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Resumo 

Esta tese está dividida em duas partes. A primeira parte explica os fundamentos teóricos da avaliação de 

opções e explica a derivação do modelo de Heston. O modelo é derivado, examinado e otimizado. Para 

avaliar as opções americanas também no modelo de Heston, o Método das Diferenças Finitas é aplicado 

no modelo de Heston. Para comparação, são apresentados o modelo Black-Scholes-Merton e o modelo de 

Cox-Ross-Rubinstein. A segunda parte trata de tópicos mais práticos: uma análise de parâmetros, a 

calibração do modelo usando dados reais de mercado e o cálculo real de preços de opções europeias e 

americanas com o modelo de Heston e os modelos alternativos mencionados. Para a aplicação do modelo 

e a derivação de todo o conteúdo gráfico, é utilizado o programa MATLAB. O foco geral está na 

determinação da qualidade do modelo, que será examinada comparando os valores de Heston com os 

dados reais do mercado e os valores dos modelos que assumem um movimento Browniano geométrico. 

Os resultados são avaliados criticamente em termos de precisão e esforço computacional. Por fim, 

vantagens e desvantagens do modelo de Heston serão discutidas. 
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Abstract 

This thesis is divided into two parts. The first part explains the theoretical background of option valuation 

and guides through the actual derivation of the Heston Model. The model is explained, examined and 

optimized. To value American options in the Heston model as well, the Finite Difference Method is applied 

in the Heston Model. For a comparison, the Black-Scholes-Merton Model and the Cox-Ross-Rubinstein 

Model are introduced. The second part deals with more practical topics: a parameter analysis, the 

calibration of the model using real market data and the actual calculation of European and American 

option prices with the Heston Model and mentioned peer models. For the application of the model and 

the derivation of all graphical content, the MATLAB program is used. The general focus lies in the 

determination of the quality of the model, which be examined by comparing the Heston values to the real 

market data and the peer model values. The results are critically evaluated in terms of accuracy and effort. 

Finally, advantages and disadvantages of the Heston Model will be discussed in extension.  
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1. Introduction 

The financial markets play an extremely important role in the world economy. Value in form of cash, 

equity, debt and derivatives is floating around the globe, changing its holder frequently. The development 

of computational power and progress in automation made this globalization possible. Still, the underlying 

assumption did not change over the decades: Products are priced with its fair value. Without a doubt, 

pricing derivatives is the most challenging part. One kind of derivative is the financial option, whose value 

depends on the value of an underlying security. Samuelson (1973) already claimed decades ago that it is 

difficult to price financial options with its fair price. 

The first ones to present an explicit solution for option values were Black and Scholes (1973) and Merton 

(1973). Their well-known formula works under certain conditions for European options and is often used 

until today. Moreover, it builds the basis for further, more complex option valuation models. The model 

was state-of-the-art until 1987, when the stock market crashed. At that time, it became apparent, that the 

model had major shortcomings. The model did not stand a real market application. 

It was Heston (1993) who showed that the problem of the Black-Scholes-Merton Model lied in the 

assumption of constant volatility.1 The calculated prices did not reflect the skewness and the smile of the 

volatility surface, and therefore the prices were inaccurate. The model needed an upgrade. The most 

widely idea was to replace the constant volatility with a stochastic volatility process to better reflect real 

life behavior of option prices. Heston (1993) introduced such a model in his publication which until today 

is one of the most famous ones. What makes is so famous is the fact that the method is able to deliver a 

closed form solution for European options, whereas many other methods need to use numerical methods 

to present a solution (Ruoah, 2013). 

The idea is to fully understand and explain the model, test it in a comparison with real market data and 

other option valuation methods, e.g. the Black-Scholes-Merton Model, and finally discuss the pros and 

cons of it. Therefore, I start with the very basics of option valuation, the Brownian motion and the Wiener 

Process. I briefly introduce the Black-Scholes-Merton Model and go then deeper into the stochastic 

processes needed for the Heston Model. After the full derivation of the model and its extensions, first 

tests are done in a parameter analysis to understand the behavior of the model. The following calibration 

of the model and calculation of option prices represents the core of this thesis. The results are compared 

with other methods and real market data and are finally evaluated in an extensive discussion. 

 
1 The constant elasticity of variance (CEV), which was already introduced in 1975, shows an inverse relationship 
between the stock prices and volatilities, that is not reflected in the BSM Model (Cox, 1996). 
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2. Basic concepts 

2.1. Stochastic Process 

Due to the way option contracts are structured, their value depends on the value of the underlying, e.g. a 

share or an index. The values of these primary assets are linked to a random walk, meaning they can be 

seen as a variable that changes over time. Therefore, its value can be expressed in the form of probabilities, 

so that the development follows a stochastic process (Paul & Baschnagel, 2013). Stochastic processes are 

the bottom line for option valuation, since a time-varying variable with an uncertain development, like the 

underlying of the option, can best expressed with these processes. This is essential to completely 

understand option pricing (Hull, 2018). 

 

2.2. Wiener Process 

Since future developments naturally depend only on the current and not on past prices, the underlying 

process can be described with help of a Markov Process. This is a process in which the future value only 

depends on the present, the past is neglectable (Darling & Siegert, 1953). A special form of this process is 

the Wiener Process. It assumes a statistical distribution with an expected value of zero and a variance of 

one. The process is also known as Brownian motion or Wiener Process (Hull, 2018). Before we can use this 

process to replicate the movement of financial products, we need to modify some characteristics which 

are problematic for us. Firstly, it assumes a mean change of zero, which is not the general case for stocks. 

Secondly, the process assumes the same variance for all stocks, which obviously does not hold in practice 

as well. Lastly, the Brownian motion can deliver negative stock values, which cannot appear in practice. 

To solve the issues one and two, we can complement the Brownian motion with a drift rate to receive the 

generalized Wiener Process. The drift rate describes the median change of the value per time. Expressed 

in mathematical terms, we now have 

 

𝒅𝒙 = 𝒂	𝒅𝒕 + 𝒃	𝒅𝒛, 

 

where 𝑎 represents the drift rate for the chance over time 𝑑𝑡 and 𝑏 adds a variability factor for the volatility 

𝑑𝑧. Both 𝑎 and 𝑏 are constants here. To conclude this, we can see the graph representing the different 

components we just used. 

 

(2.1) 
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                  Figure 2.1: Wiener Process, own representation 

 

Anyway, it is observable that the graph of the generalized Wiener Process can still fall below zero. We 

solve this issue in the next step. 

 

2.3. Itô’s Lemma 

Itô (1951) build the basis for the valuation of financial derivatives. He replaced the constants 𝑎 and 𝑏 with 

functions that depend on the state variable 𝑥 and time 𝑡. For the mathematical terms we can refer to Hull 

(2018), who summed up the needed adjustments to receive the final formula. In particular, 

 

𝒅𝒙 = 𝒂(𝒙, 𝒕)𝒅𝒕 + 𝒃(𝒙, 𝒕)𝒅𝒛 

 

reflects the replacement with the functions 𝑎(𝑥, 𝑡) and 𝑏(𝑥, 𝑡). Next, a function 𝑓 that follows an Itô 

Process itself is introduced, changing the function to 

 

𝒅𝒇 = \
𝝏𝒇
𝝏𝒙

𝒂 +
𝝏𝒇
𝝏𝒕

+
𝟏
𝟐
𝝏𝟐𝒇
𝝏𝒙𝟐

𝒃𝟐`𝒅𝒕 +
𝝏𝒇
𝝏𝒙

𝒃	𝒅𝒛. 

 

This equation is known as Itô’s lemma (Dixit & Pindyck, 1994). It allows the valuation of any financial 

derivative if applied to it. We can adjust the notation with 𝑎(𝑆, 𝑡) = 	𝜇𝑆 and 𝑏(𝑆, 𝑡) = 	𝜎𝑆 to apply it to 

(2.2) 

(2.3) 

2.4 
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the stock market. The drift rate, with 𝜇 being the rate of return, as well as the volatility, with 𝜎 being the 

standard deviation, are now noted in terms of the underlying stock price 𝑆. The prior equation then 

changes to 

	

𝒅𝒇 = \
𝝏𝒇
𝝏𝑺

𝝁𝑺 +
𝝏𝒇
𝝏𝒕

+
𝟏
𝟐
𝝏𝟐𝒇
𝝏𝑺𝟐

𝝈𝟐𝑺𝟐`𝒅𝒕 +
𝝏𝒇
𝝏𝑺

𝝈𝑺	𝒅𝒛, 

 

where 𝑓 depends on the stock price 𝑆 and time 𝑡. Still, both 𝑓 and 𝑆 are subject to the same underlying 

uncertainty 𝑑𝑧 (Hull, 2018). At this point we need to come back to the not yet solved problem with possible 

negative stock values. To prove that the prior formula now adjusted to this problem, we replace 𝑓 with 

𝑙𝑛	(𝑆). Hence, 

 

𝒅𝒍𝒏𝑺 = \𝝁 −
𝝈𝟐

𝟐
`𝒅𝒕 + 𝝈	𝒅𝒛. 

 

The formula has, in contrast to the previous one, a constant rate of return 𝜇 and standard deviation 𝜎. 

This concludes to the fact that lognormal values for 𝑆 are normally distributed and, therefore, values for 

𝑆 are lognormally distributed. Since it implies a distribution that only contains values greater than zero, 

this fact is of great meaning for our work. We now have the certainty that the geometric Brownian motion 

is a suitable model to simulate the stock market. 

 

2.4. Volatility Smile 

The quality of an option pricing model depends on how well the model reflects the used parameters. Some 

parameters are easily observed, e.g. the option strike and value of the underlying are observable in the 

market. The volatility on the other hand is not observable. It needs to be estimated from other sources of 

data. Due to this uncertainty, Abken & Nandi (1996) even called the volatility one of the most important 

factors when it comes to the pricing of options. We need to understand how volatility behaves in different 

situations to be able to reflect the behavior in the parameters.  

We can differentiate between historic and implied volatility. The historic volatility is estimated from past 

data and applied to future developments to predict their development. The implied volatility is a measure 

for future expected volatility and gained through the Black and Scholes (1973) and Merton (1973) Model 

(BSM) which will be explained later. Using a numerical process and inverting the BSM, we can calculate 

(2.5) 

(2.4) 
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values for the implied volatility of European options. Doing this for different strike prices 𝐾, we receive an 

interesting result. Since the volatility is not dependent on the strike price, we should observe a constant 

volatility. Anyhow, this is not the case. Heston (1993), Paul & Baschnagel (2013) and Mondal et al. (2017) 

proved this in their works. The volatility of a derivative depends on how far an option is in the money (ITM) 

or out of the money (OTM). Figure 2.2 shows the result, the so called volatility Smile. 

 

 
Figure 2.2: Volatility Smile, own representation 

 

The further an option is ITM or OTM the higher the implied volatility for options. The volatility is the lowest 

when it is at the money (ATM). Concluding from this fact, the volatility is not constant for different states 

of options. This observation is of great meaning since it reveals why some option pricing models are 

weaker and some are stronger in terms of accuracy. The stronger ones can reflect this behavior in their 

process, while the weaker ones are not. How evident the differences are will be shown in the numerical 

part of this work.  
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3. Valuation Methods 

3.1. Black-Scholes-Merton Model 

As mentioned in the introduction, the correct valuation of options is of great meaning for the financial 

markets. Many attempts tried to improve option pricing models over the years. The first one delivering an 

accurate and reliable model were Black and Scholes (1973) and Merton (1973). With their BSM Model they 

introduced a full closed-form solution for the valuation of European options. It is built on seven 

assumptions that idealize the reality, namely 

1. A constant risk-free interest rate is known. 

2. The stock price follows a geometric Brownian motion. 

3. The stock does not pay any dividends as in Black and Scholes (1973) or pays a continuous 

dividend yield as in Merton (1973). 

4. It is a European option that can only be exercised at maturity. 

5. There are no transaction costs when buying or selling the stock or the option. 

6. Money can be borrowed or invested at the risk-free interest rate. 

7. Short sales are possible. 

I will omit an extensive derivation of the BSM formula since it is not the main subject of this work. Using a 

replication of a portfolio, the process is precisely explained in Hull (2018) and others. The solution for a 

call with a payoff of 

𝑪(𝑺, 𝑻) = 𝐦𝐚𝐱{𝑺𝑻 −𝑲, 𝟎}, 

is given by 

𝑪(𝑺, 𝒕) = 𝑺𝒆*𝒒(𝑻*𝒕)𝝓(𝒅𝟏) − 𝑲𝒆*𝒓(𝑻*𝒕)𝝓(𝒅𝟐), 
 

with  
 

𝒅𝟏 =
𝐥𝐧 v𝑺𝑲w + (𝒓 − 𝒒 +

𝟏
𝟐𝝈

𝟐)(𝑻 − 𝒕)

𝝈√𝑻 − 𝒕
, 

   
and 
 

𝒅𝟐 = 𝒅𝟏 − 𝝈√𝑻 − 𝒕, 
 

 

(3.1) 

(3.2) 
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where 𝜙 stands for the cumulative normal distribution function, 𝑆 is the spot price, 𝐾 the strike price, 𝑟 

the risk-free rate, 𝑞 the continuous dividend yield, 𝜎 the volatility, 𝑇 the expiration time and 𝑡 a certain 

point in time smaller than 𝑇. With the help of this formula, solutions for European call and put options can 

be calculated. Using the solution for the European call, we can determine the value for a European put 

option using the put-call parity  

𝑪 + 𝑲𝒆*𝒓𝑻 = 𝑷+ 𝑺𝟎𝒆*𝒒𝑻 

 

by inserting all values and solving for P. The fact that the exercise of American call options is never optimal 

in the absence of dividends sets the American equal to the European option value. Only the value of 

American put options cannot be calculated with the BSM formula. For this case, different methods are 

needed. Moreover, if q > 0 both American calls and puts require other pricing tools. 

 

3.2. Cox-Ross-Rubinstein Method  

One of these methods is the binomial tree introduced by Cox et al. (1979). It can be used to calculate the 

value of both, European and American options. We briefly describe this model since it is one of the basic 

models and is able to deliver values of good quality. Therefore, a comparison between the Cox-Ross-

Rubinstein (CRR) Model and the Heston Model can be used to evaluate the latter one. 

The model assumes that the price of an option can only move to two different states. The process is divided 

into two steps: the calculation of the underlying value going forward in time and the recursive calculation 

of the options going back in time. For both ways we use increments of ∆𝑡 = (2*!)
3

. The underlying can 

either increase by the factor  

 

𝒖 = 𝒆𝝈√∆𝒕 

 

 or decrease by the factor 

 

𝒅 = 𝒆*𝝈√∆𝒕 = 𝟏
𝒖

. 

 

To avoid any arbitrage opportunities, u > r > d must hold, where r is the risk-free rate. These values are 

used to calculate the risk-free probability  

 

(3.3) 

(3.4) 

(3.5) 
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𝒑 =
𝒆𝒓∆𝒕 − 𝒅
𝒖 − 𝒅

. 

 

Following Cox et al. (1979), we start with the calculation of the underlying, creating a binomial grid 

consisting of 

 

𝑺𝒊,𝒋 = 𝑺𝟎,𝟎𝒖𝒋𝒅𝒊*𝒋 

 

for i=0,1,…,n and j=0,1,…,i with i representing the time period and j the number of up moves. Afterwards, 

the option values for the maturity are calculated, using  

 

𝑪𝒏,𝒋 = 𝒎𝒂𝒙{𝟎,𝑲 − 𝑺𝒏,𝒋} 

 

for call options. From here on, all other option values can be calculated using  

 

𝑪𝒊,𝒋 = 𝒆*𝒓∆𝒕�𝒑𝑪𝒊<𝟏,𝒋<𝟏 + (𝟏 − 𝒑)𝑪𝒊<𝟏,𝒋�. 

 

The same process is applicable for American options as well, except that the early exercise component has 

to be implemented in formula 3.9, resulting in 

 

𝑪𝒊,𝒋 = 𝒎𝒂𝒙{𝑲 − 𝑺𝒏,𝒋, 𝒆*𝒓∆𝒕�𝒑𝑪𝒊<𝟏,𝒋<𝟏 + (𝟏 − 𝒑)𝑪𝒊<𝟏,𝒋�}. 

 

 

 

 

 

 

 

 

 

  

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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4. Heston stochastic volatility Model 

4.1. The Heston Model 

4.1.1. Stochastic Process of the Heston Model 

After explaining the theoretic basis, we will now focus on the main model of this work. The Heston Model 

combines the knowledge about stochastic processes and the behavior of volatility explained in chapter 2. 

While the prior explained models use a constant volatility, the Heston Model replaces this assumption 

with a stochastic process that simulates the volatility, which in that case depends on a random walk as 

well. Therefore, the model is supposed to replicate the actual market conditions in a more precise way 

and is able to deliver more accurate option valuations. Heston (1993) assumes in his publication that the 

underlying follows a log-normal distribution. The used process is the one underlying the Black-Scholes 

valuation, while the volatility follows the Cox-Ingersoll-Ross (CIR) (1985) Model. 

The CIR Model is an extension of the Vasicek (1977) Model. Both are one factor models that can be used 

to replicate the evolution of interest rates due to the mean reversion property. The Vasicek Model is 

described by 

 

𝒅𝒓 = 𝒂(𝒃 − 𝒓)𝒅𝒕 + 𝝈𝒅𝑾, 

 

where r is the interest rate, a is the speed reversion, b is the long term mean level, 𝜎 is the volatility of the 

interest rate and dW is the Wiener Process we already introduced. The CIR adds a square root to avoid 

negative interest rate values. This leads to  

 

𝒅𝒓 = 𝒂(𝒃 − 𝒓)𝒅𝒕 + 𝝈√𝒓𝒅𝑾. 

 

Summed up we receive a bivariate system of stochastic differential equations with 

 

𝒅𝑺 = 𝝁𝑺𝒅𝒕 + √𝒗𝑺𝒅𝑾𝟏 

 

for the underlying and 

 

𝒅𝒗 = 𝜿(𝜣 − 𝒗)𝒅𝒕 + 𝝈√𝒗𝒅𝑾𝟐 

 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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for the variance v, being formula (4.2) with different notion. We have to note here, that, if 𝜅 is greater 

than zero,	𝑣! will not be negative. Moreover, Cox et al. (1985) show, under the constraint of 2𝜅𝜃	 ≥ 	𝜎&, 

𝑣! will be almost strictly positive (Nagel, 2001). This constraint is also known as the Feller condition. 

 

4.1.2. Risk neutral adjustments 

For the next step it is important to note that the volatility √𝑣	is only indirectly modeled in the Heston 

Model via the variance 𝑣. To do so, we need the Ornstein-Uhlenbeck Process, which describes the 

underlying process for the volatility h = √𝑣 as 

 

𝒅𝒉𝒕 =	−𝜷𝒉𝒕 + 	𝜹𝒅𝒛𝟐. 

 

Now we apply Itô’s lemma to 𝑣! =	ℎ!& which results in 
 
 

𝒅𝒗𝒕 = �𝜹𝟐 − 𝟐𝜷𝒗𝒕�𝒅𝒕 + 𝟐𝜹�𝒗𝒕𝒅𝒛𝟐. 
 
 

Here we can define 𝜅 = 2𝛽, 	𝜃 = 	 =
!

&>
 and 𝜎 = 2𝛿. In doing so, we receive the same formula for 𝑑𝑣!	as we 

did in equation (4.4). Moreover, we need to make another adjustment to the process. The asset as well as 

the variance follow the process in equation (4.1), respectively (4.2), under the historical measure ℙ. Since 

we are pricing assets, the fundamental theorem of asset pricing holds, including the absence of arbitrage 

and resulting in a risk neutral measurement. Therefore, in this case, we have to use the risk neutral 

measure ℚ. For the transformation we are applying the Girsanov’s theorem to the stochastic differential 

equations (4.3) and (4.4). Afterwards, the risk neutral stock price is defined as   

 

𝒅𝑺𝒕 = 𝒓𝑺𝒕𝒅𝒕 + �𝒗𝒕𝑺𝒕	𝒅𝑾′𝟏, 

 

where 

 

𝒅𝑾′𝟏 = (𝒅𝑾𝟏 +	
𝝁 − 𝒓
�𝒗𝒕

𝒕). 

 

(4.5) 

(4.6) 

(4.7) 
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To obtain the risk neutral function for the variance, we need to introduce a function for the drift of 𝑑𝑣. 

This function is expressed by 𝜆(𝑆! , 𝑣! , 𝑡) and is called the volatility risk premium. This results in a risk 

neutral process for the variance expressed by 

 

𝒅𝒗𝒕 = [𝜿(𝜽 − 𝒗𝒕) − 𝝀(𝑺𝒕, 𝒗𝒕, 𝒕)]𝒅𝒕 + 𝝈�𝒗𝒕	𝒅𝑾?
𝟐, 

 

where 

 

𝒅𝑾′𝟐 = \𝒅𝑾𝟐 +	
𝝀(𝑺𝒕, 𝒗𝒕, 𝒕)
	𝝈�𝒗𝒕

𝒕`. 

 

The final step for the adjustment is explained in Heston (1993). Since Breeden’s (1979) consumption model 

yields a premium proportional to the variance, 𝜆(𝑆! , 𝑣! , 𝑡) = 𝜆𝑣!, where 𝜆 is a constant. If we substitute 

this for 𝜆𝑣! in equation (4.8), the final risk neutral process for the variance is  

 

𝒅𝒗𝒕 = 𝜿∗(𝜽∗ − 𝒗𝒕)𝒅𝒕 + 𝝈�𝒗𝒕	𝒅𝑾?
𝟐, 

 
 
where 𝜅∗ = 	𝜅 + 	𝜆 and 𝜃∗ =	 AB

	A<	D
  are now risk neutral parameters. As a final note to the adjustment we 

can observe, that if 𝜆 = 0, 𝜅∗ and 𝜃∗ equal 𝜅 and 𝜃.	This way, the risk neutral measure ℚ and the physical 

measure ℙ are the same (Rouah, 2013). Since this thesis only deals with risk neutral option valuation, 𝜆 

will be set to zero in all cases. Therefore, the asterisk in the parameters and the apostrophe for notation 

of the Brownian motion will be omitted.  

 

4.1.3. Derivation of the Heston PDE 

The approach for the derivation of the Heston PDE is the same as for the Black-Scholes Partial-Differential-

Equation (PDE) (Black and Scholes, 1973). For the derivation of the Black-Scholes PDE, a portfolio consisting 

of the underlying asset and one derivative to hedge the underlying is formed. To derive the Heston PDE, a 

second derivative is needed to hedge the volatility as well. Hence, we create a portfolio consisting of one 

option 𝑉 = 𝑉(𝑆, 𝑣, 𝑡), ∆ units of the stock, and 𝜑 units of the other option 𝑈 = 𝑈(𝑆, 𝑣, 𝑡). For simplicity 

the subscripts of t will be omitted. The value of the created portfolio is expressed by  

 

𝚷 = 𝑽 +	∆𝑺 + 	𝝋𝑼. 

(4.8) 

(4.9) 

(4.10) 
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The change of the portfolio is expressed by 
 
 

𝐝𝚷 = 𝒅𝑽 +	∆𝒅𝑺 + 	𝝋𝒅𝑼. 

 

As it is done for the Black-Scholes PDE as well, we now apply Itô’s lemma to the derivatives V and U. 

Starting with 𝑉, we need to differentiate 𝑉 with respect to the variables 𝑡, 𝑆 and 𝑣 and form a second order 

Taylor series expansion. As a result, the process of 𝑑𝑉 follows  

 

𝒅𝑽 =	
𝝏𝑽
𝝏𝒕
𝒅𝒕 +	

𝝏𝑽
𝝏𝑺

𝒅𝑺 +	
𝝏𝑽
𝝏𝒗

𝒅𝒗 +	
𝟏
𝟐
𝒗𝑺𝟐

𝝏𝟐𝑽
𝝏𝑺𝟐

𝒅𝒕 +	
𝟏
𝟐
𝒗𝝈𝟐

𝝏𝟐𝑽
𝝏𝒗𝟐

𝒅𝒕 + 	𝝈𝝆𝒗𝑺
𝝏𝟐𝑽
𝝏𝑺𝝏𝒗

𝒅𝒕. 

 

This is not the instant result, but the equation that appears after implementing following rearrangements: 

 

(𝒅𝑺)𝟐 = 𝒗𝑺𝟐(𝒅𝒛𝟏)𝟐 = 𝒗𝑺𝟐𝒅𝒕, 	

(𝒅𝒗)𝟐 =	𝝈𝟐𝒗𝒅𝒕,  

𝒅𝑺𝒅𝒗 = 	𝝈𝒗𝑺𝒅𝒛𝟏𝒅𝒛𝟐 = 	𝝈𝝆𝒗𝑺𝒅𝒕,  

(𝒅𝒕)𝟐 = 𝟎, 

𝒅𝒛𝟏𝒅𝒕 = 	𝒅𝒛𝟐𝒅𝒕 = 𝟎. 

 

Continuing with U, we apply the same adjustments as we did for V. Since the notation is equal to equation 

(4.12), but in terms of U, we are omitting it. Inserting the two Taylor series expansion into (4.11), we 

receive 

 

𝐝𝚷 =	 �
𝝏𝑽
𝝏𝒕

+	
𝟏
𝟐
𝒗𝑺𝟐

𝝏𝟐𝑽
𝝏𝑺𝟐

+ 𝝈𝝆𝒗𝑺
𝝏𝟐𝑽
𝝏𝑺𝝏𝒗

+	
𝟏
𝟐
𝒗𝝈𝟐

𝝏𝟐𝑽
𝝏𝒗𝟐

� 𝒅𝒕 

+	𝝋	 �
𝝏𝑼
𝝏𝒕

+	
𝟏
𝟐
𝒗𝑺𝟐

𝝏𝟐𝑼
𝝏𝑺𝟐

+ 𝝈𝝆𝒗𝑺
𝝏𝟐𝑼
𝝏𝑺𝝏𝒗

+	
𝟏
𝟐
𝒗𝝈𝟐

𝝏𝟐𝑼
𝝏𝒗𝟐

� 𝒅𝒕 

+	�
𝝏𝑽
𝝏𝑺

+ 	𝝋	
𝝏𝑼
𝝏𝑺

+	∆� 𝒅𝑺 + �	
𝝏𝑽
𝝏𝒗

+ 	𝝋
𝝏𝑼
𝝏𝒗
� 𝒅𝒗 

 

for the portfolio composition. At this point, the portfolio is still carrying a risk. Therefore, the number of 

units ∆ for the stocks and 𝜑 for the volatility need to be adjusted. To represent a riskless portfolio, the 

hedge parameters need to be set to  

(4.11) 

(4.12) 

(4.13) 

(4.14) 



 15 

 

𝝋 =	−
𝝏𝑽
𝝏𝒗

/
𝝏𝑼
𝝏𝒗

 

and  

∆	= 	−𝝋	
𝝏𝑼
𝝏𝑺

−	
𝝏𝑽
𝝏𝑺
	. 

 

This way the last two terms of equation (4.14) are set to 0, meaning neither movements in stocks nor in 

volatility effect the portfolio value anymore (Rouah, 2013 and Mondal et al., 2017). Having a riskless 

portfolio, we know that the portfolio must earn the risk-free interest rate r, given fundamental portfolio 

theory. Consequently, equation (4.11) changes to  

 

𝐝𝚷 = 𝒓(𝑽 +	∆𝑺 + 	𝝋𝑼)𝒅𝒕. 

 

If we now equate equations (4.14) and (4.16), drop the 𝑑𝑡 term, substitute the hedging parameters and 

re-arrange everything, we obtain 

 

�𝝏𝑽𝝏𝒕 +	
𝟏
𝟐𝒗𝑺

𝟐 𝝏𝟐𝑽
𝝏𝑺𝟐 + 𝝈𝝆𝒗𝑺

𝝏𝟐𝑽
𝝏𝑺𝝏𝒗 +	

𝟏
𝟐𝒗𝝈

𝟐 𝝏𝟐𝑽
𝝏𝒗𝟐� − 𝒓𝑽 + 𝒓𝑺

𝝏𝑽
𝝏𝑺

𝝏𝑽
𝝏𝒗

= 	
�𝝏𝑼𝝏𝒕 +	

𝟏
𝟐𝒗𝑺

𝟐 𝝏𝟐𝑼
𝝏𝑺𝟐 + 𝝈𝝆𝒗𝑺

𝝏𝟐𝑼
𝝏𝑺𝝏𝒗 +	

𝟏
𝟐𝒗𝝈

𝟐 𝝏𝟐𝑼
𝝏𝒗𝟐� − 𝒓𝑼 + 𝒓𝑺

𝝏𝑼
𝝏𝑺

𝝏𝑼
𝝏𝒗

. 

 

In this equation we have the same function twice, except the fact that the left-hand side is a function of V 

and the right-hand side is a function of U. As Heston (1993) shows, it is possible to rewrite and define the 

function as 

 

𝒇(𝑺, 𝒗, 𝒕) = 	−𝜿(𝜽 − 𝒗) + 𝝀(𝑺, 𝒗, 𝒕) 

 

where 𝜆(𝑆, 𝑣, 𝑡) is again the risk premium of the volatility. In chapter 4.1.2, we already learned about 

Breeden’s (1979) consumption model 𝜆(𝑆, 𝑣, 𝑡) = 𝜆𝑣, where 𝜆 is a constant. We use this again on the left-

hand side of equation (4.18) and rearrange it. The result is  

	

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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𝝏𝑼
𝝏𝒕

+	
𝟏
𝟐
𝒗𝑺𝟐

𝝏𝟐𝑼
𝝏𝑺𝟐

+ 𝝈𝝆𝒗𝑺
𝝏𝟐𝑼
𝝏𝑺𝝏𝒗

+	
𝟏
𝟐
𝒗𝝈𝟐

𝝏𝟐𝑼
𝝏𝒗𝟐

	

−𝒓𝑼 + 𝒓𝑺
𝝏𝑼
𝝏𝑺

+ [𝜿(𝜽 − 𝒗) + 𝝀(𝑺, 𝒗, 𝒕)]
𝝏𝑼
𝝏𝒗

= 𝟎. 

 

In a further step, we can set up boundary conditions for a European Call option  

 

𝑼(𝑺, 𝒗, 𝑻) = 𝐦𝐚𝐱(𝟎, 𝑺𝑻 −𝑲) 

 

with strike price K and maturity T. There are three boundaries: The stock price equals zero then the call 

price equals zero as well. The stock price striving towards infinity, where the option delta equals one, and 

the volatility striving towards infinity, where the call option price equals the stock price. Summed up, the 

boundaries are 

 

𝑼(𝟎, 𝒗, 𝒕) = 𝟎, 
𝝏𝑼
𝝏𝑺

(∞, 𝒗, 𝒕) = 𝟏 

 

and 

 

𝑼(𝑺,∞, 𝒕) = 𝑺. 

 

If we consider these boundaries in equation (4.19), we can rewrite it and obtain 

 

𝝏𝑼
𝝏𝒕

+𝓐𝑼− 𝒓𝑼 = 𝟎, 

 

where 

 

𝓐 = 𝒓𝑺
𝝏
𝝏𝑺

+
𝟏
𝟐
𝒗𝑺𝟐

𝝏𝟐

𝝏𝑺𝟐
+	

[𝜿(𝜽 − 𝒗) + 𝝀(𝑺, 𝒗, 𝒕)]
𝝏
𝝏𝒗

+
𝟏
𝟐
𝒗𝝈𝟐

𝝏𝟐

𝝏𝒗𝟐
+ 𝝈𝝆𝒗𝑺

𝝏𝟐

𝝏𝑺𝝏𝒗
, 

 

(4.19) 

(4.20) 

(4.21) 

(4.22) 
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which is also called the generator of the Heston Model. As Mondal et al. (2017) state, the first part of 

equation (4.22) is the generator of the Black-Scholes Model, while the second part extends the PDE for 

stochastic volatility needed for the Heston Model. 

For financial derivatives, it is very common to express stock prices in logarithmic terms since stock prices 

are often log normally distributed Hull (2018). This assumption is made for the Black-Scholes Model as 

well. Therefore, we define x=ln(S) as in Heston (1993). If we apply this to the Heston PDE and express it in 

terms of (𝑥, 𝑣, 𝑡), the PDE is no longer depending on S, but on x. To realize this, we firstly need to derive 

the derivatives for  

 

𝝏𝑼
𝝏𝑺

=
𝝏𝑼
𝝏𝒙

𝟏
𝑺
, 

		
𝝏𝟐𝑼
𝝏𝒗𝝏𝑺

=
𝝏
𝝏𝒗 ¢

𝟏
𝑺
𝝏𝑼
𝝏𝒙£

=
𝟏
𝑺
𝝏𝟐𝑼
𝝏𝒗𝝏𝒙

 

 

and  

 

𝝏𝟐𝑼
𝝏𝑺𝟐

=
𝝏
𝝏𝑺 ¢

𝟏
𝑺
𝝏𝑼
𝝏𝒙£

= −
𝟏
𝑺𝟐
𝝏𝑼
𝝏𝒙

+
𝟏
𝑺
𝝏𝟐𝑼
𝝏𝑺𝝏𝒙

= −
𝟏
𝑺𝟐
𝝏𝑼
𝝏𝒙

+
𝟏
𝑺𝟐
𝝏𝟐𝑼
𝝏𝒙𝟐

, 

 

using the chain rule and the product role, respectively. Substituting these terms as well as λ(S,v,t)=λv  from 

Breeden’s (1979) consumption model into the Heston PDE, we obtain the Heston PDE in terms of x, that 

is 

 

𝝏𝑼
𝝏𝒕 +	

𝟏
𝟐𝒗

𝝏𝟐𝑼
𝝏𝒙𝟐 + +𝒓 −

𝟏
𝟐𝒗.

𝝏𝑼
𝝏𝒙 + 𝝈𝝆𝒗

𝝏𝟐𝑼
𝝏𝒗𝝏𝒙	

+
𝟏
𝟐𝒗𝝈

𝟐 𝝏
𝟐𝑼
𝝏𝒗𝟐 − 𝒓𝑼 +

[𝜿(𝜽 − 𝒗) + 𝝀𝒗]
𝝏𝑼
𝝏𝒗 = 𝟎. 

 

4.1.4. PDE for P1 and P2 

To derive the PDE for the Probabilities 𝑃% = ℚE(𝑆2 > 𝐾) and 𝑃& = ℚ(𝑆2 > 𝐾), we start with the payoff 

of a call option that is similar to what Black and Scholes (1973) present, being 

 

𝑪(𝑲) = 𝑺𝒕𝑷𝟏 −𝑲𝒆*𝒓𝝉𝑷𝟐. 

(4.23) 

(4.24) 

(4.25) 
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Replacing x=ln(S), we receive 

 

𝑪(𝑲) = 𝒆𝒙𝑷𝟏 −𝑲𝒆*𝒓𝝉𝑷𝟐. 

 

The PDE in (4.24) can now be satisfied by this equation for the derivative, formerly noted by U. Therefore, 

we need to derive the required derivatives and substitute them into the PDE. The derivative with respect 

to t is represented by 

 

𝝏𝑪
𝝏𝒕

= 𝒆𝒙
𝝏𝑷𝟏
𝝏𝒕

− 𝑲𝒆*𝒓𝝉 �𝒓𝑷𝟐 +
𝝏𝑷𝟐
𝝏𝒕

�, 

 

with respect to 𝑥 by 
 

𝝏𝑪
𝝏𝒙

= 𝒆𝒙 �𝑷𝟏 +
𝝏𝑷𝟏
𝝏𝒙

� − 𝑲𝒆*𝒓𝝉
𝝏𝑷𝟐
𝝏𝒙

, 
 
 
with respect to 𝑥& by 
 

𝝏𝟐𝑪
𝝏𝒙𝟐

= 𝒆𝒙𝑷𝟏 + 𝟐𝒆𝒙
𝝏𝑷𝟏
𝝏𝒙

+ 𝒆𝒙
𝝏𝟐𝑷𝟏
𝝏𝒙𝟐

−𝑲𝒆*𝒓𝝉
𝝏𝟐𝑷𝟐
𝝏𝒙𝟐

 

= 𝒆𝒙 �𝑷𝟏 + 𝟐
𝝏𝑷𝟏
𝝏𝒙

+
𝝏𝟐𝑷𝟏
𝝏𝒙𝟐

� − 𝑲𝒆*𝒓𝝉
𝝏𝟐𝑷𝟐
𝝏𝒙𝟐

, 

 
with respect to 𝑣 by 
 

𝝏𝑪
𝝏𝒗

= 𝒆𝒙
𝝏𝑷𝟏
𝝏𝒗

− 𝑲𝒆*𝒓𝝉
𝝏𝑷𝟐
𝝏𝒗

, 
 
with respect to 𝑣& by 
 

𝝏𝟐𝑪
𝝏𝒗𝟐

= 𝒆𝒙
𝝏𝟐𝑷𝟏
𝝏𝒗𝟐

−𝑲𝒆*𝒓𝝉
𝝏𝟐𝑷𝟐
𝝏𝒗𝟐

, 
 
and with respect to 𝑥 and 𝑣 by 
 

𝝏𝟐𝑪
𝝏𝒙𝝏𝒗

= 𝒆𝒙 �
𝝏𝑷𝟏
𝝏𝒗

+
𝝏𝟐𝑷𝟏
𝝏𝒙𝝏𝒗

� − 𝑲𝒆*𝒓𝝉
𝝏𝟐𝑷𝟐
𝝏𝒗𝟐

. 

 

Using the mentioned fact that C(K) satisfies the PDE (4.24), we can now replace U by C. The result is 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 
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𝝏𝑪
𝝏𝒕 =

𝟏
𝟐𝒗

𝝏𝟐𝑪
𝝏𝒙𝟐 + +𝒓 −

𝟏
𝟐𝒗.

𝝏𝑪
𝝏𝒙 + 𝝈𝝆𝒗

𝝏𝟐𝑪
𝝏𝒗𝝏𝒙 

+
𝟏
𝟐𝒗𝝈

𝟐 𝝏
𝟐𝑪
𝝏𝒗𝟐 − 𝒓𝑪 +

[𝜿(𝜽 − 𝒗) − 𝝀𝒗]
𝝏𝑪
𝝏𝒗 = 𝟎. 

 

Before obtaining the PDEs for P1 and P2 out of this equation, it is necessary to be assured that it holds for 

any contractual features of C(K). Heston (1993) delivers the proof for it by showing that for every r>0 and 

K=0 and S=1, the call price is simply P1. Also, for K=1, S=0 and r=0, he shows that the call price is simply 

-P2, and therefore -P2 as well as P2 follow the PDE. Now we can place the derivatives (4.27) – (4.32) in the 

PDE (4.33). Regrouping the terms evenly to P1 and getting rid of 𝑒H afterwards, we obtain the Heston PDE 

for P1, which is  

𝝏𝑷𝟏
𝝏𝒕

+
𝟏
𝟐
𝒗 �𝑷𝟏 + 𝟐

𝝏𝑷𝟏
𝝏𝒙

+
𝝏𝟐𝑷𝟏
𝝏𝒙𝟐

� + ¢𝒓 −
𝟏
𝟐
𝒗£ �𝑷𝟏 +

𝝏𝑷𝟏
𝝏𝒙

� 

+𝝈𝝆𝒗 �
𝝏𝑷𝟏
𝝏𝒗

+
𝝏𝟐𝑷𝟏
𝝏𝒙𝝏𝒗

� +
𝟏
𝟐
𝒗𝝈𝟐

𝝏𝟐𝑷𝟏
𝝏𝒗𝟐

− 𝒓𝑷𝟏 + [𝜿(𝜽 − 𝒗) − 𝝀𝒗]
𝝏𝑷𝟏
𝝏𝒗

= 𝟎. 

 

By rearranging, we obtain 

 

𝝏𝑷𝟏
𝝏𝒕

+ ¢𝒓 +
𝟏
𝟐
𝒗£
𝝏𝑷𝟏
𝝏𝒙

+
𝟏
𝟐
𝒗
𝝏𝟐𝑷𝟏
𝝏𝒙𝟐

+ 𝝈𝝆𝒗
𝝏𝟐𝑷𝟏
𝝏𝒗𝝏𝒙

 

+[𝝈𝝆𝒗 + 𝜿(𝜽 − 𝒗) − 𝝀𝒗]
𝝏𝑷𝟏
𝝏𝒗

+
𝟏
𝟐
𝒗𝝈𝟐

𝝏𝟐𝑷𝟏
𝝏𝒗𝟐

= 𝟎. 

 

In a next step, we repeat the procedure to obtain the PDE for P2. We Regroup the terms of the derivatives 

(4.27) – (4.32) evenly to P2, but this time cancel −𝐾𝑒*IJ out. After placing everything in the PDE (4.33), 

we get 

 

𝝏𝑷𝟐
𝝏𝒕

+
𝟏
𝟐
𝒗
𝝏𝟐𝑷𝟐
𝝏𝒙𝟐

+ ¢𝒓 −
𝟏
𝟐
𝒗£
𝝏𝑷𝟐
𝝏𝒙

+ 𝝈𝝆𝒗
𝝏𝟐𝑷𝟐
𝝏𝒗𝝏𝒙

 

+
𝟏
𝟐
𝒗𝝈𝟐

𝝏𝟐𝑷𝟐
𝝏𝒗𝟐

+ [𝜿(𝜽 − 𝒗) − 𝝀𝒗]
𝝏𝑷𝟐
𝝏𝒗

= 𝟎. 

 

Combining (4.35) and (4.36), we have  

 

(4.33) 

(4.34) 

(4.35) 

(4.36) 
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𝝏𝑷𝒋
𝝏𝒕

+ 𝝈𝝆𝒗
𝝏𝟐𝑷𝒋
𝝏𝒗𝝏𝒙

+
𝟏
𝟐
𝒗
𝝏𝟐𝑷𝒋
𝝏𝒙𝟐

+
𝟏
𝟐
𝒗𝝈𝟐

𝝏𝟐𝑷𝒋
𝝏𝒗𝟐

	

+�𝒓 + 𝒖𝒋𝒗�
𝝏𝑷𝒋
𝝏𝒙

+ �𝒂 − 𝒃𝒋𝒗�
𝝏𝑷𝒋
𝝏𝒗

= 𝟎, 

 

for 𝑗 = 1,2,	and where 𝑢% =
%
&
; 		𝑢& = − %

&
; 		𝑎 = 𝜅𝜃;		𝑏% = 𝜅 + 𝜆 − 𝜌𝜎;		𝑏& = 𝜅 + 𝜆. 

 

4.1.5. Characteristic function 

 Each stochastic volatility model has a unique characteristic function fj (ϕ;x,v), that completely describes 

the models probability distribution. Knowing the characteristic function allows us to recovery each in-the-

money probability Pj via the Gil-Pelaez (1951) inversion theorem as 

 

𝑷𝒋 = 𝐏𝐫(𝒍𝒏𝑺𝑻 > 𝒍𝒏𝑲) =
𝟏
𝟐
+
𝟏
𝝅
« 𝑹𝒆
K

𝟎
�
𝒆*𝒊𝝓𝒍𝒏𝑲𝒇𝒋(𝝓; 𝒙, 𝒗)

𝒊𝝓
�𝒅𝝓. 

 

At maturity, the probabilities are bounded by the terminal condition 

 

𝑷𝒋 = 𝟏𝑿𝑻P𝒍𝒏𝑲, 

 

where 1 is the indicator function (Heston, 1993; Rouah, 2013). It says that if ST > K, the probability that the 

call option is in the money is equal to one. Returning to logarithmic stock prices, Heston (1993) postulates 

a characteristic function for x=ln(S) of the form  

 

𝒇𝒋(𝝓; 𝒙, 𝒗) = 𝒆𝒙𝒑�𝑪𝒋(𝝉, 𝝓) + 𝑫𝒋(𝝉, 𝝓)𝒗𝒕 + 𝒊𝝓𝒙𝒕�, 

 

where 𝑖 = √−1 is an imaginary unit, 𝜏 = 𝑇 − 𝑡 is the time to maturity and 𝐶$  and 𝐷$  are coefficients. At 

this point, we need to use Feynman-Kac theorem to show that the function will also follow the PDE (4.37). 

The theorem prescribes that if a function 𝑓(𝑥! , 𝑡) of the Heston bivariate system of SDEs 𝑥! = (𝑥! , 𝑣!) =

(𝑙𝑛𝑆! , 𝑣!) satisfies the PDE 

 

𝝏𝒇
𝝏𝒕

− 𝒓𝒇 +𝓐𝒇 = 𝟎, 

 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 
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where 𝒜 is the Heston generator from equation (4.22), the solution to that function is the conditional 

expectation  

 

𝒇(𝒙𝒕, 𝒕) = 𝑬[𝒇(𝒙𝑻, 𝑻)|𝓕𝒕]. 

 

Setting 𝑓(𝑥! , 𝑡) = exp(𝑖𝜙𝑙𝑛𝑆2), we get the solution 
 

𝒇(𝒙𝒕, 𝒕) = 𝑬�𝒆𝒊𝝓𝒍𝒏𝑺𝑻|𝒙𝒕, 𝒗𝒕�. 

 

This is the characteristic function for 𝑥2 = 𝑙𝑛𝑆2 . Finally, we can see that the function fj follows the PDE 

(4.37) as  

 

−
𝝏𝒇𝒋
𝝏𝝉

+ 𝝈𝝆𝒗
𝝏𝟐𝒇𝒋
𝝏𝒗𝝏𝒙

+
𝟏
𝟐
𝒗
𝝏𝟐𝒇𝒋
𝝏𝒙𝟐

+
𝟏
𝟐
𝒗𝝈𝟐

𝝏𝟐𝒇𝒋
𝝏𝒗𝟐

 

+�𝒓 + 𝒖𝒋𝒗�
𝝏𝒇𝒋
𝝏𝒙

+ �𝒂 − 𝒃𝒋𝒗�
𝝏𝒇𝒋
𝝏𝒗

= 𝟎. 

 

as we stated before. Compared to the PDE (4.37), this PDE for the first time has a negative sign in front, 

since we no longer use 𝑡, but 𝜏. As we already did for PDE (4.24), we need to derive several derivations 

included in PDE (4.44), so we can evaluate it. The needed derivations are  

 

𝝏𝒇𝒋
𝝏𝝉

= \
𝝏𝑪𝒋
𝝏𝝉

+
𝝏𝑫𝒋
𝝏𝝉

𝒗`𝒇𝒋,		 

𝝏𝒇𝒋
𝝏𝒙

= 𝒊𝝓𝒇𝒋,
𝝏𝒇𝒋
𝝏𝒙

= 𝑫𝒋𝒇𝒋, 

𝝏𝟐𝒇𝒋
𝝏𝒙𝟐

= −𝝓𝟐𝒇𝒋,		 

𝝏𝟐𝒇𝒋
𝝏𝒗𝟐

= 𝑫𝒋𝟐𝒇𝒋,		 
 
and 
 

𝝏𝟐𝒇𝒋
𝝏𝒗𝝏𝒙

= 𝒊𝝓𝑫𝒋𝒇𝒋. 
 

Inserting everything into (4.44), we can get rid of fj and obtain 

 

 

(4.42) 

(4.43) 

(4.44) 

(4.45) 
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−\
𝝏𝑪𝒋
𝝏𝝉

+
𝝏𝑫𝒋
𝝏𝝉

𝒗` + 𝝈𝝆𝒗𝒊𝝓𝑫𝒋 −
𝟏
𝟐
𝒗𝝓𝟐 +

𝟏
𝟐
𝒗𝝈𝟐𝑫𝒋𝟐 

+�𝒓 + 𝒖𝒋𝒗�𝒊𝝓 + �𝒂 − 𝒃𝒋𝒗�𝑫𝒋 = 𝟎. 

 

This equation again contains two derivates, namely 

 

𝝏𝑫𝒋
𝝏𝝉

= 	𝝈𝝆𝒊𝝓𝑫𝒋 −
𝟏
𝟐
𝝓𝟐 +

𝟏
𝟐
𝝈𝟐𝑫𝒋𝟐 + 𝒖𝒋𝒊𝝓 − 𝒃𝒋𝑫𝒋 

 

and 

 

𝝏𝑪𝒋
𝝏𝝉

= 𝒓𝒊𝝓 + 𝒂𝑫𝒋. 

 

Equation (4.47) is a Riccati equation in Dj, to be solved in the next subsection. Equation (4.48) is an ordinary 

derivative of Cj, that can easily be solved once Dj is obtained. To solve these equations, two initial 

conditions are needed. We know that the value of 𝑥2 = 𝑙𝑛𝑆2  at. maturity (𝜏 = 0) is known. Therefore, 

we can omit the expectation in the in (4.40) mentioned characteristic function  

 

𝒇𝒋(𝝓; 𝒙, 𝒗) = 𝒆𝒙𝒑�𝑪𝒋(𝝉, 𝝓) + 𝑫𝒋(𝝉, 𝝓)𝒗𝒕 + 𝒊𝝓𝒙𝒕�, 

 

leaving only exp	(𝑖𝜙𝑥!). Mathematically speaking, 𝐷$(0, 𝜙) = 0 and 𝐶$(0, 𝜙) = 0, being our two initial 

conditions to solve the Riccati equation. 

 

4.1.6. Riccati Equation 

A Riccati equation is a specific class of differential equation of the form 

 

𝝏𝒚
𝝏𝒙

= 𝒇(𝒙)𝒚𝟐(𝒙) + 𝒈(𝒙)𝒚(𝒙) + 𝒉(𝒙). 

 

Mikhailov & Nögel (2004) and Rouah (2013) show that we can rewrite equation (4.47) as the Heston Riccati 

equation of the form  

	

(4.46) 

(4.47) 

(4.49) 

(4.50) 

(4.48) 



 23 

𝝏𝑫𝒋
𝝏𝝉

= 𝑷𝒋 −𝑸𝒊𝑫𝒋 + 𝑹𝑫𝒋𝟐 

 
where 
 

𝑷𝒋 = 𝒖𝒋𝒊𝝓 −
𝟏
𝟐
𝝓𝟐,	 

 
𝑸𝒋 = 𝒃𝒋 − 𝝈𝝆𝒊𝝓,	 

 

𝑹 =
𝟏
𝟐
𝝈𝟐. 

 
 
 This equation can be solved by using the corresponding second-order ordinary differential equation (ODE) 

 

𝒘?? +𝑸𝒋𝒘? + 𝑷𝒋𝑹𝒘 = 𝟎 

 

so that the solution for Dj is 

 

𝑫𝒋 = −
𝟏
𝑹
𝒘?

𝒘
. 

 

The ODE itself then can be solved via the auxiliary equation	𝑟& + 𝑄$𝑟 + 𝑃$𝑅 = 0. The two roots of this 

equation are  

 

𝜶𝒋 =
−𝑸𝒋 +½𝑸𝒊𝟐 − 𝟒𝑷𝒋𝑹

𝟐
=
−𝑸𝒋 + 𝒅𝒋

𝟐
 

 

and 

 

𝜷𝒋 =
−𝑸𝒋 −½𝑸𝒋𝟐 − 𝟒𝑷𝒋𝑹

𝟐
=
−𝑸𝒋 − 𝒅𝒋

𝟐
. 

 

where 

 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

(4.55) 
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𝒅𝒋 = 𝜶𝒋 − 𝜷𝒋 = ½𝑸𝒋𝟐 − 𝟒𝑷𝒋𝑹 = ½(𝝈𝝆𝒊𝝓 − 𝒃𝒋)𝟐 − 𝝈𝟐(𝟐𝒖𝒋𝒊𝝓 − 𝝓𝟐). 

 

Keeping on with the Riccati formula, the solution for the Heston Riccati equation is given by 

 

𝑫𝒋 = −
𝟏
𝑹
𝒘?

𝒘
= −

𝟏
𝑹
\
𝑴𝜶𝒆𝜶𝝉 +𝑵𝜷𝒆𝜷𝝉

𝑴𝒆𝜶𝝉 +𝑵𝒆𝜷𝝉
` = −

𝟏
𝑹
\
𝑲𝜶𝒆𝜶𝝉 + 𝜷𝒆𝜷𝝉

𝑲𝒆𝜶𝝉 + 𝒆𝜷𝝉
`, 

 
 
where now 𝐾 = 𝑀/𝑁. Recalling the initial condition 𝐷$(0, 𝜙) = 0, we need to set 𝜏 = 0 here as well. 

Doing so in the numerator of equation (4.56), we obtain 𝐾𝛼 + 𝛽 = 0 and following 𝐾 = −𝛽/𝛼. Placing 

these into equation (4.56) leads to  

 

𝑫𝒋 = −
𝜷
𝑹
\
−𝒆𝜶𝝉 + 𝒆𝜷𝝉

−𝒈𝒋𝒆𝜶𝝉 + 𝒆𝜷𝝉
` = −

𝜷
𝑹
\
𝟏 − 𝒆𝒅𝒋𝝉

𝟏 − 𝒈𝒋𝒆𝒅𝒋𝝉
` =

𝑸𝒋 + 𝒅𝒋
𝟐𝑹

\
𝟏 − 𝒆𝒅𝒋𝝉

𝟏 − 𝒈𝒋𝒆𝒅𝒋𝝉
`, 

 

where 

 

𝒈𝒋 = −𝑲 =
𝜷
𝜶
=
𝒃𝒋 − 𝝈𝝆𝒊𝝓 + 𝒅𝒋
𝒃𝒋 − 𝝈𝝆𝒊𝝓 − 𝒅𝒋

=
𝑸𝒋 − 𝒅𝒋
𝑸𝒋 + 𝒅𝒋

. 

 

Replacing 𝛽 = 𝑏$ − 𝜎𝜌𝑖𝜙 + 𝑑$  and R = %
&
𝜎&	in this equation, we get  

 

𝑫𝒋(𝝉, 𝝓) =
𝒃𝒋 − 𝝈𝝆𝒊𝝓 + 𝒅𝒋

𝝈𝟐
\
𝟏 − 𝒆𝒅𝒋𝝉

𝟏 − 𝒈𝒋𝒆𝒅𝒋𝝉
` 

 

as a result for Dj. We use this solution to obtain a solution von Cj as well. Therefore, we integrate equation 

(4.48), which has the form of 

 

𝑪𝒋 = « 𝒓
𝝉

𝟎
𝒊𝝓𝒅𝒚 + 𝒂\

𝑸𝒋 + 𝒅𝒋
𝝈𝟐

`« \
𝟏 − 𝒆𝒅𝒋𝝉

𝟏 − 𝒈𝒋𝒆𝒅𝒋𝝉
`𝒅𝒚 + 𝑲𝟏

𝝉

𝟎
, 

 

where 𝐾% is a constant (Mikhailov & Nögel 2004). The other two terms of the equation can be solved 

separately. The first one term is easily obtained by 𝑟𝑖𝜙𝜏, while the second integral is more difficult to solve. 

(4.56) 

(4.57) 

(4.58) 

(4.59) 
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It has to be found by substitution. Hence, we use 𝑥 = exp�𝑑$𝑦�, which brings 𝑑𝑥 = 𝑑$ exp�𝑑$𝑦�𝑑𝑦 and 

𝑑𝑦 = 𝑑𝑥/(𝑥𝑑$). Rewriting equation (4.59) results in  

 

𝑪𝒋 = 𝒓𝒊𝝓𝝉 +
𝒂
𝒅𝒋
\
𝑸𝒋 + 𝒅𝒋
𝝈𝟐

`« \
𝟏 − 𝒙
𝟏 − 𝒈𝒋𝒙

`
𝟏
𝒙
𝒅𝒙 + 𝑲𝟏

𝐞𝐱𝐩	(𝒅𝒋𝝉)

𝟏
. 

 

Afterwards, we can calculate the integral of this equation using partial fractions, which yields to  

 

«
𝟏 − 𝒙

𝒙(𝟏 − 𝒈𝒋𝒙)
𝒅𝒙 =

𝐞𝐱𝐩	(𝒅𝒋𝝉)

𝟏
« �

𝟏
𝒙
−
𝟏 − 𝒈𝒋
𝟏 − 𝒈𝒋𝒙

�
𝐞𝐱𝐩	(𝒅𝒋𝝉)

𝟏
𝒅𝒙 

 

= �𝒍𝒏𝒙 +
𝟏 − 𝒈𝒋
𝒈𝒋

𝐥𝐧	(𝟏 − 𝒈𝒋𝒙)�
𝒙X𝟏

𝐞𝐱𝐩	(𝒅𝒋𝝉)

 

 

= �𝒅𝒋𝝉 +
𝟏 − 𝒈𝒋
𝒈𝒋

𝒍𝒏\
𝟏 − 𝒈𝒋𝒆𝒅𝒋𝝉

𝟏 − 𝒈𝒋
`�. 

 

Inserting the integral and the values for 𝑑$ , 𝑄$  and 𝑔$  again yields to  

	

𝐂𝐣(𝛕,𝛟) = 𝐫𝐢𝛟𝛕 +
𝐚
𝛔𝟐
��𝐛𝐣 − 𝛔𝛒𝐢𝛟 + 𝐝𝐣�𝛕 − 𝟐𝐥𝐧 \

𝟏 − 𝐠𝐣𝐞𝐝𝐣𝛕

𝟏 − 𝐠𝐣
`�	

	

as a solution for Cj, where 𝑎 = 𝜅𝜃. Since we used the initial conditions the constant 𝐾% equals zero (Rouah, 

2013). Having solutions for Dj and Cj as part of the characteristic function (4.49), the initial derivation of 

the Heston model is concluded. 

 

4.2. Problems and extensions of the Heston Model 

4.2.1. Problems with the integrant 

So far, we derived and explained the Heston Model. Unfortunately, there are some problems with the 

basic version of the model, found by Kahl and Jäckel (2005) and Albrecher et al (2007). These result in 

inaccuracies in the numerical integration, which we want to avoid, since the integrand plays a major role 

in the Heston Model. We know that the behavior of the integrand depends on the values of the 

(4.60) 

(4.61) 

(4.62) 
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parameters. For some values, the integrand is well-behaved, and the numerical integration works 

properly. For other values, the integrand is not well-behaved, which can cause a problem for the numerical 

integration. Therefore, we need to identify the issues and solve them to gain optimal results for the overall 

numerical valuation of the model.  

The first occurring problem is that the integrand is not defined at ϕ=0, even if the area of integration is 

[0,∞). Consequently, the integration has to start at a very small number close to zero. Because we are not 

starting at the original starting point, it is important that the integrand must not be too steep at the point 

to avoid inaccuracies in the calculation. 

The second known problem is that the integrand might contain discontinuities. To illustrate this issue, we 

closely follow Ruoah (2013) with his example. He used two sets of integrands in the range of ϕ∈(0,10], 

whereas we only use one integrand, but therefore are plotting a surface, using 𝜏 as another variable. With 

𝜅 = 10, 𝜃 = 0.05, 𝑣' = 0.05, 𝜌 = −0.9, 𝑟 = 0, 𝑆' = 90 and 𝐾 = 90 and 𝜎 = 0,75, we can observe the 

result in figure 4.1. The integrand shows great discontinuities for several 𝜙	and 𝜏 combinations, without 

any logical, financial valuation reason. Only somewhen after an integration range of 𝜙	 ≈ 10 the integrand 

becomes constant for all shown maturities. 

 

 
Figure 4.1: Discontinuities of the integrand, own representation 

 

The third and last problem is a possible oscillation of the integrand. Again, following Ruoah (2013) and his 

example closely, we are plotting a surface with 𝜏 as another variable. We use 𝜅 = 10, 𝜃 = 0.01, 𝑣' =

0.01, 𝜌 = −0.9, 𝑟 = 0, 𝑆' = 7 and 𝐾 = 10 and 𝜎 = 0,175 for the parameters. Only way beyond 𝜙	 ≈

100, the integrand becomes flat. Another issue we can observe here is that the integrands are very steep 

at the beginning, meaning we need a very fine grid to avoid inaccuracies, as explained before. 



 27 

Discontinuities are observable as well. To sum up, these issues affect the quality of the basic Heston Model. 

Fortunately, Albrecher et al (2007) discovered a simple solution for most of these problems.  

 

 
Figure 4.2: Oscillation of the integrand, own representation 

 

 

4.2.2. The Little Heston Trap 

When Albrecher et al (2007) published their paper, there were already two different formulations of the 

Heston Model in the academic literature available. The first one is the basic model that was subject to the 

derivation in this thesis. The other one is formulated slightly different, but in the end, they are the same. 

The advantage of the second formulation is that the second one leads to a characteristic function which is 

better behaved and, therefore, more applicable for numerical integration. Implementing the new 

formulation only requires two minor changes.  

Firstly, we multiply 𝐷$  (4.58) with 𝑒𝑥𝑝(−𝑑$𝜏) in the numerator and denominator, which leads to the same 

form but slightly different structure, namely  

 

𝑫𝒋(𝝉, 𝝓) =
𝒃𝒋 − 𝝈𝝆𝒊𝝓 − 𝒅𝒋

𝝈𝟐
\
𝟏 − 𝒆*𝒅𝒋𝝉

𝟏 − 𝒄𝒋𝒆*𝒅𝒋𝝉
` 

 

where 

 

𝒄𝒋 =
𝟏
𝒈𝒋
=
𝒃𝒋 − 𝝈𝝆𝒊𝝓 − 𝒅𝒋
𝒃𝒋 − 𝝈𝝆𝒊𝝓 + 𝒅𝒋

. 

(4.63) 
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Secondly, we are deriving 𝐶$, as we did before by integration, which leads to 

 

𝑪𝒋(𝝉, 𝝓) = 𝒓𝒊𝝓𝝉 +
𝜿𝜽
𝝈𝟐

��𝒃𝒋 − 𝝈𝝆𝒊𝝓 + 𝒅𝒋�𝝉 − 𝟐𝒍𝒏\
𝟏 − 𝒄𝒋𝒆*𝒅𝒋𝝉

𝟏 − 𝒄𝒋
`�. 

 

We can now substitute equation (4.63) with (4.58) and (4.64) with (4.62). The characteristic function (4.49) 

stays the same. Plotting the integrand 

 

𝑹𝒆 �
𝒆*𝒊𝝓𝒍𝒏𝑲𝒇𝒋(𝝓; 𝒙, 𝒗)

𝒊𝝓
� 

 

from equation (4.38) for the two different formulations for the characteristic function f1 with 𝜅 = 1.5768, 

𝜃 = 0.0398, 𝑣' = 0.0175, 𝜌 = −0.5711, 𝑟 = 0, 𝑆' = 100 and 𝐾 = 100 and 𝜎 = 0.5751 as Albrecher et 

al (2007) did, shows us the difference in figure 4.3. The time to maturity is flexible again. While the original 

Heston formulation from Heston (1993) shows major discontinuities, the new formulation from Albrecher 

at al. (2007) is smooth. The trap is the area between the two surfaces.  

 

 
Figure 4.3: The little Heston Trap, own representation 

 

 

(4.64) 

(4.65) 
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Figure 4.4: Integrand with the Albrecher et al. (2007) formulation, own representation 

 

The discontinuities from figure 4.1 are eliminated as well (Figure 4.4), while the oscillation is still 

observable (Figure 4.5). The new formulation was not able to eliminate it. Also, the integrand is still very 

steep close to 𝜙 = 0, as we also already described before. 

 

 
Figure 4.5: Oscillation with the Albrecher at al. (2007) formulation, own representation 

 

Kahl and Jäckel (2005) as well as Zhu (2010) found different algorithms to overcome the same issue as the 

Albrecher et al. (2007) solution does. Anyway, since the Little Heston Trap was discovered, these solutions 

are obsolete. 
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4.2.3. Consolidation of the integrals and Characteristic Functions 

Besides the processed problems with the integrand, there is another major hurdle the original Heston 

formulation needs to take, which is the calculation of the two integrands for P1 and P2. When calibrating 

the model, the two integrals need to be calculated many times, resulting in the need of a huge 

computational power and lots of computation time. Lewis (2000) and Attari (2004) both found a problem 

for that solution. The key is to eliminate one of the integrals, so that only one numerical integration is 

subject to the overall calculation, reducing computation time by almost one half. The results are the same.  

By inserting the formulars for the probabilities P1 and P2 into the formular for the call price 

 

𝑪(𝑲) = 𝑺𝒕𝒆*𝒒𝝉𝑷𝟏 −𝑲𝒆*𝒓𝝉𝑷𝟐 

 

and rearranging the terms, we receive 

 

𝑪(𝑲) =
𝟏
𝟐
𝑺𝒕𝒆*𝒒𝝉 −

𝟏
𝟐
𝑲𝒆*𝒓𝝉 

+
𝟏
𝝅
« 𝑹𝒆
K

𝟎
�
𝒆*𝒊𝝓𝒍𝒏𝑲

𝒊𝝓
�𝑺𝒕𝒆*𝒒𝝉𝒇𝟏(𝝓; 𝒙, 𝒗) − 𝑲𝒆*𝒓𝝉𝒇𝟐(𝝓; 𝒙, 𝒗)��𝒅𝝓 

 

for the call price. To calculate the according put price, we simply can use the put-call-parity as usual.  

 

4.3. American Options in the Heston Model  

The introduced basic version of the Heston Model and its extensions are not able to calculate values for 

American options. To value them, numerical methods are used, such as the Monte Carlo simulation based 

on the idea of Longstaff and Schwartz (2001) or the finite difference application by Brennan and Schwartz 

(1978). These methods can also be used to calculate American option values in the Heston Model. We 

decided to present the Explicit Finite Difference Method (FDE) in the Heston Model to value American put 

options in the numerical part of this work. 

To implement the FDE in the Heston Model, the first step is to figure a way out to solve the Heston PDE 

4.19 with 𝜆 = 0. To do so, the FDE uses a discrete grid for the price (𝑖	 = 0,… ,𝑁E), the volatility (𝑗	 =

	0, … ,𝑁\) and the maturity (𝑛	 = 	0,·	·	·	, 𝑁2). The value of a derivative in the FDE for a European call at 

the maturity n+1 is defined as  

 

(4.66) 

(4.67) 
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𝑼𝒊,𝒋𝒏<𝟏 = 𝑼𝒊,𝒋𝒏 + 𝒅𝒕[
𝟏
𝟐
𝒗𝒋𝑺𝒊𝟐

𝝏𝟐

𝝏𝑺𝟐
+
𝟏
𝟐
	𝝈𝟐𝒗𝒋

𝝏𝟐

𝝏𝒗𝟐
+ 	𝝈𝝆𝒗𝒋𝑺𝒊

𝝏𝟐

𝝏𝒗𝝏𝑺
 

+(𝒓 − 𝒒)𝑺𝒊
𝝏
𝝏𝑺

+ 	𝜿�𝜽 − 𝒗𝒋�
𝝏
𝝏𝒗

− 𝒓]𝑼𝒊,𝒋𝒏 . 

 

To evaluate	𝑈],$3<%, the derivations need to be replaced by finite difference approximations. These are 

simple for a uniform grid and a little more complex for a non-uniform grid. However, we will proceed with 

a non-uniform grid, since the results promise to be more accurate, even if fewer grid points are needed 

(Ruoah, 2013). The limits of the grid are set by the minimum and maximum values for S, v and t, denoted 

by Smin=0, vmin=0 and tmin=0 and Smax, vmax and tmax= 𝜏, respectively.  

The discrete grid consists of nods which are either interior or on the boundary. To calculate the derivate 

value at each nod, we need the central difference approximation for the derivatives in 4.68. For the first 

order of interior nods these are  

 

𝝏𝑼
𝝏𝑺

�𝑺𝒊, 𝒗𝒋� =
𝑼𝒊<𝟏,𝒋𝒏 −𝑼𝒊*𝟏,𝒋𝒏

𝑺𝒊<𝟏 − 𝑺𝒊*𝟏
 

 

and 

 

𝝏𝑼
𝝏𝑺

�𝑺𝒊, 𝒗𝒋� =
𝑼𝒊,𝒋<𝟏𝒏 −𝑼𝒊,𝒋*𝟏𝒏

𝒗𝒋<𝟏 − 𝒗𝒋*𝟏
. 

 

For the second order they are 

 

𝝏𝟐𝑼
𝝏𝑺𝟐

�𝑺𝒊, 𝒗𝒋� =
𝑼𝒊*𝟏,𝒋𝒏

(𝑺𝒊 − 𝑺𝒊*𝟏)(𝑺𝒊<𝟏 − 𝑺𝒊*𝟏)
	

−
𝟐𝑼𝒊,𝒋𝒏

(𝑺𝒊 − 𝑺𝒊*𝟏)(𝑺𝒊<𝟏 − 𝑺𝒊)
+

𝑼𝒊<𝟏,𝒋𝒏

(𝑺𝒊<𝟏 − 𝑺𝒊)(𝑺𝒊<𝟏 − 𝑺𝒊*𝟏)
 

 

and 

 

 

 

(4.68) 

(4.69) 

(4.70) 

(4.71) 
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𝝏𝟐𝑼
𝝏𝒗𝟐

�𝑺𝒊, 𝒗𝒋� =
𝑼𝒊,𝒋*𝟏𝒏

�𝒗𝒋 − 𝒗𝒋*𝟏��𝒗𝒋<𝟏 − 𝒗𝒋*𝟏�
	

−
𝟐𝑼𝒊,𝒋𝒏

�𝒗𝒋 − 𝒗𝒋*𝟏��𝒗𝒋<𝟏 − 𝒗𝒋�
+

𝑼𝒊,𝒋<𝟏𝒏

�𝒗𝒋<𝟏 − 𝒗𝒋��𝒗𝒋<𝟏 − 𝒗𝒋*𝟏�
. 

 

Finally, for the mixed derivate the approximation is  

 

𝝏𝟐𝑼
𝝏𝑺𝝏𝒗

�𝑺𝒊, 𝒗𝒋� =Ù𝒂𝒌,𝒍𝑼𝒊<𝒌,𝒋<𝒍𝒏

𝒌,𝒍

 

 

for k=l=[-1,0,1]. For a detailed list see Ruoah (2013). For the boundary nods values from outside of the grid 

are needed, which are approximated by either forward or backward differences. To finally roll out the 

finite difference scheme, boundary conditions need to be set for the PDE. These depend on the kind of 

option and are introduced by Heston (1993). 

As a last step, the introduced approximations submit the derivatives in 4.68. Using a matrix to reflect the 

grid mathematically, values for all nods can be calculated. For the calculation in MatLab we also use an 

interpolation to reflect the correct current value of the underlying, which might not be possible otherwise, 

depending on the discretion of the grid. Note that for American options we need to implement the early 

exercise condition at every nod with 

 

𝑼𝒊,𝒋𝒏<𝟏 = 𝐦𝐚𝐱�𝑲 − 𝑺𝒊, 𝑼𝒊,𝒋𝒏<𝟏�. 

 

 

 

 
 

  

(4.72) 

(4.73) 

(4.74) 
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5. Parameter analysis 

5.1. Effect of the Correlation Parameter 

Since the Heston Model contains parameters, that we do not use in other models, we want to investigate 

them. By doing so, we can expose some of the favorable characteristics of the Heston Model. Firstly, we 

want to have a closer look at 𝜌, which indicates the correlation between two Brownian motions. Moreover, 

it controls the skewness of the distribution of 𝑙𝑛𝑆2. If the volatility increases and 𝜌 > 0, the stock price 

will increase as well. If 𝜌 < 0, the stock price would decrease and if 𝜌 = 0, a change in the volatility would 

have no effect on the skewness of the distribution. Underlying this relationship, we replicate the plot of 

Ruoah (2013), who used the same settings at Heston (1993). The parameters are set to 𝜅 = 2; 	𝜃 =

0,01;	𝑣! = 0,01; 𝜎 = 0,1; 	𝜏 = 0,5; 𝑟 = 0 and K = 100. The density of 𝑙𝑛𝑆2  can be obtained by inverting 

the characteristic function 𝑓&(𝜙) and applying a numerical integration scheme. 

 

 
Figure 5.1: Relationship between skewness and correlation, own representation 

 

We can observe that there is a relationship between skewness and correlation. As Heston (1993) explains, 

a negative correlation implies a rise in the variance and a decrease in the stock price. That leads to 

fattening the left tail and thinning the right tail of the distribution (blue dashed). If the correlation is 

positive, it will have the opposite effect (blue dotted). Our plot confirms this relationship. As financial data 

tends to be negatively skewed instead of being 0-skewed, this parameter has the potential to improve the 

accurateness for option prices over models without this feature. We will review and verify this in the 

numerical part of this work. 
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5.2. Effect of the Volatility of the Variance Parameter 

The volatility of the variance parameter, 𝜎, has a useful characteristic as well. It controls the kurtosis, 

meaning the higher 𝜎, the higher the dispersion of the variance process. Using the same data as in the 

prior example, except for 𝜌 = 0 and a flexible 𝜎. Figure 5.2 shows the positive correlation between 𝜎 and 

the kurtosis, having a higher 𝜎 concludes in a higher kurtosis and fatter tails compared to smaller values 

of 𝜎. Therefore, this parameter also has the potential to improve the accurateness for option prices over 

models without this feature. Again, we will review and verify this in the numerical part of this work. 

 

 
Figure 5.2: Relationship between kurtosis and volatility of the variance, own representation 

 

5.3. Comparison with the Black Scholes-Merton Model 

The parameter analysis becomes more interesting and valuable when compared to the basic model, the 

Black Scholes Model. The sensible impact of 𝜌 and 𝜎 on the stock price already gave us a hint, that the 

option prices generated by the Heston Model should differ from the ones generated by the Black-Scholes-

Merton Model. Heston (1993) shows that the difference between Heston and Black Scholes prices depends 

on the moneyness of the stock price. To show this, we use the parameters from Table 1 from (Heston 

1993), subtract the Black Scholes prices from the Heston prices and plot the result. The strike price K = 90 

and we use one negative and one positive correlation value. In order to compare the methods accurately, 

the BSM volatilities need to be matched to the Heston price. For the implementation, the BSM volatility 

has to be defined as the standard deviation of the distribution of the returns 𝑙𝑛𝑆2/𝑆'. It can be clearly 

seen that in the case of positive correlation OTM calls are more expensive generated by the Heston Model 

than those of the BSM Model.  



 35 

 

 
Figure 5.3: Comparison with BSM for different correlations, own representation 

 

To explain this difference, we need to have a look at Figure 5.1 again. Having 𝜌 > 0, the skew in the 

distribution of 𝑙𝑛𝑆2  is positive. Thus, the right side of the distribution has more weight due to the fat right 

tail, and therefore Heston OTM calls (left side of figure 5.3) are more expensive than BSM OTM calls, where 

there is the same weight assigned to both sides. The opposite is the case for ITM call options (right side of 

figure 5.3.). As we can observe, in case of 𝜌 < 0, the relationships are the other way around. 

We can extend the comparison between Heston and Black Scholes prices by having a look at the difference 

occurring when using different values for 𝜎. All data is set as before, but 𝜌 = 0 and 𝜎 is now variable. The 

result is displayed in Figure 5.4. 

 

 
Figure 5.4: Comparison with BSM for different volatilities of the variance, own representation 
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We can observe that the Heston price is higher for ITM and OTM calls, but lower for ATM calls. This is the 

logic consequence from the thicker tails we saw in Figure 5.2. More weight is assigned to the tails, and 

therefore to Spot prices S, that make the call option be ITM or OTM. Also, the higher 𝜎, the greater is the 

difference between Heston and Black Scholes prices.   
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6. Numerical analysis 

6.1. General conditions and CPU 

The aim of the numerical analysis is to evaluate in practical terms what has been introduced so far in this 

work regarding the Heston Model. We run the overall process, from the access of the needed input data 

over to the calibration to the final calculation of Heston Model option values. These values are then 

evaluated using real market data, BSM- and CRR-values as a comparison. We test European call option on 

the S&P500 with the basic Heston Model and American put options on Apple with the Heston FDE Model. 

All calculations were done using MatLab Version R2022a Update 1 (9.12.0.1927505) and the scripts from 

Rouah (2013) on a MacBookPro14.1 with an IntelCore i5 with 2.3GHz and 8GB memory. 

 

6.2. Data 

All desired input data was downloaded on the 16th February 2022 from the Thomson Reuters database 

Refinitiv Eikon. For the European S&P options, we downloaded end of day data, value 03.08.2021 for four 

maturities (45, 73, 108 and 136 days) and 29 strike prices (4160 to 4720 in steps of 20). Next to the 

maturities and strikes, we also downloaded the option price, the spot price of the underlying (4423.16) 

and the interest rate for 3-months treasury bills (0.05%). Using all given data and the BSM Model, we 

retrieved the implied volatility of every single option with the goal seek function in Excel. The results in 

table 6.1 already give a glance at the changing volatility and possible problems trying to reflect these values 

with one single value as it is done in the BSM Model. We also downloaded the data with the exact same 

characteristics with value 04.08.2021 to have benchmark values for our final comparison. Obviously, all 

maturities are -1 day and the value of the S&P500 changed to 4402.65 points. 

The same was repeated for the American put options on Apple. We downloaded end of day data with 

value 03.08.2021 for four maturities (45, 73, 108 and 136 days) and eight strike prices (135 to 170 in steps 

of 5). The range of available options was smaller than for the S&P500. The spot price was 147.36 and the 

risk-free interest rate was 0.05% again. Here the implied volatility was retrieved using the data and the 

CRR Model with increments of dt=0.0001, since the BSM Model only works for European options. The 

calculations were done in MatLab and the results are summed up in table 6.1 as well. 
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Table 6.1: Option values and implied volatilities for the S&P500 and Apple stock    

                

6.3. Calibration of the model 

One important step in the application of the Heston Model is its calibration. Economic models like the 

Heston Model require a set of input data or parameters, which can be observed in the market, received 

from experts or literature. The Heston Model is an exception here. The needed inputs are not available, 

since the model works with own parameters, that are not directly observable in the market. The idea here 

is to estimate these parameters based on other historical parameters observable in the market, like the 

strike price, underlying price, interest rates, etc. The accurate estimation is crucial to the Heston Model, 

because the model would fail using badly estimated values, making all theoretical underlying work 

worthless (Jacquier & Jarrow, 2000). Therefore, a calibration of the model parameters is used. A calibration 

in this sense is a process in which the desired parameters are calculated based on known data using an 

algorithm. For the Heston Model, this algorithm in most cases is a loss function (Mikhailov & Nögel (2004) 

and Rouah (2013)) minimizing an error. 

We tested four different objective function and then chose the most accurate one. The most popular one 

is the mean error sum of squares (MSE) loss function, which minimizes 

	

45 73 108 136 45 73 108 136
4720 1,95 9,20 22,60 35,50 4720 0,0993 0,1081 0,1157 0,1212
4700 2,57 11,15 26,25 40,30 4700 0,0988 0,1083 0,1166 0,1225
4680 3,40 13,45 30,45 45,60 4680 0,0985 0,1086 0,1178 0,1239
4660 4,20 16,30 35,25 51,50 4660 0,0968 0,1093 0,1192 0,1255
4640 5,60 19,70 40,65 57,90 4640 0,0969 0,1102 0,1208 0,1271
4620 7,45 23,80 46,70 64,95 4620 0,0973 0,1114 0,1225 0,1290
4600 9,85 28,60 53,45 72,55 4600 0,0979 0,1129 0,1245 0,1309
4580 13,15 34,20 60,85 80,75 4580 0,0993 0,1146 0,1265 0,1329
4560 17,10 40,75 68,95 89,55 4560 0,1006 0,1168 0,1288 0,1351
4540 22,30 48,10 77,70 98,90 4540 0,1028 0,1191 0,1311 0,1373
4520 28,60 56,40 87,15 108,85 4520 0,1053 0,1217 0,1336 0,1397
4500 36,30 65,70 97,25 119,25 4500 0,1085 0,1247 0,1362 0,1421
4480 44,95 75,60 107,90 130,15 4480 0,1116 0,1276 0,1389 0,1445
4460 54,95 86,55 119,25 141,55 4460 0,1153 0,1309 0,1417 0,1470
4440 66,15 98,20 131,00 153,40 4440 0,1194 0,1343 0,1445 0,1495
4420 78,30 110,55 143,40 165,65 4420 0,1236 0,1379 0,1475 0,1521
4400 91,30 123,55 156,25 178,40 4400 0,1279 0,1415 0,1505 0,1547
4380 105,20 137,10 169,50 191,50 4380 0,1325 0,1452 0,1535 0,1574
4360 119,70 151,15 183,10 204,90 4360 0,1369 0,1489 0,1564 0,1600
4340 134,75 165,60 197,10 218,60 4340 0,1413 0,1525 0,1594 0,1626
4320 150,30 180,45 211,45 232,60 4320 0,1457 0,1561 0,1624 0,1652
4300 166,15 195,70 226,10 246,90 4300 0,1498 0,1597 0,1654 0,1678
4280 182,60 211,30 241,05 261,50 4280 0,1542 0,1634 0,1684 0,1704
4260 199,15 227,10 256,15 276,35 4260 0,1581 0,1668 0,1712 0,1730
4240 216,00 243,15 271,55 291,20 4240 0,1619 0,1702 0,1740 0,1754
4220 233,05 259,45 287,25 306,50 4220 0,1655 0,1735 0,1769 0,1779
4200 250,25 275,95 303,15 322,00 4200 0,1687 0,1768 0,1798 0,1805
4180 267,75 292,65 319,25 337,60 4180 0,1720 0,1799 0,1826 0,1829
4160 285,35 309,45 335,45 353,50 4160 0,1749 0,1828 0,1853 0,1854

Maturity

St
rik

e

Option
values

Implied
volatilities

Maturity

St
rik

e

45 73 108 136
170 23,08 23,50 24,53 25,08
165 18,25 18,90 20,23 20,95
160 13,68 14,60 16,28 17,15
155 9,50 10,80 12,73 13,70
150 6,06 7,56 9,62 10,70
145 3,55 5,10 7,15 8,20
140 2,04 3,35 5,22 6,15
135 1,19 2,23 3,80 4,59

45 73 108 136
170 0,2753 0,2520 0,2651 0,2592
165 0,2505 0,2410 0,2621 0,2576
160 0,2365 0,2335 0,2571 0,2565
155 0,2264 0,2325 0,2566 0,2520
150 0,2240 0,2322 0,2550 0,2507
145 0,2290 0,2385 0,2627 0,2603
140 0,2438 0,2486 0,2710 0,2695
135 0,2660 0,2695 0,2828 0,2740

Implied
volatilities

Maturity

St
rik

e

Option
values

Maturity

St
rik

e
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𝟏
𝑵
Ù𝒘𝒕𝒌(𝑪𝒕𝒌 − 𝑪𝒕𝒌𝚯

𝒕,𝒌

)²	

	

with respect to 𝛩. The relative mean error sum of squares (RMSE) minimizes 

 

𝟏
𝑵
Ù𝒘𝒕𝒌 	

(𝑪𝒕𝒌 − 𝑪𝒕𝒌
𝚯 )𝟐

𝑪𝒕𝒌𝒕,𝒌

. 

 

Using implied volatilities instead of option prices, the implied volatility mean error sum of squares (IVMSE) 

minimizes  

 

𝟏
𝑵
Ù𝒘𝒕𝒌(𝑰𝑽𝒕𝒌
𝒕,𝒌

− 𝑰𝑽𝒕𝒌𝚯 )². 

 

The fourth and last objective function is the one introduced by Christoffersen et al. (2009) (CHJ), which is  

 

𝟏
𝑵
Ù𝒘𝒕𝒌 	

(𝑪𝒕𝒌 − 𝑪𝒕𝒌
𝚯 )𝟐

𝑩𝑺𝑽𝒆𝒈𝒂𝒕𝒌𝟐𝒕,𝒌

, 

where 

 

𝑩𝑺𝑽𝒆𝒈𝒂𝒕𝒌 = 𝑺𝒆(*𝒒𝝉)𝒏(𝒅𝒕𝒌)�𝝉𝒌 

 

with 

 

𝒅𝒕𝒌 =
𝐥𝐨𝐠 v 𝑺𝑲𝒌

w + (𝒓 − 𝒒 + 𝑰𝑽𝒕𝒌
𝟐

𝟐 )	𝝉𝒕

𝑰𝑽𝒕𝒌�𝝉𝒌
. 

 

BSVega represents the Black-Scholes sensitivity of the option price regarding the implied volatility. For our 

work it is from great importance to use the most accurate estimation of the parameters. Further analyses 

are not the objective of this work and are therefore not proceeded. For more detailed information about 

the objective function refer to Ruoah (2013), Christoffersen & Jacobs (2004) or Mikhailov & Nögel (2003). 

(6.1) 

(6.2) 

(6.3) 

(6.4) 
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The results of our calibration are summerized in table 6.2 for the European call options on the S&P500 and 

in table 6.3 for the American put options on Apple. The starting values are taken from Guillaume and 

Schoutens (2012), except kappa, where we were able to calculate better results with a value of 0.4. 

 

 
 

Table 6.2: Calibrated parameters for the S&P500 options, whole sample 

 

In both cases the CHJ objective function seems to deliver the best results, based on the IVMSE value. It is 

important to note that in all cases we used the Gauss Laguerre quadrature with 32 points to obtain the 

option prices. Working with only 16 points or using the Gauss Lobatto quadrature did not deliver more 

accurate results. Since there is no consensus on which method might be the best to use (Ruoah 2013), we 

rely on the found results and proceed with the calibrated parameters. 

 

 
 

Table 6.3: Calibrated parameters for the Apple options 

 
6.4. Results for European call options 

In this step we present the numerical results and compare the Heston Model prices to real markets prices 

and BSM prices for European call options on the S&P500, value 04.08.2021. The real market data is already 

downloaded. To calculate the BSM prices, we first need to find the single volatility that minimizes the 

relative mean absolute error (RMAE) 

 

𝟏
𝑵
Ù	

à𝑪𝒕𝒌 − 𝑪𝒕𝒌𝚯 à
𝑪𝒕𝒌𝒕,𝒌

 

 

kappa theta sigma v0 rho IVMSE time
initial values 0,4 0,0551 0,1927 0,0746 -1
MSE 7,3711 0,0453 1,5371 0,0114 -0,731 5,34E-06 8,40
RMSE 7,9674 0,0422 1,452 0,0113 -0,737 5,05E-06 12,84
IVMSE 0,5982 0,2968 1,6649 0,0159 -0,6069 5,56E-05 48,34
CHJ 6,6143 0,046 1,3369 0,0106 -0,7384 4,19E-06 15,83

kappa theta sigma v0 rho IVMSE time
initial values 0,4 0,0551 0,1927 0,0746 -1
MSE 3,7388 0,0958 3,0831 0,0355 -0,2026 2,88E-05 6,60
RMSE 11,6159 0,0981 2,8038 0,0396 -0,2081 2,90E-05 3,90
IVMSE 0,6794 0,3648 0,5559 0,0408 -0,0822 1,66E-04 2,08
CHJ 12,1733 0,0976 2,8886 0,0378 -0,1994 2,86E-05 5,10

(6.5) 



 41 

of the BSM prices to the real market prices, value 03.08.2021. For our data, the calibrated volatility is 

11.29%. Using this value to calculate all desired BSM prices value 04.08.2021, we receive the results in 

table 6.4. The market values are shown as well. The differences are obvious, which is reflected in a RMAE 

of 23.24%. 

 

        
 

Table 6.4: Option prices for the S&P500 from the market and with the BSM Method   

 

The results of the Heston Method are presented in table 6.5. The percentage error to the real markets 

values for every single value is shown as well. For a more friendly presentation, we also used a heat map, 

making patterns in the values visible. The overall RMAE is 6.40%. Therefore, we can conclude that the 

Heston Model performs better than the BSM Model for our data. From the heatmap in table 6.5 we can 

conclude two more things: long term options are way more accurate reflected than short term options 

and ITM options are why more accurate reflected than OTM options. Regarding the previous parameter 

analysis, we can confirm the made statements. The negatively skewed distribution of ln(S) due to the 

negative 𝜌 represents financial data better than a normal distribution offered by the BSM Model, and 

therefore is able to produce more accurate results (see figure 5.1). The highly positive 𝜎 suggests a 

44 72 107 135
4720 1,38 7,50 19,70 31,85
4700 1,81 9,20 23,00 36,08
4680 2,30 11,15 26,75 41,20
4660 3,08 13,60 31,10 46,70
4640 4,05 16,55 36,05 52,75
4620 5,45 20,10 41,65 59,40
4600 7,40 24,35 47,90 66,65
4580 9,80 29,40 54,85 74,45
4560 13,10 35,30 62,50 82,90
4540 17,45 42,05 70,85 91,90
4520 22,90 49,75 79,90 101,50
4500 29,40 58,35 89,60 111,55
4480 37,65 67,85 99,95 122,15
4460 46,90 78,25 110,90 133,25
4440 57,40 89,40 122,40 144,90
4420 69,00 101,40 134,45 156,90
4400 81,55 114,25 147,00 169,40
4380 94,95 127,20 160,00 182,25
4360 109,10 141,10 173,25 195,35
4340 123,85 155,30 187,05 208,85
4320 139,10 169,90 201,10 222,70
4300 154,80 184,90 215,55 236,75
4280 170,85 200,25 230,40 251,20
4260 187,05 215,95 245,35 265,90
4240 203,75 231,85 260,75 280,75
4220 220,60 247,90 276,25 295,90
4200 237,75 264,10 291,95 311,25
4180 255,05 280,60 307,85 326,75
4160 272,60 297,30 323,95 342,45

Market Option Prices 04.08.21
44 72 107 135

4720 2,72 8,63 17,76 25,50
4700 3,54 10,34 20,34 28,60
4680 4,57 12,33 23,22 32,00
4660 5,85 14,63 26,42 35,74
4640 7,42 17,29 29,99 39,81
4620 9,35 20,33 33,93 44,26
4600 11,68 23,80 38,27 49,08
4580 14,48 27,73 43,05 54,31
4560 17,80 32,16 48,28 59,96
4540 21,71 37,12 53,99 66,05
4520 26,27 42,66 60,20 72,60
4500 31,54 48,81 66,92 79,62
4480 37,58 55,59 74,19 87,13
4460 44,43 63,04 82,01 95,13
4440 52,14 71,17 90,40 103,64
4420 60,75 80,00 99,37 112,67
4400 70,26 89,55 108,92 122,22
4380 80,70 99,82 119,07 132,30
4360 92,07 110,82 129,82 142,91
4340 104,34 122,53 141,16 154,05
4320 117,49 134,96 153,08 165,72
4300 131,49 148,07 165,59 177,91
4280 146,29 161,86 178,67 190,61
4260 161,83 176,28 192,30 203,82
4240 178,05 191,32 206,47 217,52
4220 194,89 206,94 221,15 231,71
4200 212,28 223,09 236,34 246,35
4180 230,14 239,74 251,99 261,44
4160 248,42 256,84 268,09 276,96

Black Scholes Option Prices 04.08.21
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leptokurtic distribution, which is favorable as well (see figure 5.2). To value the statements regarding the 

comparison between the Heston and BSM Model, we introduce table 6.6. The results clearly confirm the 

results from the parameter analysis, specially from figures 5.3 and 5.4. Due to the negative 𝜌 and following 

fat left tail, ITM call options are priced higher in the Heston than in the BSM Model. OTM calls on the other 

hand are priced lower, at least for short maturities. 

 

        
 

Table 6.5: Option prices for the S&P 500 with the Heston Model and its errors, whole sample 

 

It is interesting to note that the effect is not as symmetric as it is in the parameter analysis. This is due to 

the overlaying effect we have, caused by the high sigma. If we have a closer look, we can observe that the 

values for the 44 days-maturity reflect a combination of figures 5.3 and 5.4. Therefore, our data can 

confirm all the sensitivities we previously introduced in the parameter analysis. 

In a next step, we want to test whether we are able to improve the quality of the Heston Model by splitting 

up our in-sample-data, value 03.08.21, into ITM, ATM and OTM samples. To do so, we divide the data with 

respect to the strike price. The first part is from 4160 to 4340 (ITM, 40 option values), the second from 

4360 to 4520 (ATM, 36 option values) and the third from 4540 to 4720 (OTM, 40 option values). Each of 

44 72 107 135
4720 1,56 6,87 18,39 31,64
4700 2,51 8,30 21,21 35,72
4680 3,44 9,93 24,47 40,31
4660 4,33 11,84 28,26 45,46
4640 5,21 14,14 32,64 51,21
4620 6,21 16,97 37,71 57,59
4600 7,52 20,49 43,50 64,61
4580 9,35 24,82 50,05 72,26
4560 11,99 30,11 57,40 80,55
4540 15,68 36,43 65,51 89,43
4520 20,65 43,82 74,38 98,99
4500 27,05 52,28 83,94 108,91
4480 34,95 61,74 94,15 119,42
4460 44,28 72,12 104,96 130,42
4440 54,95 83,30 116,30 141,88
4420 66,74 95,15 128,12 153,76
4400 79,43 107,55 140,41 166,06
4380 92,79 120,43 153,13 178,76
4360 106,62 133,73 166,72 191,85
4340 120,78 147,43 179,83 205,30
4320 135,22 161,53 193,79 219,09
4300 149,95 176,06 208,14 233,21
4280 165,05 191,05 222,86 247,62
4260 180,62 206,50 237,91 262,30
4240 196,74 222,41 253,26 277,21
4220 213,47 238,72 268,86 292,34
4200 230,80 255,37 284,67 307,66
4180 248,66 272,28 300,65 323,17
4160 266,91 289,35 316,78 338,85

Heston prices 04.08.21 whole sample CHJ
44 72 107 135

4720 13,5% 8,4% 6,6% 0,7%
4700 38,7% 9,8% 7,8% 1,0%
4680 49,6% 10,9% 8,5% 2,2%
4660 40,8% 12,9% 9,1% 2,7%
4640 28,6% 14,6% 9,5% 2,9%
4620 13,9% 15,6% 9,5% 3,0%
4600 1,6% 15,9% 9,2% 3,1%
4580 4,6% 15,6% 8,8% 2,9%
4560 8,5% 14,7% 8,2% 2,8%
4540 10,1% 13,4% 7,5% 2,7%
4520 9,8% 11,9% 6,9% 2,5%
4500 8,0% 10,4% 6,3% 2,4%
4480 7,2% 9,0% 5,8% 2,2%
4460 5,6% 7,8% 5,4% 2,1%
4440 4,3% 6,8% 5,0% 2,1%
4420 3,3% 6,2% 4,7% 2,0%
4400 2,6% 5,9% 4,5% 2,0%
4380 2,3% 5,3% 4,3% 1,9%
4360 2,3% 5,2% 3,8% 1,8%
4340 2,5% 5,1% 3,9% 1,7%
4320 2,8% 4,9% 3,6% 1,6%
4300 3,1% 4,8% 3,4% 1,5%
4280 3,4% 4,6% 3,3% 1,4%
4260 3,4% 4,4% 3,0% 1,4%
4240 3,4% 4,1% 2,9% 1,3%
4220 3,2% 3,7% 2,7% 1,2%
4200 2,9% 3,3% 2,5% 1,2%
4180 2,5% 3,0% 2,3% 1,1%
4160 2,1% 2,7% 2,2% 1,1%

Heston prices 04.08.21 whole sample CHJ % errors
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the calibrations delivered the best results using the RMSE objective functions. The parameter settings are 

shown in table 6.7. Note that the values for IVMSE are lower than the ones obtained for the whole sample 

calibration. Nevertheless, the results we receive applying the parameters to the Heston Model are worse 

than for the whole calibration. The RMAE worsened from 6.40% to 13.04%. Having a look at table 6.8, we 

can get from the heatmap that only for ITM options we have values that can compete with the ones from 

the whole sample calculation. The RMAE is 2.7% here compared to 2.8% before. Specially OTM options 

are inaccurate presented, with very high discrepancies for short maturities. 

 

 
 

Table 6.6: CHJ option prices minus the BSM option prices 

 
For our data we can conclude that it does not pay off to split up the data. Note that the calibrated 

parameters in table 6.7 show the same structure as the ones by CHJ for the whole sample. The starting 

values are the same as in table 6.2 and 6.3. The negative ρ and the high σ again represent the financial 

data, the values in average are still more accurate than the ones by BSM presented in table 6.4 with a 

mentioned RMAE of 23.24%. 

 

44 72 107 135
4720 -1,16 -1,76 0,63 6,14
4700 -1,03 -2,04 0,87 7,12
4680 -1,13 -2,40 1,25 8,31
4660 -1,52 -2,79 1,84 9,72
4640 -2,21 -3,15 2,65 11,40
4620 -3,14 -3,36 3,78 13,33
4600 -4,16 -3,31 5,23 15,53
4580 -5,13 -2,91 7,00 17,95
4560 -5,81 -2,05 9,12 20,59
4540 -6,03 -0,69 11,52 23,38
4520 -5,62 1,16 14,18 26,39
4500 -4,49 3,47 17,02 29,29
4480 -2,63 6,15 19,96 32,29
4460 -0,15 9,08 22,95 35,29
4440 2,81 12,13 25,90 38,24
4420 5,99 15,15 28,75 41,09
4400 9,17 18,00 31,49 43,84
4380 12,09 20,61 34,06 46,46
4360 14,55 22,91 36,90 48,94
4340 16,44 24,90 38,67 51,25
4320 17,73 26,57 40,71 53,37
4300 18,46 27,99 42,55 55,30
4280 18,76 29,19 44,19 57,01
4260 18,79 30,22 45,61 58,48
4240 18,69 31,09 46,79 59,69
4220 18,58 31,78 47,71 60,63
4200 18,52 32,28 48,33 61,31
4180 18,52 32,54 48,66 61,73
4160 18,49 32,51 48,69 61,89

Heston minus BS values
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Table 6.7: Calibrated parameters for the S&P500 options, split sample 

 
 

          
 

Table 6.8: Option prices for the S&P 500 with the Heston Model and its errors, split sample 

 
For our next test, the high sigma turns out to be an obstacle. Before we use the FDE on the American put 

option data, we want to use it to calculate options prices for the European call options on the S&P500. 

Unfortunately, the FDE does not work with a sigma as high as we have calibrated it with the CHJ from table 

6.2. We need a sigma < 1. Therefore, we use the exact same start values as Guillaume and Schoutens 

(2012) did, switching our kappa of 0.4 back to its original value of 0.3369. The new calibrated values fit 

well for the FDE Method. In this case we also used the RMSE objective function since it delivered a lower 

IVMSE than CHJ. 

 

objective function kappa theta sigma v0 rho IVMSE EstTime
ITM RMSE 22,2498 0,0280 1,8502 0,0047 -0,6980 1,44E-06 5,39
ATM RMSE 16,2514 0,0391 2,9076 0,0088 -0,6486 1,54E-06 4,61
OTM RMSE 15,2465 0,0385 1,9030 0,0004 -0,8175 3,11E-06 3,60

44 72 107 135
4720 6,56 7,21 18,03 30,69
4700 6,01 8,19 21,10 34,95
4680 5,40 9,52 24,66 39,66
4660 4,85 11,32 28,74 44,86
4640 4,53 13,66 33,39 50,54
4620 4,59 16,64 38,63 56,72
4600 5,22 20,34 44,49 63,41
4580 6,58 24,85 50,98 70,61
4560 8,85 30,22 58,11 78,31
4540 12,19 36,49 65,88 86,51
4520 21,10 46,24 76,96 99,43
4500 26,38 54,18 86,06 108,91
4480 33,22 63,16 95,81 118,61
4460 41,72 73,14 106,19 129,41
4440 51,87 84,01 117,16 140,39
4420 63,54 95,71 128,67 151,85
4400 76,51 108,90 140,70 163,75
4380 90,51 121,08 153,22 176,07
4360 105,22 134,57 166,20 188,81
4340 119,05 148,68 182,19 205,41
4320 133,74 162,94 196,00 218,78
4300 148,66 177,71 210,16 232,46
4280 163,93 192,97 224,62 246,42
4260 179,70 208,69 239,36 260,65
4240 196,11 224,78 254,36 275,16
4220 213,23 241,18 269,60 289,92
4200 231,04 257,80 285,07 304,94
4180 249,42 274,56 300,77 320,19
4160 268,18 291,42 316,71 335,68

Heston prices Split Sample RMSE
44 72 107 135

4720 377,1% 3,9% 8,5% 3,6%
4700 232,0% 11,0% 8,3% 3,1%
4680 134,8% 14,6% 7,8% 3,7%
4660 57,7% 16,8% 7,6% 3,9%
4640 11,9% 17,5% 7,4% 4,2%
4620 15,8% 17,2% 7,3% 4,5%
4600 29,5% 16,5% 7,1% 4,9%
4580 32,9% 15,5% 7,1% 5,2%
4560 32,4% 14,4% 7,0% 5,5%
4540 30,1% 13,2% 7,0% 5,9%
4520 7,9% 7,1% 3,7% 2,0%
4500 10,3% 7,1% 4,0% 2,4%
4480 11,8% 6,9% 4,1% 2,9%
4460 11,0% 6,5% 4,2% 2,9%
4440 9,6% 6,0% 4,3% 3,1%
4420 7,9% 5,6% 4,3% 3,2%
4400 6,2% 4,7% 4,3% 3,3%
4380 4,7% 4,8% 4,2% 3,4%
4360 3,6% 4,6% 4,1% 3,3%
4340 3,9% 4,3% 2,6% 1,6%
4320 3,9% 4,1% 2,5% 1,8%
4300 4,0% 3,9% 2,5% 1,8%
4280 4,1% 3,6% 2,5% 1,9%
4260 3,9% 3,4% 2,4% 2,0%
4240 3,7% 3,0% 2,5% 2,0%
4220 3,3% 2,7% 2,4% 2,0%
4200 2,8% 2,4% 2,4% 2,0%
4180 2,2% 2,2% 2,3% 2,0%
4160 1,6% 2,0% 2,2% 2,0%

Heston prices Split Sample RMSE % Errors
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Table 6.9: Calibrated parameters for the S&P500 options, FDE adjusted 

 
Applying the parameters and using a grid consisting of 200 points for S, 100 for V and 5000 for T, we receive 

the values and relating percentage errors in table 6.10. The overall RMAE is only 4.87%, meaning the FDE 

Method is able to outperform the analytical solution we found in table 6.5. The more accurate overall 

value is mainly resulting from the decent percentage errors of the short term OTM options. The values 

notably more accurate. The maximal errors we found is 15.6% compared to 49.6% for table 6.5. 

 

        
 

Table 6.10: Option prices for the S&P 500 with the Heston Model (FDE) and its errors 

     
6.5. Results for American put options 

Having the quality of the Heston FDE Method proofed for European Call options, we are now switching 

the underlying dataset to do the same for American Put options. The Put option market values as well as 

the results using the CRR Method with an optimized volatility of 26.15% are shown in table 6.11. The 

kappa theta sigma v0 rho IVMSE EstTime
CHJ 0,3882 0,311 0,8 0,0138 -0,7495 6,34E-06 5.243

44 72 107 135
4720 1,32 6,75 18,94 32,20
4700 1,70 8,03 21,60 35,92
4680 2,54 10,20 25,45 40,99
4660 3,39 12,36 29,30 46,03
4640 4,42 14,79 33,45 51,36
4620 6,30 18,46 38,98 58,02
4600 8,18 22,12 44,52 64,69
4580 10,71 26,52 50,73 71,94
4560 14,46 32,29 58,21 80,31
4540 18,21 38,06 65,68 88,68
4520 23,58 45,28 74,32 98,00
4500 30,11 53,53 83,76 107,99
4480 36,63 61,79 93,21 117,98
4460 46,03 72,21 104,23 129,22
4440 55,79 82,90 115,43 140,61
4420 66,28 94,10 127,00 152,30
4400 78,83 106,75 139,60 164,84
4380 91,38 119,39 152,20 177,38
4360 105,22 132,99 165,55 190,56
4340 119,61 147,01 179,23 204,02
4320 134,23 161,23 193,07 217,63
4300 149,81 176,25 207,60 231,85
4280 165,40 191,28 222,13 246,07
4260 181,65 206,88 237,17 260,76
4240 198,13 222,70 252,40 275,62
4220 214,85 238,72 267,82 290,66
4200 232,02 255,16 283,62 306,05
4180 249,20 271,60 299,42 321,45
4160 266,91 288,55 315,69 337,30

Heston FDE prices whole sample RMSE
44 72 107 135

4720 4,0% 10,0% 3,9% 1,1%
4700 6,1% 12,7% 6,1% 0,4%
4680 10,4% 8,5% 4,9% 0,5%
4660 10,2% 9,1% 5,8% 1,4%
4640 9,1% 10,6% 7,2% 2,6%
4620 15,6% 8,2% 6,4% 2,3%
4600 10,5% 9,2% 7,1% 2,9%
4580 9,3% 9,8% 7,5% 3,4%
4560 10,4% 8,5% 6,9% 3,1%
4540 4,4% 9,5% 7,3% 3,5%
4520 3,0% 9,0% 7,0% 3,4%
4500 2,4% 8,3% 6,5% 3,2%
4480 2,7% 8,9% 6,7% 3,4%
4460 1,9% 7,7% 6,0% 3,0%
4440 2,8% 7,3% 5,7% 3,0%
4420 3,9% 7,2% 5,5% 2,9%
4400 3,3% 6,6% 5,0% 2,7%
4380 3,8% 6,1% 4,9% 2,7%
4360 3,6% 5,7% 4,4% 2,5%
4340 3,4% 5,3% 4,2% 2,3%
4320 3,5% 5,1% 4,0% 2,3%
4300 3,2% 4,7% 3,7% 2,1%
4280 3,2% 4,5% 3,6% 2,0%
4260 2,9% 4,2% 3,3% 1,9%
4240 2,8% 3,9% 3,2% 1,8%
4220 2,6% 3,7% 3,1% 1,8%
4200 2,4% 3,4% 2,9% 1,7%
4180 2,3% 3,2% 2,7% 1,6%
4160 2,1% 2,9% 2,5% 1,5%

Heston FDE prices whole sample RMSE % Errors
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optimized volatility is retrieved from MatLab, where we manually lowered the mean absolute error 

between the actual and freshly calculated put option values for the 03.08.2021 to its minimum.  

 

     
 

Table 6.11: Option prices for the Apple stock from the market and with the CRR Method   

 
The implied volatilities from table 6.1 are passed to the Heston FDE function in MatLab, resulting in the 

values and errors from table 6.12. 

 

      
 

Table 6.12: Option prices for Apple with the Heston Model (FDE adaption) and its errors 

 
From the heat map we can quickly see that the values are a good fit, except for OTM options. The values 

for close to ATM short term options are remarkably accurate. The RMAE for the FDE values is 3.41% 

comparing to 4.36% of the CRR ones. We can conclude that the Heston FDE performed better than the 

CRR Method for our data.  

  

44 72 107 135
170 23,48 23,90 24,93 25,50
165 18,65 19,30 20,63 21,35
160 14,03 14,95 16,68 17,45
155 9,75 11,15 13,08 14,03
150 6,30 7,85 9,98 10,95
145 3,67 5,30 7,35 8,43
140 2,13 3,46 5,40 6,35
135 1,23 2,31 3,90 4,75

Market American Put Option Prices Apple 04.08.21
44 72 107 135

170 23,37 23,96 24,79 25,47
165 18,72 19,55 20,60 21,39
160 14,35 15,44 16,69 17,59
155 10,40 11,73 13,13 14,11
150 7,03 8,50 9,98 11,00
145 4,36 5,82 7,29 8,30
140 2,44 3,73 5,08 6,03
135 1,20 2,22 3,36 4,19

CRR American Put Option Prices Apple 04.08.21

44 72 107 135
170 23,24 23,80 24,80 25,75
165 18,47 19,28 20,55 21,65
160 13,09 15,06 16,58 17,83
155 9,80 11,22 12,97 14,33
150 6,33 7,95 9,82 11,23
145 3,68 5,31 7,16 8,56
140 1,92 3,33 5,03 6,34
135 0,90 1,97 3,40 4,56

Heston FDE American Put Option Prices Apple 04.08.21
44 72 107 135

170 1,00% 0,42% 0,50% 0,98%
165 0,97% 0,10% 0,36% 1,41%
160 6,64% 0,74% 0,57% 2,18%
155 0,51% 0,63% 0,80% 2,17%
150 0,48% 1,27% 1,55% 2,56%
145 0,27% 0,19% 2,59% 1,54%
140 9,65% 3,76% 6,85% 0,16%
135 26,83% 14,53% 12,82% 4,00%

Heston FDE American Put Option Prices Apple 04.08.21 % Error
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7. Discussion 

After introducing the Heston Model and applying it to real market data, there are several conclusions to 

make, including advantages and disadvantages. The first and most important conclusion is that the Heston 

Model delivers closed form solutions for European options of good quality (table 6.5) and is able to 

outperform the peer model, the BSM. The numeric results with the Heston FDE for American options are 

more accurate than the peer model, the CRR, as well. Therefore, the model definitely has its value.  

One reason for the good performance of the model is the fact, that it reflects real market data better than 

its peer model do. By using not a single value for the volatility, but five parameters, the Heston Model is 

able to reflect the characteristics of the underlying distribution (figures 5.1 and 5.2) and the behavior of 

the volatility as well (table 6.1). Furthermore, we were able to confirm the impact 𝜌 and 𝜎 have on the 

results of the model, making our findings even more consistent. 

A further advantage of the model is its great flexibility. The model can be adapted to different other 

methods, depending on how to solve the PDE in 4.24. This allows the model to calculate European and 

American options. Also, with different adaptions comes greater opportunities, making it more likely to find 

good results. For example, the best results we found for our European option data set were received using 

the FDE Method, even if it was not the actual idea to show so. The same flexibility goes for the objective 

function we minimize to calibrate the parameters. Since there are several results, we can see which one 

delivers the best one in the sense of IVMSE. 

On the other hand, this flexibility adds some kind of uncertainty to the whole model. There are many 

choices to make, and there are no clear findings in the academia which one is the best for the final results. 

Specially the parameter calibration is very sensitive to changes in the objective function and the starting 

values. Examining this in more detail is beyond the scope of the thesis. Depending on the chosen loss 

function and possible adaptions to other models, we can see that the results may vary a lot. Therefore, 

results also are subject to some coincidence, leading in extreme cases to wrong conclusions.  

One very important impact factor not discussed yet is the chosen market data. Obviously, the results are 

also depending on the size of the sample data, the maturity, the strike price range and the amount by 

which the underlying price changes in one day. We can see this already from the change from table 6.5 to 

table 6.8. Again, a further examination of the relationships is of this thesis’ scope. Nevertheless, it is 

important to be aware of them when putting the results in perspective. 

During the calculations with the BSM Model, we discovered results worth mentioning here as well. When 

we do not use an optimized, single volatility for the BSM results, but use the individual implied volatility 

of every option to calculate its values the next day, we outperform all shown results. E.g., using a volatility 
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of 17.68% for the European option with a strike price of 4200 and a maturity of 73 days (from table 6.1) 

and so forth, we only receive an RMAE of 1.93%. Obviously, this result is not directly comparable to the 

Heston Model values we found, since it uses not a single volatility as a parameter, but 116. Nevertheless, 

receiving these results does not require the mathematical level of the Heston Model, is very easy and 

intuitive and delivers better results, which can be found in table 7.1. Results like this might question the 

effort needed to receive values with the Heston Model. 

 

 
 

Table 7.1: BSM option prices for the S&P500 using individual implied volatilities 

  

44 72 107 135
4720 1,28 7,22 19,23 31,24
4700 1,71 8,83 22,47 35,63
4680 2,30 10,75 26,23 40,50
4660 2,87 13,15 30,56 45,96
4640 3,90 16,06 35,47 51,90
4620 5,29 19,60 41,00 58,48
4600 7,14 23,80 47,21 65,60
4580 9,75 28,75 54,06 73,32
4560 12,94 34,61 61,60 81,64
4540 17,25 41,25 69,79 90,50
4520 22,59 48,82 78,68 99,98
4500 29,27 57,39 88,23 109,91
4480 36,90 66,58 98,34 120,35
4460 45,88 76,82 109,16 131,30
4440 56,09 87,80 120,40 142,71
4420 67,31 99,50 132,31 154,54
4400 79,43 111,88 144,68 166,88
4380 92,53 124,85 157,48 179,58
4360 106,29 138,35 170,64 192,60
4340 120,67 152,28 184,23 205,93
4320 135,61 166,65 198,18 219,58
4300 150,90 181,45 212,45 233,54
4280 166,85 196,63 227,04 247,81
4260 182,94 212,03 241,80 262,35
4240 199,37 227,71 256,88 276,90
4220 216,03 243,66 272,27 291,91
4200 232,88 259,84 287,87 307,14
4180 250,06 276,23 303,70 322,48
4160 267,37 292,75 319,63 338,12

Individual IV Black Scholes Option Prices 04.08.21
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8. Conclusion 

The objective of this work was to introduce the Heston Model theoretically and test it practically in a 

numerical study. To do so, we started with essential basics of option valuation and stochastic process. 

Guided by Heston (1993) and Rouah (2013), the derivation of the model was presented in detail to 

completely understand it. Afterwards, the model was examined and extended with optimizations, specially 

done by Albrecher et al (2007), but others as well. The problems were shown in 3D-surfaces, making them 

easier to grasp. To use the model for American options, we also introduced the FDE Method, which is 

applicable in the Heston Model as well. Having all theoretics introduced, we conducted a sensitivity 

analysis, giving insights into the relationships between the parameters and the calculated model option 

values. We showed that the Heston Model is able to reflect the characteristics of financial data-

distributions better than a standard normal distribution, which is used in the BSM Model. 

In the main part of this work, the application of the Heston Model using real market data, we found 

positive results as well. During the sensitive calibration process we introduced different objective function, 

which delivered different values for the parameters. For our data sample we proofed that calibrated 

parameters indeed reflect the distribution in a more realistic way with the results being in line with the 

previous parameter analysis. Regarding the model performance, the standard Heston Model was able to 

outperform the peer model, the BSM Model. Same was the case for the application of the FDE in the 

Heston Model, which outperformed the CRR. The overall errors found lie within an acceptable range, 

making the results valid not only relative, but also absolute. Next to the overall results, we were also able 

to confirm the behavior of the option price within one sample and compered to the results of the BSM 

Model. On the other hand, the idea of using split sample data to optimize the overall RMAE of the standard 

Heston Model failed, since the results worsened. In the discussion we summed up the advantages and 

disadvantages of the Heston Model that we find during our work. 

Over the course of the thesis, we showed many results, but discovered even more open points to further 

act on. Using different underlying datasets, longer maturities, wider data ranges, other Heston Model 

applications, etc. are strongly interesting. The goal would be to keep on improving the valuation of 

derivatives and option in particular, continue were Heston started with his idea.  
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