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Abstract—Deep learning has shown promising results in 

several computer vision applications, such as style transfer 

applications. Style transfer aims at generating a new image by 

combining the content of one image with the style and color palette 

of another image. When applying style transfer to a 4D Light Field 

(LF) that represents the same scene from different angular 

perspectives, new challenges and requirements are involved. 

While the visually appealing quality of the stylized image is an 

important criterion in 2D images, cross-view consistency is 

essential in 4D LFs. Moreover, the need for large datasets to train 

new robust models arises as another challenge due to the limited 

LF datasets that are currently available. In this paper, a neural 

style transfer approach is used, along with a robust propagation 

based on over-segmentation, to stylize 4D LFs. Experimental 

results show that the proposed solution outperforms the state-of-

the-art without any need for training or fine-tuning existing ones 

while maintaining consistency across LF views. 

Keywords—light field; angular consistency; deep learning; 

neural style transfer; superpixels 

I.  INTRODUCTION 

Appealing paintings and artwork have attracted people for 
thousands of years. In the past, a skilled artist was always 
required to create a painting with a specific style, brush strokes 
and color palette, which typically took a long time. With the 
recent advances in learning-based techniques and the advent of 
style transfer, such creation is now possible to be performed by 
computers. Style transfer is an image editing application in 
which a new image is generated by combining the content of one 
image with the style of another one (e.g., a famous painting). 
Style transfer is a long-standing research area in the broader area 
of texture synthesis [1], [2]. Recently, with the rapid 
development of deep learning, neural networks are being used to 
solve the style transfer task. Gatys et al. [3] were the first to 
apply Convolutional Neural Networks (CNN) to stylize an 
image. In their work, CNNs are used to extract the feature maps 
of the content image (i.e., the image from which the content will 
be transferred) and style image (i.e., the image from which the 
style will be transferred). Afterwards, a target image (i.e., the 
stylized image that combines the content image with the style 
image) is iteratively optimized by minimizing a loss function. 
Johnson et al. [4] improved the performance of [3] by training a 
feed-forward network for each style image and generating a 
stylized image with only one forward pass in the testing stage. 
Although it is 3 times faster than [3], the solution in [4] is not 
flexible in terms of the number of used styles since it requires 
training for each style. Additionally, other neural networks have 

also been exploited to achieve style transfer, such as generative 
adversarial networks that require paired training data to learn a 
specific style, which is not always available and may limit their 
applications [1]. Moreover, Neural Style Transfer (NST) has 
been extended to consider videos [5] and different imaging 
modalities, such as stereo imaging [6] and 4D Light Fields (LF) 
[7], [8]; interested readers are encouraged to read the recent 
comprehensive reviews of the existing NST solutions in [1], [2]. 

4D LFs involve rich information since not only the light 
intensity is captured but also ray directions [9]. LFs capture the 
same scene from different perspectives, thus allowing 
interesting applications such as depth or disparity estimation 
(i.e., the displacement of a point between different views, which 
is inversely proportional to the depth), view synthesis and post-
capture refocusing [9], [10]. 4D LFs can be represented as an 
array of views 𝐼(𝑥, 𝑦, 𝑢, 𝑣), where (𝑥, 𝑦) are the spatial 
coordinates, and (𝑢, 𝑣) are the angular coordinates of each view. 
When fixing one angular and one spatial coordinates, an 
Epipolar Plane Image (EPIs) (i.e., the unique 2D spatio-angular 
LF slice typically containing a regular structure with several 
oriented lines [11]) can be obtained as illustrated in Figure 1. 

While generating stylized images that are visually pleasant 
is an important criterion for 2D images, maintaining cross-view 
consistency is also essential for 4D LFs. More precisely, directly 
applying 2D image or video style transfer methods to the entire 
4D LF views, without considering the correlation between them, 
may result in inconsistent stylized LFs with highly unnatural 
artifacts. Only a few solutions are available in the literature that 
consider 4D LF cues in the style transfer application. Hart et al. 
[7] proposed an extension to the work of Johnson et al. [4] by 
adding a disparity loss term to the loss function. The disparity 
loss is computed by finding the difference between each stylized 
LF view and the stylized central view warped into that view. The 
disparity loss is then backpropagated through the network. This 
repeats for each LF view until convergence is reached. While 
their work considers cross-view consistency, it requires 
optimizing each LF view iteratively (assuming dense LFs). 

This work was funded by FCT/MCTES through national funds under 

projects UIDB/50008/2020 and PTDC/EEI-COM/7096/2020. 

 
Fig. 1. Example of light field representations. a) 4D light field represented 

as an array of views; b) Horizontal and vertical EPIs. 

 

 

 

 

  

 

 

 

 

 

 

 

 

      



 

Moreover, although the feed-forward approach is fast, it needs 
to be trained for each style, hence, limiting style selection 
flexibility. Egan et al. [8] addressed these drawbacks and 
proposed a novel NST method that considers local angular 
consistency. Their work extended the Gatys et al. work [3] by 
adding the local angular consistency loss in the total loss 
function. Although their work ensures local angular consistency 
for LFs with larger disparity ranges, applying optimization using 
this technique for each view is very time-consuming. 

The contribution of this paper is a novel 4D LF NST method 
that overcomes the limitations of the existing methods by: 

• Enabling NST flexibility (in terms of the number of 
styles that can be used) with less computational 
complexity: to achieve that, the optimization-based 
NST [3] method (which does not require training a 
model for each style image) is used. To reduce the 
optimization-based NST complexity significantly, only 
a limited set of views (i.e., the four corner views) are 
initially stylized using the method in [3] (different from 
[7] and [8] that require optimizing each LF view). 

• Improving 4D LF view-consistency: by exploiting LF 
over-segmentation (that adheres to object boundaries 
and maintains LF view-consistency), the edits from all 
corner views are propagated into each LF view using 
per-pixel disparity in an occlusion-aware manner. The 
proposed method outperforms the existing solutions 
without training or fine-tuning the existing NST models. 

The remainder of this paper is organized as follows: Section 
II describes the proposed method in detail, and Section III 
evaluates its performance through a series of experimental 
results. Finally, Section IV concludes the paper with some final 
remarks and proposes directions for future work. 

II. PROPOSED METHOD 

The proposed method contains four main steps as presented 
in Figure 2. Given a style image and a 4D LF, the four corner 
views are initially stylized using optimization-based NST [3]. 
After that, disparity maps for all input LF views are estimated 
using [12]; to ensure spatio-angular consistency during the 
propagation. Next, the 4D LF is over-segmented into spatio-
angular coherent regions (a.k.a superpixels), as in [13] to 
facilitate the propagation and respect object boundaries and 
occlusions. Afterwards, the stylization is propagated into all LF 
views through occlusion-aware back-projection from each view 
into all corner views. Finally, remaining isolated non-stylized 

pixels that emerged after back-projections due to occlusions, are 
filled robustly. Each step is detailed in the following subsections. 

A. Corner Views Stylization 

Initially, only the extreme four corner views are stylized 
using the approach in [3]. The corner views are selected since 
they typically contain the maximum scene information including 
dis-occlusions. The approach in [3] aims at minimizing the 
distances of the feature representation between the content/style 
image and the target one in one or more layers of the CNN. The 
target image is initially generated using a white noise image and 
iteratively optimized using the loss function, ℒ𝑡𝑜𝑡𝑎𝑙, defined by 
(1), where ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡 , is the content loss and ℒ𝑠𝑡𝑦𝑙𝑒, is the style 

loss. To ensure view-consistent stylization, the initial white 
noise is set the same for all corner views. Finally, to control the 
output, two weighting factors (i.e., the content weight, 𝛼, and the 
style weight, 𝛽) are included: 

 ℒ𝑡𝑜𝑡𝑎𝑙 =  𝛼ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛽ℒ𝑠𝑡𝑦𝑙𝑒 . (1) 

Notice that the proposed method is independent of the used 
2D NST method. However, the approach in [3] is used due to its 
flexibility to transfer any style and it enables controlling the 
target images by adjusting the weights in (1). Moreover, any 
number of views or angular positions can be used but the results 
may be influenced accordingly. 

B. Disparity Maps Estimation 

LF imaging provides rich information, which makes it 
possible to estimate a disparity map for each LF view. In this 
paper, the proposed method in [12] (that estimates disparities 
from each view to its right adjacent view) is used to estimate 
disparity maps for all LF views. Per-pixel disparity is used here 
to ensure consistent pixel projection during the propagation step. 

C. Light Field Superpixel Creation 

LF over-segmentation is capable of adhering to object 
boundaries and creating a unique label for each homogenous 
region to facilitate subsequent editing tasks. In this paper, the 
recently proposed Adaptive LF Over-segmentation (ALFO) 
method [13] is used to guide the propagation in an occlusion-
aware manner. The ALFO method exploits color, disparity and 
position features to apply adaptive K-means clustering. 
Additionally, it can robustly balance accuracy, shape regularity 
and view-consistency. In our experiments, the superpixel size is 
set to 20 as suggested in [13] as a reasonable size for robust 
adhesion to the borders. 

 
Fig. 2. Overview of the proposed method for view-consistent 4D LF neural style transfer. By combining the style of 2D image with the content of 4D LFs and 

applying an occlusion-aware propagation, a consistent 4D stylized LF is generated. 



D. Occlusion-aware Propagation 

Given the LF disparity maps, LF superpixels and stylized 
corner views, the stylization now can be propagated into all other 
4D LF views. Initially, each LF view is back-projected into all 
corner views using its disparity map (2): 

 

𝑥𝑖
𝑟𝑒𝑓

=  𝑥𝑖
(𝑢,𝑣)

+ 𝑑ℎ𝑜𝑟
(𝑢,𝑣)→𝑟𝑒𝑓

, 

𝑦𝑖
𝑟𝑒𝑓

=  𝑦𝑖
(𝑢,𝑣)

+ 𝑑𝑣𝑒𝑟
(𝑢,𝑣)→𝑟𝑒𝑓

, 

(2) 

where 𝑥𝑖
(𝑢,𝑣)

, 𝑦𝑖
(𝑢,𝑣)

 are the spatial position coordinates of a pixel, 

𝑖, which is located in a view of angular coordinates (𝑢, 𝑣), 𝑥𝑖
𝑟𝑒𝑓

 

and 𝑦𝑖
𝑟𝑒𝑓

 are the spatial position in a reference view (i.e., 𝑟𝑒𝑓 in 

this paper represents a single corner view, hence, the same 
equation is applied for all corner views independently), and 

𝑑ℎ𝑜𝑟
(𝑢,𝑣)→𝑟𝑒𝑓

, 𝑑𝑣𝑒𝑟
(𝑢,𝑣)→𝑟𝑒𝑓

 are the horizontal and vertical disparity 

from view (𝑢, 𝑣) to the reference view. The used disparity 
estimation method [12] estimates disparity for adjacent views, 
therefore, for regularly sampled 4D LF views back-projection is 

applied by multiplying the disparity value by (𝑢𝑟𝑒𝑓 − 𝑢), 

(𝑣𝑟𝑒𝑓 − 𝑣) when computing 𝑥𝑖
𝑟𝑒𝑓

and 𝑦𝑖
𝑟𝑒𝑓

, respectively [13]. 

These equations are applied in the case of parallel optical light 
field capturing assumption, as in [13]–[16]. Otherwise, intrinsic 
and extrinsic camera parameters should be considered. 

Since the projected pixel coordinates may belong to ℝ2, and 
to ensure integer indexing (since the visual information is only 
available for integer indices), the four neighboring pixels, 𝒩𝑖 ∈
{𝐼𝑎 , 𝐼𝑏 , 𝐼𝑐 , 𝐼𝑑}, of the back-projected pixel with integer positions 
(∈ 𝕫2) are considered as presented in Figure 3. However, 
consistency is checked by comparing the label and disparity of 

the pixel in (𝑥𝑖
(𝑢,𝑣)

, 𝑦𝑖
(𝑢,𝑣)

) and all pixels in 𝒩𝑖  to choose which 

ones to be used for the interpolation. To overcome possible 
projection errors, due to disparity errors or discontinuities in 
superpixels, two conditions are checked before interpolation: 

• At least one pixel in 𝒩𝑖  has the same label as the pixel 

in its original location (𝑥𝑖
(𝑢,𝑣)

, 𝑦𝑖
(𝑢,𝑣)

). 

• The absolute disparity difference between a pixel 
disparity in view (𝑢, 𝑣) and at least one pixel disparity 
in 𝒩𝑖 is less than a threshold value, 𝜀. We empirically 
set 𝜀 = 0.1; since a superpixel with size (i.e., 20) is 
noticed to have, typically, similar disparity values. 

If any of the above conditions holds for all pixels in 𝒩𝑖 or 
part of them, then only these pixels are valid for interpolation. 
Interpolation is applied by computing the bilinear interpolation 
of valid pixels in 𝒩𝑖 , otherwise, no interpolation is computed.  

After computing the interpolated value from each corner 
view, the pixel in its original angular location (𝑢, 𝑣) is set to the 
mean color value of all valid back-projections from the four 
corner views. The mean is used after extensive experiments 
since it shows the best visual and numerical results when 
compared to using the median or weighted sum and maintains 

 
1Software implementation of all the used metrics can be found at: 

https://github.com/doegan32/Light-Field-Style-Transfer 

consistency across LF views. By doing this, only very few sparse 
and isolated pixels that have no projection, or invisible regions 
due to the angle of view, remain unstylized. To fully stylize all 
LF views, these remaining isolated pixels are filled by applying 
inward interpolation using the widely used region filling based 
on the Laplace equation as in [17]. 

 

III. EXPERIMENTAL RESULTS 

In this section, several methods are used as benchmarks to 
evaluate the performance of the proposed method. Firstly, two 
different baseline methods are considered, as in [8]: i) by 
applying Independent View Stylization (IVS) using existing 2D 
NST [3] to all LF views independently; and ii) by applying 
Pseudo Video Stylization (PVS) as proposed (for videos) in [5] 
for styling a pseudo video sequence of 4D LF views. To the best 
of the authors’ knowledge, only two recently proposed methods 
are specifically focused on tackling 4D LF challenges. The first 
one focuses on Global Angular Consistency Stylization (GACS) 
[7], and the second one focuses on Local Angular Consistency 
Stylization (LACS) [8]. Moreover, different synthetic and real-
world LF datasets and style images are used, as shown in 
TABLE I. For quantitative evaluations, two different metrics are 
used to evaluate the view-consistency namely: i) the LF Epipolar 
Consistency (LFEC) metric defined in [18]; and ii) the LF 
Angular Consistency (LFAC) metric1 defined in [8]. The LFEC 
and LFAC metrics evaluate the angular consistency by back-
warping LF views into a reference view and finding the color 
variance. Different than the LFEC metric that back-warps all LF 
views into the central view, the LFAC metric back-warps into 
the center view of a local window of views; to robustly consider 
large occluded regions. Both metrics require estimating disparity 
to apply back-warping, therefore, we estimated per-pixel 
disparity maps, for our results and all benchmark methods by 
using [12]. We noticed that, by using [12], the metric results of 
the benchmark methods are improved. Moreover, the disparity 
loss (which is the amount of disparity changes) is evaluated by 
using the disparity Mean Square Error (MSE) metric defined in 
[7]. This metric computes the 𝑀𝑆𝐸 × 100 between the central 
view disparity map estimated from the original LFs and the 
stylized ones. As in [8], the disparity estimation method in [19] 
is used. Results of all metrics are presented in TABLE II. Due to 
the limitation in the paper size, only the central view with 
horizontal EPIs are presented in TABLE III. However, we 
encourage the reader to see our and dynamic results2 for all LF 
views for clear view-consistency evaluation. For the used NST 
implementation, we used standard GPU-based MATLAB 
implementation [20] and we set 𝛼 = 50, 𝛽 = 103, the same 
values as used in the benchmark methods. 

2Dynamic results for all LF views can be found at: 

 https://github.com/MaryamHamad/LFStyleTransfer  

 
Fig. 3. Example of back-projection: a pixel in (𝒖, 𝒗) view that needs to be 

stylized is back-projected into each corner view (in blue squares).  
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The proposed method generates outperforming angular 
consistency in both LFEC and LFAC metrics, as can be seen in 
TABLE II. For the MSE metric, the GACS method achieves the 
best average results and preserves better object boundaries; 
hence, generates the central disparity maps that are similar to the 
original LF ones. However, it requires a pre-trained NST model 
as input for each style image. In this paper, corner views are used 
to minimize the occlusions, hence, there are no large holes left 
after propagation in densely sampled LFs. However, our method 
can be extended to consider sparse LFs that may have largely 
occluded regions by simply adding more reference views to 
consider all objects in LF views. The used technique for filling 
the holes in dis-occluded regions after propagation may generate 
some artifacts (which also occur in the benchmark methods) and 
thus requires further investigation. For time complexity, the 
proposed method reduces the needed time to stylize the entire 
LF significantly, i.e., for a LF with 81 views instead of taking 
81 × 𝑇𝑠, where 𝑇𝑠 is the average time needed to stylize a single 
view, it takes less than 10 × 𝑇𝑠 including LF disparity estimation 
and superpixel generation. Finally, it can be observed that 
neither applying 2D methods for each view independently nor 
existing methods for video are adequate solutions for 4D LFs.  

IV. FINAL REMARKS 

In this paper, a novel view-consistent 4D LF NST method is 
proposed. Without any further training for new deep learning 
models or fine-tuning existing ones, we exploited an existing 
optimization-based NST method to initially stylize only four 
corner views. Afterwards, the stylized views are propagated into 
all other LF views in an occlusion-aware manner by using LF 
superpixels. Experimental results have been shown to 
outperform the considered benchmark methods and produce 
visually appealing and consistent results across all LF views. 

For future work, we will extend style transfer to sparse LFs 
that include wide occlusions. Additionally, we will study other 
applications of the proposed propagation technique, such as 
semantic segmentation and object removal, where the edits are 
applied in reference views and propagated into other LF views. 
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TABLE I.  TEST IMAGES USED IN OUR EXPERIMENTS 

 
content 4D 

LFs 

Disparity 

range 

Style 

image 

Thumbnails:  

(content, style) 

a Swan [21] [-1, 1] Candy 

   

b 
Lego knights 

[22] 
[-3, 3] 

Rain 
princess 

   

c Bikes [23] [-1, 1] 
Rain 

princess 
   

d Herbs [24] [-3, 1.8] 
Starry 

night 
   

e Table [24] [-2, 1.6] Candy 

   

TABLE II.  ANGULAR CONSISTENCY (LFEC, LFAC) AND DISPARITY 

LOSS (MSE×100) METRICS 

Metric  
IVS 

(baseline) 

PVS 

(baseline) 

GACS 

[7] 

LACS 

[8] 
Ours 

LFEC 

(↑) 

a 19.29 25.24 30.31 28.43 40.83 

b 19.50 21.18 23.16 24.51 29.21 

c 22.14 23.10 33.77 27.48 42.92 

d 22.68 24.80 22.53 27.96 31.29 

e 19.02 22.03 28.19 25.72 32.38 

Avg.  20.53 23.27 27.59 26.82 35.33 

LFAC 

(↑) 

a 29.74 41.27 46.48 42.72 53.54 

b 30.51 35.29 37.82 38.09 44.00 

c 33.66 37.70 48.45 42.13 54.93 

d 33.37 38.92 34.92 41.58 45.49 

e 29.65 36.69 42.54 39.81 46.85 

Avg.  31.39 37.97 42.04 40.87 48.96 

MSE 

× 𝟏𝟎𝟎 

(↓) 

a 209.19 2.56 1.01 2.11 0.54 

b 256.36 22.15 13.14 19.50 18.85 

c 29.28 2.09 0.91 1.94 2.40 

d 96.08 11.68 8.10 8.31 5.00 

e 284.98 8.45 1.39 5.20 3.43 

Avg.  175.18 9.39 4.91 7.41 6.04 

TABLE III.  VISUAL COMPARISON WITH BENCHMARK METHODS 

 Content LF Style image IVS (baseline) PVS (baseline) GACS [7]  LACS [8]  Ours 

a 
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