

(ICEIS)

S47 Including Structural Fac-

tors into the Metrics-

based Code Smells Detec-

tion

Bartosz Walter;

Błażej Matuszyk;

Francesca Arcelli

Fontana

2015 Conference XP’2015 Workshops

S48 Textual Analysis for

Code Smell Detection

Fabio Palomba 2015 Conference 37th International Conference

on Software Engineering

135

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

S49 Using Developers’ Feed-

back to Improve Code

Smell Detection

Mario Hozano;

Henrique Fer-

reira; Italo Silva;

Baldoino Fonseca;

Evandro Costa

2015 Conference 30th Annual ACM Symposium

on Applied Computing (SAC)

S50 Code Bad Smell Detec-

tion through Evolution-

ary Data Mining

S. Fu; B. Shen 2015 Conference 2015 ACM/IEEE International

Symposium on Empirical Soft-

ware Engineering and Measure-

ment (ESEM)

S51 Mining Version Histo-

ries for Detecting Code

Smells

F. Palomba; G.

Bavota; M. D.

Penta; R. Oliveto;

D. Poshyvanyk; A.

De Lucia

2015 Conference IEEE Transactions on Software

Engineering

S52 Detection and handling

of model smells for MAT-

LAB/simulink models

Gerlitz T., Tran

Q.M., Dziobek C.

2015 Conference CEUR Workshop Proceedings

S53 Experience report: Evalu-

ating the effectiveness of

decision trees for detect-

ing code smells

Amorim L., Costa

E., Antunes

N., Fonseca B.,

Ribeiro M.

2015 Conference 26th International Symposium

on Software Reliability Engineer-

ing (ISSRE)

S54 Detecting software de-

sign defects using re-

lational association rule

mining

Gabriela Cz-

ibula, Zsuzsanna

Marian, Istvan

Gergely Czibula

2015 Journal Knowledge and Information Sys-

tems

S55 A Graph-based Ap-

proach to Detect Un-

reachable Methods in

Java Software

Simone Romano;

Giuseppe Scan-

niello; Carlo

Sartiani; Michele

Risi

2016 Conference 31st Annual ACM Symposium

on Applied Computing (SAC)

S56 Comparing and experi-

menting machine learn-

ing techniques for code

smell detection

Arcelli Fontana

F., Mäntylä

M.V., Zanoni M.,

Marino A.

2016 Journal Empirical Software Engineering

S57 A Lightweight Approach

for Detection of Code

Smells

Ghulam Rasool,

Zeeshan Arshad

2016 Journal Arabian Journal for Science and

Engineering

S58 Multi-objective code-

smells detection using

good and bad design

examples

Usman Mansoor,

Marouane Kessen-

tini, Bruce R.

Maxim, Kalyan-

moy Deb

2016 Journal Software Quality Journal

S59 Continuous Detection of

Design Flaws in Evolv-

ing Object-oriented Pro-

grams Using Incremental

Multi-pattern Matching

Sven Peldszus;

Géza Kulcsár;

Malte Lochau;

Sandro Schulze

2016 Conference 31st IEEE/ACM International

Conference on Automated Soft-

ware Engineering (ASE)

136

A.1. STUDIES INCLUDED IN THE REVIEW

S60 Metric and rule based

automated detection of

antipatterns in object-

oriented software sys-

tems

M. T. Aras, Y. E.

Selçuk

2016 Conference 2016 7th International Confer-

ence on Computer Science and

Information Technology (CSIT)

S61 Automated detection of

code smells caused by

null checking conditions

in Java programs

K. Sirikul, C.

Soomlek

2016 Conference 2016 13th International Joint

Conference on Computer Sci-

ence and Software Engineering

(JCSSE)

S62 A textual-based tech-

nique for Smell Detec-

tion

F. Palomba, A.

Panichella, A. De

Lucia, R. Oliveto,

A. Zaidman

2016 Conference 24th International Conference

on Program Comprehension

(ICPC)

S63 Detecting Code Smells in

Python Programs

Z. Chen, L. Chen,

W. Ma, B. Xu

2016 Conference 2016 International Conference

on Software Analysis; Testing

and Evolution (SATE)

S64 Interactive Code Smells

Detection: An Initial In-

vestigation

Mkaouer, Mo-

hamed Wiem

2016 Conference Symposium on Search-Based

Software Engineering (SSBSE)

S65 Detecting shotgun

surgery bad smell us-

ing similarity measure

distribution model

Saranya G.,

Khanna Ne-

hemiah H., Kan-

nan A., Vimala

S.

2016 Journal Asian Journal of Information

Technology

S66 Detecting Android

Smells Using Multi-

objective Genetic Pro-

gramming

Marouane Kessen-

tini; Ali Ouni

2017 Conference 4th International Conference on

Mobile Software Engineering

and Systems (MOBILESoft)

S67 Smells Are Sensitive to

Developers!: On the Ef-

ficiency of (Un)Guided

Customized Detection

Mario Hozano;

Alessandro

Garcia; Nuno An-

tunes; Baldoino

Fonseca; Evandro

Costa

2017 Conference 25th International Conference

on Program Comprehension

(ICPC)

S68 An automated code smell

and anti-pattern detec-

tion approach

S. Velioglu, Y. E.

Selçuk

2017 Conference 2017 IEEE 15th International

Conference on Software Engi-

neering Research; Management

and Applications (SERA)

S69 Lightweight detection

of Android-specific code

smells: The aDoctor

project

Palomba F.,

Di Nucci D.,

Panichella A.,

Zaidman A., De

Lucia A.

2017 Conference 24th IEEE International Con-

ference on Software Analysis,

Evolution, and Reengineering

(SANER)

S70 On the Use of Smelly Ex-

amples to Detect Code

Smells in JavaScript

Ian Shoen-

berger, Mohamed

Wiem Mkaouer,

Marouane Kessen-

tini

2017 Conference European Conference on the Ap-

plications of Evolutionary Com-

putation (EvoApplications)

S71 A Support Vector Ma-

chine Based Approach

for Code Smell Detection

A. Kaur; S. Jain; S.

Goel

2017 Conference International Conference on Ma-

chine Learning and Data Science

(MLDS)

137

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

S72 c-JRefRec: Change-based

identification of Move

Method refactoring op-

portunities

N. Ujihara; A.

Ouni; T. Ishio; K.

Inoue

2017 Conference 24th International Conference

on Software Analysis, Evolution

and Reengineering (SANER)

S73 A Feature Envy Detec-

tion Method Based on

Dataflow Analysis

W. Chen; C. Liu;

B. Li

2018 Conference 42nd Annual Computer Soft-

ware and Applications Confer-

ence (COMPSAC)

S74 A Hybrid Approach To

Detect Code Smells using

Deep Learning

Hadj-Kacem, M;

Bouassida, N

2018 Conference 13th International Conference

on Evaluation of Novel Ap-

proaches to Software Engineer-

ing (ENASE)

S75 Deep Learning Based Fea-

ture Envy Detection

Hui Liu and

Zhifeng Xu and

Yanzhen Zou

2018 Conference 33rd ACM/IEEE International

Conference on Automated Soft-

ware Engineering (ASE)

S76 Detecting Bad Smells in

Software Systems with

Linked Multivariate Vi-

sualizations

H. Mumtaz;

F. Beck; D.

Weiskopf

2018 Conference Working Conference on Soft-

ware Visualization (VisSoft)

S77 Detecting code smells

using machine learning

techniques: Are we there

yet?

D. Di Nucci; F.

Palomba; D. A.

Tamburri; A. Sere-

brenik; A. De Lu-

cia

2018 Conference 25th International Conference

on Software Analysis, Evolution

and Reengineering (SANER)

S78 Exploring the Use of

Rapid Type Analysis

for Detecting the Dead

Method Smell in Java

Code

S. Romano; G.

Scanniello

2018 Conference 44th Euromicro Conference on

Software Engineering and Ad-

vanced Applications (SEAA)

S79 Model level code smell

detection using EGAPSO

based on similarity mea-

sures

Saranya, G; Ne-

hemiah, HK; Kan-

nan, A; Nithya, V

2018 Journal Alexandria Engineering Journal

S80 Software Code Smell

Prediction Model Using

Shannon, Renyi and

Tsallis Entropies

Gupta, A; Suri, B;

Kumar, V; Misra,

S; Blazauskas, T;

Damasevicius, R

2018 Journal Entropy

S81 Towards Feature Envy

Design Flaw Detection at

Block Level

Ã. Kiss; P. F. Mi-

hancea

2018 Conference International Conference on

Software Maintenance and

Evolution (ICSME)

S82 Understanding metric-

based detectable smells

in Python software: A

comparative study

Chen, ZF; Chen,

L; Ma, WWY;

Zhou, XY; Zhou,

YM; Xu, BW

2018 Journal Information and Software Tech-

nology

S83 SP-J48: a novel opti-

mization and machine-

learning-based approach

for solving complex prob-

lems: special application

in software engineering

for detecting code smells

Amandeep Kaur,

Sushma Jain, Shiv-

ani Goel

2019 Journal Neural Computing and Applica-

tions

138

A.2. STUDIES AFTER APPLYING INCLUSION AND EXCLUSION CRITERIA (PHASE

3)

A.2 Studies after applying inclusion and exclusion criteria (phase

3)

ID Title Authors Year Publish type Source title

1 Java quality assurance by

detecting code smells

E. van Emden; L.

Moonen

2002 Conference 9th Working Conference on Re-

verse Engineering (WCRE)

2 Insights into system-

wide code duplication

Rieger, M.,

Ducasse, S.,

Lanza, M.

2004 Conference 11th Working Conference on Re-

verse Engineering (WCRE)

3 Detection strategies:

Metrics-based rules for

detecting design flaws

R. Marinescu 2004 Conference 20th International Conference

on Software Maintenance

(ICSM)

4 Product metrics for au-

tomatic identification of

"bad smell"design prob-

lems in Java source-code

M. J. Munro 2005 Conference 11th IEEE International Soft-

ware Metrics Symposium (MET-

RICS’05)

5 Multi-criteria detection

of bad smells in code

with UTA method

Walter B.,

Pietrzak B.

2005 Conference International Conference on Ex-

treme Programming and Agile

Processes in Software Engineer-

ing (XP)

6 Adaptive detection of de-

sign flaws

Kreimer J. 2005 Conference Fifth Workshop on Language De-

scriptions, Tools, and Applica-

tions (LDTA)

7 Visualization-Based

Analysis of Quality for

Large-Scale Software

Systems

G. Langelier,

H.A. Sahraoui,; P.

Poulin

2005 Conference 20th International Conference

on Automated Software Engi-

neering (ASE)

8 Automatic generation of

detection algorithms for

design defects

Moha N.,

Guéhéneuc Y.-

G., Leduc P.

2006 Conference 21st IEEE/ACM International

Conference on Automated Soft-

ware Engineering (ASE)

9 Object - Oriented Metrics

in Practice

M. Lanza; R.

Marinescu

2006 Book Springer-Verlag

10 Detecting Object Usage

Anomalies

Andrzej Wa-

sylkowski; An-

dreas Zeller;

Christian Lindig

2007 Conference 6th Joint Meeting of the Euro-

pean Software Engineering Con-

ference and the ACM SIGSOFT

Symposium on the Foundations

of Software Engineering (ES-

EC/FSE)

11 Using Concept Analysis

to Detect Co-change Pat-

terns

Tudor Girba;

Stephane

Ducasse; Adrian

Kuhn; Radu

Marinescu; Ratiu

Daniel

2007 Conference 9th International Workshop on

Principles of Software Evolution:

In Conjunction with the 6th ES-

EC/FSE Joint Meeting

12 Empirically evaluat-

ing the usefulness of

software visualization

techniques in program

comprehension activities

De F. Carneiro G.,

Orrico A.C.A., De

Mendonça Neto

M.G.

2007 Conference VI Jornadas Iberoamericanas de

Ingenieria de Software e Inge-

nieria del Conocimiento (JIISIC)

139

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

13 A Catalogue of

Lightweight Visual-

izations to Support Code

Smell Inspection

Chris Parnin;

Carsten Gorg;

Ogechi Nnadi

2008 Conference 4th ACM Symposium on Soft-

ware Visualization (SoftVis)

14 A domain analysis to

specify design defects

and generate detection

algorithms

Moha N.,

Guéhéneuc Y.-

G., Le Meur A.-F.,

Duchien L.

2008 Conference Lecture Notes in Computer Sci-

ence (including subseries Lec-

ture Notes in Artificial Intel-

ligence and Lecture Notes in

Bioinformatics)

15 JDeodorant: Identifica-

tion and removal of type-

checking bad smells

Tsantalis N.,

Chaikalis T.,

Chatzigeorgiou

A.

2008 Conference European Conference on Soft-

ware Maintenance and Reengi-

neering (CSMR)

16 A Survey about the In-

tent to Use Visual Defect

Annotations for Software

Models

Jörg Rech, Axel

Spriestersbach

2008 Conference Model Driven Architecture –

Foundations and Applications

17 Empirical evaluation of

clone detection using

syntax suffix trees

Raimar Falk,

Pierre Frenzel,

Rainer Koschke

2008 Journal Empirical Software Engineering

18 Visual Detection of De-

sign Anomalies

K. Dhambri,

H. Sahraoui, P.

Poulin

2008 Conference 12th European Conference

on Software Maintenance and

Reengineering (CSMR)

19 Detecting bad smells in

object oriented design us-

ing design change propa-

gation probability matrix

A. Rao; K. Raddy 2008 Conference International MultiConference

of Engineers and Computer Sci-

entists (IMECS)

20 Visually localizing de-

sign problems with

disharmony maps

Richard Wettel;

Michele Lanza

2008 Conference 4th ACM Symposium on Soft-

ware visualization (SoftVis)

21 A Bayesian Approach for

the Detection of Code

and Design Smells

F. Khomh; S.

Vaucher; Y. G.

Gueheneuc; H.

Sahraoui

2009 Conference 2009 Ninth International Confer-

ence on Quality Software

22 A Flexible Framework

for Quality Assurance

of Software Artefacts

with Applications to Java,

UML, and TTCN-3 Test

Specifications

J. Nodler; H.

Neukirchen; J.

Grabowski

2009 Conference 2009 International Conference

on Software Testing Verification

and Validation (ICST)

23 An Interactive Ambient

Visualization for Code

Smells

Emerson Murphy-

Hill; Andrew P.

Black

2010 Conference 5th International Symposium on

Software Visualization (SoftVis)

24 Learning from 6,000

Projects: Lightweight

Cross-project Anomaly

Detection

Natalie Gruska;

Andrzej Wa-

sylkowski; An-

dreas Zeller

2010 Conference 19th International Symposium

on Software Testing and Analy-

sis (ISSTA)

140

A.2. STUDIES AFTER APPLYING INCLUSION AND EXCLUSION CRITERIA (PHASE

3)

25 Identifying Code Smells

with Multiple Concern

Views

G. d. F. Carneiro;

M. Silva; L. Mara;

E. Figueiredo;

C. Sant’Anna; A.

Garcia; M. Men-

donca

2010 Conference Brazilian Symposium on Soft-

ware Engineering (SBES)

26 Reducing Subjectivity in

Code Smells Detection:

Experimenting with the

Long Method

S. Bryton; F. Brito

e Abreu; M. Mon-

teiro

2010 Conference 7th International Conference on

the Quality of Information and

Communications Technology

(QUATIC)

27 DECOR: A method for

the specification and de-

tection of code and de-

sign smells

Moha N.,

Guéhéneuc Y.-

G., Duchien L., Le

Meur A.-F.

2010 Journal IEEE Transactions on Software

Engineering

28 IDS: An immune-

inspired approach for

the detection of software

design smells

Hassaine S.,

Khomh F.,

Guéhéneucy

Y.-G., Hamel S.

2010 Conference 7th International Conference on

the Quality of Information and

Communications Technology

(QUATIC)

29 Detecting Missing

Method Calls in Object-

Oriented Software

Martin Monper-

rus Marcel Bruch

Mira Mezini

2010 Conference European Conference on

Object-Oriented Programming

(ECOOP)

30 From a domain analysis

to the specification and

detection of code and de-

sign smells

Naouel Moha,

Yann-Gaël

Guéhéneuc,

Anne-Françoise

Le Meur, Lau-

rence Duchien,

Alban Tiberghien

2010 Journal Formal Aspects of Computing

31 BDTEX: A GQM-based

Bayesian approach for

the detection of antipat-

terns

Khomh F.,

Vaucher S.,

Guéhéneuc Y.-

G., Sahraoui

H.

2011 Journal Journal of Systems and Software

32 An Approach for Source

Code Classification Us-

ing Software Metrics and

Fuzzy Logic to Improve

Code Quality with Refac-

toring Techniques

Pornchai

Lerthathairat,

Nakornthip

Prompoon

2011 Conference 2nd International Conference on

Software Engineering and Com-

puter Systems (ICSECS)

33 IDE-based Real-time Fo-

cused Search for Near-

miss Clones

Minhaz F. Zibran;

Chanchal K. Roy

2012 Conference 27th Annual ACM Symposium

on Applied Computing (SAC)

34 Detecting Bad Smells

with Weight Based

Distance Metrics Theory

J. Dexun; M. Pei-

jun; S. Xiaohong;

W. Tiantian

2012 Conference Second International Con-

ference on Instrumentation,

Measurement, Computer,

Communication and Control

(IMCCC)

141

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

35 Analytical learning

based on a meta-

programming approach

for the detection of

object-oriented design

defects

Mekruksavanich

S., Yupapin P.P.,

Muenchaisri P.

2012 Journal Information Technology Journal

36 Automatic identification

of the anti-patterns using

the rule-based approach

Polášek I., Snopko

S., Kapustík I.

2012 Conference 10th Jubilee International Sym-

posium on Intelligent Systems

and Informatics (SISY)

37 A New Design Defects

Classification: Marrying

Detection and Correction

Rim Mahouachi,

Marouane Kessen-

tini, Khaled

Ghedira

2012 Conference International Conference on

Fundamental Approaches to

Software Engineering (FASE)

38 Clones in Logic Programs

and How to Detect Them

Céline Dandois,

Wim Vanhoof

2012 Conference International Symposium on

Logic-Based Program Synthesis

and Transformation (LOPSTR)

39 Smurf: A svm-based

incremental anti-pattern

detection approach

Maiga, A., Ali,

N., Bhattacharya,

N., Sabane, A.,

Guéhéneuc, Y. G.,

& Aimeur, E

2012 Conference 19th Working Conference on Re-

verse Engineering (WCRE)

40 Support vector machines

for anti- pattern detec-

tion

Maiga A, Ali N,

Bhattacharya

N, Sabané A,

Guéhéneuc Y-

G, Antoniol G,

Aïmeur E

2012 Conference 27th IEEE/ACM International

Conference on Automated Soft-

ware Engineering (ASE)

41 Detecting Missing

Method Calls As Vio-

lations of the Majority

Rule

Martin Mon-

perrus; Mira

Mezini

2013 Journal ACM Transactions on Software

Engineering Methodology

42 Code Smell Detection:

Towards a Machine

Learning-Based Ap-

proach

F. A. Fontana;

M. Zanoni; A.

Marino; M. V.

Mantyla;

2013 Conference 29th IEEE International Confer-

ence on Software Maintenance

(ICSM)

43 Identification of Refused

Bequest Code Smells

E. Ligu; A.

Chatzigeorgiou;

T. Chaikalis; N.

Ygeionomakis

2013 Conference 29th IEEE International Confer-

ence on Software Maintenance

(ICSM)

44 JSNOSE: Detecting

JavaScript Code Smells

A. M. Fard; A.

Mesbah

2013 Conference 13th International Working Con-

ference on Source Code Analysis

and Manipulation (SCAM)

45 Interactive ambient visu-

alizations for soft advice

Murphy-Hill E.,

Barik T., Black

A.P.

2013 Journal Information Visualization

46 A novel approach to effec-

tive detection and analy-

sis of code clones

Rajakumari K.E.,

Jebarajan T.

2013 Conference 3rd International Conference on

Innovative Computing Technol-

ogy (INTECH)

142

A.2. STUDIES AFTER APPLYING INCLUSION AND EXCLUSION CRITERIA (PHASE

3)

47 Competitive coevolution-

ary code-smells detection

Boussaa M.,

Kessentini W.,

Kessentini M.,

Bechikh S., Ben

Chikha S.

2013 Conference Lecture Notes in Computer Sci-

ence (including subseries Lec-

ture Notes in Artificial Intel-

ligence and Lecture Notes in

Bioinformatics)

48 Detecting bad smells in

source code using change

history information

Palomba F.,

Bavota G., Di

Penta M., Oliveto

R., De Lucia A.,

Poshyvanyk D.

2013 Conference 28th IEEE/ACM International

Conference on Automated Soft-

ware Engineering (ASE)

49 Code-Smell Detection As

a Bilevel Problem

Dilan Sahin;

Marouane

Kessentini;

Slim Bechikh;

Kalyanmoy Deb

2014 Journal ACM Trans. Softw. Eng.

Methodol.

50 Two level dynamic ap-

proach for Feature Envy

detection

S. Kumar; J. K.

Chhabra

2014 Conference International Conference on

Computer and Communication

Technology (ICCCT)

51 A Cooperative Parallel

Search-Based Software

Engineering Approach

for Code-Smells Detec-

tion

Kessentini W.,

Kessentini M.,

Sahraoui H.,

Bechikh S., Ouni

A.

2014 Journal IEEE Transactions on Software

Engineering

52 SourceMiner: Towards

an Extensible Multi-

perspective Software

Visualization Environ-

ment

Glauco de

Figueiredo

Carneiro, Ma-

noel Gomes de

Mendonça Neto

2014 Conference International Conference on En-

terprise Information Systems

(ICEIS)

53 Including Structural Fac-

tors into the Metrics-

based Code Smells Detec-

tion

Bartosz Walter;

Błażej Matuszyk;

Francesca Arcelli

Fontana

2015 Conference XP’2015 Workshops

54 Textual Analysis for

Code Smell Detection

Fabio Palomba 2015 Conference 37th International Conference

on Software Engineering (ICSE)

55 Using Developers’ Feed-

back to Improve Code

Smell Detection

Mario Hozano;

Henrique Fer-

reira; Italo Silva;

Baldoino Fonseca;

Evandro Costa

2015 Conference 30th Annual ACM Symposium

on Applied Computing (SAC)

56 Code Bad Smell Detec-

tion through Evolution-

ary Data Mining

S. Fu; B. Shen 2015 Conference 2015 ACM/IEEE International

Symposium on Empirical Soft-

ware Engineering and Measure-

ment (ESEM)

57 JSpIRIT: a flexible tool

for the analysis of code

smells

S. Vidal; H.

Vazquez; J. A.

Diaz-Pace; C.

Marcos; A. Gar-

cia; W. Oizumi

2015 Conference 34th International Conference of

the Chilean Computer Science

Society (SCCC)

143

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

58 Mining Version Histo-

ries for Detecting Code

Smells

F. Palomba; G.

Bavota; M. D.

Penta; R. Oliveto;

D. Poshyvanyk; A.

De Lucia

2015 Conference IEEE Transactions on Software

Engineering

59 Detection and handling

of model smells for MAT-

LAB/simulink models

Gerlitz T., Tran

Q.M., Dziobek C.

2015 Conference CEUR Workshop Proceedings

60 Experience report: Evalu-

ating the effectiveness of

decision trees for detect-

ing code smells

Amorim L., Costa

E., Antunes

N., Fonseca B.,

Ribeiro M.

2015 Conference 26th International Symposium

on Software Reliability Engineer-

ing (ISSRE)

61 Detecting software de-

sign defects using re-

lational association rule

mining

Gabriela Cz-

ibula, Zsuzsanna

Marian, Istvan

Gergely Czibula

2015 Journal Knowledge and Information Sys-

tems

62 A Graph-based Ap-

proach to Detect Un-

reachable Methods in

Java Software

Simone Romano;

Giuseppe Scan-

niello; Carlo

Sartiani; Michele

Risi

2016 Conference 31st Annual ACM Symposium

on Applied Computing (SAC)

63 Comparing and experi-

menting machine learn-

ing techniques for code

smell detection

Arcelli Fontana

F., Mäntylä

M.V., Zanoni M.,

Marino A.

2016 Journal Empirical Software Engineering

64 A Lightweight Approach

for Detection of Code

Smells

Ghulam Rasool,

Zeeshan Arshad

2016 Journal Arabian Journal for Science and

Engineering

65 Multi-objective code-

smells detection using

good and bad design

examples

Usman Mansoor,

Marouane Kessen-

tini, Bruce R.

Maxim, Kalyan-

moy Deb

2016 Journal Software Quality Journal

66 Continuous Detection of

Design Flaws in Evolv-

ing Object-oriented Pro-

grams Using Incremental

Multi-pattern Matching

Sven Peldszus;

Géza Kulcsár;

Malte Lochau;

Sandro Schulze

2016 Conference 31st IEEE/ACM International

Conference on Automated Soft-

ware Engineering (ASE)

67 Metric and rule based

automated detection of

antipatterns in object-

oriented software sys-

tems

M. T. Aras, Y. E.

Selçuk

2016 Conference 7th International Conference on

Computer Science and Informa-

tion Technology (CSIT)

68 Automated detection of

code smells caused by

null checking conditions

in Java programs

K. Sirikul, C.

Soomlek

2016 Conference 13th International Joint Confer-

ence on Computer Science and

Software Engineering (JCSSE)

69 A textual-based tech-

nique for Smell Detec-

tion

F. Palomba, A.

Panichella, A. De

Lucia, R. Oliveto,

A. Zaidman

2016 Conference 24th International Conference

on Program Comprehension

(ICPC)

144

A.2. STUDIES AFTER APPLYING INCLUSION AND EXCLUSION CRITERIA (PHASE

3)

70 Detecting Code Smells in

Python Programs

Z. Chen, L. Chen,

W. Ma, B. Xu

2016 Conference International Conference on

Software Analysis, Testing and

Evolution (SATE)

71 DT : a detection tool

to automatically detect

code smell in software

project

Liu, Xinghua;

Zhang, Cheng

2016 Conference 4th International Conference on

Machinery, Materials and Infor-

mation Technology Applications

72 Interactive Code Smells

Detection: An Initial In-

vestigation

Mkaouer, Mo-

hamed Wiem

2016 Conference Symposium on Search-Based

Software Engineering (SSBSE)

73 Automatic detection of

bad smells from code

changes

Hammad M.,

Labadi A.

2016 Journal International Review on Com-

puters and Software

74 Detecting shotgun

surgery bad smell us-

ing similarity measure

distribution model

Saranya G.,

Khanna Ne-

hemiah H., Kan-

nan A., Vimala

S.

2016 Journal Asian Journal of Information

Technology

75 Detecting Android

Smells Using Multi-

objective Genetic Pro-

gramming

Marouane Kessen-

tini; Ali Ouni

2017 Conference 4th International Conference on

Mobile Software Engineering

and Systems (MOBILESoft)

76 Smells Are Sensitive to

Developers!: On the Ef-

ficiency of (Un)Guided

Customized Detection

Mario Hozano;

Alessandro

Garcia; Nuno An-

tunes; Baldoino

Fonseca; Evandro

Costa

2017 Conference 25th International Conference

on Program Comprehension

77 An arc-based approach

for visualization of code

smells

M. Steinbeck 2017 Conference 24th International Conference

on Software Analysis; Evolution

and Reengineering (SANER).

IEEE

78 An automated code smell

and anti-pattern detec-

tion approach

S. Velioglu, Y. E.

Selçuk

2017 Conference 15th International Conference

on Software Engineering Re-

search; Management and Appli-

cations (SERA)

79 Lightweight detection

of Android-specific code

smells: The aDoctor

project

Palomba F.,

Di Nucci D.,

Panichella A.,

Zaidman A., De

Lucia A.

2017 Conference 24th IEEE International Con-

ference on Software Analysis,

Evolution, and Reengineering

(SANER)

80 On the Use of Smelly Ex-

amples to Detect Code

Smells in JavaScript

Ian Shoen-

berger, Mohamed

Wiem Mkaouer,

Marouane Kessen-

tini

2017 Conference European Conference on the Ap-

plications of Evolutionary Com-

putation (EvoApplications)

81 A Support Vector Ma-

chine Based Approach

for Code Smell Detection

A. Kaur; S. Jain; S.

Goel

2017 Conference International Conference on Ma-

chine Learning and Data Science

(MLDS)

145

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

82 An ontology-based ap-

proach to analyzing the

occurrence of code smells

in software

Da Silva Carvalho,

L.P., Novais, R.,

Do Nascimento

Salvador, L., De

Mendonça Neto,

M.G.

2017 Conference 19th International Conference

on Enterprise Information Sys-

tems (ICEIS)

83 Automatic multipro-

gramming bad smell

detection with refactor-

ing

Verma, A; Kumar,

A; Kaur, I

2017 Journal International Journal of Ad-

vanced and Applied Sciences

84 c-JRefRec: Change-based

identification of Move

Method refactoring op-

portunities

N. Ujihara; A.

Ouni; T. Ishio; K.

Inoue

2017 Conference 24th International Conference

on Software Analysis, Evolution

and Reengineering (SANER)

85 Finding bad code smells

with neural network

models

Kim, D.K. 2017 Journal International Journal of Electri-

cal and Computer Engineering

86 Metric based detection

of refused bequest code

smell

B. M. Merzah; Y.

E. SelÃ§uk

2017 Conference 9th International Conference

on Computational Intelligence

and Communication Networks

(CICN)

87 Systematic exhortation of

code smell detection us-

ing JSmell for Java source

code

M. Sangeetha; P.

Sengottuvelan

2017 Conference International Conference on In-

ventive Systems and Control

(ICISC)

88 A Feature Envy Detec-

tion Method Based on

Dataflow Analysis

W. Chen; C. Liu;

B. Li

2018 Conference 42nd Annual Computer Soft-

ware and Applications Confer-

ence (COMPSAC)

89 A Hybrid Approach To

Detect Code Smells using

Deep Learning

Hadj-Kacem, M;

Bouassida, N

2018 Conference 13th International Conference

on Evaluation of Novel Ap-

proaches to Software Engineer-

ing (ENASE)

90 Automatic detection

of feature envy using

machine learning tech-

niques

Özkalkan, Z.,

Aydin, K., Tetik,

H.Y., Sağlam, R.B.

2018 Conference 12th Turkish National Software

Engineering Symposium

91 Code-smells identifi-

cation by using PSO

approach

Ramesh, G.,

Mallikarjuna Rao,

C.

2018 Journal International Journal of Recent

Technology and Engineering

92 Deep Learning Based Fea-

ture Envy Detection

Hui Liu and

Zhifeng Xu and

Yanzhen Zou

2018 Conference 33rd ACM/IEEE International

Conference on Automated Soft-

ware Engineering (ASE)

93 Detecting Bad Smells in

Software Systems with

Linked Multivariate Vi-

sualizations

H. Mumtaz;

F. Beck; D.

Weiskopf

2018 Conference Working Conference on Soft-

ware Visualization (VisSoft)

94 Detecting code smells

using machine learning

techniques: Are we there

yet?

D. Di Nucci; F.

Palomba; D. A.

Tamburri; A. Sere-

brenik; A. De Lu-

cia

2018 Conference 25th International Conference

on Software Analysis, Evolution

and Reengineering (SANER)

146

A.2. STUDIES AFTER APPLYING INCLUSION AND EXCLUSION CRITERIA (PHASE

3)

95 DT: An Upgraded De-

tection Tool to Automati-

cally Detect Two Kinds of

Code Smell: Duplicated

Code and Feature Envy

Xinghua Liu and

Cheng Zhang

2018 Conference International Conference on

Geoinformatics and Data

Analysis

96 Exploring the Use of

Rapid Type Analysis

for Detecting the Dead

Method Smell in Java

Code

S. Romano; G.

Scanniello

2018 Conference 2018 44th Euromicro Confer-

ence on Software Engineering

and Advanced Applications

(SEAA)

97 Model level code smell

detection using EGAPSO

based on similarity mea-

sures

Saranya, G; Ne-

hemiah, HK; Kan-

nan, A; Nithya, V

2018 Journal Alexandria Engineering Journal

98 Software Code Smell

Prediction Model Using

Shannon, Renyi and

Tsallis Entropies

Gupta, A; Suri, B;

Kumar, V; Misra,

S; Blazauskas, T;

Damasevicius, R

2018 Journal Entropy

99 Towards Feature Envy

Design Flaw Detection at

Block Level

Ã. Kiss; P. F. Mi-

hancea

2018 Conference International Conference on

Software Maintenance and

Evolution (ICSME)

100 Understanding metric-

based detectable smells

in Python software: A

comparative study

Chen, ZF; Chen,

L; Ma, WWY;

Zhou, XY; Zhou,

YM; Xu, BW

2018 Journal Information and Software Tech-

nology

101 SP-J48: a novel opti-

mization and machine-

learning-based approach

for solving complex prob-

lems: special application

in software engineering

for detecting code smells

Amandeep Kaur,

Sushma Jain, Shiv-

ani Goel

2019 Journal Neural Computing and Applica-

tions

102 Visualizing code bad

smells

Hammad, M., Al-

sofriya, S.

2019 Journal International Journal of Ad-

vanced Computer Science and

Applications

147

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

A.3 Quality assessment

Study QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 Total

Venue

Quality

Data Col-

lected
Findings

Recognized

Relevance
Validation Replication Evaluation Visualization

S1 1 1 1 1 0 0 1 1 6

S2 1 1 1 1 0 0 0 1 5

S3 1 1 1 1 1 0 1 0 6

S4 1 0 1 1 0 0 1 0 4

S5 1 1 1 1 0 0 0 0 4

S6 1 0 1 1 1 0 1 0 5

S7 1 0 1 1 0 0 1 1 5

S8 1 1 1 1 1 0 1 0 6

S9 1 1 1 1 0 0 0 1 5

S10 1 1 1 1 0 0 1 0 5

S11 0 1 1 1 0 0 0 0 3

S12 0 1 1 0 0 0 1 1 4

S13 0 1 1 1 0 0 0 1 4

S14 1 1 1 1 1 0 1 0 6

S15 1 1 1 1 0 0 1 0 5

S16 0 0 1 0 0 0 1 1 3

S17 1 1 1 1 1 0 1 0 6

S18 1 1 1 1 0 0 1 1 6

S19 0 1 1 1 0 0 0 0 3

S20 0 1 1 1 0 0 0 1 4

S21 1 1 1 1 1 1 1 0 7

S22 1 0 1 1 0 0 0 0 3

S23 1 0 1 1 0 0 0 1 4

S24 1 0 1 1 1 0 1 0 5

S25 0 1 1 1 0 0 1 1 5

S26 1 0 1 1 0 0 1 0 4

S27 1 1 1 1 1 0 1 0 6

S28 1 1 1 1 1 0 1 0 6

S29 1 1 1 1 0 0 1 0 5

S30 1 1 1 1 1 0 1 0 6

S31 1 1 1 1 1 1 1 0 7

S32 0 0 1 0 0 0 0 0 1

S33 1 1 1 1 1 0 1 0 6

S34 0 1 1 1 0 0 1 0 4

S35 1 1 1 1 1 0 1 0 6

S36 1 0 1 1 0 0 0 0 3

S37 1 1 1 1 1 0 1 0 6

S38 1 1 1 0 0 0 1 0 4

S39 1 0 1 1 1 0 1 0 5

S40 1 1 1 1 1 0 1 0 6

S41 1 1 1 1 0 0 1 0 5

S42 1 1 1 1 0 0 1 0 5

S43 1 1 1 1 0 0 0 0 4

S44 1 1 1 1 1 1 1 0 7

S45 1 0 1 1 0 0 1 1 5

S46 0 1 1 1 0 0 0 1 4

S47 0 1 1 1 1 0 1 0 5

148

A.3. QUALITY ASSESSMENT

S48 1 1 1 1 1 0 1 0 6

S49 1 1 1 1 1 0 1 0 6

S50 0 1 1 1 1 0 1 0 5

S51 1 1 1 1 1 0 1 0 6

S52 1 1 1 1 0 0 1 1 6

S53 0 1 1 1 1 0 1 0 5

S54 1 1 1 1 1 0 1 0 6

S55 1 1 1 1 1 0 1 0 6

S56 1 1 1 1 1 0 1 0 6

S57 0 0 1 1 0 0 0 0 2

S58 1 1 1 1 1 1 1 0 7

S59 0 1 1 1 0 0 1 0 4

S60 1 1 1 1 1 0 1 0 6

S61 1 1 1 1 1 0 0 0 5

S62 1 1 1 1 1 0 1 0 6

S63 1 1 1 1 1 1 1 0 7

S64 0 1 1 1 0 0 1 1 5

S65 1 1 1 1 1 0 1 0 6

S66 1 1 1 1 1 1 1 0 7

S67 0 1 1 1 1 0 1 0 5

S68 0 1 1 0 1 0 1 0 4

S69 1 1 1 1 1 0 1 0 6

S70 0 1 1 1 0 0 1 0 4

S71 0 0 1 1 1 0 0 0 3

S72 0 1 1 1 1 0 1 0 5

S73 0 1 1 0 0 0 1 0 3

S74 1 1 1 0 1 0 1 0 5

S75 0 1 1 1 1 0 1 0 5

S76 1 1 1 1 1 0 1 0 6

S77 0 0 1 0 0 0 0 1 2

S78 1 1 1 1 1 0 1 0 6

S79 0 1 1 1 0 1 1 0 5

S80 0 1 1 1 1 0 1 0 5

S81 0 1 1 1 1 0 1 0 5

S82 1 1 1 0 0 0 0 0 3

S83 0 0 1 0 0 0 1 0 2

S84 0 1 1 1 1 0 1 0 5

S85 0 1 1 0 0 0 1 0 3

S86 0 1 1 0 0 0 0 0 2

S87 0 0 1 0 0 0 0 0 1

S88 1 1 1 0 1 0 1 0 5

S89 1 1 1 1 1 0 1 0 6

S90 0 1 1 0 0 0 1 0 3

S91 0 0 1 0 0 0 0 0 1

S92 1 1 1 1 1 0 1 0 6

S93 1 1 1 1 0 0 0 1 5

S94 0 1 1 1 1 0 1 0 5

S95 0 1 1 0 1 0 0 0 3

S96 1 1 1 1 1 0 1 0 6

S97 0 1 1 1 1 0 1 0 5

S98 0 1 1 1 0 0 1 0 4

S99 1 1 1 1 1 0 0 1 6

149

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

S100 1 1 1 1 0 1 1 0 6

S101 1 1 1 1 1 0 1 0 6

S102 0 0 1 1 0 0 1 0 3

Total 63 83 102 85 54 8 78 18 491

150

A.4. DESCRIPTION OF CODE SMELLS DETECTED IN THE STUDIES, ACCORDING

TO THE AUTHORS

A.4 Description of code smells detected in the studies, according to

the authors

Code smell Description Reference

Alternative Classes with Dif-

ferent Interface

One class supports different classes, but their interface is different [43, 70]

AntiSingleton A class that provides mutable class variables, which consequently

could be used as global variables

[64]

God Class (Large Class or

Blob)

Class that has many responsibilities and consequently contains

many methods and variables. The same Single Responsibility

Principle (SRP) also applies in this case

[43, 70]

Brain Class Class that tends to centralize the functionality of the system and

consequently complex. They are therefore assumed to be difficult

to understand and maintain. However, unlike God Classes, Brain

Classes do not use much data from foreign classes and are slightly

more cohesive

[72, 92]

Brain Method Often a method starts out as a "normal"method, but due to more

and more functionality being added gets out of control, making

it difficult to understand or maintain. Brain methods tend to

centralize the functionality of a class.

[72]

Careless Cleanup The exception resource can be interrupted by another exception [48]

Class Data Should Be Private A class that exposes its fields, thus violating the principle of en-

capsulation

[64]

Closure Smells Nested functions declared in JavaScript, are called closures. Clo-

sures make it possible to emulate object-oriented notions, such

as public, private members, and privileged members. Inner func-

tions have access to the parameters and variables - except for the

this and argument variables - of the functions in which they are

nested, even after the outer function has returned. Four smells

related to the concept of function closures (long scope chaining,

closures in loops, variable name conflict in closures, accessing the

this reference in closures)

[35]

Code clone/Duplicated code Consists of equal or very similar passages in different fragments

of the same code base

[43, 70]

Comments Comments should be used with care as they are generally not

required. Whenever it is necessary to insert a comment, it is worth

checking if the code cannot be more expressive

[43, 70]

Complex Class A class that has (at least) one large and complex method, in terms

of cyclomatic complexity and LOCs

[64]

Complex Container Compre-

hension

A container comprehension (including list comprehension, set

comprehension, dictionary comprehension, and generator expres-

sion) that is too complex

[27]

Complex List Comprehension A list comprehension that is too complex. List comprehensions

in Python provide a concise and efficient way to create new lists.

However, when list comprehensions contain complex expressions,

they are no longer clear. Apparently, it is hard to analyze control

flows of complex list comprehensions

[27]

151

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

Coupling between JavaScript,

HTML, and CSS

In web applications, HTML is meant for presenting content and

structure, CSS for styling, and JavaScript for functional behaviour.

It is a well-established programming technique, known as divi-

sion of concerns, to hold these three entities apart. Unfortunately,

JavaScript code is frequently mixed with markup and styling code

by web developers, which negatively affects software understand-

ing, maintenance and debugging efforts in web applications.

[35]

Data class A class that only acts as a data container, without any behaviour.

Other classes are typically responsible for manipulating their

data, which is the case of Feature Envy,

[43, 70]

Data Clump Data structures that always appear together, and the entire col-

lection loses its sense when one of the elements is not present.

[43, 70]

Dead Code Characterized by a variable, attribute, or code fragment that is

not used anywhere. Typically it is a result of a change in code

with insufficient cleaning

[70, 135]

Delegator Overuse of delegation or misuse of inheritance [69]

Dispersed Coupling Refers to a method which is tied to many operations dispersed

among many classes throughout the system

[72]

Divergent Change A single class needs to be changed for many reasons. This is a

strong indication that it is not sufficiently cohesive and must be

divided

[43, 70]

Dummy Handler Dummy handler is only used for viewing the exception but it will

not handle the exception

[48]

Empty Catch Block When the catch block is left blank in the catch statement [48]

Exception thrown in the fi-

nally block

How to handle the exception thrown inside the finally block of

another try catch statement

[48]

Excessive Global Variables Global variables can be accessed in the JavaScript code from any-

where, even if they are defined in different files loaded on the

same page. As such, naming conflicts between global variables

in different JavaScript source files is common, which affects pro-

gram dependability and correctness. The higher the number of

global variables in the code, the more dependent existing mod-

ules are likely to be; and dependency increases errorproneness,

and maintainability efforts

[35]

Feature Envy When a method is more interested in members of other classes

than its own, is a clear sign that it is in the wrong class

[43, 70]

Functional Decomposition A procedural code in a technology that implements the OO

paradigm (usually the main function that calls many others),

caused by the previous expertise of the developers in a proce-

dural language and little experience in OO

[16, 70]

God Package A package that is too large. That knows too much or does too

much

[82]

Inappropriate Intimacy A case where two classes are known too, characterizing a high

level of coupling

[43, 70]

Incomplete Library Class The software uses a library that is not complete, and therefore

extensions to that library are required

[43, 70]

152

A.4. DESCRIPTION OF CODE SMELLS DETECTED IN THE STUDIES, ACCORDING

TO THE AUTHORS

Instanceof In Java, the instanceof operator is used to check that an object is an

instance of a given class or implements a certain interface. These

are considered CS aspects because a concentration of instanceof

operators in the same block of code may indicate a place where

the introduction of an inheritance hierarchy or the use of method

overloading might be a better solution

[34]

Intensive Coupling Refers to a method that is tied to many other operations located

in only a few classes within the system.

[72]

Introduce null object Repeated null checking conditions are added into the code to

prevent the null pointer exception problem. By doing so, the

duplications of null checking conditions could have been placed

in different locations of the software system

[123]

Large object An object with too many responsibilities. An object that is doing

too much should be refactored. Large objects may be restructured

or broken into smaller objects

[35]

Lazy Class Classes that do not have sufficient responsibilities and therefore

should not exist

[43, 70]

Lazy object An object that does too little. An object that is not doing enough

work should be refactored. Lazy objects maybe collapsed or com-

bined into other classes

[35]

Long Base Class List A class definition with too many base classes. Python supports

a limited form of multiple inheritance. If an attribute in Python

is not found in the derived class during execution, it is searched

recursively in the base classes declared in the base class list in se-

quence. Too long base class list will limit the speed of interpretive

execution

[27]

Long Element Chain An expression that is accessing an object through a long chain of

elements by the bracket operator. Long Element Chain is directly

caused by nested arrays. It is unreadable especially when a deep

level of array traversing is taking place

[27]

Long Lambda Function A lambda function that is overly long, in term of the number of

its characters

[27]

Long Message Chain An expression that is accessing an object through a long chain of

attributes or methods by the dot operator

[27]

Long Method Very large method/function and, therefore, difficult to under-

stand, extend and modify. It is very likely that this method has

too many responsibilities, hurting one of the principles of a good

OO design (SRP: Single Responsibility Principle

[43, 70]

Long Parameter List Extensive parameter list, which makes it difficult to understand

and is usually an indication that the method has too many respon-

sibilities

[43, 70]

Long Scope Chaining A method or a function that is multiply-nested [27]

Long Ternary Conditional Ex-

pression

A ternary conditional expression ("X if C else Y") that is overly

long

[27]

Message Chain One object accesses another, to then access another object belong-

ing to this second, and so on, causing a high coupling between

classes

[43, 70]

Method call sequences The interplay of multiple methods, though—in particular,

whether a specific sequence of method calls is allowed or not—is

neither specified nor checked at compile time

[138]

153

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

Middle Man Identified how much a class has almost no logic, as it delegates

almost everything to another class

[43, 70]

Misplaced Class Suggests a class that is in a package that contains other classes

not related to it

[100]

Missing method calls Overlook certain important method calls that are required at par-

ticular places in code

[89]

Multiply-Nested Container A container (including set, list, tuple, dict) that is multiply-nested.

It directly produces expressions accessing an object through a

long chain of indexed elements

[27]

Nested Callback A callback is a function passed as an argument to another (parent)

function. Using excessive callbacks, however, can result in hard

to read and maintain code due to their nested anonymous (and

usually asynchronous) nature

[35]

Nested Try Statements When one or more try statements are contained in the try state-

ment

[48]

Null checking in a string com-

parison problem

Null checking conditions are usually found in string comparison,

particularly in an if statement. This form of defensive program-

ming can be employed to prevent the null pointer exception error.

The same null checking statement is repeatedly appeared when

the same String object is compared, resulting in a marvellous

number of duplicated null checking conditions

[123]

Parallel Inheritance Existence of two hierarchies of classes that are fully connected,

that is, when adding a subclass in one of the hierarchies, it is

required that a similar subclass be created in the other

[43, 70]

Primitive Obsession It represents the situation where primitive types are used in place

of light classes

[43, 70]

Promiscuous Package A package can be considered as promiscuous if it contains classes

implementing too many features, making it too hard to under-

stand and maintain

[100]

Refused Bequest It indicates that a subclass does not use inherited data or behav-

iors

[43, 70]

Shotgun Surgery Opposite to Divergent Change, because when it happens a modi-

fication, several different classes have to be changed

[43, 70]

Spaghetti Code Use of classes without structures, long methods without param-

eters, use of global variables, in addition to not exploiting and

preventing the application of OO principles such as inheritance

and polymorphism

[16, 70]

Speculative Generality Code snippets are designed to support future software behavior

that is not yet required

[43, 70]

Swiss Army Knife Exposes the high complexity to meet the predictable needs of a

part of the system (usually utility classes with many responsibili-

ties)

[16, 70]

Switch Statement It is not necessarily smells by definition, but when they are widely

used, they are usually a sign of problems, especially when used

to identify the behavior of an object based on its type

[43, 70]

Temporary Field Member-only used in specific situations, and that outside of it has

no meaning

[43, 70]

154

A.4. DESCRIPTION OF CODE SMELLS DETECTED IN THE STUDIES, ACCORDING

TO THE AUTHORS

Tradition Breaker This design disharmony strategy takes its name from the princi-

ple that the interface of a class should increase in an evolutionary

fashion. This means that a derived class should not break the

inherited “tradition” and provide a large set of services which are

unrelated to those provided by its base class.

[72]

Type Checking Type-checking code is introduced in order to select a variation of

an algorithm that should be executed, depending on the value of

an attribute

[132]

Typecast Typecasts are used to explicitly convert an object from one class

type into another. Many people consider typecasts to be prob-

lematic since it is possible to write illegal casting instructions in

the source code which cannot be detected during compilation but

result in runtime errors

[34]

Unprotected Main Outer exception will not be handled in the main program; it can

only be handled in a subprogram or a function

[48]

Useless Exception Handling A try...except statement that does little [27]

Wide Subsystem Interface A Subsystem Interface consists of classes that are accessible from

outside the package they belong to. The flaw refers to the situa-

tion where this interface is very wide, which causes a very tight

coupling between the package and the rest of the system

[143]

155

APPENDIX A. SYSTEMATIC LITERATURE REVIEW MATERIALS

A.5 Frequencies of code smells detected in the studies

Code smell Nº of studies % Studies programming language

God Class (Large Class or Blob) 43 51.8% Java, C/C++ , C#, Python

Feature Envy 28 33.7% Java, C/C++ , C#

Long Method 22 26.5% Java, C/C++ , C#, Python, JavaScript

Data class 18 21.7% Java, C/C++ , C#

Functional Decomposition 17 20.5% Java

Spaghetti Code 17 20.5% Java

Long Parameter List 12 14.5% Java, C/C++ , C#, Python, JavaScript

Swiss Army Knife 11 13.3% Java

Refused Bequest 10 12.0% Java, C/C++ , C#, JavaScript

Shotgun Surgery 10 12.0% Java, C++ , C#

Code clone/Duplicated code 9 10.8% Java, C/C++ , C#

Lazy Class 8 9.6% Java, C++ , C#

Divergent Change 7 8.4% Java, C#

Dead Code 4 4.8% Java, C++ , C#

Switch Statement 4 4.8% Java, C#, JavaScript

Brain Class 3 3.6% Java, C++

Data Clump 3 3.6% Java, C/C++ , C#

Long Message Chain 3 3.6% JavaScript, Python

Misplaced Class 3 3.6% Java, C++

Parallel Inheritance 3 3.6% Java, C#

Primitive Obsession 3 3.6% Java, C/C++ , C#

Speculative Generality 3 3.6% Java, C#

Temporary Field 3 3.6% Java, C#

Dispersed Coupling 2 2.4% Java, C++

Empty Catch Block 2 2.4% Java, JavaScript

Excessive Global Variables 2 2.4% JavaScript

Intensive Coupling 2 2.4% Java, C++

Large object 2 2.4% JavaScript

Lazy object 2 2.4% JavaScript

Long Base Class List 2 2.4% Python

Long Lambda Function 2 2.4% Python

Long Scope Chaining 2 2.4% Python

Long Ternary Conditional Expression 2 2.4% Python

Message Chain 2 2.4% Java, C/C++ , C#

Middle Man 2 2.4% Java, C/C++ , C#

Missing method calls 2 2.4% Java

Alternative Classes with Different Interface 1 1.2% Java, C#

AntiSingleton 1 1.2% Java

Brain Method 1 1.2% Java, C++

Careless Cleanup 1 1.2% Java

Class Data Should Be Private 1 1.2% Java

Closure Smells 1 1.2% JavaScript

Comments 1 1.2% Java, C#

Complex Class 1 1.2% Java

Complex Container Comprehension 1 1.2% Python

Complex List Comprehension 1 1.2% Python

156

A.5. FREQUENCIES OF CODE SMELLS DETECTED IN THE STUDIES

Coupling between JavaScript, HTML, and

CSS

1 1.2% JavaScript

Delegator 1 1.2% Java

Dummy Handler 1 1.2% Java

Exception thrown in the finally block 1 1.2% Java

God Package 1 1.2% Java, C++

Inappropriate Intimacy 1 1.2% Java, C#

Incomplete Library Class 1 1.2% Java, C#

Instanceof 1 1.2% Java

Introduce null object 1 1.2% Java

Long Element Chain 1 1.2% Python

Method call sequences 1 1.2% Java

Multiply-Nested Container 1 1.2% Python

Nested Callback 1 1.2% JavaScript

Nested Try Statements 1 1.2% Java

Null checking in a string comparison prob-

lem

1 1.2% Java

Promiscuous Package 1 1.2% Java

Tradition Breaker 1 1.2% Java, C++

Type Checking 1 1.2% Java

Typecast 1 1.2% Java

Unprotected Main 1 1.2% Java

Useless Exception Handling 1 1.2% Python

Wide Subsystem Interface 1 1.2% Java, C++

157

[This page has been intentionally left blank]

A
p
p
e
n
d
i
x

BB B

Crowdsmelling Materials

159

APPENDIX B. CROWDSMELLING MATERIALS

B.1 Code metrics

This table presents the metrics used in the study reported in chapter 3, more information about the metrics can be

found at [6] or on the web1.

Metric Acronym Scope

Access to Foreign Data ATFD Method

Access to Local Data ATLD Method

Average Methods Weight AMW Class

Average Methods Weight of Not Accessor or Mutator Methods AMWNAMM Class

Called Foreign Not Accessor or Mutator Methods CFNAMM Class

Called Local Not Accessor or Mutator Methods CLNAMM Method

Changing Classes CC Class

Changing Methods CM Method

Coupling Between Objects Classes CBO Class

Coupling Dispersion CDISP class

Coupling Intensity CINT Method

Cyclomatic Complexity CYCLO Method

Depth of Inheritance Tree DIT Class

Fanout FANOUT Class

Foreign Data Providers FDP Method

Lack of Cohesion in Methods LCOM Class

Lines of Code LOC Method

Lines of Code Without Accessor or Mutator Methods LOCNAMM Class

Locality of Attribute Accesses LAA Method

Maximum Message Chain Length MAMCL Method

Maximum Nesting Level MAXNESTIN Method

Mean Message Chain Length MEMCL Method

Number of Abstract Methods NOABM Class

Number of Accessed Variables NOAV Method

Number of Accessor Methods NOAM Class

Number of Attributes NOA Class

Number of Children NOC Class

Number of Classes NOCS Package

Number of Constructor Methods NOCM Class

Number of Default Attributes NODA Class

Number of Default Methods NODM Class

Number of Final and Non - Static Attributes NOFNSA Class

Number of Final and Non - Static Methods NOFNSM Class

Number of Final and Non - Static Methods NONFNSM Class

Number of Final and Static Attributes NOFSA Class

Number of Final and Static Methods NOFSM Class

Number of Final Attributes NOFA Class

Number of Final Methods NOFM Class

Number of Implemented Interfaces NOII Class

Number of Inherited Methods NIM Class

Number of Interfaces NOI Package

Number of Local Variable NOLV Method

Number of Message Chain Statements NMCS Method

Number of Methods NOM Class

Number of Methods Overridden NMO Class

1https://essere.disco.unimib.it/machine-learning-for-code-smell-detection/

160

B.1. CODE METRICS

Number of Non - Accessors Methods NONAM Class

Number of Non - Constructor Methods NONCM Class

Number of Non - Final and Non - Abstract Methods NONFNABM Class

Number of Non - Final and Static Attributes NONFSA Class

Number of Non - Final and Static Methods NONFSM Class

Number of Not Accessor or Mutator Methods NOMNAMM Class

Number of Not Final and Non - Static Attributes NONFNSA Class

Number of Packages NOPK Project

Number of Parameters NOP Method

Number of Private Attributes NOPVA Class

Number of Private Methods NOPM Class

Number of Protected Attributes NOPRA Class

Number of Protected Methods NOPRM Class

Number of Public Attributes NOPA Class

Number of Public Methods NOPLM Class

Number of Static Attributes NOSA Class

Number of Static Methods NOSM Class

Response for A Class RFC Class

Tight Class Cohesion TCC Class

Weight of Class WOC Class

Weighted Methods Count WMC Class

Weighted Methods Count of Not Accessor or Mutator Methods WMCNAMM Class

161

[This page has been intentionally left blank]

A
p
p
e
n
d
i
x

CC C

Architectures of the crowdsmelling tool

versions

163

APPENDIX C. ARCHITECTURES OF THE CROWDSMELLING TOOL VERSIONS

C.1 Version 1 - Eclipse plugin and Azure Machine Learning

The first version of the crowdsmelling tool consisted of a plugin for the Eclipse IDE, which communicated via web

services with Microsoft Azure. All the machine learning component was developed in Microsoft Azure Machine

Learning Studio.

C.1.1 Eclipse IDE plugin

Figure C.1 shows the graphical interface of the plugin. Essentially this plugin consists of 3 components:

i) Code metrics settings. Since this version does not extract the code metrics, it is necessary to import a file

containing them. The metrics table in appendix B.1 shows the metrics that are imported, although for the detection

of the 3 code smells (God Class, Long Method, and Feature Envy) the models do not use all metrics. For example,

based on the J48 decision tree, the model for Long Method detection only uses Cyclomatic complexity (CYCLO) and

the Number of lines of code (LOC) ;

ii) Code smells detection. After importing the code metrics, code smells can be detected through the existing

ML models in Microsoft Azure Machine Learning. The result of the detection is shown in the "Code smell ?"column.

The communication is done through Microsoft Azure web services;

iii) Validate and save the validation results. After detecting the code smells, the developers validate it by

saying whether they agree or disagree with its result. To validate, they only have to double click on the "Code smell

?"column in the cases where they disagree with the detection. The double click reverses the column’s value; if it is

true, it becomes false and vice-versa. After validation, all information is stored in the MySQL database in the cloud,

communicating through web services.

Figure C.1: Crowdsmelling Eclipse IDE plugin

C.1.2 Machine Learning Component

Algorithm training, predictions, and model evaluation are performed in Azure’s Machine Learning Studio. For each

code smell, training workflows are built for the various algorithms, and then the resulting models are evaluated.

Finally, the best model is chosen to detect the code smell. Figure C.2 shows an example of the workflow for creating

the Feature Envy detection model, and Figure C.3 shows the Feature Envy prediction workflows. The communication

of the Eclipse plugin with the ML detection component is done through Microsoft Azure web services.

C.2 Version 2 - Eclipse plugin and Weka

The difference between this version and the previous one is that the ML component has been changed, replacing

Microsoft Azure Machine Learning with Weka. The ML models are created in the Weka Workbench and then used

by the plugin since it contains the Weka libraries. This modification is because Weka is Opensource software, so we

have more control over our algorithms and, therefore, over the models.

The metrics still have to be imported from a file in this version since it does not yet contain the metric extractor.

164

C.2. VERSION 2 - ECLIPSE PLUGIN AND WEKA

Figure C.2: Feature Envy training workflow

Figure C.3: Feature Envy predictive workflow

165

APPENDIX C. ARCHITECTURES OF THE CROWDSMELLING TOOL VERSIONS

C.3 Version 3 - Microservices Architecture

This version is the one presented in chapter 5 and is in the development phase. However, all the components are

already developed, missing the integration of these components, which is in the development phase.

The considerable advantage of this version, besides the microservices architecture, is the existence of the

metrics extraction module, not being dependent on third-party applications. As explained in the 5.4.1 section, from

the metamodel of the java Project being analyzed, a UML model is built, and metrics are extracted through OCL

queries in the UML model. Thus, we can define in OCL any code metrics we need to detect any code smell by

navigating the metamodel presented in Appendix D. Furthermore, this process aims to define more metrics as we

increase the number of code smells the application detects. Right now, we are developing the application to detect

3 code smells (God Class, Long Method, and Feature Envy), but we plan to increase the number of code smells to be

detected in the future and develop the respective metrics.

166

A
p
p
e
n
d
i
x

DD D

Eclipse Java Metamodel

167

APPENDIX D. ECLIPSE JAVA METAMODEL

D.1 Eclipse Java Metamodel

This appendix introduces the Eclipse Java Metamodel. Figure D.1 represents the basic structure of a Java project

and its hierarchical structure, including type inheritance and interface implementations. The contents of the Type

metaclass, such as fields, methods, static initializers, and type parameters, are shown in figure D.2. The final

diagram depicts the AST metaclasses (see Fig. D.3). More information about the Java Metamodel can be found in

the study by Coimbra et al.[55].

Figure D.1: Eclipse Java Metamodel - Java Project Structure

168

D.1. ECLIPSE JAVA METAMODEL

Figure D.2: Eclipse Java Metamodel - Type Components

169

APPENDIX D. ECLIPSE JAVA METAMODEL

Figure D.3: Eclipse Java Metamodel - Abstract Syntax Tree Components

170

St
re
am

lin
in
g
C
od

e
Sm

el
ls
:U

si
n
g
C
ol
le
ct
iv
e
In
te
lli
g
en

ce
an

d
V
is
u
al
iz
at
io
n

Jo
sé

P
er

ei
ra

d
os

R
ei

s

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Fundamentals
	Introduction
	Motivation and Scope
	Code Smells and Its Relevance on Software Design
	Code Smell Detection and visualization
	Collective intelligence

	Research Drivers
	Research Problems
	Research Questions
	Main Contributions

	Dissertation Outline
	Summary

	State of the Art
	Introduction
	Related work
	Research Methodology
	Planning the Review
	Conducting the Review

	Results and Analysis
	Overview of studies
	Approach for CS detection (F1)
	Dataset availability (F2)
	Programming language (F3)
	Code smells detected (F4)
	Machine Learning techniques used (F5)
	Evaluation of techniques (F6)
	Detection tools (F7)
	Thresholds definition (F8)
	Validation of techniques (F9)
	Replication of the studies (F10)
	Visualization techniques (F11)

	Discussion
	Research Questions (RQ)
	SLR validation
	Validity threats

	Conclusion
	Conclusions on this SLR
	Open issues

	Summary

	CS Detection and Visualization
	Crowdsmelling: The use of collective knowledge in CS detection
	Introduction
	Related Work
	Crowd and collaborative-based approaches
	Multiple ML models based approaches

	Experiment Planning
	Research Questions
	Participants
	Data
	CS
	Code Metrics
	Machine Learning Techniques Experimented
	Model Evaluation
	Process

	Results
	RQ1. What is the performance of ML techniques when trained with data from the crowd?
	RQ2. What is the best ML model to detect each one of the three CS?
	RQ3. Is it possible to use Collective Knowledge for CS detection?

	Discussion
	Research Questions (RQ)
	Implications and limitations of the Crowdsmelling Approach
	Threats to validity

	Summary

	Code Smells Visualization
	Introduction
	Visualization Survey
	Survey and Samples
	Survey Results

	Smelly Maps as SourceMiner Views
	Summary

	Crowdsmelling: a ML-based crowdsourcing approach for code smells detection
	Crowdsmelling Tool
	Introduction
	Motivation
	Related work
	Code smells detection tools
	ML-based code smells detection

	Crowdsmelling
	Proposed approach
	Proposed architecture for an application using approach
	Application usage scenarios

	Summary

	Conclusion
	Conclusion and Future Work
	Introduction
	Thesis Synthesis
	Main Contributions
	Research Opportunities

	Bibliography
	Appendices
	Systematic Literature Review Materials
	Studies included in the review
	Studies after applying inclusion and exclusion criteria (phase 3)
	Quality assessment
	Description of code smells detected in the studies, according to the authors
	Frequencies of code smells detected in the studies

	Crowdsmelling Materials
	Code metrics

	Architectures of the crowdsmelling tool versions
	Version 1 - Eclipse plugin and Azure Machine Learning
	Eclipse IDE plugin
	Machine Learning Component

	Version 2 - Eclipse plugin and Weka
	Version 3 - Microservices Architecture

	Eclipse Java Metamodel
	Eclipse Java Metamodel

