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Abstract—Context. Improving the efficiency and effectiveness
of software development projects implies understanding their ac-
tual process. Given the same requirements specification, different
software development teams may follow different strategies and
that may lead to inappropriate use of tools or non-optimized
allocation of effort on spurious activities, non-aligned with the
desired goals. However, due to its intangibility, the actual process
followed by each developer or team is often a black box.

Objective. The overall goal of this study is to improve the
knowledge on how to measure efficiency in development teams
where a great deal of variability may exist due to the human-
factor. The main focus is on the discovery of the underlying
processes and compare them in terms of efficiency and effective-
ness. By doing so, we expect to reveal potentially hidden costs
and risks, so that corrective actions may take place on a timely
manner during the software project life cycle.

Method. Several independent teams of Java programmers,
using the Eclipse IDE, were assigned the same software quality
task, related to code smells detection for identifying refactoring
opportunities and the quality of the outcomes were assessed by
independent experts. The events corresponding to the activity of
each team upon the IDE, while performing the given task, were
captured. Then, we used process mining techniques to discover
development process models, evaluate their quality and compare
variants against a reference model used as ”best practice”.

Results. Teams whose process model was less complex, had the
best outcomes and vice-versa. Comparing less complex process
variants with the ”best practice” process, showed that they were
also the ones with less differences in the control-flow perspective,
based on activities frequencies. We have also determined which
teams were most efficient through process analysis.

Conclusions. We confirmed that, even for a well-defined soft-
ware development task, there may be a great deal of process
variability due to the human factor. We were able to identify
when developers were more or less focused in the essential tasks
they were required to perform. Less focused teams had the more
complex process models, due to the spurious / non-essential
actions that were carried out. In other words, they were less
efficient. Experts’ opinion confirmed that those teams also were
less effective in their expected delivery. We therefore concluded
that a self-awareness of the performed process rendered by our
approach, may be used to identify corrective actions that will
improve process efficiency (less wasted effort) and may yield to
better deliverables, i.e. improved process effectiveness.

I. INTRODUCTION

Inaccurate planning and/or project plan deviations cause
substantial financial losses on software development projects
[1]. Further, constant inaccuracies and losses may degrade the
reputation of development teams as they become perceived as
non-compliant to organizational plans and budget forecasts.

Critical success factors have always been at the forefront of
the research related with software development projects [2]–
[5]. The existence of a vast literature about this topic, either
about successes [1] or failures [6], [7], reveals the concerns
and doubts that still haunt software development practitioners
regarding the efficiency and effectiveness of their own projects.

It is frequently suggested that software projects can be
assessed across four perspectives: quality, scope, time and cost
[2], which are related with the planning and execution of the
project’s main activities. Each perspective has its own critical
success and failure factors, that can be grouped into five dif-
ferent dimensions: organizational, people, process, technical,
and project [3]. In this paper, we will be mainly concerned
with the effect of the human factor in process variability.

To start a software development project from scratch is
a complex activity on its own [8], specially in the absence
of a formalized process or methodology [9] that acts as a
referential. Evidences found suggest that in addition to the
initial project planning, the way people are organized, the tools
they use and the processes they follow are key features for the
success or failure of any software project [9]. As for software
development, although prescribed process models may exist,
projects often do not comply with them, both because each
developer or team usually has some freedom to interpret the
process and because its compliance is not verified on the run,
since it is mainly intangible. As a result, it has been noted that
process executions (i.e. projects) often deviate from what was
planned [10]. In this paper we bring further evidence that the
human factor is a very important source of process variability
and the latter will have an impact on process efficiency and
effectiveness.

To understand how the process was actually performed
by its practitioners, we used process mining techniques. Our



approach, initially proposed in [11], captures events due to
practitioners activities executed in the IDE, as well as records
which artifacts were used and when, plus additional details
on the ecosystem of components supporting the process. This
new perspective on software development analytics, that uses
process mining, allows the discovery of the actual processes
practitioners are following, as well as deviations from those
they were supposed to comply to, without the complexity
and workload of collecting and merging information from
different information systems, such as, source code systems,
configuration management repositories or bug tracking tools.
As we will show later in this article, we were able to identify
the most and less efficient teams, and the ones that drifted less
from the same process when executed by an expert.

This paper is organized as follows: on section II we intro-
duce software development analytics challenges and introduce
process mining as a natural option to mine software process
events’ logs; on section III we present the research questions,
describe the experiment setup and the methods used for data
analysis; next, on section IV, we present the results, elaborate
on the main findings and identify threats to validity; finally,
in section V, we draw the main conclusions and outline the
future work.

II. CONTEXT

A. Software Development and the IDE

Nowadays, most software practitioners develop their work
upon an IDE (Integrated Development Environment), such
as Eclipse, IntelliJ IDEA, Netbeans or Visual
Studio Code. To a greater or lesser extent, those IDEs
support different software development life cycle activities,
such as requirements elicitation, producing analysis and de-
sign models, programming, testing, configuration manage-
ment, dependencies management or continuous integration.
In this paper we will consider Eclipse, which owes its
wide adoption to the vast plethora of plugins available in
its marketplace. Eclipse distributions are customized for
specific users / purposes, such as for modellers, programmers,
testers, integrators or language engineers. Herein, we will
consider the standard distribution, which is particularly suited
to programmers.

An IDE, in addition to the artifacts it handles, contains
metadata about the developers’ activities that may reveal the
reasons why some individuals and teams are more efficient
than others. Moreover, it may have hidden in its usage, parts
of the logic why some projects are successful and others fail.
Those development activities can be identified by mining the
large amount of events created during the execution of the IDE
core components and the installed plugins.

B. Process Mining Within the IDE

Process Mining is now a mature discipline with validated
techniques producing accurate outcomes on several business
domains [12], [13]. A process mining project, if best practices
are followed [14], should use goals and event logs as inputs,
and produces actions to implement as outputs. The goals may

consist of improving some performance indicators, such as
time, risks and costs associated to a specific process, or simply
to maximize a service level. Actions may be the redesign of
a specific project, adjust a current process or, if there is a
fluctuation in case volume, one may want to include more
resources.

Our short-term goal, whose fulfillment we will describe
in this paper, was to assess teams’ efficiency by mining the
software development process flow and variability that occurs
due to the human factor. Our medium-term goal is to provide
operational support to software developers, systematically and
continuously using current event data to recommend the best
activity, adequate resource or action to execute now or in the
future. In both cases we will take as input the events emerging
from using the IDE. Those events convey a spaghetti-like
process [15] mainly because there is a very large number of
possible commands/tasks to execute within any IDE that will
grow exponentially with the number of installed plugins and,
as a consequence, so grows the potential complexity of any
mined process.

C. Related Work

This work is in the crossroads of software development
practices and process mining techniques. Much have been
said in literature about software development processes [16],
[17] and process mining separately [18]. However, elaborat-
ing about works combining these two disciplines requires a
careful approach, mainly because their intersection is vague
in some cases and not fully explained in others. Going back
almost a decade, [12] have mined software repositories to
extract knowledge about the underlying software processes,
and [19], [20] have learned about user behavior from software
at runtime. Recently, [21] was able to extract events from
Eclipse and have discovered, using a process mining tool,
basic developers’ workflows. Some statistics were computed
based on the activities executed and artifacts edited. In [22],
the authors have extracted development activities from non-
instrumented applications and used machine learning algo-
rithms to infer a set of basic development tasks, but no
process mining techniques were used to discover any pattern
of application usage. [23] used a semi-automatic approach for
analyzing a large dataset of IDE interactions by using cluster
analysis [23] to extract usage smells. More recently, [24] used
process mining to gain knowledge on software in operation
by analyzing the hierarchical events produced by application
calls(eg: execution of methods within classes) at runtime. The
studies mentioned above, extracted data from several different
sources and have used a multitude of statistics methods,
machine learning and process mining techniques. However,
to the best of our knowledge, none of these works combine
data from the IDE utilization with process mining methods
with the aim of measuring individuals or teams efficiency.
Even in the case of [21], where the approach is similar to
ours, nothing was done related to conformance checking on
the processes followed by developers, as there was no existing
reference model to compare with. Our work introduces a valid



approach for this purpose, and bring a new perspective to
software development analytics by filling this gap.

III. EXPERIMENT

We analyzed several teams performing independently the
same well-defined task on software quality assurance. To
block additional confounding factors in our analysis, all teams
had similar backgrounds and performed the same task upon
the same software system. To provide authenticity, the task
targeted a real-world (large) open-source Java system, the
Jasml (Java Assembling Language)1.

To understand what happened in each team, we mined the
corresponding process model based on its events (process
discovery phase). Then, we compared each discovered process
with a reference model (process conformance checking phase),
to assess the overall similarities and processes’ quality.

A. Research Questions

The following research questions emerged from our previ-
ously stated research goals:

RQ1) To what extent can process mining discover accurate
models representing developers’ behavior?

RQ2) Can we assess the efficiency of software development
teams by using process mining techniques ?

RQ3) The assessment of teams’ proficiency, performed by a
process expert, is reflected in the quality of the produced
models?

B. Experimental Setup

1) Subjects: Subjects were finalists (3rd year) of a BSc
degree on computer science at the ISCTE-IUL university,
attending a compulsory software engineering course. By this
time they had been trained across the same set of almost
30 courses and therefore had similar backgrounds. They
worked in teams up to 4 members each and were requested
to complete a code-smells detection assignment, aiming at
identifying refactoring opportunities, using the JDeodorant
tool2. This tool allowed the detection of four different types
of code smells: Long Method, God Class, Feature
Envy and Type Checking [25]. Once they have detected
the occurrences of those code smells, they were required to
apply JDeodorant’s automatic refactoring features to the
critical ones.

2) Data Collection Instrument: The Eclipse IDE has an
internal event bus accessed by the interface IEventBroker3

which is instantiated once the application starts. It contains a
publishing service to put data in the bus, whilst the subscriber
service reads what’s in that bus. This allows a subscriber to
read all or part of the events being managed within the IDE.
Using this feature we developed an Eclipse plugin4 capable
of listening to the actions developers were executing. Before
the experiment, the plugin was installed on each subject work

1http://jasml.sourceforge.net/
2https://marketplace.eclipse.org/content/jdeodorant
3https://wiki.eclipse.org/Eclipse4/RCP/Event Model
4https://github.com/jcaldeir/iscte-analytics-plugins-repository

environment, and later, all received a unique username/key
pair as credentials. This method was useful to unlock all the
plugin features and allowed us to identify each subject and the
corresponding team.

3) Collected Data: A sample event instance collected with
our plugin is represented in listing 1 in JSON format. The
field tags are self explanatory.

{
"team" : "T-01",
"session" : "a5d63j-jdi3-ikd912",
"timestamp_begin" : "2018-05-07 16:53:52.144",
"timestamp_end" : "2018-05-07 16:54:04.468",
"fullname" : "Ana Sample",
"username" : "ana",
"workspacename" : "Workspace1",
"projectname" : "/jgrapht-core",
"filename" : "/jgrapht-core/AncestorTest.java",
"extension" : "java",
"categoryName": "Eclipse Editor",
"commandName": "File Editing",
"categoryID": "org.eclipse.ui.internal.EditorReference",
"commandID": "iscte.plugin.eclipse.commands.file.edit",
"platform_branch": "Eclipse Oxygen",
"platform_version": "4.7.3.M20180330-0640",
"java": "1.8.0_171-b11",
....
}

Listing 1: Sample Eclipse Event Instance

4) Data Storage: Collected data was stored locally in a
CSV file. Whenever Internet connection was available, the
same data was stored in the cloud5. This storage replica-
tion allowed offline and online collection. The final dataset,
combining the two different sources, was then loaded into
a MySQL database table where the username and event
timestamps that formed the table’s unique key were used for
merging duplicated data. Figure 1 presents a schema of the
data collection workflow.

Fig. 1. Experiment Data Collection Workflow

5https://azure.microsoft.com/en-us/services/event-hubs/



5) Data Preparation: When the software quality task
ended, all events stored in the database were converted to the
IEEE eXtensible Event Stream (XES) standard format [26]
and imported into ProM process mining tool6. The following
event properties were mapped when converting to XES format:

• team was used as CaseID since we were interested to
look into process instances of teams, not of individual
programmers.

• Properties categoryName and commandName forming a
hierarchical structure were used as the activity in the
process.

• The timestamp begin and timestamp end were both used
as activity timestamps.

• Other properties were used as a resource in the process.
6) Data Demographics: As previously mentioned, we only

analyzed data collected on the same software system, to block
confounding factors. The chosen system was Jasml (Java
Assembling Language)7.

The plugin collected two types of events: events within a
project context(PE) and generic events(GE) at the Eclipse
global context. The former summarizes events for which
we have associated project and file names. This information
expresses actions done by each developer in the project
where JDeodorant features, such as, detecting a God
Class, Long Method, File Open, File Edit,
Refactoring, Delete Resources, were applied. The
latter represents events captured from Eclipse command
actions not associated with any project (e.g. Update
Eclipse Software, Install New Software,
Open Eclipse View Task List, etc).

We present their statistics in Table I. Project events should
be seen as fundamental events for the task programmers were
requested to execute, and, in a certain way represent the focus
their are putting into that work. Generic events are seen as
collateral actions not mandatory for the task in hand, but that
programmers may need or want to execute to prepare their
environment. These generic events somehow convey a lack of
focus on the task developers were supposed to execute.

The REFERENCE(also identified as REF.) team, corre-
sponds to the professor that proposed the task itself. Being
the main expert, he executed it in one of the most efficient
ways. The full dataset, that includes data on all teams with
fine grained data that is not addressed in this paper, is publicly
available.8

C. Data Analysis

1) Context: Several approaches have been proposed to
evaluate the quality of discovered process models. Software
quality metrics were mapped to process metrics in [27].
Groups of metrics were also used in [28], [29] to evaluate
several dimensions in a process model and, more recently,
artifacts were created to support process quality evaluation and

6version 6.8, available at http://www.promtools.org
7http://jasml.sourceforge.net/
8doi:10.17632/8dmdwpgdy4.1

perform process variants comparisons [24], [30]. All of these
fit within the well defined [15] and generally accepted four
dimensions to assess the quality of a model: fitness, precision,
simplicity and generalization.

2) Process Discovery: Several well known algorithms exist
to discover process models, such as, the α-algorithm, the
heuristics, genetic and fuzzy miner. However, our need to
discover and visualize the processes in multiple ways lead us
to choose the ProM’s StateChart Workbench plugin
[24]. This plugin, besides supporting process model discovery
using multiple hierarchies and classifiers, also allows to visual-
ize the model as a Sequence Diagram and use notations such
as Petri Nets and Process Trees. This plugin is particularly
suitable for mining software logs, where an event structure is
supposed to exist, but it also supports mining of other so-called
generic logs.

Events collected from software in operation (e.g. Java pro-
grams) reveals the presence of a hierarchical structure, where
methods reside within classes, and classes within packages
[31]. The same applies to IDE usage actions, since identified
menu options and executed commands belong to a specific cat-
egory of command options built-in the Eclipse framework.
Supported by this evidence, we used the Software log Hierar-
chical discovery method with a Structured Names heuristic,
to discover the models based on the fact that the events
were using a category|command structure (e.g. Eclipse
Editor|File Open). Several perspectives can be used to
discover and analyze a business process and the most com-
monly used are: Control-Flow, Organizational,
Social and Performance. For the sake of space, we have
just focused on the Control-Flow perspective in this paper.
It defines an approach that consists in analyzing how each
task/activity follows each other in an event log, and infer
a possible model for the behavior captured in the observed
process.

3) Process Variant Comparison: Our goal was also to
compare the behaviour among the teams involved in the
experiment against the ”best practice” process, as performed
by the expert, and identify the ones with less differences. For
this purpose, we used the Process Comparator plugin
[30], which is a tool that compares a collection of event logs,
using a directed flow graph. It uses transition systems to model
behavior and to highlight differences. Transition systems are
annotated with measurements, and used to compare the behav-
ior in the different variants. The annotations of each variant
are compared using statistical significance tests, in order to
detect relevant differences.

IV. RESULTS

Figure 2 presents team T-26 process variant, showing the
code smells detection activities, and the correspondent statis-
tics about the process followed to execute the requested task.
It is clear, based on the different levels of blue in the activities
performed, that they executed more often the activities related
with the code smells detection and correction. We confirm this



TABLE I
COLLECTED EVENTS STATISTICS

Team TM UCC UCA UEA PE (#/%) GE (#/%) TE (#)
T-43 4 10 38 39 790 / 85.13% 138 / 14.87% 928
T-41 2 10 37 40 615 / 77.75% 176 / 22.25% 791
T-02 3 12 41 24 552 / 74.80% 186 / 25.20% 738
T-26 2 8 28 22 360 / 77.25% 106 / 22.75% 466
T-23 1 9 23 22 276 / 93.24% 20 / 6.76% 296
T-21 1 9 27 23 272 / 77.71% 78 / 22.29% 350
T-24 1 8 26 13 181 / 89.60% 21 / 10.40% 202
T-01 4 13 45 16 105 / 29.49% 251 / 70.51% 356
REF. 1 4 12 20 134 / 97.10% 4 / 2.90% 138

TM - Team members, UCC - Unique Command Categories, UCA - Unique Command Actions, UEA - Unique Edited Artifacts
PE - Project related events, GE - Generic Eclipse events, TE - Total events

by observing the Eclipse Editor | File Editing
activity which was executed more than any other activity.

Globally, our attention went to the evaluation of the Sim-
plicity (or Complexity) of the models discovered. Simplicity
allude to the rule that the simplest model that can describe the
behavior found in a log, is indeed the best model.

Software artifacts with higher cyclomatic complexity tend
to be harder to maintain. It has been claimed that the same
rationale is applicable to process models [32]. Based on this,
we were looking for the teams with less complexity in their
processes. As shown, teams T-26, T-24 and T-41 are the ones
with less Cyclomatic Complexity (as represented by
different levels of green), therefore closer to the complexity of
the REFERENCE model. That is also reflected by the number
of Simple and Composite States, and Activities
discovered in each of those models. Team T-26 modelled
behavior was also the one discovered with best precision
(45%) among these 3 teams.

On the opposite pole (as represented by different levels
of red) with an unique characterization, we have team T-
01, with four members, which did not delivered the results
of the requested task. Its proficiency was insufficient and
careful review of the process revealed this team produced more
generic events than project related events, as shown in Table I.
From Figure 3 we can also learn this team used more unique
command actions and respective categories than any other
team, and that did not increase the number of edited files, as
one would have expected. This leads us to think its members
did not understand or follow the process at all, since many
of their actions in the IDE apparently were not aligned with
the required task. The high values of complexity, activities,
number of transitions and composite states metrics observed
in Table II complements this assumption.

We can, therefore, state the following: T-01 was an ”ex-
pensive” team and the one that presented more risks from a
project management perspective. When compared with other
teams, this team had a similar process duration (see table IV)
in executing the task, but did not deliver the expected outcomes
at all. This team was not only non effective, but also showed
major inefficiencies in whatever they tried to produce.

An interesting case to study deeper is team T-02 which had a

good proficiency in the task, as seen in Table IV, but showed
high levels of complexity in the model. This means we are
dealing with a case where the team was effective, because
they achieved the task with success, although without being
efficient in the process. This is confirmed by the high number
of different commands executed showed in Table I.

We also compared the behaviour between the 3 teams with
less complex models against the reference model. The level
of Control-Flow differences based on activity frequencies, as
calculated with the Process Comparator plugin, is plotted in
table III. Team T-24 was the one with less differences when
compared with the reference model, followed very closely
by T-26. Based on the complexity measurements, control-
flow differences and team size, we advocate that T-26 had
accomplished the task with the best overall efficiency and
effectiveness. In fact, that is also reflected in the proficiency
mark given by the professor (that acted as the task expert), as
shown in table IV. This raises a set of other research questions,
such as: can process mining be used to assess the proficiency
of developers in general, or just for specific kinds of tasks?

TABLE II
MODELS DISCOVERED - METRICS SUMMARIZATION

Team F(%) P(%) A HD SS CS T CC
T-43 85.8% 39.9% 37 2 93 12 130 35
T-41 74.2% 43.9% 38 2 88 11 121 31
T-02 81.6% 33.8% 47 2 109 11 159 48
T-26 80.1% 45.0% 25 2 60 6 85 23
T-23 79.7% 32.3% 31 2 104 16 141 35
T-21 94.2% 46.5% 36 2 93 12 131 36
T-24 94.4% 35.9% 30 2 74 8 103 27
T-01 91.7% 43.0% 52 2 147 18 209 60
REF. 85.1% 53.7% 16 2 47 6 64 15

F-Fitness, P-Precision, A-Activities, HD-Hierarchy Depth,
SS-Simple States, CS-Composite States, T-Transitions,

CC-Cyclomatic Complexity

A. Validity Threats

1) Internal validity: Since some teams worked in shared
laboratories at the university campus, different team members
may have used, in the same computer, the same user/key pair



Fig. 2. Team T-26 Process Variant

to activate the collection plugin. This may be a source of non
accuracy in collected data.

Some users have stopped the collection mechanism which
makes it impossible to understand what they were doing during
that period. We also found that a few teams have made a pause
in the task, causing it to express more execution time than what

T-43 T-41 T-02 T-26 T-23 T-21 T-24 T-01

10

20

30

40

Teams

Unique Command Categories Unique Command Actions Unique Edited Files

Fig. 3. Unique Categories,Commands and Edited Files Statistics

TABLE III
BEHAVIOR DIFFERENCES COMPARISON

Ref. Log Team Control-Flow Differences(%)
T-41 87.60 %

REFERENCE T-26 85.11 %
T-24 85.04 %

TABLE IV
ASSIGNMENT DURATION

Team Proficiency Process Duration
T-43 0 23h:49m
T-41 0.73 18d:3h
T-02 0.75 11d:22h
T-26 0.75 12d:16m
T-23 0.72 12d:13m
T-21 0.02 8d:12h
T-24 0.64 47m:14s
T-01 0 10d:7h
REFERENCE – 23m:05

was really needed. The mined processes reflects these times,
but indeed, that was idle time. Nevertheless, other reasons may
exist for these delays, and therefore, their model is in fact
accurate, because it plots what really happened.

2) External validity: Since we wanted to block some fac-
tors such as the degree of previous experience (background)
in the proposed process, and repeat the data collection process
in a between groups design, to avoid the learning effects of
paired designs, the only feasible solution was to use students
as subjects, as referred in subsection III-B1. We cannot claim
that these students are adequate surrogates for professional
software developers.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

1) RQ1: We can not underestimate the fact that software
development IDEs provide the users with a vast number of
commands and menus to execute from, as seen in II-C. Trying
to model these, is indeed a challenge, and, most times, a
spaghetti-like process is the result of a successful process
discovery. However, from an event log containing user actions,



we were able to model teams’ behavior with moderate-to-
strong Fitness and Precision values and yet achieve readable
models. We are however well aware that these values should
be validated with more experiments and different data.

The need to answer RQ1 was vital to understand if we
could indeed discover processes followed by different people,
that may be using different tools, in different locations but con-
tributing to the same final outcome or product. The importance
of understanding and measure teams’ dynamics has grown
with the current business trends that lead to Global Software
Engineering (GSE) and Global Software Development (GSD).
This is one of the main challenges faced by GSE and GSD,
as in those kinds of projects the usual monitoring techniques
are obsolete [33].

2) RQ2: We were able to discover and reconstruct process
models representing the efficiency of software development
teams, where, in some cases, members were working indi-
vidually, each with their own IDE setup configurations. We
confirmed that process mining may play a fundamental role
in assessing the efficiency of software development teams
and in potentially contributing to keep them focused on their
tasks by checking and enforcing compliance to the prescribed
processes.

Every project manager wants to have in the projects he/she
manages the most efficient and/or adequate resources. As
this is expected to increase productivity in the development,
measuring which teams or individuals are more efficient is a
step further for better planning future software development
projects.

3) RQ3: By assessing the way a task is executed and the
proficiency achieved, as we did to answer RQ3, we were
looking if there was any relation between those on the software
development realm. This study can contribute to extend the
discussion for the fact that the quality of a software product
may well be dependent on the complexity of the processes
followed.

In general, teams with less complexity in their models were
among the most proficient in the task. This means that, they not
only understood what was requested, but also had the maturity
to deliver what was expected by following a simple process.
They were not only effective, they were also efficient by being
focused in the task.

On the contrary, teams with insufficient proficiency pro-
duced long and complex models or, in very short time, they
created very fuzzy models with too many generic events.
These teams were the ones where more risk aroused from a
development project perspective due to their erratic behavior
and uncertainty around the expected deliveries. Some of those
teams did not perform very well and quality was impacted,
and some others did not even deliver what was expected. In
a real-world scenario, these teams would have been identified
as the most expensive teams because their productivity was
indeed very low.

This gives us some evidence that teams’ proficiency can
be inferred by analyzing mined process models representing
their behavior. We don’t see this as a coincidence, however, to

sustain this evidence, we may need to replicate this experiment
in other contexts and with a larger number of teams and
developers.

No relevant performance or bottleneck patterns were iden-
tified in the processes, and the reason for this may be related
with the type of task requested, which did not impose restric-
tions on times to work on any artifact, and/or the reduced
schedule imposed on the task.

B. Future Work

The current work can be expanded in breadth and in depth.
In this paper we mainly explored the control-flow perspective,
but others are worth exploring, such as the organizational
and performance perspectives. Devising team dynamics based
upon the identification of the artifacts impacted/touched by
the developers can be one of the following paths to research
further. This study also opens the opportunity for new research
related with forensic analysis on software development pro-
cesses, exploring a combined perspective of the quality of the
artifacts produced and the underlying processes.

While unveiling the details of past process instances is
important to understand what went wrong or unplanned, we
should be able to react as soon as possible, that is, while
the process is being executed, to enable just-in-time corrective
actions. The IDE-based process mining architecture presented
in this paper is forming the base of our SPOTS (Software
Process On-the-run Tracking System). This tool will provide
near real-time software development process insights, at the
individual or team level, such as in the Personal Software
Process [34], or Team Software Process approaches [35], but
in an automated fashion. According to [15], this kind of
operational support is the most advanced form of process
mining action.

We also plan to investigate how development process smells
[36] may be used to assess software process drift manage-
ment. Machine learning techniques are plausible candidates to
automatically classify mined models (as good or bad process
smells).
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