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ABSTRACT 

 

We present the problems that arise when calculating the moments of 

service time probability distributions for which the M|G|∞ queue system 

busy period and busy cycle-an idle period followed by a busy period-time 

length probability distributions become very easy to study, and show how 

to overcome them. We also, calculate the renewal function, the 

 
 Corresponding author e-mail: manuel.ferreira@iscte.pt. 
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“peakedness,” and the “modified peakedness” for the M|G|∞ busy period 

and busy cycle time length in the case of those service time distributions. 

 

Keywords: service time, collection, probability distribution, moment, 

M|G|∞ queue 

 

 

1. INTRODUCTION 

 

When, in the M|G|∞ queue system, the service time length is a random 

variable with a distribution function belonging to the collection 

 

G(𝑡) = 1 −
(1 − 𝑒−𝜌) (𝜆 +

𝜆𝑝 + 𝛽
1 − 𝑝 )

𝜆𝑒−𝜌 (𝑒
(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡
− 1 ) + 𝜆

, 𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤
𝜆(1 − 𝑝𝑒𝜌)

𝑒𝜌 − 1
, 

 

 0 ≤ 𝑝 < 1 , (1.1) 

 

the busy period time length probability distribution, which distribution 

function is: 

 

𝐵𝛽(𝑡) = 1 −
𝜆 +

𝜆𝑝 + 𝛽
1 − 𝑝

𝜆
(1 − 𝑒−𝜌)𝑒−𝑒

−𝜌(𝜆+
𝜆𝑝+𝛽
1−𝑝

)𝑡

, 𝑡 ≥ 0, −𝜆 ≤ 𝛽

≤
𝜆(1 − 𝑝𝑒𝜌)

𝑒𝜌 − 1
, 0 ≤ 

 

𝑝 < 1  (1.2) 

 

is an exponential with an atom at the origin. Moreover, the busy cycle 

length probability distribution, which distribution function is: 

 

𝑍𝛽(𝑡) = 1 −
(1−𝑒−𝜌)(𝜆+

𝜆𝑝+𝛽

1−𝑝
)

𝜆−𝑒−𝜌(𝜆+
𝜆𝑝+𝛽

1−𝑝
)

𝑒−𝑒
−𝜌(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡

+

𝜆𝑝+𝛽

1−𝑝

𝜆−𝑒−𝜌(𝜆+
𝜆𝑝+𝛽

1−𝑝
)

𝑒−𝜆𝑡,  
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𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤ 

 

𝜆(1−𝑝𝑒𝜌)

𝑒𝜌−1
, 0 ≤ 𝑝 < 1  (1.3) 

 

a mixture of two exponential distributions, see [1, 2]. However, although it 

is so easy to study the busy period and the busy cycle in this situation, it is 

a quite complex task to compute the service time moments. 

Some results, precisely about the moment’s calculation of random 

variables with distribution functions given by this collection are given. 

In the end, we present formulae that give the busy cycle renewal 

function, the “peakedness,” and the “modified peakedness” to the busy 

period and the busy cycle of the M|G|∞ system for those service time 

distributions, see [3-6]. We shall see how the formulae for these 

parameters in this case are quite simple contrarily to what is the usual. 

This work is built on the information presented in [7] which is 

corrected, generalized and updated. 

 

 

2. CALCULATION OF MOMENTS 

 

Be 𝐺(𝑡), 𝑡 ≥ 0 a positive random variable distribution function, and 

𝑔(𝑡) =
𝑑𝐺(𝑡)

𝑑𝑡
 the associated probability density function. 

The differential equation (1 − 𝑝)
𝑔(𝑡)

1−𝐺(𝑡)
− 𝜆𝑝 − 𝜆(1 − 𝑝)𝐺(𝑡) = 𝛽, 

where 𝜆 > 0 and −𝜆 ≤ 𝛽 ≤
𝜆(1−𝑝𝑒𝜌)

𝑒𝜌−1
, 0 ≤ 𝑝 < 1 (𝜌 = 𝜆𝛼1, being 𝛼 the 

mean value associated with 𝐺(𝑡)) has the solution in expression (1.1), see 

again [7]. 

If, in (1.1), 𝐺𝑖(𝑡) is the solution associated to 𝜌𝑖, 𝑖 = 1, 2, 3, 4 it is easy 

to see that 

 

𝐺4(𝑡)−𝐺2(𝑡)

𝐺4(𝑡)−𝐺1(𝑡)

𝐺3(𝑡)−𝐺1(𝑡)

𝐺3(𝑡)−𝐺2(𝑡)
=

𝑒−𝜌4−𝑒−𝜌2

𝑒−𝜌4−𝑒−𝜌1

𝑒−𝜌3−𝑒−𝜌1

𝑒−𝜌3−𝑒−𝜌2
  (1.4) 

 
1 The parameter 𝜌 is the traffic intensity. 
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as it had to happen since it is a Riccati equation, see [8]. 

And calculating, 

 

∫ [1 − 𝐺(𝑡)]𝑑𝑡 = ∫
(1 − 𝑒−𝜌) (𝜆 +

𝜆𝑝 + 𝛽
1 − 𝑝 )

𝜆𝑒−𝜌 (𝑒
(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡
− 1 ) + 𝜆

𝑑𝑡 =
∞

0

∞

0

 

 

(1 − 𝑒−𝜌) (𝜆 +
𝜆𝑝 + 𝛽
1 − 𝑝

)

𝜆
∫

1

𝑒−𝜌 (𝑒
(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡
− 1 ) + 1

𝑑𝑡 =
∞

0

 

 

(1 − 𝑒−𝜌) (𝜆 +
𝜆𝑝 + 𝛽
1 − 𝑝 )

𝜆
∫

𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡

𝑒−𝜌 − 𝑒−𝜌 𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡
+ 𝑒

−(𝜆+
𝜆𝑝+𝛽
1−𝑝

)𝑡
𝑑𝑡 =

∞

0

 

 

(1 − 𝑒−𝜌) (𝜆 +
𝜆𝑝 + 𝛽
1 − 𝑝

)

𝜆
∫

𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡

 𝑒−𝜌 + (1 − 𝑒−𝜌)𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡
𝑑𝑡 =

∞

0

 

 

(1 − 𝑒−𝜌) (𝜆 +
𝜆𝑝 + 𝛽
1 − 𝑝

)

𝜆

−1

(1 − 𝑒−𝜌) (𝜆 +
𝜆𝑝 + 𝛽
1 − 𝑝 )

[ln (𝑒−𝜌

+ (1 − 𝑒−𝜌)𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡
)]

0

∞

= −
1

𝜆
ln 𝑒−𝜌 =

𝜌

𝜆
= 𝛼. 

 

As it had to be because we are dealing with a positive random variable. 

The probability density function associated to 𝐺(𝑡) given by (1.1) is 

 

𝑔(𝑡) =
(1−𝑒−𝜌)𝑒−𝜌(𝜆+

𝜆𝑝+𝛽

1−𝑝
)

2
𝑒

−(𝜆+
𝜆𝑝+𝛽
1−𝑝

)𝑡

𝜆[𝑒−𝜌+(1−𝑒−𝜌) 𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝 )𝑡

]

2 , 𝑡 > 0, −𝜆 ≤ 𝛽  



A Collection of Service Time Probability Distributions … 5 

≤
𝜆(1 − 𝑝𝑒𝜌)

𝑒𝜌 − 1
, 

 

0 ≤ 𝑝 < 1  (2.2) 

 

So, 

 

∫ 𝑡𝑛𝑔(𝑡)𝑑𝑡 =
∞

0

(1−𝑒−𝜌)𝑒−𝜌(𝜆+
𝜆𝑝+𝛽

1−𝑝
)

2

𝜆
∫ 𝑡𝑛 𝑒

−(𝜆+
𝜆𝑝+𝛽
1−𝑝

)𝑡

[𝑒−𝜌+(1−𝑒−𝜌) 𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝 )𝑡

]

2 𝑑𝑡 
∞

0
.

 (2.3) 

 

But, ∫ 𝑡𝑛 𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡

[𝑒−𝜌+(1−𝑒−𝜌) 𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡
]

2 𝑑𝑡
∞

0
≥ ∫ 𝑡𝑛𝑒

−(𝜆+
𝜆𝑝+𝛽

1−𝑝
)𝑡

𝑑𝑡
∞

0
= 

 

 

1

𝜆+
𝜆𝑝+𝛽

1−𝑝

𝑛!

 (𝜆+
𝜆𝑝+𝛽

1−𝑝
)

𝑛 , 𝛽 ≠ −𝜆. And, ∫ 𝑡𝑛 𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝

)𝑡

[𝑒−𝜌+(1−𝑒−𝜌) 𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝 )𝑡

]

2 𝑑𝑡
∞

0
≤ 

 

𝑒2𝜌 ∫ 𝑡𝑛𝑒
−(𝜆+

𝜆𝑝+𝛽

1−𝑝
)𝑡

𝑑𝑡
∞

0
=

𝑒2𝜌

𝜆+
𝜆𝑝+𝛽

1−𝑝

𝑛!

 (𝜆+
𝜆𝑝+𝛽

1−𝑝
)

𝑛 , 𝛽 ≠ −𝜆. 

 

Therefore, calling 𝑇 the random variable with distribution 

function 𝐺(𝑡), and having in mind (2.3): 

 

(1 − 𝑒−𝜌)𝑒−𝜌

𝜆

𝑛!

(𝜆 +
𝜆𝑝 + 𝛽
1 − 𝑝 )

𝑛−1 ≤ 𝐸[𝑇𝑛] ≤
𝑒𝜌 − 1

𝜆

𝑛!

(𝜆 +
𝜆𝑝 + 𝛽
1 − 𝑝 )

𝑛−1 , −𝜆

< 𝛽 ≤ 

 

𝜆(1−𝑝𝑒𝜌)

𝑒𝜌−1
, 0 ≤ 𝑝 < 1, 𝑛 = 1,2, . .. (2.4). 
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Notes: 

 

- The expression (2.4), giving bounds for 𝐸⌈𝑇𝑛⌉, 𝑛 = 1,2, … 

guarantees its existence, 

- For 𝑛 = 1 the expression (2.4) is useless since 𝐸[𝑇] = 𝛼. Note, 

curiously, that the upper bound is 
𝑒𝜌−1

𝜆
, the M|G|∞ system busy 

period mean value2, 

- For 2=n , subtracting to both bounds 𝛼2, it is possible to get from 

expression (2.3) bounds for 𝑉𝐴𝑅[𝑇], 

- For   ,...,2,1,0, ==−= nn  evidently. 

 

See, however, that (1.1) is writable like: 

 

𝐺(𝑡) =
1+

𝜆𝑝+𝛽
1−𝑝

𝜆
(1−𝑒𝜌)𝑒

−(𝜆+
𝜆𝑝+𝛽
1−𝑝

)𝑡

1−(1−𝑒𝜌)𝑒
−(𝜆+

𝜆𝑝+𝛽
1−𝑝 )𝑡

, 𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤
𝜆(1−𝑝𝑒𝜌)

𝑒𝜌−1
, 0 ≤ 𝑝 < 1, 

 (2.5) 

 

And, for 2log , 

 

𝐺(𝑡) = (1 +

𝜆𝑝+𝛽

1−𝑝

𝜆
(1 − 𝑒𝜌)𝑒

−(𝜆+
𝜆𝑝+𝛽

1−𝑝
)𝑡

) ∑ (1 −∞
𝑘=0

𝑒𝜌)𝑘𝑒
−𝑘(𝜆+

𝜆𝑝+𝛽

1−𝑝
)𝑡

, 𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤
𝜆(1−𝑝𝑒𝜌)

𝑒𝜌−1
, 0 ≤ 𝑝 < 1, (2.6) 

 

After (2.6) it is easy to arise the random variable T Laplace transform, 

and the consequent formulae for the moments. Indeed: 

 

- For 2log  

 

 
2 Insensible to the service time probability distribution. 
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𝐸[𝑇𝑛] = − (1 +

𝜆𝑝 + 𝛽
1 − 𝑝

𝜆
) 𝑛! ∑

(1 − 𝑒𝜌)𝑘

𝑘 (𝜆 +
𝜆𝑝 + 𝛽
1 − 𝑝 )

𝑛

∞

𝑘=1

, −𝜆 ≤ 𝛽

≤
𝜆(1 − 𝑝𝑒𝜌)

𝑒𝜌 − 1
, 0 

 

≤ 𝑝 < 1, 𝑛 = 1,2, …  (2.7) 

 

Notes: 

 

- 𝐸[𝑇] = − (1 +

𝜆𝑝+𝛽

1−𝑝

𝜆
) ∑

(1−𝑒𝜌)𝑘

𝑘(𝜆+
𝜆𝑝+𝛽

1−𝑝
)

𝑛 =
1

𝜆
∑ (−1)𝑘+1 1−𝑒𝜌

𝑘
∞
𝑘=1

∞
𝑘=1 =

1

𝜆
ln 𝑒𝜌 = 𝛼 

- For 𝑛 ≥ 2, having to consider only a finite number of parcels in 

the infinite sum, call   this number. To get an error lesser than 𝜀 

it must be fulfilled simultaneously 

 

a. 𝑀 >
1

𝜆+
𝜆𝑝+𝛽

1−𝑝

− 1, 

b. 𝑀 > log(𝜀𝜌−1)
𝜀𝑒𝜌𝜆

𝑛!(𝜆+
𝜆𝑝+𝛽

1−𝑝
)
 

 

Therefore, it is evident now that this distributions collection moment’s 

computation is a complex task. This was already true for the study in [9] 

where the results presented are a situation of these ones 𝑝 = 0. 

To consider the approximation 

 

𝐸𝑚
𝑛 = ∑ (

𝑘

𝑚
)

𝑛

[𝐺 (
𝑘

𝑚
) − 𝐺 (

𝑘 − 1

𝑚
)]

∞

𝑘=1

, −𝜆 ≤ 𝛽 ≤
𝜆(1 − 𝑝𝑒𝜌)

𝑒𝜌 − 1
, 0 

≤ 𝑝 < 1, 𝑛 = 1,2, …  (2.8) 
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may be helpful since lim
𝑚→∞

𝐸𝑚
𝑛 = 𝐸[𝑇𝑛] , 𝑛 = 1,2, … that allow the 

moments’ numerical computation, see [10]. 

 

 

3. BUSY CYCLE RENEWAL FUNCTION CALCULATION 

 

The busy cycle renewal function, of the M|G|∞ queue, at t , 

designated 𝑅(𝑡), gives the mean number of busy periods that begin in  t,0 , 

and its expression is, see again [3]: 

 

𝑅(𝑡) = 𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡

0 + 𝜆 ∫ 𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣
𝑢

0 𝑑𝑢
𝑡

0
 . (3.1) 

 

If the service time is a random variable with distribution function given 

by a member of the collection (1.1): 

 

𝑅(𝑡) = 𝑒−𝜌(1 + 𝜆𝑡) + (1 − 𝑒−𝜌)
𝜆𝑝+𝛽

𝜆+𝛽
𝑒

−(𝜆+
𝜆𝑝+𝛽

1−𝑝
)𝑡

+ (1 −

𝑒−𝜌)
𝜆𝑝+𝛽

𝜆+𝛽
, −𝜆 ≤ 𝛽 ≤

𝜆(1−𝑝𝑒𝜌)

𝑒𝜌−1
, 0 ≤ 𝑝 < 1, 𝑛 = 1,2, …  (3.2) 

 

For 0=p  we obtain the result presented in [3]. 

 

 

4. THE “PEAKEDNESS” AND THE “MODIFIED 

PEAKEDNESS” CALCULATIONS 

 

The M|G|∞ queue busy period “peakedness” is the Laplace Transform 

of its time length3 at  
1

𝛼
, 

𝑝𝑖 = �̅� (
1

𝛼
) = 1 + 𝜆−1 (

1

𝛼
−

1

∫ 𝑒
−

1
𝛼

𝑡−𝜆 ∫ [1−𝐺(𝑣)]
𝑡
0 𝑑𝑣

𝑑𝑡
∞

0

)  (4.1) 

 
3 Called �̅�(𝑠). 
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[4, 5]. This parameter characterizes the distribution of the busy period time 

length. It contains information on all its moments. For the collection of 

service time distributions (1.1) the “peakedness” is 

 

𝑝𝑖 =
𝑒−𝜌(𝜆+𝛽)(𝜌+1)−𝜆𝑝−𝛽

𝜆(𝑒−𝜌(𝜌+𝛼𝛽)+1−𝑝) 
, −𝜆 ≤ 𝛽 ≤

𝜆(1−𝑝𝑒𝜌)

𝑒𝜌−1
, 0 ≤ 𝑝 < 1. (4.2) 

 

In [4, 5] another measure is introduced, the “modified peakedness” got 

after the “peak” taking out the terms that are permanent for the busy period 

in different service distributions and dividing for the common part. Calling 

𝑞𝑖: 

 

𝑞𝑖 =  𝑝𝑖
𝜌

𝑒𝜌−𝜌−1
+ 1  (4.3) 

 

and so, for the distributions given by collection (1.1): 

 

𝑞𝑖 =
𝑒−𝜌(𝜆+𝛽)(𝜌+1)−𝜆𝑝+𝛽

𝜆(𝑒−𝜌(𝜌+𝛼𝛽)+1−𝑝) 

𝜌

𝑒𝜌−𝜌−1
+ 1, − 𝜆 ≤ 𝛽 ≤

𝜆(1−𝑝𝑒𝜌)

𝑒𝜌−1
, 0 ≤ 𝑝 < 1

 (4.4) 

 

For the busy cycle of the M|G|∞ queue, analogously, it may be defined 

as the “peakedness” [5], now called 𝑝𝑖′  and for the service distributions 

given by the collection (1.1) it is 

 

𝑝𝑖′ = 𝛼
𝑒−𝜌(𝜆+𝛽)(𝜌+1)−𝜆𝑝−𝛽

(𝜌+1)(𝑒−𝜌(𝜌+𝛼𝛽)+1−𝑝)
, −𝜆 ≤ 𝛽 ≤

𝜆(1−𝑝𝑒𝜌)

𝑒𝜌−1
, 0 ≤ 𝑝 < 1  (4.5) 

 

And the “modified peakedness,” now called 𝑞𝑖′ , given by 

 

 𝑞𝑖′ = 𝑝𝑖′
𝜌

𝑒𝜌−𝜌
+ 1 . (4.6) 

 

For the service distributions given by the collection (1.1) it is 
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𝑞𝑖′ = 𝛼
𝑒−𝜌(𝜆 + 𝛽)(𝜌 + 1) − 𝜆𝑝 − 𝛽

(𝜌 + 1)(𝑒−𝜌(𝜌 + 𝛼𝛽) + 1 − 𝑝)

𝜌

𝑒𝜌 − 𝜌
+ 1, 

−𝜆 ≤ 𝛽 ≤
𝜆(1−𝑝𝑒𝜌)

𝑒𝜌−1
, 0 ≤ 𝑝 < 1 (4.7) 

 

 

CONCLUSION 

 

The study of the M|G|∞ queue transient probabilities behavior as time 

functions leads to the consideration of a Riccati equation. Its solution, 

subject to specific constraints, is a collection of service time distributions 

for which both the busy period and the busy cycle have rather simple 

probability distributions for the respective time lengths. These distributions 

are either an exponential, or an exponential with an atom at the origin or a 

mixture of two exponentials. 

Either this is the most important since the distributions related to the 

busy period or the busy cycle of queues are extremely complex, even 

analytically intractable, usually given by series of convolutions. 

The approach followed in this work generalize the results shown in 

[11]. 

In M|G|∞ queue practical applications, see for instance [12-15], the 

probabilistic study of the time length of the busy period and of the busy 

cycle is of great importance. Note, for example, that a practical 

embodiment of the presence of infinite servers lies in the requirement that 

when a customer arrives, a server must be immediately available. It is 

therefore necessary to foresee how long the busy period is in order to know 

how long the servers should be in the prevention. 

For more information on these subjects see, for instance [16-19]. 
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