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ABSTRACT 

 
The main objective of this chapter is to present the separation theorems, important consequences of Hahn-

Theorem theorem. Therefore, we begin with an overview on convex sets and convex functionals. Then go on with 

the Hahn-Banach theorem and separation theorems. Follow these results specification: first for normed spaces and 
then for a subclass of these spaces, the Hilbert spaces. In this last case plays a key role the Riesz representation 

theorem. Separation theorems are key results in convex programming. Then the chapter ends with the outline of 

applications of these results in convex programming, Kuhn-Tucker theorem, and in minimax theorem, two 

important tools in operations research, management and economics, for instance.  

 

Keywords: Hahn-Banach theorem; separation theorems; convex programming; Kuhn-Tucker theorem; 

minimax theorem. 
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1 Introduction 

 
After a general overview on convex sets and convex functionals, see [1 − 5] and [24] , we present Hahn-Banach 

theorem with great generality, together with important separation theorems, see [7] and [9]  . Then we specify 

these results: first for normed spaces, see again [7] and then for a subclass of these spaces, the Hilbert spaces, 

see [8], [11] . 
 

Then we emphasize the fruitfulness of the results presented, in the last sections where we show that they permit 

to obtain results very important in the applications: 

 

− First, the Kuhn-Tucker theorem, see for instance [6],the main result of the convex programming so 

important in operations research, 

− Second, the minimax theorem, an important result in game theory, observe  [12] and [22,23]; which 

applications in management and economic models are becoming greater and greater. 

 

This chapter is the conference paper [13]  corrected and enlarged version. 

 

2 Convex Sets and Fields 

 
Be L a real vector space. 

 

Definition 2.1 

 

A set 𝐾 ⊂ 𝐿 is convex if and only if 

 
∀

𝑥, 𝑦 ∈ 𝐾  
∀

𝜃 ∈ [0,1] 𝜃𝑥 + (1 − 𝜃)𝑦 ∈ 𝐾                                                                                                       (2.1)∎ 
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Definition 2.2 

 

The nucleus of a set 𝐸 ⊂ 𝐿, designated 𝐽(𝐸), is the set of points 𝑥 ∈ 𝐸 such that, given any 𝑦 ∈ 𝐿, it is possible to 

determine 𝜀 = 𝜀(𝑦) > 0 such that 𝑥 + 𝑡𝑦 ∈ 𝐸 since|𝑡| < 𝜀. ∎ 

 

Definition 2.3 

 

A convex set with non-empty nucleus is a convex field.∎ 

 

Theorem 2.1 

 

The nucleus 𝐽(𝐾) of any convex set K is also a convex set. 

 

Dem.: 

 

Suppose that 𝑥, 𝑦 ∈ 𝐽(𝐾). Be 𝑧 =  𝜃𝑥 + (1 − 𝜃)𝑦, 0 ≤ 𝜃 ≤ 1. So, given any  𝑎 ∈ 𝐿, it is possible to determine 

𝜀1 > 0, 𝜀2 > 0  such that |𝑡1| < 𝜀1, |𝑡2| < 𝜀2 , the points 𝑥 + 𝑡1𝑎 and 𝑦 + 𝑡2𝑎 belong both to K. So, the point 

 

𝜃(𝑥 + 𝑡𝑎) + (1 − 𝜃)(𝑦 + 𝑡𝑎) =   𝑧 + 𝑡𝑎 

 

belongs to K for |𝑡| < 𝜀 = 𝑚𝑖𝑛{𝜀1, 𝜀2}, that is 𝑧 ∈ 𝐽(𝐾). ∎ 

 

Theorem 2.2 

 

The intersection of any family of convex sets is a convex set. 
 

Dem.: 

 

Be 𝐾 =
∩
𝛼

𝐾𝛼, being each 𝐾𝛼 a convex set. Consider any two points x and y from K. 

 

So 𝜃𝑥 + (1 − 𝜃)𝑦, 0 ≤ 𝜃 ≤ 1, belongs to every 𝐾𝛼 and, in consequence, to K. So K 
 

is a convex set.∎ 

 

Obs.: 

 

-The intersection of convex fields, being a convex set; it is not necessarily a convex field. 

 

Definition 2.4 

 

Be A a part, anyone, of a vector space L. Among the convex sets that contain A there is a minimal set: the 

intersection of the whole convex sets that contain A -there is at least one convex set that contains A: the space L.  
 

This minimal set is the convex hull of A.∎ 

 

3 Homogeneous Convex Functional 

 
Definition 3.1 

 

A functional p, defined in L is convex if and only if 

 
∀

𝑥, 𝑦 ∈ 𝐿  
∀

𝜃 ∈ [0,1] 𝑝(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑝(𝑥) + (1 − 𝜃)𝑝(𝑦)                                                          (3.1)∎ 
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Definition 3.2 

 

A functional p is positively homogeneous if and only if 

 
∀

𝑥 ∈ 𝐿
  

∀
𝛼 > 0

 𝑝(𝛼𝑥) = 𝛼𝑝(𝑥)                                                                                                                      (3.2). ∎ 

 
Proposition 3.1 

 

For any convex positively homogeneous functional: 

 

i)𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦)                                                                                                                                 (3.3) 

 

ii)𝑝(0) = 0                                                                                                                                                             (3.4) 

 

iii)𝑝(𝑥) + 𝑝(−𝑥) ≥ 0,
∀

𝑥 ∈ 𝐿
                                                                                                                              (3.5) 

 

iv) 𝑝(𝛼𝑥) ≥ 𝛼𝑝(𝑥),
∀

𝛼 ∈ ℝ
                                                                                                                                  (3.6) 

 

Dem: 

 

i) Indeed, 𝑝(𝑥 + 𝑦) = 2𝑝 (
𝑥+𝑦

2
) ≤ 2 (𝑝 (

𝑥

2
) + 𝑝 (

𝑦

2
)) = 𝑝(𝑥) + 𝑝(𝑦). 

 

ii) 𝑝(0) = 𝑝(𝛼0) = 𝛼𝑝(0),
∀

𝛼 > 0
. So 𝑝(0) = 0. 

 

iii) 0 = 𝑝(0) = 𝑝(𝑥 + (−𝑥)) ≤ 𝑝(𝑥) + 𝑝(−𝑥),
∀

𝑥 ∈ 𝐿
. 

 

iv) The result is evident for  𝛼 ≥ 0. With  𝛼 < 0, 0 ≤ 𝑝(𝛼𝑥) + 𝑝(−𝛼𝑥) = 𝑝(𝑎𝑥) + 𝑝(|𝛼|𝑥) = 𝑝(𝛼𝑥) +
|𝛼|𝑝(𝑥). So, 𝑝(𝛼𝑥) ≥                   −|𝛼|𝑝(𝑥), that is 𝑝(𝛼𝑥) ≥ 𝛼𝑝(𝑥). ∎ 

 

4 Minkowski Functional 

 
Definition 4.1 

 

A convex body in L  is a compact convex set with non-empty interior. ∎ 

 

Definition 4.2 

 

Be L any vector space and A a convex body in L which nucleus contains 0. The functional 

 

𝑝𝐴(𝑥) = 𝑖𝑛𝑓 {𝑟:
𝑥

𝑟
∈ 𝐴}                                                                                                                                      (4.1) 

 

is the Minkowski functional of the convex body A.∎ 

 

Theorem 4.1 

 

A Minkowski functional is convex positively homogeneous and assumes only positive values. Reciprocally, if 

p(x) is a positively homogeneous functional, assuming only positive values, and M a positive number, the set 

 

𝐴 = {𝑥: 𝑝(𝑥) ≤ 𝑀}                                                                                                                                              (4.2)  
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is a convex body with nucleus {𝑥: 𝑝(𝑥) < 𝑀}, which contains the point 0. If in (4.2) 𝑀 = 1, the initial functional 

p(x) will be the Minkowski functional of A. 

 

Dem: 

  

Given any element  𝑥 ∈ 𝐿, 
𝑥

𝑟
 belongs to A if r is great enough. Therefore, the number 𝑝𝐴(𝑥) defined by (4.1) is 

positive and finite. But, given 𝑡 > 0 and 𝑦 = 𝑡𝑥, 𝑝𝐴(𝑦) = 𝑖𝑛𝑓 {𝑟 > 0:
𝑦

𝑟
∈ 𝐴} = 𝑖𝑛𝑓 {𝑟 > 0:

𝑡𝑥

𝑟
∈ 𝐴} =

𝑖𝑛𝑓 {𝑡𝑟 ′ > 0:
𝑥

𝑟′
∈ 𝐴} = 𝑡𝑖𝑛𝑓 {𝑟 ′ > 0:

𝑥

𝑟′
∈ 𝐴} = 𝑡𝑝𝐴(𝑥). So,  

 

𝑝𝐴(𝑡𝑥) = 𝑡𝑝𝐴(𝑥),
∀

𝑡 > 0
                                                                                                                                      (4.3), 

 

consequently 𝑝𝐴(𝑥) is positively homogeneous. 

 

Suppose now that 𝑥1, 𝑥2 ∈ 𝐿.  Given any  𝜀 > 0 , choose the numbers 𝑟𝑖 , 𝑖 = 1,2 in order that 𝑝𝐴(𝑥𝑖) < 𝑟𝑖 <

𝑝𝐴(𝑥𝑖) + 𝜀. So 
𝑥𝑖

𝑟𝑖
∈ 𝐴. Making 𝑟 = 𝑟1 + 𝑟2 , the point 

𝑥1+𝑥2

𝑟
=

𝑟

𝑟𝑟1
𝑥1+

𝑟2

𝑟𝑟2
𝑥2 will belong to the set of points 𝑆 =

{𝑧: 𝑧 = 𝜃
𝑥1

𝑟1
+ (1 − 𝜃)

𝑥2

𝑟2
,

∀
𝜃 ∈ [0,1]}. As A is a convex set, 𝑆 ⊂ 𝐴 and , in particular, 

𝑥1+𝑥2

𝑟
∈ 𝐴. So, 𝑝𝐴(𝑥1 +

𝑥2) ≤ 𝑟 = 𝑟1 + 𝑟2 <  𝑝𝐴(𝑥1)+, 𝑝𝐴(𝑥2) + 2𝜀. As 𝜀 is arbitrary, 𝑝𝐴(𝑥1 + 𝑥2) ≤ 𝑝𝐴(𝑥1) + 𝑝𝐴(𝑥2). So, 

 

 𝑝𝐴(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝑝𝐴(𝜃𝑥) + 𝑝𝐴((1 − 𝜃)𝑦) = 𝜃𝑝𝐴(𝑥) + (1 −  𝜃)𝑝𝐴(𝑦),
∀

𝑥, 𝑦 ∈ 𝐿,
∀

𝜃 ∈ [0,1],
 

 

since it was already shown that 𝑝𝐴(𝑥) is positively homogeneous. 

 

Look now to the set defined by (4.2). If 𝑥, 𝑦 ∈ 𝐴 and  𝜃 ∈ [0,1], so 𝑝(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑝(𝑥) + (1 − 𝜃)𝑝(𝑦) ≤
𝑀. In consequence, A is a convex set. Suppose now that 𝑝(𝑥) < 𝑀, 𝑡 > 0 and 𝑦 ∈ 𝐿. Under these conditions, 

𝑝(𝑥 ± 𝑡𝑦) ≤ 𝑝(𝑥) + 𝑡𝑝(±𝑦).  If 𝑝(−𝑦) = 𝑝(𝑦) = 0, so 𝑥 ± 𝑡𝑦 ∈ 𝐴  for any t. If at least one of the numbers 

(positive) 𝑝(𝑦), 𝑝(−𝑦) is not nul, so 𝑥 ± 𝑡𝑦 ∈ 𝐴 for 
 

𝑡 <
𝑀 − 𝑝(𝑥)

𝑚𝑎𝑥{𝑝(𝑦), 𝑝(−𝑦)}
. 

 

From the definitions it results, p is the Minkowski functional of the set {𝑥: 𝑝(𝑥) ≤ 1}. ∎ 

 

5 Hahn-Banach Theorem 

 
Definition 5.1 

 

Consider a vector space L and its subspace 𝐿0. Suppose that in 𝐿0 it is defined a linear functional 𝑓0 . A linear 

functional f defined in the whole space L is an extension of the functional 𝑓0 if and only if  𝑓(𝑥) = 𝑓0(𝑥),
∀

𝑥 ∈ 𝐿0
. ∎ 

 

Theorem 5.1 (Hahn-Banach)   

 

 Be p a positively homogeneous convex functional, defined in a real vector space L, and 𝐿0 an L subspace. If 𝑓0 

is a linear functional defined in   𝐿0, fulfilling the condition 

 

𝑓0(𝑥) ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿0
                                                                                                                                          (5.1), 

 

there is an extension f of 𝑓0  defined in L, linear, and such that 𝑓(𝑥) ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿
. 

 Dem.: 
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Begin showing that if 𝐿0 ≠ 𝐿, there is an extension of 𝑓0, 𝑓′ defined in a subspace 𝐿′ , such that 𝐿 ⊂ 𝐿′, in order to 

fulfill the condition (5.1). 

 

Be  𝑧 ∈ 𝐿 − 𝐿0 . If 𝐿′ is the subspace generated by 𝐿0  and z, each point of 𝐿′ is expressed in the form 𝑡𝑧 + 𝑥, 

being 𝑥 ∈ 𝐿0. If 𝑓′ is an extension (linear) of the functional 𝑓0  to 𝐿′, it will happen that 𝑓′(𝑡𝑧 + 𝑥) = 𝑡𝑓′(𝑧) +
𝑓0(𝑥) or, making 𝑓′(𝑧) = 𝑐, 𝑓′(𝑡𝑧 + 𝑥) = 𝑡𝑐 + 𝑓0(𝑥). Now choose c, fulfilling the condition (5.1) in 𝐿′ , that is: 

in order that the inequality 𝑓0(𝑥) + 𝑡𝑐 ≤ 𝑝(𝑥 + 𝑡𝑧), for any 𝑥 ∈ 𝐿0 and any real number t, is accomplished. For 

𝑡 > 0 this inequality is equivalent to the condition 𝑓0 (
𝑥

𝑡
) + 𝑐 ≤ 𝑝 (

𝑥

𝑡
+ 𝑧) or 

 

𝑐 ≤  𝑝 (
𝑥

𝑡
+ 𝑧) − 𝑓0 (

𝑥

𝑡
)                                                                                                                                    (5.2). 

 

For 𝑡 < 0 it is equivalent to the condition 𝑓0 (
𝑥

𝑡
) + 𝑐 ≥ −𝑝 (−

𝑥

𝑡
− 𝑧), or 

 

𝑐 ≥ − 𝑝 (−
𝑥

𝑡
− 𝑧) − 𝑓0 (

𝑥

𝑡
)                                                                                                                             (5.3). 

 

 Now it will be proved that there is always c satisfying simultaneously the conditions (5.2) and (5.3). 

 

 Given any 𝑦 ′and 𝑦 ′′belonging to 𝐿0, 

 

−𝑓0(𝑦 ′′) + 𝑝(𝑦 ′′ + 𝑧) ≥ −𝑓0(𝑦 ′) − 𝑝(−𝑦 ′ − 𝑧)                                                                                            (5.4) 

. 

This happens because  

 

𝑓0(𝑦 ′′) − 𝑓0(𝑦 ′) ≤ 𝑝(𝑦 ′′ − 𝑦 ′) = 𝑝((𝑦 ′′ + 𝑧) − (𝑦 ′ + 𝑧)) ≤ 𝑝(𝑦 ′′ + 𝑧) + 𝑝(−𝑦 ′ − 𝑧). 

 

 Be 𝑐′′ =  inf
𝑦′′

(−𝑓0(𝑦 ′′) + 𝑝(𝑦 ′′ + 𝑧)) and 𝑐′ =  sup
𝑦′

(−𝑓0(𝑦 ′) − 𝑝(−𝑦 ′ − 𝑧)).  

 

As 𝑦 ′and 𝑦 ′′ are arbitrary, it results from (5.4) that 𝑐′′ ≥ 𝑐′. Choosing c in order that 𝑐′′ ≥ 𝑐 ≥ 𝑐′, it is defined the 

functional  𝑓′ on 𝐿′ through the formula  𝑓′(𝑡𝑧 + 𝑥) = 𝑡𝑐 +  𝑓0(𝑥). This functional satisfies the condition (5.2). So 

any functional 𝑓0  defined in a subspace 𝐿0 ⊂ 𝐿 and subject in 𝐿0 to the condition (5.1), may be extended to a 

subspace 𝐿′. The extension 𝑓′ satisfies the condition 𝑓′(𝑥) ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿′
. If L has an algebraic numerable base 

(𝑥1, 𝑥2, … , 𝑥𝑛 , … ) the functional in L is built by finite induction, considering the increasing sequence of 

subspaces 𝐿(1) = (𝐿0, 𝑥1), 𝐿(2) = (𝐿(1), 𝑥2), …  designating (𝐿(𝑘), 𝑥𝑘+1)  the L subspace generated by 𝐿(𝑘)  and 

 𝑥𝑘+1. In the general case, that is, when L has not an algebraic numerable base, it is mandatory to use a transfinite 

induction process, for instance the Haudsdorf maximal chain theorem. 

 

 So call ℱ the set of the whole pairs(𝐿′, 𝑓′), at which 𝐿′ is a L subspace that contains 𝐿0 and 𝑓′ is an extension of  

𝑓0  to 𝐿′  that fulfills (5.1). Order partially ℱso that (𝐿′, 𝑓′) ≤ (𝐿′′, 𝑓′′) if and only if 𝐿′ ⊂ 𝐿′′and 𝑓
|𝐿′
′′ = 𝑓′ .  By the 

Haudsdorf maximal chain theorem, there is a chain, that is: a subset of ℱ totally ordered, maximal, that is: not 

strictly contained in another chain. Call it Ω. Be Φ the family of the whole 𝐿′ such that (𝐿′, 𝑓′) ∈ Ω. The family Φ 

is totally ordered by the sets inclusion; so, the union Τ of the whole elements of Φ is an L subspace. If 𝑥 ∈  Τ then 

𝑥 ∈ 𝐿′ for some  𝐿′ ∈  Φ . Define 𝑓̃(𝑥) = 𝑓′(𝑥), where 𝑓′ is the extension of 𝑓0  that is in the pair (𝐿′, 𝑓′)- the 

definition of 𝑓 is obviously coherent. It is easy to check that Τ = 𝐿 and that 𝑓 = 𝑓′ satisfies the condition (5.1).∎ 

 

Now it follows the Hahn-Banach theorem complex case. It is the Hahn contribution to the theorem.  

 

Theorem 5.2 (Hahn-Banach)  

 

Be p an homogeneous convex functional defined in a vector space L and 𝑓0  a linear functional, defined in a 

subspace 𝐿0 ⊂ 𝐿, fulfilling the condition|𝑓0(𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿0. Then, there is a linear functional f defined in L, 

satisfying the conditions 
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|𝑓(𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿; 𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈ 𝐿0. 

 

Dem.: 

 

Call 𝐿𝑅 and 𝐿0𝑅 the real vector spaces underlying, respectively, the spaces L and 𝐿0 . As it is evident, p is an 

homogeneous convex functional in 𝐿𝑅  and  𝑓0𝑅 (𝑥) = 𝑅𝑒𝑓0(𝑥)  a real linear functional in 𝐿0𝑅 fulfilling the 

condition |𝑓0𝑅 (𝑥)| ≤ 𝑝(𝑥)  and so,  𝑓0𝑅 (𝑥) ≤ 𝑝(𝑥).  Then, owing to Theorem 5.1, there is a real linear 

functional  𝑓𝑅 , defined in the whole 𝐿𝑅  space, that satisfies the conditions  𝑓𝑅(𝑥) ≤  𝑝(𝑥), 𝑥 ∈ 𝐿𝑅; 𝑓𝑅 (𝑥) =
𝑓0𝑅 (𝑥), 𝑥 ∈ 𝐿0𝑅 . But, −𝑓𝑅 (𝑥) = 𝑓𝑅 (−𝑥) ≤ 𝑝(−𝑥) = 𝑝(𝑥), and 

 
|𝑓𝑅 (𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿𝑅                                                                                                                                       (5.5). 

 

Define in L the functional f making 𝑓(𝑥) = 𝑓𝑅 (𝑥) − 𝑖𝑓𝑅 (𝑖𝑥), 𝑖 = √−1. It is immediate to conclude that f is a 

complex linear functional in L such that 𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈ 𝐿0; 𝑅𝑒𝑓(𝑥) = 𝑓𝑅 (𝑥), 𝑥 ∈ 𝐿. 
 

 It is only missing to show that |𝑓(𝑥)| ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿
. 

 

Proceed by absurd: suppose that there is 𝑥0 ∈ 𝐿  such that  |𝑓(𝑥0)| > 𝑝(𝑥0) . So, 𝑓(𝑥0) = 𝜌𝑒𝑖𝜑 , 𝜌 > 0,  and 

making 𝑦0 = 𝑒−𝑖𝜑𝑥0, it would happen that 𝑓𝑅 (𝑦0) = 𝑅𝑒[𝑒−𝑖𝜑𝑓(𝑥0  )] = 𝜌 > 𝑝(𝑥0) = 𝑝(𝑦0) that is contrary to 

(5.5).∎  

 

6 Vector Spaces Convex Parts Separation  

 
In the next theorem, we present a very useful consequence of Hahn-Banach theorem, about vector space convex 

parts separation, remark [9]. Beginning with 

 

Definition 6.1 

 

Be M and N two subsets of a real vector space L. A linear functional f defined in L separates M and N if and only 

if there is a number c such that𝑓(𝑥) ≥ 𝑐, for 𝑥 ∈ 𝑀 and 𝑓(𝑥) ≤ 𝑐, for 𝑥 ∈ 𝑁 that is, if  inf
𝑥∈𝑀

𝑓(𝑥) ≥ sup
𝑥∈𝑁

𝑓(𝑥). A 

functional f separates strictly the sets M and N if and only if inf
𝑥∈𝑀

𝑓(𝑥) > sup
𝑥∈𝑁

𝑓(𝑥) . ∎ 

 

Theorem 6.1 (Separation) 

 

Suppose that M and N are two convex subsets of a vector space L such that the kernel of at least one of them, for 

instance M, is non-empty and does not intersect the other set. Therefore, there is a linear functional, non-null on 

L, which separates M and N. 
 

Dem.: 

 

Less than one translation, it is supposable that the point 0 belongs to the kernel of M, which we designate 𝑀̇.  So, 

given 𝑦0 ∈ 𝑁, −𝑦0  belongs to the kernel of  𝑀 − 𝑁  and 0 to the kernel of 𝑀 − 𝑁 + 𝑦0. As 𝑀̇ ∩ 𝑁 = ∅, by 

hypothesis, 0 does not belong to the kernel of  𝑀 − 𝑁 and 𝑦0 does not belong to the one of 𝑀 − 𝑁 + 𝑦0. Put 𝐾 =
 𝑀 − 𝑁 + 𝑦0 and be p the Minkowski functional of 𝐾.̇  So 𝑝(𝑦0) ≥ 1, since 𝑦0 ∉ 𝐾.̇   
 

Define, now, the linear functional 𝑓0(𝛼𝑦0) = 𝛼𝑝(𝑦0).  Note that 𝑓0  is defined in a space with dimension1 , 

constituted by elements 𝛼𝑦0, and it is such that 𝑓0(𝛼𝑦0) ≤ 𝑝(𝛼𝑦0). In fact, 𝑝(𝛼𝑦0) =  𝛼𝑝(𝑦0), when  𝛼 ≥ 0 and 

𝑓0(𝛼𝑦0) = 𝛼𝑓0(𝑦0) < 0 < 𝑝(𝛼𝑦0),  when 𝛼 > 0. Under these conditions, after the Hahn-Banach theorem, it is 

possible to state the existence of linear functional f , defined in L, that extends 𝑓0 , and such that 𝑓(𝑦) ≤

𝑝(𝑦),
∀

𝑦 ∈ 𝐿
. Then it results 𝑓(𝑦) ≤ 1,

∀
𝑦 ∈ 𝐾

   and   𝑓(𝑦0) ≥ 1. In consequence: 

 

− f separates the sets K and {𝑦0}, that is 
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− f separates the sets M-N and {𝑦0}, that is 

− f separates the sets M and N.∎ 

 

7 Hahn-Banach Theorem for Normed Spaces 

 
Definition 7.1 

 

Consider a continuous linear functional f in a normed space E. The f norm designated ‖𝑓‖, ‖𝑓‖ = sup
||𝑥||≤1

|𝑓(𝑥)| 

that is, the supreme of the values assumed by |𝑓(𝑥)| in the E unitary ball.∎  

 

 Obs.: 

 

 -The class of continuous linear functionals, with norm defined above, is a normed vector space, called the E dual 

space, designated 𝐸′. 
 

Theorem 5.1 in normed spaces is, note [7]: 
 

Theorem 7.1 (Hahn-Banach) 

 

Call L a subspace of a real normed space E. Moreover, 𝑓0 a bounded linear functional in L. So, there is a linear 

functional defined in E, extension of 𝑓0 , such that ‖𝑓0‖𝐿, = ‖𝑓‖𝐸, . 
 

Dem.: 

 

It is enough to think in the functional 𝑔 satisfying 𝑔‖𝑥‖ = ‖𝑓0‖𝐿,. As it is convex and positively homogeneous, it 

is possible to put 𝑝(𝑥) = 𝑔‖𝑥‖ and apply Theorem 5.1.∎ 

 

Obs.: 

 

 -To see an interesting geometric interpretation of this theorem, consider the equation ‖𝑓0(𝑥)‖ = 1.It defines, in 

L, a hyperplane at distance   
1

‖𝑓0‖
 of 0. Considering the 𝑓0extension f, with norm conservation, it is obtained a 

hyperplane in E, which contains the hyperplane considered behind in L, at the same distance from the origin. 

 

Theorem 5.2 in normed spaces is, see again [7] : 
 
Theorem 7.2 (Hahn-Banach) 

 

 Be E a complex normed space and 𝑓0  a bounded linear functional defined in a subspace 𝐿 ⊂ 𝐸. So, there is a 

bounded linear functional f, defined in E, such that 𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈ 𝐿; ‖𝑓‖𝐸, = ‖𝑓0‖𝐿, . ∎ 

 

Two separation theorems, important consequences of the Hahn-Banach theorem, applied to the normed vector 

spaces, follow: 

 

Theorem 7.3 (Separation) 

 

Consider two convex sets A and B in a normed space E. If one of them, for instance A, has at least on interior point 

and (𝑖𝑛𝑡𝐴) ∩ 𝐵 = ∅, there is a continuous linear functional non-null that separates the sets A and B.∎ 

 

 Theorem 7.4 (Separation) 

 

Consider a closed convex set A, in a normed space E, and a point 𝑥0 ∈ 𝐸, not belonging to A. Therefore, there is 

a continuous linear functional, non-null, that separates strictly {𝑥0} and A.∎  

 

8 Separation Theorems in Hilbert Spaces                    
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Definition 8.1  

 

A Hilbert space, designated H or I, is a complex vector space with inner product that, as a metric space, is 

complete.∎ 

 

Definition 8.2 

 

An inner product, in a complex vector space H, is a sesquilinear Hermitian functional, strictly positive on H.∎ 
 

 Obs.: 

 

− Working with real vector spaces, “sesquilinear Hermitian” must be replaced by “bilinear symmetric”, 

− The inner product of two vectors x and y of H, by this order is designated [𝑥, 𝑦], 

− The norm of a vector x will be ‖𝑥‖ = √[𝑥, 𝑥]. 
 

An important theorem, about the representation of continuous linear functionals by elements of the space is the 

Riesz representation theorem, note [1 − 3] and [15,16] : 
 

Theorem 8.1 (Riesz representation) 

 

Every continuous linear functional 𝑓(∙) may be represented in the form 𝑓(𝑥) = [𝑥, 𝑞̃] where 𝑞̃ =
𝑓(𝑞)̅̅ ̅̅ ̅̅

[𝑞,𝑞]
𝑞. ∎ 

 

Dem: 

 

Begin noting that for every continuous linear functional 𝑓(. ), the Nucleus of   𝑓(. ) 1 is a closed vector subspace. 

If the functional under consideration is not the null functional, there is an element y such that 𝑓(𝑦) ≠ 0. Be z the 

projection of y over Nuc(f) and make 𝑞 = 𝑦 − 𝑧. So, q is orthogonal to Nuc (f), 𝑓(𝑞) = 𝑓(𝑦) and, in consequence, 

𝑓(𝑞) ≠ 0. Then, for every  𝑥 ∈ 𝐻, 𝑥 −
𝑓(𝑥)

𝑓(𝑞)
𝑞 belongs, evidently to Nuc(f). So, 𝑥 −

𝑓(𝑥)

𝑓(𝑞)
𝑞 is orthogonal to q and, in 

consequence, [𝑥, 𝑞] −
𝑓(𝑥)

𝑓(𝑞)
[𝑞, 𝑞] = 0 ⇔ [𝑥, 𝑞] =

𝑓(𝑥)

𝑓(𝑞)
[𝑞, 𝑞] 𝑡ℎ𝑎𝑡 𝑖𝑠 ∶ 𝑓(𝑥) = [𝑥,

𝑓(𝑞)̅̅ ̅̅ ̅̅

[𝑞,𝑞]
𝑞 ] . ∎ 

 

 Obs.: 
 

-From the theorem, it results  ‖𝑓‖
𝐻´ = ‖𝑞̃‖𝐻 , where the H dual space is 𝐻′. 

 

From now on, we consider only real Hilbert spaces. 
 

Note that the separation theorems, seen in the former section, are effective in Hilbert spaces. However, due to 

Riesz representation theorem, we can be formulate them in the subsequent way, follow [8] : 
 

Theorem 8.2 (Separation) 
 

Consider two convex sets A and B in a Hilbert space H. If one of them, for instance A, has at least one interior 

point and (𝑖𝑛𝑡𝐴) ∩ 𝐵 = ∅, there is a non-null vector v such that sup
𝑥∈𝐴

[𝑣, 𝑥] ≤ inf
𝑦∈𝐵

[𝑣, 𝑦] . ∎ 

 

Theorem 8.3 (Separation) 
 

Consider a closed convex set A, in a Hilbert space H, and a point 𝑥0 ∈ 𝐻, not belonging to A. So, there is a non-

null vector v, such that [𝑣, 𝑥0] < inf
𝑥∈𝐴

[𝑣, 𝑥]. ∎ 

Another separation theorem: 
 

Theorem 8.4 (Separation) 

 

 
1 The Nucleus  of 𝑓(. )is designated Nuc(f) and Nuc(f)={𝑥: 𝑓(𝑥) = 0}. 
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Two closed convex subsets A and B, in a Hilbert space, at finite distance, that is: such that inf
𝑥∈𝐴,𝑦∈𝐵

‖𝑥 − 𝑦‖ = 𝑑 >

0 may be strictly separated: inf
𝑥∈𝐴

[𝑣, 𝑥] > sup
𝑦∈𝐵

[𝑣, 𝑦] . ∎ 

 

It is also possible to establish: 

 

Theorem 8.5 (Separation) 

 

Being H a finite dimension Hilbert space, if A and B are disjoint and non-empty convex sets they always may be 

separated.∎ 

 

9 Kuhn-Tucker Theorem  

 
We outline now a class of convex programming problems, at which we intend to minimize2 convex functionals 

subject to convex inequalities. Begin presenting a basic result that characterizes the minimum point of a convex 

functional subject to convex inequalities. Note that it is not necessary to impose any continuity conditions. 

 

Theorem 9.1 (Kuhn-Tucker) 

 

Be f(x), 𝑓𝑖(𝑥), 𝑖 = 1, … , 𝑛, convex functionals defined in a convex subset C of a Hilbert space. Consider the 

problem min
𝑥∈𝐶

𝑓(𝑥) 𝑠𝑢𝑏. 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, …  . Be 𝑥0 a minimizing point, supposed finite. Suppose also that for 

each vector u in 𝐸𝑛, Euclidean space with dimension n, non-null and such that 𝑢𝑘 ≥ 0, there is a point x in C such 

that ∑ 𝑢𝑘𝑓𝑘(𝑥) < 0,1 designating 𝑢𝑘 the components of u. So, 

 

i) There is a vector v, with non-negative components {𝑣𝑘}, such that  

 

min
𝑥∈𝐶

{𝑓(𝑥) + ∑ 𝑣𝑘𝑓𝑘(𝑥)

𝑛

1

} = 𝑓(𝑥0) + ∑ 𝑣𝑘𝑓𝑘(𝑥0) = 𝑓(𝑥0)                                                                  (9.1)

𝑛

1

, 

 

ii) For every vector u in 𝐸𝑛 with non-negative components, that is: belonging to the positive cone of 𝐸𝑛 , 

 

𝑓(𝑥) + ∑ 𝑣𝑘𝑓𝑘(𝑥)

𝑛

1

≥ 𝑓(𝑥0) + ∑ 𝑣𝑘𝑓𝑘(𝑥0) ≥ 𝑓(𝑥0) + ∑ 𝑢𝑘𝑓𝑘(𝑥0)   

𝑛

1

                                          (9.2).

𝑛

1

∎ 

 

Having in mind Riesz representation theorem: 

 

Corollary 9.1 (Lagrange duality) 

 

In the conditions of Theorem 9.1 𝑓(𝑥0) = sup
𝑢≥0

inf
𝑥∈𝐶

𝑓(𝑥) + ∑ 𝑢𝑘𝑓𝑘(𝑥). ∎   𝑛
1  

 

Obs.: 

 

− This corollary is useful supplying a process to determine the problem optimal solution, 

− If the whole 𝑣𝑘 in expression (9.2) are positive, 𝑥0 is a point that belonging to the border of the convex 

set defined by the inequalities, 

− If the whole 𝑣𝑘are zero, the inequalities do not influence the problem, that is: the minimum is equal to 

the one of the restrictions free problem. 
 

Considering non-finite inequalities and following [10]:  
Theorem 9.2 (Kuhn-Tucker in infinite dimension) 

 

 
2 To consider maximization, note that 𝑀𝑎𝑥 𝑓 = 𝑚𝑖𝑛 −𝑓. 
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Be C a convex subset of a Hilbert space H and f (x) a real convex functional defined in C. Be I a Hilbert space 

with a closed convex cone 𝓅, with non-empty interior, and F(x) a convex transformation from H to I (convex in 

relation to the order introduced by cone 𝓅: if 𝑥, 𝑦 ∈ 𝓅, 𝑥 ≥ 𝑦 𝑖𝑓 𝑥 − 𝑦 ∈ 𝓅). Be 𝑥0 an f (x) minimizing in C, 

subjected to the inequality 𝐹(𝑥) ≤ 0.Consider 𝓅∗ = {𝑥: [𝑥, 𝑝] ≥ 0,
∀

𝑥 ∈ 𝓅
} (dual cone). Admit that given any 𝑢 ∈

𝓅∗ it is possible to determine x in C such that [𝑢, 𝐹(𝑥)] < 0. So, there is an element v in the dual cone 𝓅∗, such 

that for x in C 𝑓(𝑥) + [𝑣, 𝐹(𝑥)] ≥ 𝑓(𝑥0) + [𝑣, 𝐹(𝑥0)] ≥ 𝑓(𝑥0) + [𝑢, 𝐹(𝑥0)], being u any element of 𝓅∗. ∎ 

 
Having in mind Riesz representation theorem: 

 

Corollary 9.2 (Lagrange duality in infinite dimension) 

 

 𝑓(𝑥0) = sup
𝑣∈𝓅∗

inf
𝑥∈𝐶

( 𝑓(𝑥) + [𝑣, 𝐹(𝑥)]) in the conditions of Theorem 6.2.∎ 

 

10 Minimax Theorem 

 
In a two players game with null sum be Φ(𝑥, 𝑦) a real function of two variables 𝑥, 𝑦 ∈ 𝐻 and A, B convex sets in 

H. One of the players chooses strategies (points) in A in order to maximize Φ(𝑥, 𝑦) (or minimize – Φ(𝑥, 𝑦)): it is 

the maximizing player. The other player chooses strategies (points) in B in order to minimize Φ(𝑥, 𝑦) (or 

maximize – Φ(𝑥, 𝑦)): it is the minimizing player. The function Φ(𝑥, 𝑦), is the payoff function, see [18,19] . The 

Φ(𝑥0, 𝑦0) value represents, simultaneously, the gain of the maximizing player and the loss of the minimizing 

player in a move at which they chose, respectively the strategies 𝑥0 and 𝑦0. Therefore, the gain of one of the 

players is equal to the other’s loss. That is why the game is a null sum game. A game in these conditions value is 

c if 

 

sup
𝑥∈𝐴

inf
𝑦∈𝐵

Φ(𝑥, 𝑦) = 𝑐 = inf
𝑦∈𝐵

sup
𝑥∈𝐴

Φ(𝑥, 𝑦)                                                                        (10.1). 

 

If, for any (𝑥0, 𝑦0), Φ(𝑥0, 𝑦0) = 𝑐, (𝑥0, 𝑦0) is a pair of optimal strategies. There will be a saddle point if also 
 

  Φ(𝑥, 𝑦0) ≤  Φ(𝑥0, 𝑦0) ≤ Φ(𝑥0, 𝑦), x∈ 𝐴, 𝑦 ∈ 𝐵                                                                                       (10.2). 

 

Theorem 10.1 

 

Consider A and B closed convex sets in H, being A bounded. Be Φ(𝑥, 𝑦) a real functional defined for x in A and y 

in B fulfilling: 

 

− Φ(𝑥, (1 − 𝜃)𝑦1 + 𝜃𝑦2) ≤ (1 − 𝜃)Φ(𝑥, 𝑦1) + 𝜃Φ(𝑥, 𝑦2)  for x in A and  𝑦1 ,  𝑦2  in B, 0 ≤ 𝜃 ≤ 1  (that 

is: Φ(𝑥, 𝑦) is convex in y for each x), 

- Φ((1 − 𝜃)𝑥1 + 𝜃𝑥2, 𝑦) ≥ (1 − 𝜃)Φ(𝑥1,, 𝑦) + 𝜃Φ(𝑥2, 𝑦)  for y in B and 𝑥1 ,  𝑥2  in A, 0 ≤ 𝜃 ≤ 1  (that 

is: Φ(𝑥, 𝑦) is concave in x for each y), 

- Φ(𝑥, 𝑦) is continuous in x for each y, 

 

so (10.1) holds, that is: the game has a value. ∎ 

 
The next corollary follows from the Theorem 10.1 hypothesis strengthen: 

 

Corollary 10.1(Minimax) 

 

Suppose that the functional Φ(𝑥, 𝑦) in Theorem 10.1 is continuous in both variables, separately, and that B is 

bounded. Then, there is an optimal pair of strategies, with the property of being a saddle point.∎  

 

One last reference to Nash theorem, see [17] and [20, 21], which in a certain way generalizes minimax theorem:        

Theorem 10.2 (Nash) 
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The mixed extension of every finite game has, at least, one strategic equilibrium. ∎ 

 

 Obs.: 

 

- Its demonstration demands, among other results, an important contribution of Kakutani’s theorem, see 

[14] and [17].  

 

11 Conclusions 

 
We began this chapter with an overview on convex sets and convex functionals notions and results, fundamental 

as support to the sequence of the text.  

 
Then presented the Hahn-Banach theorem with great generality, real and complex version, followed by important 

separation theorems, its consequence.  

 

Separation theorems are fundamental in optimization and of course are key results in convex programming. 

 

We specified these results for normed spaces and then for a subclass of these spaces: The Hilbert spaces. Better 

saying, we reformulated them for Hilbert spaces using the Riesz representation theorem. 

 

Examples of the fruitfulness of the results presented are patent in the last two sections, where we show they permit 

to obtain important results, for the applications, as Kuhn-Tucker and minimax theorems. Now the mathematical 

structures considered were the real Hilbert spaces. The problems studied are placed in the class of convex 
optimization problems in which, never hurts to emphasize, the separation theorems, dealt with in this chapter, are 

a key tool. 

 

Kuhn-Tucker theorem is the convex programming main result so important in operations research. Minimax 

theorem is an important result in game theory, which consideration in management and economic problems 

resolution is greater and greater. 
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