

Galactica, a Digital Planetarium that explores the Solar System

and the Milky Way

Jorge d’Alpuim
ISCTE – Instituto Universitário de Lisboa

ISTAR-IUL, Lisbon
jorge_alpuim@iscte.pt

Miguel Sales Dias
Microsoft Language Development Center, Lisbon

ISCTE – Instituto Universitário de Lisboa
ISTAR-IUL, Lisbon

miguel.dias@microsoft.com

Abstract
This paper describes a new Digital Planetarium system that allows interactive visualization of astrophysical data

and phenomena in an immersive virtual reality (VR) setting. Taking advantage of the Cave Hollowspace at Lousal

infrastructure, we have created a large-scale immersive VR experience, by adopting its Openscenegraph (OSG)

based VR middleware, as a basis for our development. Since our goal was to create an underlying system that

could scale to arbitrary large astrophysical datasets, we have splitted our architecture in offline and runtime

subsystems, where the former is responsible for parsing the available data sources into a SQL database, which

will then be used by the runtime system to generate the entire VR scene graph environment, for the interactive user

experience. Real-time computer graphics requirements lead us to adopt some visualization optimization tech-

niques, namely, GPU calculation of textured billboards representing stars, view-frustum culling with octree or-

ganization of scene objects and object occlusion culling, to keep the user experience within the interactivity limits.

We have built a storyboard (the “Galatica” storyboard), which describes and narrates a visual and aural user

experience, while navigating through the Solar System and the Milky Way, and which was used to measure and

evaluate the performance of our visualization acceleration algorithms. The system was tested with an available

dataset of the complete Milky Way (including the solar system), featuring 100.639 textured billboards representing

stars and additional 104.328 polygons, representing constellations and planets of the solar system. We have com-

puted the frame rate, GPU traverse time, Cull traverse time and Draw traverse time for three visualization condi-

tions: (A) using standard OSG view frustum culling technique; (B) using view frustum culling with and our octree

organizing the scene’s objects; (C) using view frustum culling with our octree organizing the scene’s objects and

our occlusion culling algorithm. We have generally concluded that our octree organization and octree plus object

culling techniques out-performs the standard OSG view frustum culling, when around half or less than half of the

dataset is in view of the virtual camera.

Keywords
Virtual reality, CAVE, Lousal, Immersive Virtual reality, octree, occlusion culling, astrophysical, Solar System,

Milky Way, Hipparcos, Openscenegraph

1. INTRODUCTION
If we approach Immersive Virtual Reality (VR) from the

perspective of its requirements for real-time 3D Computer

Graphics, we certainly conclude that we need to put in

place in our VR system, visualization acceleration tech-

niques in order to provide the user with real-time interac-

tive experiences, within an environment capable of depict-

ing photorealistic scenes in stereoscopy, in higher resolu-

tion multi-display projection systems, such as the one

available at the CAVE Hollowspace of Lousal (CaveH)

[Soares10], in southern Portugal (near the city of

Grândola) and used in this work. There are in fact availa-

ble a quite wide range of different approaches to accelerate

the processing of large and complex datasets, depending

on the kind of dataset we are willing to represent. In this

paper, we are especially interested in visualizing large da-

tasets of astrophysical celestial objects, such as the ones

included in the Digital Universe Atlas (DUA), assembled

by the American Museum of Natural History (AMNH)

[Abbott02]. This catalogue features a high-precision da-

taset with 100.639 stars, which was sensed by the Hippar-

cos scientific satellite of the European Space Agency

(ESA), launched in 1989 and operated until 1993. Hippar-

cos, was targeted to precision astrometry and provided the

community with accurate measurement of the positions of

celestial objects. DUA is a multi-dimensional atlas in-

tended to represent the known universe and used as a basis

for further data analysis and exploration. In this frame-

work, we present in this paper, a new interactive Digital

Planetarium tool for the CaveH at Lousal, able to paint
with the opportunity to experience the visualization and

interactive navigation across arbitrary large astrophysical

datasets, such as the DUA. Displaying an arbitrary large

dataset of rich 3D content in an Immersive VR setting with

high resolution and real-time stereoscopic visualization re-

quirements, relying solely on the Core CPU power, with-

out any specific 3D acceleration technique in mind, would

naturally compromise the user experience. We could eas-

ily break the real-time interactivity performance, since the

time taken to process the entire scene complexity would

become noticeable. Visualization acceleration techniques

are meant to help decreasing the CPU effort to process and

draw the geometry in each frame, by using appropriate

scene organization techniques, real-time visualization

technique and leveraging the power of the available GPU

Cores (in the order of hundreds) to unload the burden of

the few existing CPU Cores, in the computing system. In

this context, the identified real-time 3D Computer

Graphics requirements, namely, a scene graph to describe

the 3D environment, a volumetric organization technique

of the scene, an object culling approach and GPU render-

ing of most of the celestial objects, where matched by the

adoption of the Openscenegraph (OSG) [Osfield05] C++

development environment, specially targeted to the pro-

cessing and visualization of large and complex 3D envi-

ronments (in terms of polygon count), which has already

some built-in acceleration techniques. In addition to OSG,

we have used the CaveH middleware [Dias07] [Soares10],

an in-house developed logic to produce and manage 3D

content in the multi-display Cave Automatic Virtual Envi-

ronment (CAVE) at Lousal, an immersive large-scale VR

system much like the one proposed by [Cruz-Neira92] in

1992. Since the CaveH supports projection in many differ-

ent computing architectures (from tablet and laptop dis-

plays to large-scale multi-projection planes) and it is based

on the OSG graphics platform, which is a layer above the

OpenGL library, we adopted the same development envi-

ronment in order to avoid later unexpected compatibility

issues. This paper presents also the results obtained with

the Galactica application that provides the user with an ex-

perience of a space travel across the Solar System and its

surrounding galaxy (Milky Way). We provide a compari-

son between the OSG standard pipeline and our custom-

ized 3D rendering pipeline, with our visualization acceler-

ation techniques embedded in the OSG rendering traversal

cycle, specifically developed to support the requirements

of Galactica.

The paper is structured as follows. In the section 2, we de-

scribe in detail the datasets used by Galactica. The third

section details the underlying system architecture, respon-

sible for managing, simulating and running the applica-

tion. Section 4 explains the overall VR simulation and vis-

ualization pipeline, by showing how the data is repre-

sented and explaining in detail the real-time 3D algorithms

developed in order to achieve real-time performance. Sec-

tion 5 presents and discusses the results on the measured

performance metrics obtained by simulating the Galatica

application using the different acceleration algorithms. In

Section 6 we extract some conclusions and provide some

ideas for further research. We also acknowledge our

thanks to all persons that directly or indirectly helped

achieving the Galatica application results.

2. THE DIGITAL UNIVERSE ATLAS DATASET
As mentioned before we used the DUA dataset, loading

only the data of the Milky Way subset (corresponding to

the Hipparcos sensed data). We were willing to provide an

application to navigate through the Solar System’s astro-

physical data and phenomena and the Milky Way. Since

the DUA lacks on specific Solar System data, we gathered

the complementary data from another publicly available

dataset contained in the Celestia [Laurel01] software pack-

age. As a result, the data depicted in the Galatica applica-

tion comprise planets, stars and polylines, this last ones

describing the constellations and the planetary orbits. Us-

ing the above mentioned data sources we were able to

paint the following objects:

Planets: The Solar System’s planets are drawn as spheres

with their surface textures mapped into it, simulating an

approximation of the real planet’s shapes. The used sur-

face textures were taken from [Hastings-Trew00], an

online resource providing free high-resolution images to

the scientific community. The planets are represented by

their appearance, dimensions, orbital lines and rotation’s

axis. The planet’s orbits are also present in our VR simu-

lation and will be drawn by polylines, with a color as-

signed, as a sequence of points around the Sun, forming

the elliptical planet’s orbits.

Stars: Representing the stars is a complex task due to the

fact that, when a star is quite distant from the viewer, we

only perceive it as a shiny small point in the sky and this

effect is computationally difficult to reproduce. Therefore,

our stars’ representation, are an approximation of the vis-

ual effect our eye can perceive, which is a point with a

colored halo around. That being said, we decided to use a

texture of a hallo provided by the DUA (Figure 1), trans-

form it into a hallo transparency texture and map it into a

colored surface. The corresponding surface is a quadrangle

3D sprite, simulating the billboard effect, in order to en-

sure that the star’s hallo is always facing the virtual camera

that represents the viewer pose (position and orientation).

Figure 1: [Left]: Original halo texture given by DUA.

[Right]: Simulation of a yellow star halo effect by mapping

the halo transparent texture into a yellow surface.

The left image present in Figure 1 is a full opaque image

of a white hallo, which was the basis to generate the trans-

parent mask image created to allow representing colored

hallows (Figure 1 – [Right]), where its black pixels repre-

sents the transparent pixels.

Figure 2: Landscape taken from our VR application depict-

ing the Scorpius constellation, one of the Zodiac’s constella-

tion.

Drawing polylines joining the stars’ position will generate

the stars’ constellations effect, as it can be observed on

Figure 2. Since the constellations are 3D objects drawn in

the VR scene, those constellations are only realistically

represented when they are observed from a perspective

closer to the Earth’s surface. Other way, the constellations

will be “deformed” as perceived by the viewer, once the

viewer´s relative pose to the Earth is different.

3. VR SYSTEM ARCHITECTURE
The system built to simulate the required VR scene is di-

vided in two: offline and runtime subsystems (Figure 3).

The offline subsystem is responsible for selecting and

parsing available astrophysical data and metadata, both

from local and/or remote sources, into a relational data-

base that will be read by the runtime subsystem. The

runtime subsystem, builds the VR scene based on the data

stored in the relational database, which was previously

populated by the offline subsystem.

Figure 3: Overall VR system architecture, described with two

subsystems.

This logical split made on the overall system brings scala-

bility advantages to the application due to its ability to vis-

ually simulate different datasets of arbitrary sizes.

4. VR SIMULATION AND VISUALIZATION
PIPELINE
As it was stated before, our 3D development environment

was based on CaveH, which is a C++ middleware that

builds on the OSG scene graph and 3D rendering SDK. An

intrinsic feature regarding OSG, is that it will organize all

scene objects in an acyclic graph, in order to efficiently

traverse all scene’s objects in each 3D visualization pipe-

line traversal, comprising 4 traversal passes per frame: an

event, an update, a cull and a draw pass in each frame

[Wang10]. This order should be respected in order to keep

the data consistency and to prevent unexpected behaviors.

The event traversal, is the one responsible for collecting

user inputs, such as keyboard and mouse operations, which

is extremely important in an interactive application, due to

its ability to provide the application, the possibility of re-

acting to user inputs. The update traversal, will inspect all

the scene’s objects and will transform them as a callback

response to the user’s inputs and/or by their own geometric

transformation parents, in case of dynamic objects. Cull

traversal, will filter which objects are seen/not seen by a

virtual camera and therefore, which ones should be pro-

cessed and drawn, by different metrics, such as their visi-

bility, their importance in final image, their translucency,

etc, preventing irrelevant objects to keep being processed

in further traversals. Object that are elicited to be drawn in

the current frame, are added to a “Draw List”. The last tra-

versal, the draw traversal, will process objects in the inter-

nal “Draw List”, to be sent to the display, directly creating

the OpenGL calls that will create the rendered scene. The

DUA’s Milky Way subset, our main testing dataset, com-

prises 100.639 stars which will be represented by textured

billboards, each one with unique characteristics (taken

from the dataset metadata), hence it may lead to perfor-

mance issues if we do not take any pipeline precaution,

limiting the amount of data traversed and drawn, in every

frame. As stated by [Akenine-Möller08] “Acceleration al-

gorithms will always be needed” in any VR application.

Our visualization acceleration tackled, in particular, the

object’s culling task. As a conclusion, our algorithms will

operate during the pipeline’s culling traversal.

OSG already provides by default some culling algorithms

such as the “small feature culling”, which clips away the

objects that will contribute with only few pixels in the ren-

dered image. Although, since we want to draw stars in the

night sky we need to draw even the smaller objects, and so

we disabled this small feature culling approach. Another

important culling approach already built-in the OSG pipe-

line is the standard “view frustum culling” algorithm,

which clips away all the objects not seen by the virtual

camera, by intersecting each object’s bounding volume

against the virtual camera’s view frustum (that is, the trun-

cated visualization pyramid). We will be using it in our

approach because it will prevent all the invisible objects

from being drawn, reducing the number of OpenGL calls

which would reduce the time taken to draw the scene. In

our application we adopted the standard octree approach,

as our spatial organization data structure. This technique

divides the 3D space in a regular way, which allows rapid

building of the entire tree and provides an efficient and fast

way to search for all the visible objects, stored in such oc-

tree data structure. Another real-time acceleration algo-

rithm we found useful to include in our approach is the

occlusion culling algorithm, which clips away the oc-

cluded objects, this is, the algorithm will test if any object

inside the view frustum is hidden behind another object or

a set of objects and, in that case, will also clip it away.

4.1 Data representation
Choosing an optimized way to represent the data is an im-

portant part of an efficient real-time VR application. As it

was stated previously, we represented each star as textured

billboards and the planets as textured spheres. Drawing

each star as an independent billboard, using the default

billboard’s OSG object, implies high computational de-

mand, breaking the application’s interactivity (see Table

1).

OSG billboard structure

Objects # GPU calls Frame rate (fps)

11 11 ~ 195

100 100 ~ 189

1 009 1 009 ~ 150

10 221 10 221 ~ 52

100 629 100 629 ~ 8

Table 1: Preliminary performance results for a variable

number of objects drawn in the scene, using standard OSG

Billboard objects with increasing number of objects, running

in mono projection mode.

Therefore, we adopted a different approach to simulate the

billboard effect of each star, based on direct GPU drawing

of such objects, by the mean of OpenGL’s shading lan-

guage programing, the GLSL. Our approach allows to

draw all the stars in a single GPU call, while changing each

star object pose to face the camera every frame. In order to

keep each star facing the camera, while drawing each ver-

tex of each star´s billboard (a quadrangle), we need to ro-

tate such quadrangle by its corresponding star’s pivot

point.

 # Objects
GPU

calls

FPS

Mono

FPS

Stereo

OSG 3.934 3.934 ~ 97 ~ 27

OSG 100.629 100.629 ~ 4 ~ 2

GPU 3.934 1 ~ 855 ~ 462

GPU 100.629 1 ~ 743 ~ 396

Table 2 – Comparative table depicting the system’s perfor-

mance drawing all the stars by the two considered ap-

proaches (OSG or GPU Billboards), both in mono and stereo

projection modes.

The vertex shader needs to receive the pivot points list be-

cause while drawing each star’s billboard vertex, it will

need to rotate according to its position regarding the cor-

responding pivot point.

As it may be observed from Table 2, drawing the stars with

our GPU approach generates lower GPU calls and there-

fore higher performance, even when viewing all the ob-

jects present in the VR scene, which led us to realize that

this was the best approach to create the star’s billboard ef-

fect.

4.2 Octree spatial organization
In complex scenes with large number of objects to be pro-

cessed, testing all object’s visibility is a great struggle to

the rendering pipeline, introducing a big delay in cull and

following traversal phases. Organizing and sorting those

objects in a spatial organization data structure is a common

approach to reduce the number of visibility tests, boosting

the time taken to process the entire scene. These data struc-

tures organize the scene objects in any N-dimensional

space and typically are hierarchical, meaning that each

level of the organization encompasses an arbitrary number

of smaller levels which, during traversing time of the en-

tire scene, can accelerate the quest of finding all the visible

objects.

Figure 4: Octree sub-nodes division example [Wang10].

Even though these data structures may be dynamic, updat-

ing themselves while the contained objects change their

state (position, size, orientation, etc…), would be time-

consuming, introducing bigger delays and therefore, worse

performance. In our Galactica storyboard (a travel through

the Solar System), we do not consider at this stage the or-

bital motion of the planets and its satellites. Since in our

case, the objects represented in the scene do not change

position and size, we decided to adopt a static octree data

structure. With this approach, traversing the entire scene

during the cull phase, would reduce the number of visibil-

ity tests because when a level would not pass the test it

would prevent any object, inside that level, to be tested.

The octree data structure construction [Akenine-Möller08]

is performed in the beginning of the runtime subsystem

cycle (see Figure 3). The octree is built based on the global

scene bounding box, which is the octree’s root node (see

Figure 4). Starting in this node, the octree will be con-

structed recursively by splitting each node in two equal

parts in each direction, generating eight new octants. To

manage the octree’s balance and its ability to be traversed

rapidly, we set two rules to decide if a new octant should

be created. Those rules are the maximum octree depth

level and the other is the minimum number of objects per

octant. All the stars stored in an octant will be drawn as

part of the same OSG geometry object (with one vertex list

and one polygon list), which means we will have as much

OSG geometry objects, as the number of octants holding

such objects.

Max. depth 2 4 4 8 8 16

Min. obj. 128 64 128 64 128 128

Pose 1 889 941 948 1128 1160 1175

Pose 2 910 926 918 1208 1190 1202

Pose 3 909 897 906 750 798 801

Max. dif. 21 44 42 458 392 401

Table 3: Frame rate measurements along three poses with

incrementing number of objects built with different octree

parameters. Data was captured in mono projection mode.

To create a balanced and efficient Octree, we present (in

Table 3) the results achieved for different octree construc-

tion configuration. Pose 1 depicts a simulation of around

3.000 objects, Pose 2 depicts around 12.000 objects and

Pose 3 depicts, the entire scene, around 100.600 objects.

The table’s last row represents the maximum frame rate

difference between the best and worst performance pose.

We set our goal to find the configuration that would bring

the most balanced object’s organization, in order to trav-

erse the entire scene, with different number of visible ob-

jects, keeping the frame rate as high and uniform as possi-

ble. We may realize, observing the Table 3, that using a

maximum depth higher than 4 brings lower frame rates

with higher number of visible objects and bigger frame

rate variations, and using a maximum depth lower than 4

brings lower frame rate performance in pose 1 because the

scene is more unbalanced than with depth 4, providing

slower scene traversing while observing fewer objects,

which led us to choose the maximum depth of 4.

Having a maximum depth of 4 and minimum objects per

octant of 64, we achieved a better performance in pose 2

than the results measured with 128 minimum objects per

octant. Since this pose (pose 2) has a large amount of ob-

jects (but not the entire scene), which is the most common

situation while simulating the VR application, we decided

to use the following configuration to build our octree:

 Maximum depth: 4

 Minimum primitives per octant: 64

Embedding this octree organization structure with the

standard view frustum culling algorithm, will prevent

many visibility tests while traversing the entire scene on

the quest of finding the visible nodes because, before test-

ing each object inside an octant, the test is performed with

the octant itself, and if the visibility test fails, it will pre-

vent as many object’s testing as the number of objects

stored in that octant and its sub-octants children.

4.3 Occlusion culling
Our approach considered the development of an occlusion

culling algorithm based in the literature review [Han-

song98] [Papaioannou06], which has the benefit of bring-

ing higher frame rate performance, by discarding occluded

objects in the culling traversal phase. This algorithm has

the goal of avoiding drawing and processing objects that

passed the octree intersection test, after the “view frustum

culling algorithm”, but are hidden by other objects or

groups of objects inside the view frustum, therefore we

would say it could also be understood as the hidden objects

culling algorithm. The occlusion culling algorithm com-

prises two phases. The first one, corresponds to a standard

Z-Buffer technique provided by OSG, where a two-dimen-

sional array with one element per each pixel in the display,

holds a list of depth values of objects that will be mapped

into that Z-Buffer element. In the second phase, we com-

pute the distance from each object to the camera eye, based

on a ray casting technique, where we trace a ray from the

eye point (of the virtual camera) to each pixel in the dis-

play intersecting all the objects on the ray path, storing in

the Z-Buffer only the depth of the closest object inter-

sected.

Figure 5: Top projection of the camera path across the Galat-

ica scene, during the data collection for the performance

evaluation experiment. The black stars represent the density

of stars scattered all over the spatial scene, the blue circles

represent the Solar System’s planets and the red dashed line

represents the projection of the path the virtual camera, dur-

ing the simulation. In the final pose the camera includes the

full dataset in its view frustum.

This way, while traversing the objects’ scene we will be

drawing only the objects with a Z-value lower than the

value on the Z-Buffer, meaning that they are closer and

therefore they are not occluded. Since our objects are or-

ganized in an octree structure, the ray casting method will

test the depth value against the octants before testing the

objects themselves, which will bring fewer tests by assum-

ing that if an octant is occluded, all the objects contained

within it are occluded too.

5. GALACTICA’S RESULTS AND DISCUSSION
To evaluate our system algorithms in different conditions

we have created a camera animation path, crossing the

whole VR scene from one side to the other passing through

the scene center, where the Solar system is located. The

animation lasts 30 seconds. Using this measurement ap-

proach allows us to evaluate and compare the algorithms

performance in different conditions: we will start with a

pose where there are no objects inside the view frustum,

then the camera will be travelling backwards inside the

scene, increasing the number of visible objects, until the

camera reaches the opposite side, where the entire scene is

inside the camera´s view frustum.

Figure 6: Screenshot taken from our Galatica application

with the camera at the center of the scene viewing Solar Sys-

tem’s planets, part of the planet’s orbits and stars constella-

tions (3D polylines linking stars).

Figure 7: Screenshot taken from our Galatica application of

a Milky Way’s landscape.

A picture depicting the camera’s path during the animation

is presented in Figure 5 were we illustrate the different

types and amounts of objects inside the view frustum

along the camera’s animation path. We may observe that

this amount is increasing during the camera animation un-

til all objects are visible. This approach will provide us a

good way to compare the behavior from when there are no

visible objects to when all objects are visible, and conse-

quently need to be drawn by the graphics pipeline. Figure

6 and Figure 7 depict two different camera’s poses that are

available during the camera animation while the data is be-

ing collected.

5.1 Evaluation metrics
To evaluate our application and its performance we de-

fined a set of metrics to measure the application’s perfor-

mance, by reading the continuous frame rate and times

taken in the Cull, Draw and GPU traversals during the

camera animation, which are the most relevant traversals

affected by our custom algorithms. In order to validate and

compare our algorithms, we simulated our application un-

der different conditions:

1. OSG standard visualization techniques (per object

view frustum culling);

2. OSG standard visualization techniques (per object

view frustum), plus our Octree view frustum ap-

proach;

3. OSG standard visualization techniques (per object

view frustum), plus our Octree view frustum approach

and our occlusion culling algorithm.

The measurements were taken simulating the application

in a PC with the following configuration:

 Intel Core i7-3970X CPU @3.5GHz

 16 GB of RAM DDR3

 NVIDIA Quadro 5000 (2.5 GB GDDR5)

 Data set of 100.639 star objects and 104.328 poly-

gons, representing planets of the solar system and

constellations.

The measurements presented regard to a simulation in ste-

reo projection since our application is intended to be oper-

ating in the CaveH at Lousal, which is a large-scale im-

mersive VR system with stereo projection.

5.2 Measurements
The following diagrams depict the results measured with

the metrics and conditions stated in the previous sub-sec-

tion, where the vertical axis represents the frame rate and

the horizontal axis, the camera’s animation normalized

key frames. As it may be clearly observed in Diagram 1,

both Octree and Octree plus Occlusion culling achieve

higher frame rates from the beginning until almost half of

the entire animation, and will become inverted from that

point on, which is the expected behavior.

Diagram 1: Camera’s animation frame rate variation in ste-

reo projection mode.

In a first analysis, when any object hasn´t yet appeared in-

side the view frustum, all algorithms behave quite simi-

larly, with frame rates around 1800 fps. This similar be-

havior happens due to the fact that with an octree spatial

organization, the octree’s root node won’t pass the culling

test and no other octant or nested object will be tested, re-

sulting in only one test. Only one culling test is performed

with the same visualization conditions, in a scene with the

standard OSG scene graph, which won’t pass the culling

test as well and will prevent testing all the scene’s objects.

By the time the root node will pass the test, all objects will

have to become tested in order to decide if they need to be

drawn, and this moment happens around the 0,05 key

frame, where we observe a big drop of the frame rate of

the OSG standard algorithm. This big drop, in our case,

has another explanation besides the delay introduced by

the object visibility search tasks. As we have stated previ-

ously, all our stars are stored in only one geometry (a sin-

gle OSG node) which is drawn during the GPU phase,

which means that if there is any visible star inside an oc-

tant, the system will draw all the stars encapsulated in that

OSG node, which is very inefficient. This phenomenon

can be observed, by the large increase in the duration of

the GPU pipeline’s phase at the 0,05 key frame, in Dia-

gram 2.

Diagram 2: Camera’s animation GPU pipeline’s traverse du-

ration in stereo projection mode.

Since all the stars are embedded in the same scene graph

object, with the OSG standard view frustum culling tech-

nique, the system performs only one visibility test to de-

cide if the stars are visible or not. When the first star passes

the test, all of them will be selected to be included in the

cull list and therefore drawn in the respective phase, and

this is the reason why this OSG standard algorithm, is the

one who spends less time in the cull phase throughout the

entire camera’s animation (see Diagram 3).

Diagram 3: Camera’s animation cull pipeline’s traverse du-

ration in stereo projection mode.

From the 0,05 to 0,4 key frames we do not observe much

differences in the various algorithms behaviors, regarding

both frame rate or traverse duration, because the amount

of visible objects is increasing at a low pace. During this

period, the OSG standard algorithm average frame rate is

around 750 fps. The Octree’s frame rate is the highest,

with around 1700 fps and the Octree plus Occlusion algo-

rithm is 1600 fps, in average. This last algorithm spends a

bit more time to search for occluded objects and this is the

reason why its frame rate is a little bit lower than the Oc-

tree approach. The 0,4 key frame corresponds to the mo-

ment when the camera is approaching to the scene’s cen-

ter, where the smallest octants with planets are located,

bringing a higher effort to compute what needs to be

drawn, as it can be observed in Diagram 4. Between 0,4

and 0,55 key frames the camera is experiencing the visu-

alization of a new kind of astrophysical objects, the Solar

System’s planets and their orbits, which will bring differ-

ent phenomena to the different graphics pipeline’s tra-

versal phases, for all algorithms. Since the OSG standard

algorithm only uses a single OSG node to represent all the

stars, their only visible objects are one stars object, the

planets and their orbits, which is not verified in the other

two algorithms. These have the scene organized in an Oc-

tree and by this time they have a lot more data to traverse

and all the new octants as well as the planets and their or-

bits, intersected by the view frustum. Consequently, this

phase is the point where the algorithms’ performances will

suffer a change. In the cull phase, with OSG standard al-

gorithm, the system only needs to traverse an object for all

the stars and another per planet and orbit, whereas with the

Octree approach, it needs to traverse each planet and orbit,

as well as all the visible octants, which are nearly half of

the total because we’re in the center of the entire scene.

The Octree plus Occlusion culling algorithm, will have to

traverse the same as the Octree approach and will have

also to test each planet for their occluded visibility, which

means that this algorithm will be the one to take more time

to compute the objects visibility (a small set, correspond-

ing to just the Solar System planets), followed by the Oc-

tree approach, making the OSG standard approach the

faster to process this pipeline’s phase.

Diagram 4: Camera’s animation draw pipeline’s traverse

duration in stereo projection mode. Regarding the draw

pipeline’s phase (Diagram 4), we may realize that in this

phase the OSG standard approach takes less time, because

it has to process less number of objects, followed by the

Octree and Octree and Occlusion approaches, which be-

have almost the same way, since they have to process al-

most the same number of objects. This result shows that

the occlusion calculation brings no relevant effect when

the planets (occluders) are occluding each other, because

they are only a few of such objects in the dataset, which is

an expected result. In the GPU phase (Diagram 2), we can

observe the same behavior as in the other pipeline’s steps,

because there are more objects to process than in the pre-

vious camera’s animation phase. In this pipeline’s tra-

versal step, we may observe that there is a moment when

the OSG standard algorithm take a little lower time to pro-

cess the scene than the other approaches, which happens

in the moment when all planets and orbits are visible, and

will be followed by an inversion again, with the OSG

standard to take more time to perform the processing, as

the planets will become so small that they will occupy no

pixels in the final image and won’t be drawn. After this

animation’s phase and until the end of the experiment, the

frame rates decrease a lot and bring better efficiency for

the OSG standard algorithm. At this point the system is

about to draw the entire scene and this standard technique

is the faster approach given the small size of the dataset.

In the worst case scenario, when everything is visible, the

frame rate is in average 500 fps for the OSG standard al-

gorithm. Using the Octree approach the frame rates are a

little bit lower, around 420 fps in average. Finally, with

Octree plus Occlusion culling, the frame rate is in average

400 fps. This happens because the OSG standard approach

is, in this case, the one who has less objects to compute in

all the pipeline’s traversals.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have described the requirements, archi-

tectural elements, development and performance evalua-

tion of a Digital Planetarium appropriate for an immersive

VR environment, such as the CaveH at Lousal. Via the

support and improvement of an existing VR system

(CaveH), we have developed and tested an application, re-

ferred to as Galatica, which is able to run a realistic and

rich visual and aural astrophysical user experience. We

have developed advanced visualization acceleration tech-

niques to ensure that our application is efficient, runs at

interactive rates in stereoscopy and is scalable to datasets

of arbitrary dimensions,, as can be seen by the perfor-

mance results (see Diagram 1). The application is based on

a storyboard of a thematic travel through the Solar System,

with visual and aural elements. The application is devel-

oped such that it can support other storyboards that might

be defined for the DUA or other datasets. In fact, we have

developed features to remove, update and add new da-

tasets to the database that will feed the VR application, al-

lowing to bring continuously diversified and up-to-date as-

tronomical experiences to our immersive VR experience.

We have computed the frame rate, GPU traverse time, Cull

traverse time and Draw traverse time for three visualiza-

tion conditions: (A) using standard OSG view frustum

culling technique; (B) using view frustum culling with and

our octree organizing the scene’s objects; (C) using view

frustum culling with our octree organizing the scene’s ob-

jects and our occlusion culling algorithm. In our experi-

mental analysis we observed the entire dataset of 100.639

star objects and 104.328 polygons. We have generally con-

cluded that our octree organization and octree plus object

culling techniques outperforms the standard OSG view

frustum culling, when around half or less than half of the

dataset is in view. This is due to the use of a balanced

spatial organization structure to store the tested objects (a

set of around 100K stars with their constellations and some

planets with their orbital lines), preventing testing each ob-

ject in the scene for its visibility. We have realized that

when the virtual camera is navigating through the scene’s

objects, almost all the time the view frustum will hold

many objects, but not the whole set contained in the entire

scene, which is when our octree brings more value in effi-

ciency, rather than the standard OSG approach. Our occlu-

sion culling approach, in the case of our test VR scene

(with the DUA dataset), didn’t brought improvements on

the frame rate because the only occluders present in the

scene are the planets (the object occlusion culling algo-

rithm does not apply to stars billboards) and they are only

a small number of them, being only visible in a small part

of the whole scene. We have taken this conclusions for the

case of Galatica with a quite small planet dataset. The

cases when our visualization optimization techniques

aren´t more efficient than the standard OSG approach, are

when the virtual camera is observing almost the entire VR

scene. We expect that for larger datasets the advantage of

our visualization and optimization techniques based in oc-

tree spatial organization and object culling, become more

noticeable. As for future work, we expect to include more

and larger data sources available in the community, which

can provide more diversified types of data, like specific

phenomena in an arbitrary galaxy, or the exploration of a

nebulae or a black hole. We plan also to bring even more

realistic and impressive landscapes to the user experience,

by creating new or remodel the existing geometric models

of the celestial bodies, with increasing level of detail and

resolution. Although not tackled in the paper, we plan to

improve the virtual navigation model by adding motion

blur on the camera’s movement, since it traverses many

different ranges of speed. Creating new sonification cues

for different types of astronomical bodies and managing

how each sound would influence the user’s experience, is

an additional interesting direction for future research. As

it can be expected, increasing the quality and resolution of

the visual and aural content will bring a struggle to the per-

formance, so a promising option is try new approaches to

manage the storage of the objects. Performing the object

testing at the polygon level rather than at the bounding box

level, would bring a more reliable visual representation.

Using the view-dependent level-of-detail approach to

draw the objects might be a good direction to pursue, since

it will make the draw phase to spend more effort on parts

of the objects that are relevant to each view. The occlusion

culling algorithm could be explored deeper, now that there

are some new and faster GPU-based alternative ways of

calculating the objects’ visibility through occluders.

7. ACKNOWLEDGEMENTS
The authors would like to pay special appreciation to Lara

Alegre and Alexandre Loureiro, that helped designing and

writing the Galatica storyboard. To Mafalda Abrunhosa, a

special thanks for her availability to record the narration

of Galatica. To Filipe Gaspar and Vando Pereira a special

appreciation for their guidance in the topics of GPU com-

puting.

8. REFERENCES
[Abbott02] Abbott, B., Emmart, C., Marx, S. & Wyatt, R., “Digital Uni-

verse Atlas”, http://www.haydenplanetarium.org/universe/, 2002.

[Osfield05] Osfield, R., “OpenSceneGraph”, http://www.openscene-

graph.org, 2005.

[Dias07] Dias, M. S., Soares, L. P., Varela, R., Pires, F., Bastos, R.,
Carvalho, N. & Costa, V., "CAVE-HOLLOWSPACE do Lousal -
Princípios Teóricos e Desenvolvimento, Curso Curto", 15º Encon-

tro Português de Computação Gráfica, Microsoft Portugal, Oeiras,

17th October 2007.

 [Cruz-Neira92] Cruz-Neira, C., Sandin, D., DeFanti, T., Kenyon, R. &

Hart, J., "The CAVE: Audio Visual Experience Automatic Virtual
Environment", Communications of the ACM 35, 1992, pp. 65–72.

[Laurel01] Laurel, C., “Celestia”, http://www.shatters.net/celestia/,
2001.

[Hastings-Trew00] Hastings-Trew, J., “JHT’s Planetary Pixel Empo-

rium”, http://planetpixelemporium.com/, 2000.

[Wang10] Wang, R. & Qian, X., “OpenSceneGraph 3.0: Beginner's

Guide”, 2010, Packt Publishing Ltd.

[Akenine-Möller08] Akenine-Möller, T., Haines, E. & Hoffman, N.,

“Real-Time Rendering”, Third Edition, 2008, Wellesley, Massa-

chusetts: A K Peters, Ltd.

[Hansong98] Hansong, Z., “Effective Occlusion Culling for the Interac-

tive Display of Arbitrary Models”, Ph.D. Thesis, 1998, University
of North Carolina: USA.

[Papaioannou06] Papaioannou, G., Gaitatzes, A. & Christopoulos, D.,
“Efficient Occlusion Culling using Solid Occluders”, Proceedings

of the 14th International Conference in Central Europe on Com-
puter Graphics, Visualization and Computer Vision, January 30th -

February 3rd 2006, Plzen: Czech Republic.

[Soares10] Soares, L. P., Pires, F., Varela, R., Bastos, R., Carvalho, N.,

Gaspar, F. and Dias, M. S., “Designing a Highly Immersive Inter-
active Environment: The Virtual Mine”, Computer Graphics Fo-

rum, The Eurographics Association and Blackwell Publishing Ltd.,

Volume 29, Issue 6, pages 1756–1769, September 2010.

http://www.openscenegraph.org/
http://www.openscenegraph.org/
http://www.shatters.net/celestia/
http://planetpixelemporium.com/

