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Abstract

The Sectoring–Arc Routing Problem (SARP) is introduced to model activities as-
sociated with the streets of large urban areas, like municipal waste collection. The
aim is to partition the street network into a given number of sectors and to build
a set of vehicle trips in each sector, to minimize the total duration of the trips.
Two two-phase heuristics and one best insertion method are proposed. In the two-
phase methods, phase 1 constructs the sectors using two possible heuristics, while
phase 2 solves a Mixed Capacitated Arc Routing Problem (MCARP) to compute
the trips in each sector. The best insertion method determines sectors and trips
simultaneously. In addition to solution cost, some evaluation criteria such as imbal-
ance, diameter and dispersion measures are used to compare algorithms. Numerical
results on large instances with up to 401 nodes and 1056 links (arcs or edges) are
reported and analysed.
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1 Introduction

The Sectoring–Arc Routing Problem (SARP) is defined on a mixed multigraph
that models the street network of a large city. A fleet of identical vehicles is
based at a depot node. Each link (edge or arc) needs a certain time to be
traversed without service by a vehicle, called deadheading time. Some links
require service by a vehicle and have known demands and service durations.
The goal is to partition these required links into a given number of sectors,
each sector being assigned to one vehicle, and to solve a Mixed Capacitated
Arc Routing Problem (MCARP) in each sector, in order to minimize the total
duration of trips over all sectors. The SARP combines two families of classical
problems: sectoring problems and arc routing problems. It is obviously NP-
hard because it reduces to an NP-hard MCARP for one single sector.

Sectoring (or districting) problems consist of partitioning a large region into
smaller sub-regions (sectors or districts), to facilitate the management of some
activities. The definition of sectors is a strategic decision over a long-term hori-
zon, often associated with resource allocation or facility location decisions in
each sector. The resulting sectors must remain stable during a few years, to
avoid costly rearrangements. Sectoring problems have many practical appli-
cations, such as political districting (Bozkaya et al., 2003; Hess et al., 1965;
Hojati, 1996), sales territory design (Drexl & Haase, 1999; Hess & Samuels,
1971; Zoltners & Sinha, 1983), waste collection (Hanafi et al., 1999; Male &
Liebman, 1978; Silva Gomes, 1983), postal delivery (Bodin & Levy, 1991; Levy
& Bodin, 1989), meter reading (Wunderlich et al., 1992), winter maintenance
operations (Kandula & Wright, 1995, 1997; Labelle et al., 2002; Muyldermans
et al., 2003; Perrier et al., 2007). An interesting survey can be found in Muyl-
dermans (2003).

In arc routing problems (ARPs), the activities of vehicles correspond to some
links of a network. The aim is to build one or several trips to cover required
links and minimize some measure like the total service cost. Applications in-
clude winter gritting, postal distribution, meter reading and street sweeping,
as reported in Assad & Golden (1995), Eiselt et al. (1995a) and Eiselt et al.
(1995b). Dror edited a book (Dror, 2000) entirely devoted to ARPs.

In the SARP, the demand of a sector often obliges the vehicle assigned to this
sector to do several trips. Moreover, most street sides are modelled as arcs,
but some streets whose both sides can be serviced simultaneously and in any
direction are modelled as edges. Hence, the underlying ARP in each sector is
a mixed CARP. To the best of our knowledge, the MCARP has been studied
only by Belenguer et al. (2006) and by Mourão & Amado (2005).

In this paper, the SARP is illustrated by waste collection, but any application
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involving the partition of the streets of a town into sectors and the definition
of vehicle trips in each sector could be handled as well. The SARP is more
realistic than the MCARP because waste management is easier with sectors:
production statistics can be gathered for each area, drivers have to memorize
a smaller subset of streets, the workload among different crews can be better
balanced, etc.

Section 2 presents the SARP and introduces the required notation. The gen-
eral principles of proposed solution methods are described in Section 3. Two
2-phase heuristics and one best insertion heuristic are respectively detailed in
Sections 4 and 5. Some criteria to evaluate the resulting partitions are de-
fined in Section 6. Section 7 reports computational experiments and, finally,
Section 8 outlines some conclusions and remarks.

2 Problem modelling and notation

This section explains the notation summarized in Table 1 (page 6).

2.1 Mixed multigraph

The SARP can be modelled by a mixed multigraph Γ with m links, in which
a subset of τ links, called required links or tasks, must be serviced. The nodes
of Γ correspond to crossroads or street ends, while the links model street
segments. The crew base, the dump site and a fleet of identical vehicles are
located at the same depot node s. All vehicles have a limited capacity W and
a maximum working time L.

A required street segment (producing some waste) is modelled either i) by one
edge, if it is a two way street whose both sides can be collected simultaneously
and in any direction (zigzag collection); ii) by two opposite arcs, if it is a two-
way street with sides collected separately; iii) or as one arc, if it is an one-way
street. A non-required street segment is represented as one arc or two opposite
arcs, depending on its possible traversal directions. A multigraph is obtained
when parallel arcs are allowed, for instance to model a wide one-way street
requiring two separate traversals, when zigzag collection is too dangerous. Γ
contains τ = α + ε required links, where α and ε respectively denote the
number of required arcs (arc-tasks) and required edges (edge-tasks).
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2.2 Internal network model

To simplify implementations, the mixed multigraph Γ is transformed into a
fully directed multigraph G = (N, A) in which each required edge is replaced
by two opposite arcs, as proposed in Lacomme et al. (2001). The arcs in A
are identified by indexes from 1 to |A| instead of pairs of nodes, to distinguish
between parallel arcs. Each arc u of A is defined by one begin-node b(u), one
end-node e(u) and a deadheading time du ≥ 0. Hence, the α+ ε required links
of Γ correspond in G to a set of required arcs R ⊆ A, with |R| = α+2 · ε arcs.
Each arc u ∈ R has additional attributes: a demand qu > 0, a collecting time
tu > du and a pointer inv(u). Each arc-task of Γ gives one arc u in R with
inv(u) = 0. Each edge-task is coded in R as two opposite arcs u and v, such
that inv(u) = v, inv(v) = u, qu = qv, tu = tv and du = dv.

The pointers are used by algorithms to mark both u and v when the edge is
serviced. By extension, the arcs of R are also called tasks, knowing that two
arcs u and v with inv(u) = v represent in fact the same edge-task of Γ. The
required multigraph GR = (NR, R) is the partial subgraph induced by NR and
R, NR ⊆ N being the set of nodes spanned by required arcs. Note that GR is
not necessarily connected.

It is assumed that all data are integer, G is strongly connected, no split collec-
tion is allowed and no demand exceeds vehicle capacity. Moreover, the maxi-
mum working time L is sufficient to allow any vehicle to leave the depot, reach
any required link, collect it and come back to the depot.

2.3 Forbidden turns and proximity measures

Two measures taking forbidden turns into account are defined to appraise
the proximity of any two arcs u and v of G. The first one Duv, also called D-
distance, is the minimum travel time from u to v, du and dv not counted, using
allowed turns only. It does not always correspond to a quickest path μ from
node i = e(u) to node j = b(v), because of possible forbidden turns between
u and the first arc of μ or between its last arc and v. To be coherent with
this arc-to-arc notation, a dummy loop σ = (s, s), called depot-loop, is added
to A. All D-distances can be pre-computed, using an adaptation of Dijkstra’s
shortest path algorithm (Cormen et al., 2001).

The second measure Uuv, called U-distance, is an undirected version of the D-
distance defined by equation (1), in which the inverse of an arc u is considered
only when it exists, i.e., if inv(u) �= 0.
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Uuv = min{Duv, Du,inv(v), Dinv(u),v, Dinv(u),inv(v), Dvu, Dv,inv(u), Dinv(v),u, Dinv(v),inv(u)}
(1)

Note that these two measures are not true metrics in the mathematical sense,
even if both satisfy the triangle inequality. Indeed, the D-distance is not sym-
metric, Duv = 0 if and only if u and v are consecutive arcs (e(u) = b(v)) and,
in general, Duu �= 0. The U-distance is symmetric but Uuv = 0 if and only if u
and v are consecutive or represent the same edge. However, these measures are
well adapted to mixed networks and lead to partitions approved by decision
makers. The Euclidean distance could have been used, but the actual path
between two nodes or arcs is much longer when real networks with one-way
streets and forbidden turns are present.

2.4 Sectors, trips and solutions

In our version of the SARP, the number K of sectors is imposed. A valid
sectoring is a partition S = {R1, R2, . . . , RK} of the tasks of R, in which Rk

is the set of tasks assigned to sector k, k = 1, 2, . . . , K. Nk denotes the set
of nodes spanned by the tasks of Rk, called inner nodes of sector k. For two
sectors k and l, note that Nk ∩ Nl may be non-empty, when there exist two
adjacent or parallel arcs u ∈ Rk and v ∈ Rl.

For a given circuit c, Rc is the set of tasks serviced and qc the total demand of
these tasks. A trip c is a special case of circuit. It can be coded as a sequence of
distinct task indexes, between two copies of the depot-loop σ, and connected
by implicit shortest paths. Its cost (duration) cost(c) includes i) the collecting
times of the tasks, ii) the deadheading times from the depot to the first task,
between two consecutive tasks, and from the last task to the depot, and iii) a
fixed dumping time λ to unload the waste. The deadheading times are easily
obtained using the pre-computed D-distances. The trip load must not exceed
vehicle capacity W .

One vehicle is assigned to each sector. It may perform several trips, subject
to the time limit L. The cost of a sector k, cost(k), is the total duration of its
trips. A SARP solution X is defined by a partition of R into K sectors and
by a set of trips for each sector. Its cost is the total cost of its sectors, i.e.,
cost(X) =

∑K
k=1 cost(k).
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Table 1
Glossary of mathematical symbols
Network Arc-related symbols Miscellaneous

Γ mixed multigraph u, v arc indexes s, σ depot-node and depot-loop

m nb of links bu begin-node W, L vehicle capacity and range

τ nb of required links eu end-node λ vehicle dump time

α nb of required arcs du deadheading time k,K sector index and nb of sectors

ε nb of required edges tu service time Rk tasks of sector k

G = (N, A) directed version of Γ qu demand Nk inner nodes of sector k

R ⊆ A arcs coding the tasks of Γ inv(u) opposite arc S = {R1, ...,RK} partition in sectors

NR nodes spanned by arcs of R Duv D-distance Rc set of tasks on circuit c

GR = (NR, R) required multigraph Uuv U-distance qc total demand of tasks on circuit c

3 Principles of SARP algorithms

3.1 The two kinds of heuristics

The SARP is very hard since it combines one NP-hard partitioning problem
and K NP-hard mixed CARPs. Moreover, the multigraph G for big cities con-
tains hundreds of arcs and such instances are out of range for exact algorithms.
This is why two heuristic methods are proposed. The first one, presented in
Section 4 works in two phases: phase 1 determines the sectors while phase 2
computes vehicle routes in each sector. Two variants are obtained by selecting
one of two possible heuristics for the sectoring phase. The second method,
detailed in Section 5, uses a best insertion principle to build sectors and trips
simultaneously.

The two-phase heuristics (TPH) and the best insertion heuristic (BIH) share
common components, explained in the remainder of this section. Each sector is
initialized with a seed-task, using the selection rule explained in Subsection 3.2.
Then, a main loop is executed until all tasks are assigned to sectors. In each
iteration, a sector is selected and receives one or several tasks. In this way,
sectors are built simultaneously and balanced sectors are promoted. Sector
selection is described in Subsection 3.3. The selection rule for the new tasks
depends on each heuristic and will be detailed later, but the idea is to favour
tasks with small demands or small collecting times.

3.2 Initialization of sectors

In both heuristics, each of the K sectors is initialized with one required arc of
R, called seed-task. The rule used to select the seeds, called MaxDist, tries to
maximize the U-distance (equation (1)) between the K seed-tasks, to favour a
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better spread over the entire network. The first seed is the task farthest from
the depot-loop. The K − 1 other seeds are selected to maximize the minimum
distance to the seeds already chosen.

3.3 Sector selection and workload estimates

Recall that the workload in a sector should not exceed the maximum working
time L. When a specific task can not be added to a sector without violating
this constraint, this sector is closed, otherwise it is open. The sectors to be
expanded are always selected among open sectors.

In the best insertion method, the sectors and trips are built simultaneously
and the exact workload of a sector is the total durations of its trips. In the
two-phase methods, such an exact workload is not yet available in phase 1,
because trips are built only in phase 2. In this case, an estimate must be used.

WE (workload estimate) is used to estimate the workload. Based on imaginary
trips built in a best insertion manner, it is not a lower bound. Each time a
task is added to a sector k, the workload estimate is updated according to the
cost variation derived from the insertion of that task into the best position
on an imaginary trip of k. These are called imaginary trips as they are valid
only during phase 1. This insertion cost is computed as described in Section 5,
using expressions (7) and (8).

To promote well-balanced sectors, sectors are built simultaneously. In each
iteration, the sector with the smallest workload estimate (two-phase methods)
or smallest exact workload (best insertion heuristic) is selected for expansion.

4 Two-phase methods

4.1 Principle

Two-phase heuristics for the SARP (TPH) mimic the behavior of most waste
collection network managers. In a first phase, the required arcs are partitioned
into K sectors with a workload estimate not greater than L. In a second
phase, the routing in each sector is modelled as a mixed CARP, solved by fast
heuristics described in Lacomme et al. (2004).

Two sectoring heuristics may be called in phase 1; they must be explained first
to better understand the whole algorithm. The first one, called the Circuit of
Tasks Heuristic (CTH), is described in 4.2. It adds to the selected sector the
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tasks of a small demand circuit computed in a balanced graph. The rationale
for this is the existence of at least one circuit in balanced graphs: once this
circuit is removed, the remaining graph stays balanced, which guarantees the
existence of circuits in subsequent iterations. The second sectoring heuristic,
named the Single Task Heuristic or STH, is introduced in 4.3. Contrary to
CTH, it adds one task at a time. A general algorithm for TPH is given in 4.4,
with a quick description of the MCARP heuristics.

4.2 Circuit of tasks heuristic (CTH)

The principle of CTH is to compute a minimum demand circuit in a balanced
graph (Mourão & Amado, 2005) and to assign all the tasks of this circuit to
a sector. The aim is to build sectors in which the tasks can be linked with a
small set of deadheading arcs during the routing phase. This is particularly
important in networks with a lot of one-way streets.

Whenever possible, a sector k is first expanded with the tasks of a circuit
including one of its inner nodes, i.e., a node spanned by the tasks already
in the sector. This strategy is called expansion from inside. It is expected
to favour sector compactness and contiguity. If circuits based on an inner
node do not exist, the expansion from outside consists of growing the sector
using a circuit built from the unassigned task closest to the sector. The tasks
traversed by the circuit are added to the sector and removed from the balanced
graph. The remainder of this subsection details the steps of CTH and gives
the resulting algorithm structure.

Balanced graph

The minimum demand circuits are identified in a balanced graph GB =
(NB, AB) deduced from the required graph GR. A digraph is balanced if the
in-degree d−(i) of each node i equals its out-degree d+(i). In such a graph,
every task belongs to one circuit at least. GB is obtained by adding dead-
heading copies of arcs from G to GR, to balance it at minimum cost. This
process is equivalent to a Transportation Problem (TP) (Beltrami & Bodin,
1974) which can be solved using a primal-dual algorithm (Syslo et al., 1983).
Like GR, GB is not necessarily connected.

In the TP, each node i in GR with d−(i) > d+(i) is an origin with supply
d−(i)−d+(i), and each node j such that d+(j) > d−(j) becomes a destination
with demand d+(j) − d−(j). The cost per unit transported from origin i to
destination j is the duration of a shortest deadheading path from i to j in
graph G, which is defined by:
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 Dij = min{Duv|e(u) = i ∧ b(v) = j} (2)

Let x∗
ij be the optimal number of units to be transported from i to j. The

balanced graph GB includes the graph GR and x∗
ij copies of each arc traversed

by the shortest path from i to j in G. All these copies have no demand and
keep their original deadheading time. NB ⊆ N is thus the set of nodes spanned
by the arcs in AB.

Minimum demand circuits

A minimum demand circuit in GB with one given arc u ∈ AB, denoted by c(u),
can be obtained by computing a path with minimum total demand from u to
u. The modified Dijkstra’s algorithm, already cited in 2.3 for the D-distances,
can be used for this purpose, considering the demands as costs. Due to the use
of arc-to-arc distances, a minimum demand circuit c(i) with one given node
i ∈ NB can be identified too, but this requires the computation of one circuit
for each arc leaving i, i.e., if qc(i) denotes the total demand on c(i):

qc(i) = min{qc(u)|u ∈ AB ∧ b(u) = i} (3)

When determining such circuits, each task v with copies in GB is first used
as a required arc, i.e., the first circuit including v considers it as a task. Only
then, non-required replicas of v might be chosen.

Sector expansion from inside – Inner node selection

When possible (if Nk ∩ NB �= ∅), a sector k is expanded from inside, by
computing a minimum demand circuit in GB from one inner node i of Nk.
Two selection rules are proposed for i. The MDC rule (maximum demand
circuit) computes one minimum demand circuit in GB for each inner node of
k and returns the node i and the circuit c(i) with maximum demand:

i = arg max{qc(j)|j ∈ Nk ∩ NB} (4)

The CST rule (closest to seed-task) selects in Nk ∩NB the inner node i closest
to the seed-task a of sector k. Its goal is to favour the construction of compact
sectors. Using the U-distances between two arcs, the distance between any arc
u ∈ A and any node j ∈ N can be defined as:

U j
u = min{Uuv|v ∈ A ∧ b(v) = j} (5)

And the node i closest to the seed-task a can be determined as follows:

i = arg min{U j
a |j ∈ Nk ∩ NB} (6)
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Sectors expansion from outside – Task selection

If sector k is open (expandable) and Nk ∩NB = ∅, it is expanded from outside
by determining the unassigned task b closest to its seed-task a, using again the
U-distance, and by computing in GB a minimum demand circuit containing
b. The sector expansion from outside is considered as an attempt to obtain a
well balanced set of sectors in terms of workload, and also to avoid deadlocks
as much as possible. Workload balance turns out to be a more crucial issue
than the compactness and contiguity ones in a waste collection application.

Balanced graph and sector updates

Once a minimum demand circuit c is obtained for a target-sector k, all its arcs,
required or not, are deleted in GB and we say that c is removed from GB. In
this way, the residual graph stays balanced. Nodes in GB with no incident
links are also deleted.

Then, every task u traversed by circuit c is added to sector k. We say that c
is added to k, although only the tasks are added. If u represents one required
edge, recall that there exists one arc v such that inv(u) = v and inv(v) = u
for the other edge direction. Whether v is traversed by c or not, it is also
added to the sector. This feature will defer to the routing phase the choice of
the best service direction for the edge. However, the balanced graph must be
cautiously updated if v is not on c: v must stay in GB, but as a non-required
arc.

Algorithm of CTH

CTH is summarized by Algorithm 1. Parameter NSR must be selected. NSR ∈
{MDC, CST} is the node selection rule used in case of sector expansion from
inside (page 9).

The balanced graph GB is computed first. Each of the K required sectors is
initialized with one seed-task and the tasks of one minimum demand circuit c
containing the seed, computed in GB. After this initialization step, a loop tries
to grow the sectors until all tasks are allocated. In each iteration, the open
sector k with the smallest workload estimate is first selected. If Nk ∩NB �= ∅,
a candidate minimum demand circuit based on one inner node i is selected for
an expansion from inside. Otherwise, a minimum demand circuit including the
task b closest to k is computed for an expansion from outside. In both kinds
of expansions, the circuit found is added to sector k and removed from GB, if
the resulting workload estimate does not exceed L. Otherwise, the expansion
has failed and sector k is closed.
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This process is nested in a main loop – repeat – which increments K when all
sectors are closed before a complete assignment of tasks, indicating that the
sectoring is infeasible for the previously fixed number of sectors. However, such
increments are rare if K is correctly estimated. One circuit being removed in
each iteration, GB stays balanced, which guarantees the existence of circuits
until the end. Note that the sectoring process may end with a non-empty
graph GB, but containing only non-required arcs.

Algorithm 1 – Circuit of Tasks Heuristic: CTH (NSR)

1: compute balanced graph G′
B

2: repeat
3: GB = G′

B

4: //Initialize K open sectors
5: for k = 1 to K do
6: WE(k) := 0 (initialize workload estimate for sector k)
7: Rk := ∅, Nk := ∅
8: select one seed-task a ∈ R using the MaxDist rule
9: find in GB a minimum demand circuit c containing a

10: update Rk and Nk (add tasks from c to k, and their inverses if not null)
11: update GB (remove c from GB) and WE(k)
12: end for
13: //Expand sectors
14: So := {1, 2, . . . ,K} (set of open sectors)
15: repeat
16: select k ∈ So with the minimum workload estimate
17: if Nk ∩ NB �= ∅ then
18: select i ∈ Nk using the NSR rule (expansion from inside)
19: find in GB a minimum demand circuit c containing node i
20: else
21: select b ∈ R ∩ AB closest to k (expansion from outside)
22: find in GB a minimum demand circuit c containing task b
23: end if
24: if WE(Rk ∪ Rc) ≤ L then
25: update Rk and Nk (add tasks from c to k, and their inverses if not null)
26: update GB (remove c from GB) and WE(k)
27: else
28: So := So \ {k} (close sector k)
29: end if
30: until all tasks are assigned to sectors or So = ∅
31: increment K if some tasks are left unassigned
32: until all tasks are assigned to sectors

Example (CTH)

Figure 1 gives an example for three sectors with the directed graph represented
in (a). Each arc has a deadheading time equal to 1 and, if it is required, its
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collecting time is 5 and its demand 1. The vehicles capacity is 3, L = 34
and dump time is λ = 1. The balanced graph, resulting from the solution
of a transportation problem, is represented in (b), where the copies of an
arc have the same arc number for simplecity. In (c), sectors 1, 2 and 3 are
respectively initialized with seed-tasks 17, 1 and 19, and the corresponding
minimum demand circuits. (d) shows, after a previous expansion of sectors 3
and 2, the expansion of sector 1 from inside, from node 7 (the node closest
to the seed-task 17): its minimum demand circuit with arcs 15, 16, 11 and
9 is considered, and tasks 11 and 16 are assigned to sector 1. The expansion
from outside is illustrated for sector 3 in (e): task 8 is selected, leading to the
minimum demand circuit built with arcs 8 and 2, and task 8 is added to sector
3.
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(d) expansion of sector 1 from inside (from node 7)
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(e) expansion of sector 3 from outside (from task 8)

sector 1

sector 2

sector 3

two arcs that code 
one required edge

1

2

3

4

5

6

78

9

10

11

13

15

16

17

18

19

20

1 2 3

4 5 6

7 8 9

(c) initialization of sectors

deadheading arc

required arc

Figure 1. Example for CTH

4.3 Single task heuristic (STH)

Contrary to CTH, this simpler sectoring heuristic grows sectors by adding one
single task a time. To promote sectors compactness and contiguity, the task b
added to a sector in each iteration is the one that minimizes the distance to
the seed-task. Two distances may be applied.

The first one is the U-distance (Sec. 2.3), already used by CTH to expand a
sector from outside. However, a task looking geographically close to a sector
may require a long travelling time to reach it, for instance when the network
contains many one-way streets or forbidden turns. One may observe that the
walking distance is small, while the deadheading distance is larger. This sug-
gests the use of an Euclidean-based distance, or E-distance, provided node
coordinates are available, which is the case in our instances and in reality.
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Given the Euclidean distance δpq between two nodes p, q ∈ V , the E-distance
between a task u = (i, j), with i, j ∈ V , and a seed-task a = (k, l), with
k, l ∈ V , is defined as Eua = min{δik, δil, δjk, δjl}.

STH is outlined in Algorithm 2. Parameter DK (distance kind) defines the
distance used to select task b in each iteration. First, each sector is initialized
with a seed-task. Then, sectors are expanded until all tasks are allocated. In
each iteration, the open sector k with smallest workload estimate is selected. If
the resulting workload satisfies L, the unassigned task closest to the seed-task
is added to k, otherwise the sector is closed. Like in CTH, this process may
fail if K is too small, this is why it is nested in a main loop which increments
K in case of failure.

Algorithm 2 – Single Task Heuristic: STH (DK )
1: repeat
2: //Initialize K open sectors
3: R′ := R (set of required arcs not yet assigned to sectors)
4: for k = 1 to K do
5: WE(k) := 0 (initialize workload estimate for sector k)
6: Rk := ∅, Nk := ∅
7: select one seed-task a ∈ R using the MaxDist rule
8: update Rk and Nk (add a to Rk, with inv(a) if not null)
9: update R′ (remove a from R′, and inv(a) if not null) and WE(k)

10: end for
11: //Expand sectors
12: So := {1, 2, . . . ,K} (set of open sectors)
13: repeat
14: select k ∈ So with the minimum workload estimate
15: select b ∈ R′ closest to the seed-task of k, using distance DK
16: if WE(Rk ∪ {b}) ≤ L then
17: update Rk and Nk (add b to Rk, and inv(b) if not null)
18: update R′ (remove b from R′, and inv(b) if not null) and WE(k)
19: else
20: So := So \ {k} (close sector k)
21: end if
22: until R′ = ∅ or So = ∅
23: increment K if some tasks are left unassigned
24: until all tasks are assigned to sectors

4.4 General structure of TPH

The general structure of the two-phase heuristics is depicted in Algorithm 3.
The two phases are nested in a main loop because they may fail for the given
number of sectors K. In that case, K is incremented and the process repeated.
In addition to parameters transmitted to sectoring heuristics, TPH requires
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two specific parameters SH and RH. SH indicates the sectoring heuristic to
be used in phase 1. If SH = CTH, the CTH is called with its parameter NSR
explained before. Otherwise (SH = STH), STH is executed with its parameter
DK. RH specifies the MCARP heuristic applied to each sector in phase 2: EM,
EPS or EU.

The fast heuristics EM, EPS and EU used in phase 2 are classical CARP
heuristics extended to mixed networks with forbidden turns (Lacomme et al.,
2004).

EM is the MCARP version of the Augment-Merge algorithm (Golden & Wong,
1981), without the augment phase. Starting from a trivial solution in which
each task is served by one trip, each iteration of EM evaluates the merger
(concatenation) of any two trips, subject to W and L, and merges the two
trips with the largest positive saving. The process is repeated while feasible
mergers are found. A tie-breaking rule is added in Belenguer et al. (2006) to
improve EM: when several mergers have the same saving, priority is given to
the one whose trips have the maximum discrepancy in load. This trick favours
the creation of a few large trips that absorb much smaller trips. Without it, the

Algorithm 3 – Two-Phase Heuristic: TPH (SH, RH, NSR, DK )
1: input K
2: repeat
3: //Phase 1: sectoring heuristic detailed in 4.2 and 4.3
4: if SH = CTH then
5: call sectoring heuristic CTH (NSR)
6: else
7: call sectoring heuristic STH (DK)
8: end if
9: //Phase 2: trip construction in each sector

10: k := 1
11: repeat
12: case RH of
13: EM: call MCARP heuristic EM on sector k
14: EPS: call MCARP heuristic EPS on sector k
15: EU: call MCARP heuristic EU on sector k
16: end case
17: if cost(k) > L then
18: failure:=true
19: end if
20: if not failure then
21: k := k + 1
22: end if
23: until k = K + 1 or failure
24: increment K in case of failure
25: until not failure
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merging process stops earlier because most trips become more than half-full
and cannot be merged.

EPS corresponds to the Path-Scanning CARP heuristic (Golden et al., 1983),
a kind of Nearest Neighbour method completed by five rules to break ties.
Five solutions are computed (one per rule) and the best one is returned at the
end.

EU is an adaptation of Ulusoy’s heuristic (Ulusoy, 1985). Vehicle capacity is
first relaxed to generate a small set of greedy randomized giant tours (typically,
20 tours). Using a tour splitting algorithm, these circuits are converted into
MCARP solutions whose the best is returned.

The following example shows that extending CARP heuristics to the MCARP
is not trivial. In the CARP, defined on an undirected network, a trip A has the
same cost as its inverse A. Therefore, four ways of merging two trips A and B
need to be tested: (A, B), (A, B), (A, B) and (A, B). Indeed, a combination
like (B, A), for instance, can be discarded as it is equivalent to (A, B). In the
MCARP, the costs of A and A are different in general, and eight combinations
must be evaluated. More implementation details can be found in Lacomme et
al. (2004).

5 Best insertion heuristic (BIH)

The Best Insertion Heuristic (BIH) for the SARP builds sectors and trips
simultaneously. It shares the following features with the two-phase methods:
each sector is initialized with a different seed-task; the sector with minimum
workload is selected for expansion in each iteration, to favour sectors balance;
one task close to the sector is added to it, in order to limit the increase in
workload and to keep the sector compact and contiguous, as much as possible.
Here, workload estimates are no longer needed, since we know exactly the
total duration of the trips in each sector.

BIH is summarized by Algorithm 4. It requires on input one parameter al-
ready used by STH: a distance kind DK (U-distance or E-distance, see 4.3).
At the beginning, one seed-task a is selected to initialize each sector, using the
MaxDist rule, and the best possible trip to serve a is created, i.e., the other ser-
vice direction inv(a) is also considered when it exists. Then, in each iteration
of the expansion loop, the sector k with minimum workload is selected.

The unassigned task b closest to the seed-task of k for the distance DK is
determined. The minimum insertion cost IC∗ of b (or inv(b) if not null) into
an existing trip of k or into a new trip is evaluated. If the working time limit
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L is not exceeded, b or inv(b) is inserted into the best trip found, otherwise
sector k is closed.

As mentioned in 2.4, a trip r can be encoded as a sequence of task in-
dexes, between two copies of the depot-loop σ, with implicit shortest paths
computed using the D-distance. Hence, it can be denoted as r = (v0 =
σ, v1, v2, . . . , vp, vp+1 = σ), where p is the number of tasks or length of r.
The insertion cost or cost variation IC(r, i, u) if task u is inserted in trip r
after element i, 0 ≤ i ≤ p, is given by equation (7).

IC(r, i, u) =

⎧⎪⎨
⎪⎩

Dσ,u + tu + Du,σ + λ, if vi = vi+1

Dvi,u + tu + Du,vi+1
− Dvi,vi+1

, otherwise
(7)

Assume that Tk denotes the current set of trips in sector k and that it always
includes one empty trip (v0 = σ, v1 = σ) with length 0 and cost 0. Thanks
to this trick, the best insertion cost IC∗(k, b) of b in the non-empty trips of

Algorithm 4 – Best-insertion heuristic: BIH (DK )
1: input K
2: repeat
3: //Initialize K open sectors
4: R′ := R (set of required arcs not yet assigned to sectors)
5: for k = 1 to K do
6: cost(k) := 0 (initialize total duration of trips for sector k)
7: select one seed-task a ∈ R using the MaxDist rule
8: create a minimum duration trip with a or inv(a) if not null
9: update R′ (remove a from R′, and inv(a) if not null) and cost(k)

10: end for
11: So := {1, 2, . . . ,K} (set of open sectors)
12: repeat
13: select the minimum cost sector k ∈ So

14: select b ∈ R′ closest to the seed-task of k, using distance DK
15: BIC := IC∗(k, b); b∗ := b
16: if inv(b) �= 0 and IC∗(k, inv(b)) < BIC then
17: BIC := IC∗(k, inv(b)); b∗ := inv(b)
18: end if
19: if cost(k) + BIC ≤ L then
20: let r∗ be the trip associated with BIC and i∗ the insertion position
21: insert b∗ in r∗, after position i∗

22: update R′ (remove b∗ from R′, and inv(b∗) if not null) and cost(k)
23: else
24: So := So \ {k} (close sector k)
25: end if
26: until R′ = ∅ or So = ∅
27: increment K if some tasks are left unassigned
28: until all tasks are inserted

16



 

 

 

ACCEPTED MANUSCRIPT 

 
sector k or in a new trip can be found by equation (8).

IC∗(k, b) = min{IC(r, i, b)| r ∈ Tk ∧ qr + qb ≤ W ∧ 0 ≤ i ≤ length(r)} (8)

Similarities between BIH and TPH(STH)

As described, BIH and STH have in common i) the seed-task selection rule, (ii)
the selection of the sector to be expanded at each iteration (BIH trips coincide
with STH trips of phase 1), and (iii) the two task selection rules (depending
on DK ). Indeed, for each DK option, BIH and STH produce identical sectors
partition. Only the trips may differ when phase 2 of TPH(STH) is applied.

6 Partitions evaluation

Different criteria can be used to evaluate a partition (S) into sectors and
SARP solutions (X). The main one is the total duration of trips over the
K sectors, which is the selected objective function. The secondary criteria
described below are useful complements.

Cost gap

A cutting-plane algorithm yielding a high-quality lower bound for the MCARP
is described in Belenguer et al. (2006). The MCARP being a relaxation of the
SARP in which no sectors are required, this bound LB is still valid for the
SARP, although it might be weaker. The cost gap or deviation to the lower
bound in percent for a SARP solution X is defined as gap(X) = ((cost(X) −
LB)/LB) · 100.

Imbalance

The imbalance of a solution X, over a partition S, is defined as the differ-
ence between the maximum and the minimum sector costs, i.e. imbal(X) =
max{cost(k)|k ∈ S}−min{cost(k)|k ∈ S}. Knowing that a sector is allocated
to a vehicle crew, small imbalance reduces the risk of conflicts between crews,
since they have similar amounts of work.
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Diameter

The diameter, together with dispersion measures, concerns the shape of sec-
tors. The diameter of a sector k is measured by the maximum U-distance
between two of its tasks: diam(k) = max{Uuv|u, v ∈ k}. The diameter of one
partition S is defined as the maximum diameter of its sectors, i.e. diam(S) =
max{diam(k)|k ∈ S}.

Dispersion measures

Two dispersion measures are proposed to evaluate sectors compactness, based
on the mean distance to the seed-task in each sector and its standard deviation.
Given a sector k and its seed-task a, the mean distance to the seed-task is μk =
(1/|Rk|) · ∑

u∈Rk
Uua and the standard deviation σk = (1/|Rk|) · ∑

u∈Rk
(Uua −

μk)
2. For a given partition S, we suggest to use the mean value Mμ of the μk

and the mean value Mσ of the σk, both computed over all sectors k ∈ S.

7 Computational results

7.1 Implementation, instances and parameters used

All SARP heuristics were coded in Delphi 7, a Pascal-like language, and exe-
cuted on a 2.4 GHz Intel CORE 2 E6600 PC with 2 GB of RAM and Windows
XP. They were evaluated on 15 MCARP instances, called lpr files, defined in
Belenguer et al. (2006). These planar instances have 28−401 nodes, 52−1056
links (edges or arcs), 0− 387 required edges and 11− 764 required arcs. They
comprise three groups a, b and c with five instances each. These groups re-
spectively mimic modern towns (majority of wide two-way streets, with two
sides collected independently), old historical town centres (with a majority of
one-way streets) and low-traffic suburban areas (with a majority of two-way
street with zigzag collection).

In all instances, the depot is either central (C) or peripheral (P), the de-
mands are amounts of waste in kg, the deadheading and collecting times are
given in seconds, and vehicle capacity and dump time are always 10 000 kg
and 300 seconds, respectively. To obtain SARP instances, we just added a
maximum working time L = 21 600 s = 6 h, common to all instances, and a
fixed number K of sectors, specific to each instance. The features of resulting
instances are listed in Table 2: instance name, number of nodes n, links m,
required links τ , required edges ε and required arcs α, number of sectors K
and depot position.
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Table 2
Instance features

File n m τ ε α K Depot

lpr-a-01 28 94 52 0 52 2 C

lpr-a-02 53 169 104 5 99 2 P

lpr-a-03 146 469 304 33 271 4 C

lpr-a-04 195 651 503 34 469 7 P

lpr-a-05 321 1056 806 58 748 12 P

lpr-b-01 28 63 50 5 45 2 C

lpr-b-02 53 117 101 9 92 2 C

lpr-b-03 163 361 305 26 279 5 C

lpr-b-04 248 582 501 8 493 8 P

lpr-b-05 401 876 801 37 764 13 P

lpr-c-01 28 52 50 39 11 2 P

lpr-c-02 53 101 100 77 23 2 P

lpr-c-03 163 316 302 241 61 6 P

lpr-c-04 277 604 504 362 142 9 C

lpr-c-05 369 841 803 387 416 14 C

Three algorithms were evaluated: the two-phase heuristic (TPH) with the sec-
toring heuristic CTH (version called TPH(CTH)), TPH with the sectoring
method STH (called TPH(STH)) and the best insertion heuristic BIH. Some
components in these methods are selected using parameters, recalled in Ta-
ble 3. According to the results reported in Belenguer et al. (2006) for the
MCARP without sectoring (i.e., the whole network is considered as one single
sector), EM outperformed the two other heuristics EPS and EU for the lpr
files. Hence, tests were performed setting parameter RH to EM.

Table 3
Parameters used by heuristics

Heuristic method

Parameter Section Values TPH(CTH) TPH(STH) BIH

RH, MCARP heuristic 4.4 EM, EPS, EU × ×
NSR, inner node selection 4.2 MDC, CST ×
DK, distance for task selection 4.3 U-distance, E-distance × ×

The combinations evaluated and analysed are listed in Table 4: combinations
C1 and C2 are different versions of TPH(CTH), S1 and S2 correspond to
TPH(STH), while B1 and B2 are the settings tested for BIH.

All versions were compared using partition evaluation criteria presented in
Section 6: gap cost, imbalance, diameter and dispersion measures. As men-
tioned before, MCARP lower bounds are used to compute solution gaps. The
best-known lower bounds for lpr instances are reported in Belenguer et al.
(2006). Only average and worst values over the 15 lpr instances are given
for most tests, because tables with results per instance would need too much
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Table 4
Combinations of parameters tested

Parameter Value C1 C2 S1 S2 B1 B2

RH, MCARP heuristic EM × × × ×

NSR, inner-node selection
MDC ×
CST ×

DK, distance for task selection
U-distance × ×
E-distance × ×

space. In the next three subsections, computational results are reported for
the two-phase and best insertion heuristics. A global comparison is provided
in Section 7.5.

7.2 Evaluation of two-phase heuristic with CTH – TPH(CTH)

The versions of TPH(CTH) with the two inner node selection rules MDC
and CST presented in Subsection 4.2 correspond to combinations C1 and C2
in Table 4. Table 5 presents the mean and worst values of solution gaps,
imbalance, diameter and dispersion measures.

Table 5
Impact of the inner node selection rule on TPH(CTH)

Dispersion measures

Cost gap (%) Imbalance Diameter Mμ Mσ

MDC CST MDC CST MDC CST MDC CST MDC CST

Average 5,0 4,7 481,3 706,1 381,7 353,9 91,4 77,3 56,6 48,9

Worst 10,1 9,8 1149,0 2978,0 636,0 624,0 128,4 116,0 78,0 75,1

Average and worst cost gaps are slightly greater for option MDC. Imbalance
decreases for MDC (−32% for the mean), while diameter increases (8%). Dis-
persion measures are about 16% bigger for MDC. Then, for the comparisons
between the three heuristics, parameter NSR is set to CST, on the basis of its
better evaluation criteria on average, and combination C2 is used.

7.3 Evaluation of two-phase heuristic with STH – TPH(STH)

The two versions of TPH(STH) obtained varying the distance rule used to
select the tasks added to sectors, U-distance and E-distance presented in 4.3,
correspond to S1 and S2 in Table 4. The results listed in Table 6 show that
mean and worst gaps are slightly smaller for the E-distance (Edist in the
table). Compared to the U-distance (Udist in the table), increases are observed
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for imbalance (7% for the mean and 52% for the worst value) and diameter
maintains. Concerning dispersion measures, they are at least 2% bigger for
the E-distance.

The evaluation criteria are not clearly in favour of one version. Then, U-
distance is selected for comparisons with other heuristics, since the U-distance
is more related with the true distance covered by the vehicles. Combination
S1 is then used.

Table 6
Impact of distance for task selection on TPH(STH)

Dispersion measures

Cost gap (%) Imbalance Diameter Mμ Mσ

Udist Edist Udist Edist Udist Edist Udist Edist Udist Edist

Average 5,5 5,2 491,0 523,1 349,8 349,7 72,7 74,5 44,6 45,7

Worst 13,8 12,8 1013,0 1535,0 584,0 589,0 106,3 115,2 71,0 74,5

7.4 Evaluation of best insertion heuristic – BIH

As in the previous section, the two versions of BIH were obtained varying the
distance for task selection (U-distance and E-distance, see Subsection 4.3),
and correspond to combinations B1 and B2 in Table 4. The impact on the
evaluation criteria is shown in Table 7. As referred in Section 5 (page 17), BIH
defines the same sectors as TPH(STH). As a consequence, for the same DK,
BIH and TPH(STH) produce the same values for sectors evaluation criteria:
diameter and dispersion measures.

Table 7
Impact of distance for task selection on BIH

Dispersion measures

Cost gap (%) Imbalance Diameter Mμ Mσ

Udist Edist Udist Edist Udist Edist Udist Edist Udist Edist

Average 6.6 6.2 331.8 362.4 349.8 349.7 72.7 74.5 44.6 45.7

Worst 15.4 14.7 730.0 879.0 584.0 589.0 106.3 115.2 71.0 74.5

Cost gaps are slightly smaller for the E-distance, while imbalance and dis-
persion measures are bigger. U-distance is then selected for comparisons with
other heuristics, and combination B1 is used.
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7.5 Comparisons between the three heuristics

Heuristics TPH(CTH), TPH(STH) and BIH are compared from combinations
C2, S1 and B1, as explained. Solution costs and running times in seconds are
shown in Table 8 for each instance. The three last rows indicate the mean,
best and worst values of solution gaps (in %) and times (in seconds). Table 9
reports the partition evaluation criteria (imbalance, diameter and dispersion
measures), with their respective mean, best and worst value at the end. In both
tables, the best value among the three heuristics is emphasized in boldface.

Table 8
Solution costs and running times for the three heuristics

File MCARP TPH(CTH) TPH(STH) BIH

LB Cost Time Cost Time Cost Time

lpr-a-01 13484 13681 0.02 13761 0.02 13745 0.00

lpr-a-02 28052 29273 0.02 29249 0.02 29743 0.00

lpr-a-03 76108 78624 0.04 78511 0.02 80078 0.02

lpr-a-04 126941 134310 0.04 135635 0.03 137331 0.02

lpr-a-05 202735 220461 0.09 222398 0.04 224716 0.03

lpr-b-01 14835 15187 0.00 15320 0.02 15207 0.00

lpr-b-02 28654 29636 0.02 29744 0.00 30241 0.00

lpr-b-03 77837 82545 0.04 83449 0.02 84097 0.00

lpr-b-04 126932 135854 0.05 139234 0.04 140741 0.02

lpr-b-05 209791 230330 0.08 238692 0.05 242047 0.02

lpr-c-01 18639 18879 0.00 19025 0.00 19014 0.00

lpr-c-02 36339 37279 0.02 37131 0.02 37458 0.02

lpr-c-03 111117 116673 0.02 116560 0.02 118021 0.02

lpr-c-04 168441 175807 0.07 175943 0.02 178225 0.03

lpr-c-05 257890 272307 0.11 272530 0.05 276827 0.03

Mean* 4.7 0.04 5.5 0.02 6.6 0.01

Best* 1.3 0.00 2.1 0.00 1.9 0.00

Worst* 9.8 0.11 13.8 0.05 15.4 0.03

* Cost columns: cost gaps to LB in %.

The mean and worst solutions gaps are smallest for the two-phase heuristic
with the CTH sectoring method: 4.7% and 9.8%. Slightly greater deviations to
LB are achieved by STH: 5.5% and 13.8%. The less effective heuristic is BIH,
with an 6.6% and 15.4%. In particular, there is no instance for which BIH
outperforms the two-phase heuristics. For all heuristics, the running times are
negligible: they never exceed 0.11 seconds, even on the largest graph with 1056
links.

Among the two-phase heuristics, if partition criteria are considered (Table 9),
TPH(CTH) has the worst imbalance: using STH in phase 1 decreases the mean
and worst value by 30% and 66%, respectively. TPH with STH has some slight
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Table 9
Imbalance, diameter and dispersion measures for heuristics CTH, STH and BIH

Dispersion measures

File Imbalance Diameter Mμ Mσ

CTH STH BIH CTH STH BIH CTH STH BIH CTH STH BIH

lpr-a-01 33 179 145 143 131 131 46,8 43,4 43,4 27,7 23,0 23,0

lpr-a-02 141 285 97 269 265 265 85,5 82,1 82,1 45,3 41,1 41,1

lpr-a-03 465 711 396 380 304 304 89,6 83,1 83,1 49,0 38,8 38,8

lpr-a-04 679 884 518 429 399 399 75,1 72,7 72,7 58,9 56,7 56,7

lpr-a-05 942 753 508 480 573 573 76,0 71,4 71,4 54,3 49,6 49,6

lpr-b-01 153 194 107 163 194 194 63,4 59,7 59,7 43,0 41,5 41,5

lpr-b-02 792 32 141 290 284 284 109,3 106,3 106,3 48,8 45,2 45,2

lpr-b-03 714 179 235 385 349 349 97,4 86,5 86,5 59,5 47,5 47,5

lpr-b-04 931 861 412 465 422 422 97,7 81,8 81,8 60,0 42,3 42,3

lpr-b-05 2978 841 504 624 584 584 116,0 104,2 104,2 75,1 71,0 71,0

lpr-c-01 239 213 108 111 122 122 41,6 40,8 40,8 26,3 25,0 25,0

lpr-c-02 265 213 262 258 258 258 75,9 75,9 75,9 40,5 40,2 40,2

lpr-c-03 645 350 496 377 368 368 65,3 63,1 63,1 49,2 47,3 47,3

lpr-c-04 713 1013 730 378 428 428 60,2 60,2 60,2 43,2 45,6 45,6

lpr-c-05 901 657 318 556 566 566 59,3 59,2 59,2 52,5 54,6 54,6

Mean 706,1 491,0 331,8 353,9 349,8 349,8 77,3 72,7 72,7 48,9 44,6 44,6

Best 33,0 32,0 97,0 111,0 122,0 122,0 41,6 40,8 40,8 26,3 23,0 23,0

Worst 2978,0 1013,0 730,0 624,0 584,0 584,0 116,0 106,3 106,3 75,1 71,0 71,0

advantages regarding the diameter (−1% and −6%, respectively for the mean
and worst values). STH also favours the dispersion measures, for which it
reduces the mean and worst values of Mμ (−6% and −8%) and Mσ (−9% and
−5%). Apart from solution gaps, clearly smaller with TPH(CTH), TPH(STH)
is generally better for sectors quality: STH seems capable of producing more
balanced and compact sectors.

If BIH is now compared to the two-phase heuristics, its strong point is a
much better imbalance, with a 51% reduction for the mean and 79% for the
worst value, compared to TPH(CTH). Concerning diameter and dispersion
measures, the gains of BIH to TPH(CTH) are the same as with TPH(STH),
resulting from the above mentioned relations between BIH and TPH(STH).
Once again, it is difficult to make a decision on which one of these two heuris-
tics gives the best sectoring, since it seems that BIH leads to better sectors
balance and dispersion, while CTH favours sectors cost.

From the comparisons made between TPH(CTH), TPH(STH) and BIH, each
of these heuristics has advantages and disadvantages for the criteria considered
in the analysis. Even if TPH(CTH) provides better working times, it is not
possible to establish an absolute hierarchy if sectoring quality is considered.
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8 Conclusions and further remarks

In this paper, two-phase heuristics and one best insertion heuristic were pro-
posed to integrate sector definition and trip construction in urban refuse collec-
tion networks. Classical sectoring techniques like node partitions using Voronoi
diagrams or dissections of undirected planar graphs into facets cannot be used
since a mixed multigraph with forbidden turns is considered.

The impact of several parameters was investigated. All heuristics are very
fast, with running times less than 0.11 seconds for the bigger instances. The
best heuristic, TPH(CTH), provides reasonable average deviations to MCARP
lower bounds (4.7%), which is remarkable because there is no sectoring in
the MCARP: the actual deviations to optimal SARP solutions are perhaps
twice smaller. Although MCARP solutions have a slightly better total mileage,
SARP solutions are more attractive from a practical point of view, because
waste collection management is simplified.

A SARP-specific lower bound is being studied to evaluate the margin left to
improvement, for a metaheuristic for instance. From the results reported, one
may notice that the criteria used to evaluate partitions are frequently conflict-
ing. This suggests a multi-objective approach based on Pareto optimality. A
multi-objective genetic algorithm is already being developed. Such algorithms
are usually time-consuming, because they work in parallel on a population of
solutions. However, they may be envisaged since the heuristics described in
this paper are finally much faster than expected on very large networks.

The presented heuristics were designed to promote workload balance, com-
pactness, and contiguity. In general, the three heuristics produce solutions
with different characteristics, as can be seen from the comparison between
the evaluation criteria. Solution costs can be reduced, for instance, with local
search methods that move tasks from one trip or sector to another one. The
same applies to improve sectors workload balance and contiguity. Since the
main research goal was to propose simple and fast heuristics which produce
different types of solutions, such refinements are not described herein. The
idea is to use these heuristics to generate populations of diversified solutions
for a population management algorithm.
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