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Abstract 
In research on Silent Speech Interfaces (SSI), different sources 
of information (modalities) have been combined, aiming at 
obtaining better performance than the individual modalities.  
However, when combining these modalities, the 
dimensionality of the feature space rapidly increases, yielding 
the well-known “curse of dimensionality”. As a consequence, 

in order to extract useful information from this data, one has to 
resort to feature selection (FS) techniques to lower the 
dimensionality of the learning space. In this paper, we assess 
the impact of FS techniques for silent speech data, in a dataset 
with 4 non-invasive and promising modalities, namely: video, 
depth, ultrasonic Doppler sensing, and surface 
electromyography. We consider two supervised (mutual 
information and Fisher’s ratio) and two unsupervised (mean-
median and arithmetic mean geometric mean) FS filters. The 
evaluation was made by assessing the classification accuracy 
(word recognition error) of three well-known classifiers (k-
nearest neighbors, support vector machines, and dynamic time 
warping). The key results of this study show that both 
unsupervised and supervised FS techniques improve on the 
classification accuracy on both individual and combined 
modalities. For instance, on the video component, we attain 
relative performance gains of 36.2% in error rates. FS is also 
useful as pre-processing for feature fusion. 

1. Introduction 
Silent Speech Interfaces (SSI) allow for speech 
communication with a system in the absence of an acoustic 
signal [1]. By analyzing data gathered during different parts of 
the human speech production process, these interfaces allow 
users with speech impairments (e.g. users who have been 
subject to a partial or total laryngectomy) to communicate with 
a system. SSI can also be used in the presence of 
environmental noise, in situations in which privacy, 
confidentiality, or non-disturbance are important. Some SSI 
techniques based on different sensor types have been proposed 
in SSI-related literature, namely: ElectroMagnetic 
Articulography (EMA) sensors [2], UltraSound (US) jointly 
with optical imaging of the tongue and lips [3], Ultrasonic 
Doppler Sensing (UDS) [4], and surface ElectroMyoGraphy 
(EMG) [5], among others. However, some of these techniques 
are either highly invasive or require clinical intervention, 
making them unusable as a natural interface (e.g. implants in 
the speech-motor cortex [6]). When considering non-invasive 

approaches, such as UDS, the reported accuracy rates in a digit 
recognition task [4] are inferior to those found in conventional 
automatic speech recognition. A system that could explore the 
advantage of the strongest points of a particular modality 
would help to mitigate the weaknesses of the individual 
modalities. Nowadays, there are a few  datasets for SSI 
research, particularly for multimodal scenarios. When multiple 
input modalities are considered, the large dimensionality of the 
feature space augments the complexity of the recognition task. 
To address these problems, in the literature of SSI we find 
many approaches that rely on Feature Reduction (FR) 
techniques, such as Linear Discriminant Analysis (LDA) 
[5][7]. However, the use of FR techniques such as LDA do not 
allow us to unveil and to interpret directly the modalities 
and/or features that are more relevant for the task at hand. FR 
techniques generate a new set of features, which are functions 
of the original ones that correspond to the physical process. 
Thus, for SSI data it may be preferable to apply a Feature 
Selection (FS) method in order to filter and keep a subset of 
the original features. Moreover, it has been found that many 
FR techniques such as LDA, may not perform well with low 
amounts of data for High-Dimensional (HD) spaces [8][9].  

Our aim is to develop a multimodal SSI that combines 
information from different parts of the human speech 
production process [10] and fulfills the following 
requirements: possibility of being used in a natural manner 
without complex medical procedures, low cost, tolerant to 
noisy environments and able to work with speech-handicapped 
users. Given these requirements, a novel type of SSI based on 
the following specifications was defined as our target: (1) 
facial information acquired from Visual and Depth sensors; (2) 
surface EMG of the articulator muscles; (3) capture of facial 
movements during speech using UDS. After synchronously 
acquiring data from these modalities, our aim is to understand 
which information stream achieves the best results in a speech 
recognition task and how the existing redundancy, among 
these modalities, affect the overall results. 

The rest of this paper is organized as follows: Section 2 
summarizes recent work on multimodal SSI and presents a 
brief overview of FS techniques. Section 3 describes the 
methods applied in this study, namely the system used to 
acquire multiple streams of data, the features extracted from 
each stream, the FS techniques that we have considered, and 
the evaluated classifiers. Section 4 reports the experimental 
results for individual modalities and as well as for their fusion, 
with and without FS.  A discussion of the results is provided in 
section 5. Finally, section 6 ends the paper with some 
concluding remarks. 

Index Terms: Multimodal Silent Speech Interface, Feature 
Selection, Supervised Classification. 
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2. Background and Related Work 

2.1. Multimodal Silent Speech Interfaces 
Regarding multimodal silent speech, in 2004, Denby and 
Stone [11] reported a seminal experiment in which 2 input 
modalities, in addition to the acoustic signal, were used to 
develop a SSI. Denby and Stone applied ultrasound imaging of 
the tongue area along with video information of the lips. In 
2008, Tran et al. [12] also reported a preliminary approach 
using information from 2 modalities: whispered speech 
acquired using a Non-Audible Murmur (NAM) microphone 
and visual information of the face using the 3D position of 142 
colored beads glued to the speakers face. Later, using the same 
modalities, these authors reported an absolute improvement of 
13.2% when adding the visual information to the NAM data 
stream. The use of visual facial information combined with 
surface EMG signals has also been proposed by Yau et al. in 
2008 [13]. In their study, Yau et al. present a SSI that analyses 
the possibility of using surface EMG for unvoiced vowels 
recognition and a vision-based technique for consonant 
recognition. Recently, in 2010, Florescu et al. [3] reported a 
65.3% recognition rate using the same modalities in an 
isolated word recognition scenario with a 50-word vocabulary 
and a Dynamic Time Warping (DTW) based classifier. 

In 2013, some of the authors, presented a multimodal SSI 
database and a preliminary classification experiment that 
combined Video, Depth, surface EMG and UDS [14]. In this 
experiment the best result for an isolated digit recognition task 
was found for Video plus Depth with 72.1% error rate. 

2.2. Feature Selection in multimodal SSI 
Feature Selection (FS) techniques aim at finding adequate 
subsets of features for a given learning task [12][13]. The use 
of FS techniques may improve the accuracy of a classifier 
learnt from data by helping to avoid the so-called “curse of 

dimensionality” and may speed up the training time while 
improving the generalization processes. In a broad sense, FS 
techniques are classically grouped into four main types of 
approach: wrapper, embedded, filter, and hybrid methods 
[15][16][17]. Among these four types, filter approaches are 
characterized by assessing the adequacy of a given subset of 
features solely using characteristics of the data, without 
resorting to any learning algorithm or optimization procedure. 
It is often the case that for HD data, such as SSI data, the filter 
approach is the only one that produces acceptable results in 
terms of their running-time [18]. For this reason, despite the 
different types of approaches, in this paper we consider solely 
filter FS methods. There are decades of research on FS, for 
different problems (e.g. [15][16][17]). However, in the context 
of multimodal signal processing, the research for FS methods 
has received little attention. Recently, an approach based on 
information theory, for audio–visual speech recognition, the 
which checks for redundancy among features, yielding better 
performance than LDA, has been proposed [19]; 

3. Methodology and Tools 
The adopted method consists to apply FS techniques to a new 
multimodal database and to assess the recognition results in an 
isolated-word recognition task. This section provides details 
on the SSI database, the features extracted, the employed FS 
techniques as well as the classifiers applied on the selected 
data. 

3.1. Multimodal Database: Acquisition and Data  
The data of the modalities was acquired using: (1) a Microsoft 
Kinect for Windows that acquires visual and depth 
information; (2) a surface EMG sensor acquisition system 
from Plux [20] with 5 pairs of EMG surface electrodes, which 
captures the myoelectric signal from the facial muscles; (3) a 
custom built dedicated circuit board [21] (referred hereon as 
UDS device) based on the work of Zhu et al. [22]. Details 
about the device connections, the synchronization process, 
positioning of the sensors and the acquired data can be found 
in [23]. 

We have selected a vocabulary of 10 European Portuguese 
digits, from zero to nine. The corpus was recorded by three 
native speakers (one male and two female) with 31, 65, and 71 
years old. No history of hearing or speech disorders is known 
for these speakers. Each speaker has recorded six repetitions 
per word, yielding a total of 180 utterances. Each utterance 
was pronounced individually, in a random order. 

 

  

Figure 1: Left - EMG electrodes positioning and their 
channels (1 to 5) plus the reference electrode (R). 
Right – the acquisition setup with all its devices.  

3.2. Feature Extraction 
In this study, we have chosen the most recent Feature 
Extraction (FE) techniques for each modality as well as those 
that reported the best results.  

For Video and Depth, we started by establishing a Region 
of Interest (ROI) containing the lips and surrounding areas. 
Using real-time Active Appearance Models (AAM) [24], we 
were able to obtain a 64x64 pixel ROI centered at the 
speaker’s mouth. Then, we apply an appearance based method, 
which, due to variations in illumination, skin color, facial hair 
and other factors, are usually preferred to shape based 
methods. In this context, one of the most common approaches 
is to use a Discrete Cosine Transform (DCT) [25] in the ROI. 
Following previous studies, we compressed the pixel 
information by computing the DCT of the 64x64 block and 
keeping the low spatial frequencies by selecting the first 64 
coefficients contained in the upper left corner of the 
coefficients matrix. We have only considered the odd columns 
of the DCT, in order to take advantage of the facial symmetry 
and imposing horizontal symmetry to the image. After 
applying the 2D DCT, the first and second temporal 
derivatives are appended to the feature vector, generating a 
final feature vector of 192 dimensions per frame. The variation 
between speakers and recording conditions are smoothed by 
using Feature Mean Normalization (FMN) [26]. 

In terms of FE, we have followed a similar approach to 
that of [4] and started by pre-processing the UDS signal. The 
acquired signal was first zero-averaged, then a third order 
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moving average filter was applied to suppress the carrier and 
finally a difference operator was applied. After the pre-
processing stage, we split the signal into 50ms frames with a 
10ms frame shift, and applied a 2048 points Discrete Fourier 
Transform (DFT) [25] to the preprocessed signal for the 
bandwidth around the carrier, 2275 Hz to 5200 Hz. Finally, the 
DCT is applied to the DFT coefficients to decorrelate and 
compress the signal, extracting the first 38 coefficients. The 
signal energy, velocity, and acceleration coefficients were 
appended to the DCT coefficients, yielding a final feature 
vector of 117 dimensions per frame.   

For surface EMG feature extraction, we used an approach 
which is based on temporal features, similar to the one 
described in [5] as well as to previous work from the authors 
[27], (without FR). The features were extracted for each EMG 
signal frame of 30ms. A frame shift of 10ms was considered. 
A context width of 15 frames was also used, generating a final 
feature vector of 155 dimensions per channel. Finally, we 
stacked all the channels in a single feature vector of 775 
dimensions. 

3.3. Feature Selection Filter 
In this work, we consider two unsupervised and two 
supervised relevance measures. For the unsupervised case, we 
consider: i) the Mean-Median (MM), that is, the absolute value 
of the difference between the mean and the median of a feature 
(an asymmetry measure) [28]; ii) the quotient between the 
Arithmetic Mean and the Geometric Mean (AMGM) of each 
feature, after exponentiation (a dispersion measure) [28]. We 
also consider two well-known supervised measures: i) the 
(Shannon’s) Mutual Information (MI) [29], which measures 
the dependency between two random variables; ii) the Fisher’s 

ratio [30], which measures the dispersion among classes. 
For finding the most relevant features, we have considered 

the Relevance-Redundancy FS (RRFS) method proposed in 
[28]. In a nutshell, RRFS uses a relevance measure to sort the 
features in decreasing order, and then performs a redundancy 
elimination procedure on the most relevant ones. At the end, it 
keeps the most relevant features exhibiting up to some 
Maximum Similarity (MS) between themselves. The similarity 
between features is assessed with the Absolute Cosine (AC) of 
the angle between feature vectors, say Xi and Xj, given by 
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where <.,.> denotes inner product between vectors and ||.|| is 
the L2 norm of a vector. AC yields 0 for orthogonal feature 
vectors and 1 for collinear ones. RRFS has been applied 
successfully to other types of high-dimensional data [28]. 

3.4.  Classifiers and Evaluation 
For classification and in order to explore different techniques 
we have considered the k-Nearest Neighbor (kNN) [31], 
Support Vector Machines (SVM) [32][33], and DTW 
classifiers [34].  The kNN classifier uses cosine distance for 
prediction and the k number of neighbors is dynamically 
determined, as the square root of n (the number of training 
instances) [35]. The SVM classifier from LIBSVM [36] was 
configured with a linear kernel. The DTW classifier uses the 
distance between the test word samples and each sample of the 
training set choosing the class with the minimum distance. 

We split our dataset into train and test using a stratified 9-
fold strategy, splitting the database into 160 training utterances 

and 20 test utterances (2 test utterances per class) in each run. 
The error rate herein reported is estimated from the average 
error rate of the 9 folds. 

4. Experimental Results 
In order to assess the benefits of applying FS techniques to this 
dataset, we start by estimating the recognition error of each 
modality without applying FS methods, using the most 
common features of each modality, to establish a baseline 
recognition error. Afterwards, we apply FS techniques to each 
individual modality and to multiple modalities, (fusion 
scenario). 

4.1. Baseline Results - without Feature Selection 
Table 1 shows the error rate for the baseline using all the 
features (see section 3.2). Among the four modalities, the best 
result was attained by surface EMG, with 46.7%, followed by 
UDS with 50.6%. Depth information presents the worst result, 
with 70.6%. The SVM classifier attains the best average 
accuracy, 55.5%, followed by the kNN classifier with 64.9%. 
For comparison purposes, we have also applied FR using LDA 
to this dataset. In the achieved results only Depth information 
results with the SVM classifier improves accuracy with a 
relative performance gain of 23.7%. The remaining results are 
either similar (e.g. Video using kNN) or are worse. 

Table 1. Baseline results (without FS). Average word 
recognition error rate (%) with 95% confidence 
interval (9-fold), for each modality. 

Classifier Video Depth EMG UDS 

kNN 74.4±6.2 71.7±6.1 52.2±6.1 57.8±4.7 
SVM 53.9±6.3 70.6±5.8 46.7±4.9 50.6±5.3 
DTW 66.7±1.6 73.9±4.3 83.9±2.7 72.8±4.7 

4.2. Single Modality Analysis - Feature Selection 
In this section, we address the results of each individual 
modality, using each relevance criterion (see section 3.3) for 
FS. Table 2 reports the best results of kNN, SVM, and DTW, 
after applying RRFS and considering MS values between 0.1 
and 0.9. 

Table 2. Average word recognition error rate (%) with 
95% confidence interval (9-fold), per classifier for 
each FS technique. The rightmost column is the 
relative improvement of the best result with respect to 
the baseline. 

Mod. / Class. Mutual Info Fishers ratio MM AMGM Rel. Imp. 

V
id

eo
 kNN 67.2±4.4 66.7±5.4 63.3±4.0 66.7±6.5 14.9% 

SVM 41.1±4.8 34.4±5.3 42.8±7.1 40.6±4.5 36.2% 

DTW 48.9±6.9 43.9±5.1 65.0±4.6 65.0±4.9 34.2% 

D
ep

th
 kNN 70.6±7.4 70.6±6.8 68.9±6.1 70.6±6.4 3.9% 

SVM 70.6±4.1 64.4±6.6 68.3±3.7 67.2±7.5 8.8% 

DTW 72.2±4.0 70.0±6.5 75.6±4.1 72.2±5.4 5.3% 

EM
G

 kNN 51.7±5.9 50.0±6.9 52.2±7.5 55.0±5.7 4.2% 
SVM 46.7±6.5 45.0±3.7 46.1±5.1 46.1±3.6 3.6% 
DTW 68.9±3.6 82.2±4.7 72.8±3.7 67.8±6.3 19.2% 

U
D

S 

kNN 56.1±4.3 56.1±4.8 56.1±4.6 55.6±6.4 3.8% 
SVM 50.6±5.3 50.0±6.1 47.8±5.2 50.6±5.3 5.5% 
DTW 76.7±3.7 67.8±4.4 71.7±4.0 77.8±4.4 6.9% 
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The use of a FS technique usually improves on the results, 

for each individual modality, as compared to the baseline 
(Table 1), with a few exceptions. The best results were 
achieved using SVM. Comparing all techniques with the 
baseline, we attain an average of 12.2% relative improvement. 
The best results with FS techniques were found for Video with 
an average 28.4% improvement for the 3 classifiers. 
Regarding FS, the best results were achieved by the supervised 
Fisher’s ratio for Video, Depth, and EMG modalities; using 

the unsupervised MM, for UDS we get the best result of 
47.8%. 

The MS parameter values for the best results seem to vary 
according to the modality, the FS technique, and the classifier. 
For instance, for Video using the SVM classifier, we have the 
largest improvement with MS=0.3. In the second best case, for 
EMG using SVM, MS=0.8. 

In terms of reduction (between the resulting subset and the 
original one), the best result was achieved for Video with a 
reduction of 95.1% of the original features, followed by Depth 
with 59.8%. Surface EMG achieved a reduction of 26.7% 
whereas UDS attains only 5%. 

4.3. Multiple Modality Analysis - Feature Selection 
We now assess the combination of multiple modalities. When 
fusing the feature vectors of each modality a slight 
improvement can be noticed, as compared to the results of 
Table 1. For example, Video combined with EMG improves 
the results of Video by 14.5% and the results of EMG with 
2.4%. Similar improvements can be noticed for UDS when 
combining it with the EMG information. 

When considering RRFS before two modality 
combinations, improvements can be noticed for almost all 
combinations when using SVM. The best results were 
achieved for the case of Video combined with UDS using 
Fisher’s ratio and Video combined with Depth using AMGM, 
with relative performance gains of 36.1%, and 19.2%, 
respectively. Regarding the combination of three and four 
modalities, we notice an interesting pattern in which  the 
previous results are somewhat replicated. For instance, adding 
UDS to the combination of Video+Depth shows the same 
resultsas Video+Depth. However, adding EMG (and 
consequently including all streams) only improves the baseline 
results found in Table 1. Table 3 reports the most relevant 
results for the SVM classifier (the one that reported, the best 
results in this analysis).  

The overall results show that an average improvement of 
15.3% is achieved across all possible combinations of two 
modalities and 6.0% for combinations of three and four 
modalities. 

Table 3. Average word recognition error rate with 
95% confidence interval (9-fold), before and after FS 
(best result) using SVM. The rightmost column is the 
relative improvement with respect to the baseline. 

Modalities Best results After FS Rel. Imp. 

Video+Depth 69.4±6.8 56.1±5.1 (AMGM) 19.2% 

Video+UDS 53.7±6.1 34.3±5.2 (Fisher) 36.1% 

Video+EMG 46.1±4.6 45.0±3.7 (Fisher) 2.4% 

EMG+UDS 46.7±4.9 45.0± 3.7 (Fisher) 3.6% 

Video+Depth+UDS 69.4±6.8 56.1±5.1 (AMGM) 19.2% 

All Modalities 46.1±4.6 46.1±4.6 (AMGM) 0% 

5.  Discussion 
When comparing FR and FS techniques, FS presents better 
results. The most probable cause is the small amount of 
training data relative to the sample dimensionality. Previous 
studies [8][9][19] have shown that when this situation occurs, 
the LDA within-scatter matrix becomes sparse, reducing the 
efficiency of the LDA transform. In terms of individual 
modalities, we have found that FS techniques improve the 
results of all considered modalities, with a noticeable 
improvement in Video and with Depth producing the worst 
results, in accordance to what was found previously in the 
literature of Audio-Visual Speech Recognition [7][19]. 

Regarding the considered FS techniques, on average, 
supervised techniques performed better than unsupervised 
ones; the best results were achieved by Fisher’s ratio on three 

modalities; for the UDS modality, MM achieved the best 
result. We have also analyzed the combination of modalities 
and the effect of FS, before feature fusion. In this case, we 
have noticed the following: (1) if no FS is applied, small 
improvements can still be noticed, particularly for the worst 
individual modalities; (2) after applying FS, similar levels of 
error rates can be achieved to the ones attained individually, 
with noticeable improvements for the case of Depth input. 

Selecting the best features can also be used as a way to 
compress data, removing redundant information and making it 
appropriate for scenarios where data storage or communication 
bandwidths are reduced (e.g. video modality under mobile 
communication).  

6. Conclusions 
This paper assesses the impact of feature selection on silent 
speech data. We report a study in which feature selection 
filters with relevance-redundancy assessment are applied to 
the data. In detail, two supervised (Mutual Information and 
Fisher’s ratio) and two unsupervised (Mean-Median and 
Arithmetic Mean Geometric Mean) relevance measures are 
applied to several non-invasive and promising Silent Speech 
Interfaces modalities (Video and Depth input, Surface 
Electromyography, and Ultrasonic Doppler). The attained 
results show that feature selection leads to improvements, 
which can be achieved either using only a single modality or a 
combination of several modalities. Looking at the modalities, 
the highest improvement was found for Video alone and for 
Video combined with UDS using an SVM classifier. In terms 
of feature selection techniques, the supervised methods based 
on Fisher’s ratio attained the best results. The results of this 
study also show that the feature vectors which are currently 
accepted as the state-of-the-art can be reduced in average 
46.6% (considering all modalities) and up to the maximum of 
95.1% for the Video component.  As future work, we would 
like to explore and analyze the combination of FS with feature 
discretization techniques. 
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