
The Eclipse Java Metamodel
Scaffolding Software Engineering Research on Java Projects with MDE Techniques

Pedro Janeiro Coimbra1 and Fernando Brito e Abreu2;3

1ADETTI-IUL, Av.a das Forças Armadas, 1649-026 Lisboa, Portugal
2DCTI, ISCTE-IUL, Av.a das Forças Armadas, 1649-026 Lisboa, Portugal

3CITI, FCT/UNL, Quinta da Torre, 2829-516 Caparica, Portugal
pedrojcoimbra@gmail.com, fba@fiscte-iul.pt, fct.unl.ptg

Keywords: Model-Driven Engineering, Metamodeling Techniques, Eclipse IDE, Java Projects, Software Metrics.

Abstract: Java on the Eclipse IDE is a frequent choice for software development nowadays. Software Engineering
researchers have built program analysis tools in that environment for several purposes. However, that requires
a deep understanding of Eclipse internals, such as the Java AST.
This paper discusses the feasibility of a metamodel-driven approach to scaffold the construction of such tools.
Its core is the Eclipse Java Metamodel (EJMM), obtained through reverse engineering. The latter is instantiated
with meta-objects representing the constructs of a given Java program. We then use OCL to traverse programs
very easily. To validate the feasibility of our metamodel-driven approach to program analysis, we developed
an Eclipse plug-in based on it, to support the metamodel-driven measurement (M2DM) approach.

1 INTRODUCTION

Over the past decade several Software Engineering
researchers have proposed Java code analysis tools,
often with a focus on software measurement (Wilkie
and Harmer, 2002; Cahill et al., 2002; Antoniol et al.,
2003; McQuillan, 2011). As a follow-up, we searched
for opportunities within the Eclipse IDE to further aid
research over Java software systems using MDE tech-
niques. Our attention turned to the set of Eclipse plug-
ins called Eclipse Java Development Tools (JDT)
(The Eclipse Foundation, 2013), which offer control
and access to typical compiler and IDE functions for
code interpretation and project analysis. Several such
tools have been developed as Eclipse plug-ins, but
producing them requires a thorough knowledge of the
Eclipse core internals, such as the Java AST. As dis-
tancing software analysis from the complex parsing
logic to a more commonly understood OO perspec-
tive became a subject of study (Antoniol et al., 2003),
we tasked ourselves to create the Eclipse Java Meta-
model, hereinafter referred as EJMM, by reverse en-
gineering the relevant parts of the Eclipse JDT.

Our main objective here is to show the feasibil-
ity of a higher level of abstraction upon which re-
searchers can perform applied research using Java

programs as the object of study. Examples may
include program comprehension, metrics collection,
code smells detection, program transformations (e.g.,
refactoring actions) or program evolution. In other
words, we seek a metamodel-driven approach to scaf-
fold the research upon Java code repositories.

To reify this proposal, we developed an Eclipse
plug-in supporting a model-driven representation of
Java programs based on EJMM instantiation. Using
this higher-level abstraction we can traverse programs
very easily, using model-driven techniques such as
executing OCL expressions upon the EJMM. To as-
sess the feasibility of our approach, we built a plug-
in for metrics collection on top of it, thus obtaining
a MetaModel-Driven Measurement (M2DM) tool for
Java, within the Eclipse environment. M2DM was
initially proposed in (Brito e Abreu, 2001).

This paper is organized as follows: section 2 de-
scribes the EJMM; section 3 describes the generic ar-
chitecture of our M2DM Eclipse plug-in, based on
EJMM, as well as choices regarding its instantiation
process and its expected validation; section 4 presents
a few examples of the use of OCL to traverse the
EJMM; section 5 presents a preliminary validation;
section 6 describes the related work; finally, section 7
draws some conclusions and outlines future work.

392



2 ECLIPSE JAVA METAMODEL

The EJMM was obtained by reverse engineering and
composing two Eclipse JDT components: the Eclipse
Java Model (hereinafter referred as EJM) and the
Eclipse Abstract Syntax Tree (or AST for short). The
EJM contains several interfaces that provide a vision
over a Java project’s structure under a tree architec-
ture. The AST, on the other hand, deals with parsed
source code. It allows the analysis of a source code
file represented also as a tree, down to each statement
and expression that compose the methods of a class
(The Eclipse Foundation, 2013; Kuhn and Thomann,
2006). Although the EJM already provides a fairly
complete vision of the software’s structure (including,
for instance, which classes are declared, as well as
their fields and methods), the AST provides the minu-
tia of a software application that can only be found
within the code itself. The two components com-
plement each other to create a highly detailed Java
metamodel. However, the EJMM does not employ
the EJM’s and the AST’s tree structures. Instead, we
adopted a simpler and more direct representation of a
Java project, with meta-associations connecting spe-
cific metaclasses. The node metaclasses remain, but
purely as a means to generalize different metaclasses
and to disclose the information they contain.

Figure 1 represents the basic structure of a Java
project and its hierarchical structure, including type
inheritance and interface implementations. All meta-
classes in Fig. 1 inherit, directly or indirectly, from
the base JavaElement metaclass. The latter repre-
sents any node of a project tree, confers it a name (the
one declared in the source code) and an unique iden-
tifier. Also included in this diagram are three enumer-
ations: visibility types, Java types and package frag-
ment root types. The first determines the visibility of
an element (public, private, protected or default). The
Java types enumeration characterizes the Type meta-
object (Java class, interface, annotation type or enu-
meration). Package fragment roots can be folders or
archives and the latter can be jar or zip files.

Figure 2 shows the contents of the Type metaclass,
such as fields, methods, static initializers and type pa-
rameters. These components are referred to as mem-
bers in the EJM and such is reflected by the abstract
metaclass Member from which they inherit. The Lo-
calVariable metaclass is a special case - since a local
variable can only be located in one place, the meta-
associations between it and either Method or Initial-
izer are mutually exclusive. This can be checked by
the following OCL invariant defined in the EJMM:

context LocalVariable

inv localVariableExclusiveLocation:
self.parameterLocation.isDefined() xor
self.method.isDefined() xor
self.initializer.isDefined()

The fields arrayDimensions and returnTypeArray-
Dimensions determine the number of array dimen-
sions a LocalVariable, Field or a Method’s returnType
has.

In the final diagram (Fig. 3), the AST metaclasses
are depicted. Inheriting from a base ASTNode meta-
class, only comments and statements have been cho-
sen to be included in the EJMM. Comments are di-
rectly linked to compilation units through a single
meta-association. Statements can take several shapes,
but only Block statements are meta-associated to ini-
tializers or methods. Much like local variables, the
Block’s meta-associations are mutually exclusive - a
block can only be associated with either an Initializer
or a Method, or none at all. This can be upheld with
the following OCL constraint:

context Block

inv blockExclusiveLocation:
not(self.method.isDefined() and

self.initializer.isDefined())

Note that a Block may not be necessarily linked
directly to a Method or Initializer. Instead, it may be
a part of another Statement (for instance, a Block may
be the thenStatement of an IfStatement), in which case
both meta-associations will be undefined.

All other statement types can only be found as ag-
gregate parts of blocks, directly, or as part of other
statements within the aggregation. Furthermore, there
are extra meta-associations to represent dependencies
between a Statement and a Type (typeDependencies),
Field (fieldsAccessed) or Method (methodsCalled).
The latter represents the types, fields and methods
that are used or invoked and used by the expressions
that compose the statement in question. These depen-
dency meta-associations are based on the AST bind-
ings found in expressions contained inside statements,
that hold several information about their contents.
The field startPosition of the ASTNode metaclass in-
dicates the first character byte of the piece of code that
a node represents within the entire block of code from
which the AST was generated. Thus, when analyz-
ing the code of a compilation unit, the startPosition
indicates the location of the node in the source file.
The length field indicates the size of the piece of code
in bytes. The Statement metaclass contains a condi-
tionalOperatorCount field that represents the number
of conditional expressions contained in the statement,
plus the number of conditional operators used by the
expressions contained in the statement (specifically,

The�Eclipse�Java�Metamodel�-�Scaffolding�Software�Engineering�Research�on�Java�Projects�with�MDE�Techniques

393



”and” operators, ”or” operators and conditional ex-
pressions). This field can be used for defining metrics
such as the cyclomatic complexity (McCabe, 1976).

The previous metaclasses are based on the
homonymous EJM interfaces (within org.eclipse.
jdt.core package) or AST classes (within org.
eclipse.jdt.core.dom package). A full list of
metaclass origins can be found in (Coimbra, 2013).

While most metaclass fields derived from the
original fields or getters, some of Type, Method
and Field derived from an integer flag of the
corresponding interfaces. The flags, defined in
org.eclipse.jdt.core.Flags, differentiate members vis-
ibility (reflected on the enumeration VisibilityType) or
Java types (enumeration JavaType). Flags were also
used to create the isFinal, isSynthetic, isDeprecated,
isStatic, isSynchronized, isNative, isBridge, has-
Varargs, isVolatile, isTransient and isStrictfp fields.

Several auxiliary methods are declared in the
metaclasses to support the definition of OCL state-
ments. Examples include recursive methods that re-
turn the hierarchical children or parents of a given
meta-object (e.g., all statements contained in a block,
or all components of a type’s superclass hierarchy).

Meta-associations are representations of getters
found in the metaclasses’ origin. A special case was
found in the relation between PackageFragmentRoot
and PackageFragment, as the original IPackageFrag-
mentRoot provides IPackageFragments through the
generic Java model child getter, rather than a specific
one for package fragments. For most statement types,
fields have been translated into fields in their corre-
sponding metaclass. The most notable exception is
the Block metaclass, as its contents is translated to a
single aggregation of Statement.

Due to space constraints the full EJMM cannot be
described herein. Please refer to (Coimbra, 2013).

3 M2DM TOOL BASED ON EJMM

As a first application of the EJMM, we created an
open-source M2DM tool for Java, as an Eclipse
plug-in (QUASAR, 2013b). The components of
this tool are: i) a widely used open-source metrics
plug-in for Eclipse produced by Frank Sauer (Sauer,
2013), ii) an OCL compiler embedded in the UML-
based Specification Environment (USE) (Gogolla
et al., 2007; Database Systems Group, University
of Bremen, 2013), iii) a facade component interface
named J-USE, produced within the QUASAR group
(QUASAR, 2013a), that provides a Java API for USE
services and, finally, iv) a transformation component
that goes through EJM and the Java AST and gen-

erates EJMM instances by requesting USE services
through J-USE. J-USE allows loading UML mod-
els or metamodels, instantiate them, evaluate defined
OCL constraints (invariants, pre and post-conditions)
and execute other OCL expressions as queries over
the model or metamodel instances. Those queries are
indeed traversal operations upon the EJMM that al-
low evaluating expressions on concrete instantiations,
that is, on actual Java programs. Frank Sauer’s plug-
in will only provide the functionality related to dis-
playing and exporting metrics.

The EJMM is defined as a USE specification file
(UML class diagram in textual format) distributed
with the plug-in. A metrics set definition is expressed
using OCL upon the EJMM on a separate USE spec-
ification file. The user will then be able to define and
load new metric sets. In most tools (like the one from
Frank Sauer) the metrics calculation algorithms are
embedded somewhere in the tool’s source code, thus
hampering the addition of new metrics, due to the un-
derstandability effort required for creating the exten-
sion and producing a new executable.

4 USING OCL UPON THE EJMM

We will now present a few examples of using OCL
to traverse the EJMM and retrieve specific data or
meta-objects. The first is the well-known method’s
cyclomatic complexity metric (McCabe, 1976), using
Frank Sauer’s plug-in algorithm:
context Method

cyclomaticComplexity(): Integer =
self.getAllStatements()->select(s |
not(s.oclIsKindOf(ReturnStatement)))

.conditionalOperatorCount->
excluding(oclUndefined(Integer))->sum +
self.getAllStatements()->select(s |

s.oclIsKindOf(CatchClause) or
s.oclIsKindOf(DoStatement) or
s.oclIsKindOf(ForStatement) or
s.oclIsKindOf(IfStatement) or
(s.oclIsKindOf(SwitchCase) and
not(s.oclAsType(SwitchCase).isDefault)) or
s.oclIsKindOf(WhileStatement))->size

The next examples are taken from of our imple-
mentation of the FLAME (Formal Library for Aiding
Metrics Extraction) library (Baroni, 2002). The full
implementation can be found in (QUASAR, 2013b).
context Type

children(): Set(Type) =
self.extendedBy->union(self.implementedBy)

CHIN(): Integer =

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

394



children()->size

definedFeatures() : Set(Member) =
self.fields->union(self.methods)->asSet

definedOperations() : Set(Method) =
self.definedFeatures()->select(f |
f.oclIsKindOf(Method))->collect(f |
f.oclAsType(Method))->asSet

definedAttributes() : Set(Field) =
self.definedFeatures()->select(f |
f.oclIsKindOf(Field))->collect(f |
f.oclAsType(Field))->asSet

5 VALIDATION

Validating a metrics collection tool requires the iden-
tification of its quality model. Therefore, we start by
enumerating its quality characteristics:
� Transparency - the calculation algorithms used in

metrics collection should be clearly identified;
� Extensibility - new metrics should be easy to add;
� Scalability - the metrics collection process should

not degrade drastically with reasonably large sys-
tems, given regular computing resources;

� Accuracy - the collected values for the metrics
should be accurate.
Regarding transparency, recall that metrics defini-

tions are contained in separate files. Since OCL has
good expressiveness, anyone familiar with the seman-
tics of UML class diagrams will understand the met-
rics collection algorithms, as the one provided earlier.

Tool extensibility (i.e. adding new metrics sets)
is straightforward because the concepts used in met-
rics formalization are those defined in the EJMM. We
just need to create a new file with the OCL defini-
tions of the corresponding metrics. This capability is
evidenced by the availability of the MOOD (Brito e
Abreu and Carapuca, 1994) and the MOOSE (Chi-
damber and Kemerer, 1994) metrics sets built on top
of FLAME, made available at (QUASAR, 2013b).

To test the scalability, we ran the M2DM tool upon
Java projects of increasing size, comparing the dura-
tion of the instantiation process. We chose five differ-
ent projects as test cases, including three key compo-
nents of the M2DM plug-in itself: J-USE (QUASAR,
2013a), Frank Sauer’s metrics plug-in (Sauer, 2013)
and the USE tool (Database Systems Group, Uni-
versity of Bremen, 2013). The remaining two are a
widely-used case-study for research purposes, JHot-
Draw (Gamma and Eggenschwiler, 2013), and a pop-
ular open-source application, SweetHome3D (Puy-
baret, 2013), which enjoys over one hundred thousand

weekly downloads at the time of writing. We recorded
the amount of EJMM objects and links created and
the duration of the full instantiation process. Tests
were made on a machine with a dual-core processor
running at 3GHz each and 4GB of physical memory,
and 1024 maximum JVM heap size. Tests consisted
of running the instantiation process fifty times upon
each project, from largest to smallest, under the same
Eclipse session, and registering the total duration in
seconds for the whole instantiation process. Its aver-
age value, represented in Table 1, allows claiming that
the M2DM plug-in scales up nicely.

Table 1: Instantiation process test results.

Project #Objects #Links Time(s)
J-USE (v.1.0) 3491 10356 0.7
Metrics (v.1.3.6) 17240 43303 4.3
JHotDraw (v.6.0) 64147 112806 13.8
SweetHome3D (v.4.0) 136716 311791 44.3
USE (v.3.0.6) 211452 395460 93.5

Regarding accuracy, our validation approach is
based on a comparison between the values of the
same metrics collected with the M2DM tool, with
those obtained with the Frank Sauer plug-in. The lat-
ter is in use for several years and has a large num-
ber of downloads and several updates, so we had a
good confidence that its calculated values could be
used as a benchmark. The first metric tested was
the method’s cyclomatic complexity (McCabe, 1976),
taking a random sample of 1005 non-abstract methods
from non-interface and non-nested types from JHot-
Draw’s source code. Out of 1005 cases, 6 presented
different values between the prototype and Frank
Sauer’s plug-in, 5 of which were due to the M2DM
approach not factoring the complexity of methods of
anonymous classes inside an analyzed method and 1
differing due to Frank Sauer’s plug-in counting occur-
rences of ”&&” and ”jj” in commented code. Further
accuracy tests are still required, but it is worth men-
tioning that this preliminary test allowed us to unveil
a bug in Frank Sauer’s plug-in.

6 RELATED WORK

Development of model-driven metrics tools has long
been a research subject. In this section we will briefly
survey, chronologically, related proposals.

The Java Metrics Reporter (JMR) (Cahill et al.,
2002) pioneered in using a Java Model to calculate
metrics. The latter is much akin to Eclipse JDT’s
EJM, sharing a similar hierarchical structure and a
single node class from which all Java elements inherit

The�Eclipse�Java�Metamodel�-�Scaffolding�Software�Engineering�Research�on�Java�Projects�with�MDE�Techniques

395



(named JElement). Extensions to the Java Model and
implementation of metrics calculation is done by sub-
classing JMR’s Java Model. Though this approach is
stated to be much simpler than straight parser logic,
it would still entail some programming effort. This
technique is similar to what is commonly found in ex-
isting Eclipse metrics plug-ins, such as Frank Sauer’s
metrics tool (Sauer, 2013), using EJM-supplied data.
Unfortunately, at the time of writing, we have not
been able to find it available online.

The Extensible Metrics toolBench for Empirical
Research (EMBER) uses a database schema to rep-
resent a metamodel aimed at OO languages such as
C++ and Java (Wilkie and Harmer, 2002). It parsed
the target software project to load the database and
SQL queries were used to calculate metrics. Since
the database schema aims to fit several OO languages,
it is more generic than the EJMM proposed herein.
This lack of detail shows up in the absence of type pa-
rameters, method statements or annotations, and pre-
vents the calculation of well-known metrics such as
the weighted methods per class (Chidamber and Ke-
merer, 1994) using McCabe’s cyclomatic complexity
metric (McCabe, 1976).

Antoniol et al. proposed a tool that navigates Java
AST objects using OCL expressions (Antoniol et al.,
2003). The authors use a metamodel based on the
JavaCC compiling rules and exemplify its functional-
ities by formalizing a small set of software metrics.
Their approach is similar to ours, though using a dif-
ferent metamodel. Their AST metamodel retains a
node tree structure, whereas our EJMM aims to cap-
ture more directly a Java project’s structure (despite
that both the EJM and Eclipse AST have similar node
tree structures). Furthermore, since their metamodel
comprises only the AST, it excludes the project’s
overall structure (e.g., folders and packages). This
drawback prevents the calculation of coarse-grained
metrics, such as those defined at module / subsystem
or system levels, like the MOOD metrics set (Brito e
Abreu and Carapuca, 1994).

The Design-Metrics (DM) Crawler allows to col-
lect, store, display and analyze object-oriented de-
sign metrics from XMI files using XQuery expres-
sions (El Wakil et al., 2005). XQuery queries are
used to formalize and calculate metrics. Their au-
thors claimed this language allows the definition of
complex metrics more easily than OCL, since it is
possible to define variables and control flow. While
the first version of OCL had some limitations regard-
ing those aspects, OCL2 has removed those limita-
tions. We found no evidence that this tool could be
used with Java.

The Metrino tool is a metrics tool that aimed to

measure any software devised in any Domain Spe-
cific Language with metamodels based on the Meta
Object Facility, using OCL for the definition of do-
main rules (Engelhardt et al., 2009). OCL is also used
for the definition and calculation of metrics, under
OMGs Software Metrics Metamodel. Currently, it is
available online and affiliated with the ModelBus tool
(Hein et al., 2013). Their authors claim that Metrino
can be used for UML models, as well as for any Do-
main Specific Modeling Language (DSL) based on
MOF, but not for Java.

MoDisco is an Eclipse open source framework
dedicated to Model Driven Reverse Engineering
(MDRE) by supporting the development of tools for
legacy migration or modernization, quality assurance
or retro-documentation (Bruneliere et al., 2010). It al-
lows Java reverse engineering, including a Java meta-
model, corresponding discoverer and transformation
to OMG’s Knowledge Discovery Metamodel (KDM).
MoDisco Java metamodel is also based on the Eclipse
AST, extended with metaclasses to represent Java
project components such as packages and compilation
units. As for metrics definition, they can be expressed
with Java queries on a separate project that uses the
MoDisco API. This allows a separation of concerns,
by detaching metrics definition from its collection in-
ternals. Nevertheless, our solution provides a higher
abstraction level, granted by the use of the FLAME
OCL API upon the EJMM.

McQuillan proposed a MOF-compliant meta-
model for metrics extraction for Java and UML mod-
els (McQuillan, 2011). Metrics formalization was
also in OCL over that metamodel. To test and imple-
ment this technique, the author claims to have devel-
oped the Defining Metrics at the Meta-Level (dMML)
tool, capable of measuring Java programs. Unfortu-
nately this seems to have been a research prototype
only, for academic purposes, since it is not available
online for evaluation.

Other non model-driven approaches, like meta-
programming, exist for metrics definition and calcula-
tion. One such example is Rascal, a Domain Specific
Language (DSL) that has been used mainly for source
code analysis and transformation. Its specific con-
structs include the visit statement (for structure-shy
traversal and transformation of arbitrary data such as
parse trees), comprehensions (for querying and creat-
ing sets, relations, maps or lists) and regular expres-
sions (for string matching), that can be used to define
source code metrics. In (Klint et al., 2010), for in-
stance, the authors used Rascal to construct generic
(parse-tree-based) metric calculators for comparing
six implementations of the same DSL using differ-
ent languages (Java, JavaScript, C#) and DSL tools

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

396



(ANTLR, OMeta, Microsoft M).

7 CONCLUSIONS/FUTURE
WORK

The proposed EJMM metamodel was instantiated
with data provided by the Java Model and the Eclipse
JDT’s AST. It allowed the formalization in OCL (and
collection) of several metrics sets on top of it easily.
It matches very closely the concepts of the Java lan-
guage and, in our view, is a better alternative when
compared with related works that sacrifice function-
ality for the sake of portability.

Although we have mainly used our MDE tech-
nique for metrics collection, we realized that the cur-
rent plug-in architecture (except for the Frank Sauer’s
metrics visualization component) is generic and it
may be applied to develop other tools that require
Java source code analysis, in areas such as program
comprehension, code smells detection, refactoring or
software evolution, to name a few. Demonstrating the
feasibility of our approach in those research areas will
be a subject of our future work.

REFERENCES

Antoniol, G., Di Penta, M., and Merlo, E. (2003). Yaab (yet
another ast browser): using ocl to navigate asts. In
Intern. Workshop on Program Comprehension, pages
13–22. IEEE.

Baroni, A. L. (2002). Formal Definition of Object-Oriented
Design Metrics. Msc thesis, Vrije Universiteit Brussel
(VUB), Brussels, Belgium.

Brito e Abreu, F. (2001). Using ocl to formalize ob-
ject oriented metrics definitions. Technical Report
ES007/2001, INESC.

Brito e Abreu, F. and Carapuca, R. (1994). Object-oriented
software engineering: Measuring and controlling the
development process. In 4th International Conference
on Software Quality, McLean, Virginia, USA. Ameri-
can Society for Quality.

Bruneliere, H., Cabot, J., Jouault, F., and Madiot, F.
(2010). Modisco: a generic and extensible framework
for model driven reverse engineering. In ASE’10,
ASE’10, pages 173–174, New York, NY, USA. ACM.

Cahill, J., Hogan, J. M., and Thomas, R. (2002). The java
metrics reporter - an extensible tool for oo software
analysis. In 9th Asia-Pacific Software Engineering
Conference, pages 507–516.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6):476–493.

Coimbra, P. J. (2013). An Eclipse Plug-in for Metamodel
Driven Measurement. Msc thesis, ISCTE-IUL, Lis-
bon, Portugal.

Database Systems Group, University of Bremen
(2013). Sourceforge.net: The uml-based
specification environment. http:// source-
forge.net/apps/mediawiki/useocl/. Accessed: 2013-
05-30.

El Wakil, M., El Bastawissi, A., Boshra, M., and Fahmy,
A. (2005). A novel approach to formalize and collect
object-oriented design-metrics. In 9th Intern. Conf. on
Empirical Assessment in Software Engineering.

Engelhardt, M., Hein, C., Ritter, T., and Wagner, M. (2009).
Generation of formal model metrics for mof based do-
main specific languages. Electronic Communications
of the EASST, 24.

Gamma, E. and Eggenschwiler, T. (2013). Jhotdraw start
page. Accessed: 13-08-2013.

Gogolla, M., Bttner, F., and Richters, M. (2007). Use:
A uml-based specification environment for validat-
ing uml and ocl. Science of Computer Programming,
69(13):27–34.

Hein, C., Engelhardt, M., Ritter, T., and Wag-
ner, M. (2013). Metrino. http://www. mod-
elbus.org/modelbus/index.php/metrino. Accessed:
2013-05-30.

Klint, P., van der Storm, T., and Vinju, J. (2010). On the
impact of dsl tools on the maintainability of language
implementations. In 10th Workshop on Language De-
scriptions, Tools and Applications, LDTA ’10, pages
10:1–10:9, New York, NY, USA. ACM.

Kuhn, T. and Thomann, O. (2006). Eclipse cor-
ner article: Abstract syntax tree. http://
www.eclipse.org/articles/article.php?file=Article-
JavaCodeManipulation AST/index.html. Accessed:
2013-05-30.

McCabe, T. J. (1976). A complexity measure. IEEE Trans-
actions on Software Engineering, SE-2(4):308–320.

McQuillan, J. A. (2011). Using Model Driven Engineer-
ing to Reliably Automate the Measurement of Object-
Oriented Software. Phd thesis, National University of
Ireland, Maynooth.

Puybaret, E. (2013). Sweet home 3d - draw floor plans and
arrange furniture freely:. Accessed: 15-09-2013.

QUASAR (2013a). Java facade and code generator for
use (uml-based specification environment). http://
code.google.com/p/j-use/. Accessed: 2013-05-30.

QUASAR (2013b). Metamodel driven measurement
(m2dm) tool. https://code.google.com/p/m2dm/. Ac-
cessed: 2013-09-06.

Sauer, F. (2013). Metrics 1.3.6. http:// met-
rics.sourceforge.net/. Accessed: 2013-05-30.

The Eclipse Foundation (2013). Eclipse
java development tools (jdt) overview.
http://www.eclipse.org/jdt/overview.php. Accessed:
2013-05-30.

Wilkie, F. G. and Harmer, T. J. (2002). Tool support
for measuring complexity in heterogeneous object-
oriented software. In ICSM’2002, pages 152–161.

The�Eclipse�Java�Metamodel�-�Scaffolding�Software�Engineering�Research�on�Java�Projects�with�MDE�Techniques

397



APPENDIX

Figure 1: Eclipse Java Metamodel - Java Project Structure.

Figure 2: Eclipse Java Metamodel - Type Components.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

398



Figure 3: Eclipse Java Metamodel - Abstract Syntax Tree Components.

The�Eclipse�Java�Metamodel�-�Scaffolding�Software�Engineering�Research�on�Java�Projects�with�MDE�Techniques

399


