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Resumo 

 

Esta dissertação é constituída por três estudos que testam empiricamente três tópicos 

relacionados com a gestão de carteiras com a mesma base de informação (preços de todas as 

ações transacionadas nos índices S&P 500 e STOXX 600 entre 2002 e 2019). 

O primeiro estuda o número mínimo de ações necessário para uma carteira obter grande 

parte dos benefícios da diversificação em termos de risco e rendibilidade. Verificamos que os 

maiores benefícios da diversificação podem ser obtidos com uma carteira de 50 ou 64 ações 

consoante a ponderação da carteira seja de pesos iguais ou ponderada pela capitalização 

bolsista, respetivamente. 

O segundo examina a relação entre a rendibilidade do mês seguinte e variáveis de risco 

(desvio padrão, assimetria e curtose). Geralmente, não vemos uma relação estritamente 

crescente ou decrescente entre as variáveis de risco e a rendibilidade do mês seguinte nem 

diferenças estatisticamente significativas entre a rendibilidade média das carteiras dos quintis 

com valores mais baixos e valores mais altos das variáveis de risco. 

O terceiro centra-se na implementação de três estratégias de investimento baseadas no 

modelo Treynor-Black. A estratégia do modelo Treynor-Black com maior rácio de Sharpe 

(índice de mercado usado como benchmark da carteira passiva) tem menor rendibilidade e 

maior risco face à carteira passiva. Apontamos três razões que levam a carteira passiva a obter 

uma rendibilidade média ajustada pelo risco superior às estratégias baseadas no modelo 

Treynor-Black.  

 

Classificação JEL: G11, G12 

Palavras-chave: Diversificação, Dimensão da carteira, Rendibilidades de ações cross-section, 

Risco idiossincrático, Gestão ativa, Modelo Treynor-Black. 

  



 

ii 

 

  



 

iii 
 

Abstract 

 

This dissertation consists in three studies that test empirically three topics related with portfolio 

management with the same dataset (prices of all stocks traded in the S&P 500 and STOXX 600 

between 2002 and 2019). 

The first studies the minimum number of stocks that a portfolio should have to achieve the 

major benefits of diversification in terms of risk and return. We find that major benefits of 

diversification can be achieved with an equal-weighted portfolio with 50 stocks and a value-

weighted portfolio with 64 stocks. 

The second examines the relationship between next month return and risk variables 

(standard deviation, skewness, and kurtosis). Generally, we see no clear increasing or 

decreasing monotonic relationships between risk variables and next month return neither 

statistically significant differences between the average return of quintile portfolios formed with 

stocks of lowest values and stocks with highest values of risk variables. 

The third focuses on the implementation of three investment strategies based on Treynor-

Black model. The Treynor-Black model strategy with highest Sharpe measure (when the market 

index is used as the market portfolio) has lower return and higher risk than the passive portfolio.  

We point out three reasons that lead passive portfolio to achieve superior risk-adjusted average 

return over the Treynor-Black model strategies. 

 

JEL Classification: G11, G12 

Keywords: Diversification, Number of stocks, Cross-section of stock returns, Idiosyncratic 

risk, Active management, Treynor-Black model. 
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Sumário Executivo 

 

O tema desta dissertação consiste no teste empírico de três tópicos relacionados com a gestão 

de carteiras. A base de informação usada é comum aos três tópicos e consiste, essencialmente, 

nos preços de todas as ações transacionadas nos índices S&P 500 (mercado americano) e 

STOXX 600 (mercado europeu) entre janeiro de 2002 e dezembro de 2019. 

O primeiro objetivo de investigação desta dissertação é o estudo do número mínimo de 

ações que uma carteira deve incorporar para maximizar os benefícios de diversificação em 

termos de risco e rendibilidade. A principal motivação para esta investigação é o debate na 

literatura sobre o número mínimo necessário de ações numa carteira para se obterem benefícios 

de diversificação satisfatórios. Diversos estudos demonstram que 10 ações são suficientes para 

alcançar benefícios de diversificação satisfatórios, mas, por outro lado, existem estudos, 

especialmente recentes, que desafiaram este facto, mostrando que 100 ações ou mais são 

necessárias para alcançar benefícios de diversificação satisfatórios. Através da geração aleatória 

de carteiras (sem reposição) com diferentes tamanhos, investigamos como o risco e a 

rendibilidade das carteiras mudam à medida que o número de ações aumenta em carteiras de 

pesos iguais e ponderadas pela capitalização bolsista. 

As principais contribuições do primeiro estudo são as seguintes. Primeiro, comparamos os 

benefícios da diversificação nos mercados dos EUA e da Europa, e não em apenas um mercado 

como a maioria dos estudos sobre diversificação. Segundo, embora os estudos empíricos se 

concentrem, maioritariamente, nas carteiras com pesos iguais, analisamos também os 

benefícios da diversificação das carteiras ponderadas por capitalização bolsista. Terceiro, 

analisamos empiricamente o resultado em mais de sete milhões de carteiras para obter 

rendibilidade e risco de carteiras com diferentes configurações, assegurando a robustez dos 

resultados através do aumento e diminuição do número de simulações para cada uma das 

dimensões das carteiras. Em quarto lugar, utilizamos uma técnica de amostragem que inclui 

todas as ações que em algum momento fizeram parte do índice representativo de cada mercado 

ao longo do período, evitando assim o enviesamento dos resultados devido aos dados conterem 

apenas ações que estiveram cotadas durante a totalidade do período histórico. Finalmente, 

enquanto a maioria dos estudos apenas considera os resultados de estratégias para o período 

completo da amostra, a nossa análise apresenta resultados segregados por ano.  

Os principais resultados do primeiro estudo podem ser sumarizados a três níveis. Primeiro, 

os principais benefícios da diversificação, nos mercados dos EUA e da Europa, podem ser 

obtidos com uma carteira de pesos iguais com 50 ações e uma carteira ponderada por 
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capitalização bolsista com 64 ações. Estas carteiras reduzem, no mínimo, 95% do risco 

diversificável. Segundo, observamos que o aumento do número de ações em carteiras de pesos 

iguais não tem um impacto significativo na riqueza média do final do período, enquanto o 

referido aumento tem um efeito ligeiramente negativo nas carteiras ponderadas por 

capitalização bolsista. Finalmente, o desvio padrão da riqueza final diminui à medida que o 

número de ações de uma carteira aumenta em ambos os mercados e em ambas as abordagens 

de ponderação. As carteiras de pesos iguais com 50 ações e as carteiras ponderadas por 

capitalização bolsista com 64 ações têm um desvio padrão da riqueza do final do período 

inferior a 0,05 por cada $1 ou 1€ de investimento nos mercados dos EUA e da Europa , 

respetivamente. 

O segundo objetivo de investigação proposto nesta dissertação é o estudo da relação entre 

a rendibilidade do mês seguinte e diferentes variáveis de risco (desvio padrão, assimetria e 

curtose). Os resultados divergentes apresentados na literatura sobre a relação entre estas 

variáveis de risco e a rendibilidade são a principal motivação para esta investigação. Tanto são 

reportadas relações negativas como positivas entre a rendibilidade e as mesmas variáveis de 

risco. 

As principais contribuições do segundo estudo são as seguintes. Primeiro, comparamos a 

relação entre risco e rendibilidade do mês seguinte no mercado dos EUA e da Europa, em vez 

de utilizar apenas um mercado como a maioria dos estudos sobre este tópico. Segundo, 

analisamos também se a referida comparação mostra diferenças significativas entre carteiras de 

pesos iguais e carteiras ponderadas por capitalização bolsista. Terceiro, estudamos a relação da 

rendibilidade do mês seguinte com nove variáveis, incluindo variáveis realizadas e esperadas, 

para cobrir a maior parte das abordagens utilizadas noutros estudos sobre este tema. Quarto, 

analisamos o desempenho de uma carteira autofinanciada que consiste em comprar ou vender 

o quintil de ações com o valor mais baixo de cada variável de risco e vender ou comprar o 

quintil de ações com o valor mais alto de cada variável de risco. Em quinto lugar, avaliamos se 

uma estratégia de investimento baseada em carteiras dos quintis de ações com valores baixos 

ou altos de variáveis de risco consegue uma rendibilidade mais elevada do que uma carteira de 

referência. Finalmente, utilizamos uma técnica de amostragem que inclui todas as ações que 

em algum momento fizeram parte do índice representativo de cada mercado ao longo do 

período, evitando assim o enviesamento dos resultados devido aos dados conterem apenas ações 

que estiveram cotadas durante a totalidade do período histórico. 

Os resultados obtidos no segundo estudo sugerem a existência de algumas relações 

estritamente crescentes ou decrescentes entre as variáveis de risco e a rendibilidade do mês 
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seguinte no mercado dos EUA. Adicionalmente, os resultados indicam diferenças 

estatisticamente significativas, a um nível de 5%, entre a rendibilidade média das carteiras dos 

quintis com valores mais baixos e valores mais altos das variáveis de risco (carteira 

autofinanciada). No entanto, raramente essas diferenças estão presentes, simultaneamente, em 

ambas as abordagens de ponderação ou em ambos os mercados analisados. No que diz respeito 

à diferença entre a rendibilidade média dos quintis extremos e uma carteira composta por todas 

as ações do índice de mercado, observamos que, em geral, esta diferença é inferior à 

rendibilidade média da carteira autofinanciada. Dada a falta de similaridade entre os resultados 

dos mercados americano e europeu para as mesmas variáveis de risco, parece que as relações 

entre as variáveis de risco e a rendibilidade do mês seguinte são originadas de forma aleatória 

e não por significância económica. Os resultados para ambos os mercados e ambos os esquemas 

de ponderação mostram que, pelo menos uma relação negativa e uma relação positiva, podem 

ser encontradas para as estimativas de desvio padrão, assimetria e curtose. 

A terceira linha de investigação desta dissertação visa a implementação empírica de três 

estratégias de investimento baseadas no modelo Treynor-Black usando como benchmark  para 

carteira passiva: a carteira tangente, a carteira tangente com restrições de vendas a descoberto 

e o índice de mercado. A principal motivação é o facto do modelo Treynor-Black ter tido pouco 

impacto na comunidade financeira e, consequentemente, os estudos empíricos sobre este tema 

serem bastante raros. Investigamos como o risco e a rendibilidade das referidas estratégias de 

investimento se comparam com uma estratégia passiva. 

As principais contribuições do terceiro estudo são as seguintes. Primeiro, temos um grande 

conjunto de dados com 500 ações do mercado americano e 600 ações do mercado europeu, que 

é de maior dimensão do que a maioria dos estudos sobre o tema de seleção de carteiras. 

Segundo, uma vez que a maioria dos estudos empíricos se concentra na carteira de média-

variância, analisamos uma estratégia de seleção de carteiras baseada no modelo Treynor-Black, 

o qual assume que as ações não têm preços eficientes. Terceiro, destacamos os principais 

problemas de utilizar o modelo Treynor-Black empiricamente. Finalmente, utilizamos uma 

técnica de amostragem que inclui todas as ações que em algum momento fizeram parte do 

índice representativo de cada mercado ao longo do período, evitando assim o enviesamento dos 

resultados devido aos dados conterem apenas ações que estiveram cotadas durante a totalidade 

do período histórico. 

Os resultados do terceiro estudo mostram que, em ambos os mercados, a estratégia baseada 

no modelo Treynor-Black com maior rácio de Sharpe (quando o índice de mercado é a carteira 

de mercado), tem menor rendibilidade e maior risco que a carteira passiva. Apontamos três 
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razões que levam o modelo Treynor-Black a não ter uma rendibilidade média ajustada pelo 

risco consistentemente superior à carteira passiva. Erro de estimativa nos alphas (posições 

longas com menor rendibilidade realizada do que as expectativas e posições curtas com maior 

rendibilidade realizada do que as expectativas), peso reduzido do investimento na carteira ativa 

quando a rendibilidade da carteira ativa é maior do que a rendibilidade da carteira passiva, e 

peso elevado, quando o inverso ocorre, e pesos extremos da carteira ativa que originam elevados 

níveis de risco. 

A dissertação está organizada da seguinte forma. O Capítulo 2 descreve em detalhe os 

dados usados, os quais são comuns para os três estudos. O Capítulo 3 investiga o número 

mínimo de ações a incorporar num portfolio com vista a maximizar os benefícios decorrentes 

do efeito de diversificação. O Capítulo 4 estuda a relação entre a rendibilidade do mês seguinte 

e variáveis de risco (desvio padrão, assimetria e curtose). O Capítulo 5 estuda a implementação 

empírica de três estratégias de investimento baseadas no modelo Treynor-Black. O Capítulo 6 

resume as conclusões. 
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Chapter 1. Introduction/Executive Summary 

 

This dissertation’s main theme is the empirical test of three topics related with portfolio 

management. The dataset used is common to all three topics and consists, essentially, in prices 

of all stocks traded in the S&P 500 (U.S. market) and in STOXX 600 (European market) 

between January 2002 and December 2019. 

The first research goal of this dissertation is the study of the minimum number of stocks 

that a portfolio should have to achieve the major benefits of diversification in terms of risk and 

return. The main reason for this investigation is the debate in the literature regarding the 

required minimum number of stocks in a portfolio to achieve the satisfactory benefits of 

diversification. Numerous studies have shown that 10 stocks are sufficient to achieve 

satisfactory benefits of diversification, but on the other hand, numerous works, especially 

recent, have challenged this fact by showing that 100 stocks or more are required for satisfactory 

benefits of diversification. Through random generation of portfolios (without replacement) with 

different sizes, we investigate how risk and return of a portfolio change as the number of stocks 

in equal-weighted and value-weighted portfolios increases. 

The main contributions of the first study are as follows. First, we compare the benefits of 

diversification in the U.S. and European markets instead of using only one market as the 

majority of studies about diversification. Second, although most empirical studies focus on 

equal-weighted portfolios, we also analyze the benefits of diversification of value-weighted 

portfolios. Third, we simulate more than seven million portfolios to obtain return and risk of 

portfolios with different sizes, assuring the robustness of the results by increasing and 

decreasing the number of simulations performed for each portfolio size. Fourth, we use a 

sampling technique that deals with delisted stocks over the period to avoid survivorship bias. 

Finally, whereas most studies are concerned solely on the full sample period, our analysis is 

performed year by year.  

The first study major findings are as follows. First, major benefits of diversification, in the 

U.S. and European markets, can be achieved with an equal-weighted portfolio with 50 stocks 

and a value-weighted portfolio with 64 stocks. These portfolios reduce, at least, 95% of 

diversifiable risk. Second, we observe that the increase of the number of stocks in equal-

weighted portfolios has no significant impact on average end-of-period wealth, while the 

mentioned increase has a slight negative effect in value-weighted portfolios. Finally, end-of-

period wealth standard deviation decreases as the number of stocks in a portfolio increases in 

both markets and in both weighting schemes. Equal-weighted portfolios with 50 stocks and 
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value-weighted portfolios with 64 stocks have an end-of-period wealth standard deviation lower 

than 0.05 per $1 or 1€ of investment in the U.S. and European markets, respectively. 

The second research goal purposed in this dissertation is the examination of the relationship 

between next month return and risk variables (standard deviation, skewness, and kurtosis). The 

mixed results presented in the literature that examined the relationship between risk variables 

and next month return are the primary reason for this investigation. Negative, as well as positive 

relationships between next month return and the same risk variables are reported. 

The main contributions of the second study are as follows. First, we compare the 

relationship between risk and next month return in the U.S. and European markets, instead of 

using only one market as most studies about this topic. Second, we analyze if the referred 

comparison shows significant differences in equal-weighted versus value-weighted portfolios. 

Third, we study the relation of next month return with nine risk variables, including realized 

and expected variables, to cover most of the approaches used in other studies of this subject. 

Fourth, we analyze the performance of a self-financing portfolio that consists in buying or 

selling the quintile portfolio of stocks with the lowest value of each risk variable and selling or 

buying the quintile portfolio of stocks with the highest value of each risk variable. Fifth, we 

evaluate if an investment strategy based on quintile portfolios of stocks with lowest or highest 

values of risk variables achieves higher average return than a benchmark portfolio. Finally, to 

avoid survivorship bias we use a sampling technique that deals with delisted stocks over the 

period. 

We found some monotonic relations between next month return and risk variables in the 

U.S. market. Additionally, the results indicate statistically significant differences, at a 5% level, 

between the average return of quintile portfolios formed with stocks of lowest values and stocks 

with highest values of risk variables (self-financing portfolio). Nevertheless, rarely these 

differences are present, simultaneously, in both weighting schemes or in both markets. With 

respect to the difference of average return between extreme quintile portfolios and a portfolio 

composed by all stocks traded in the market index, we observe that, generally, this difference 

yields lower average return than the self-financing portfolio using the same risk variables.  

Given the lack of similarity between the results in the U.S. and European markets for the same 

risk variables, it appears that relations between risk variables and next month return are 

originated randomly rather than by economic significance. The results for both markets and 

both weighting schemes show that, at least one negative relation and one positive relation, can 

be found for standard deviation, skewness, and kurtosis estimates. 
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The third line of research of this dissertation is about an empirically implementation of 

three investment strategies based on the Treynor-Black (hereafter TB) model using as passive 

benchmarks: the tangency portfolio, the tangency portfolio with short selling restriction and the 

market index. The primary motivation is the fact that TB model had little impact on the financial 

community, and consequently, empirically studies on this topic are quite rare. We investigate 

how risk and return of the referred investment strategies compare with a passive strategy. 

The principal contributions of the third study are as follows. First, we have a large dataset 

with 500 stocks from the U.S. market and 600 stocks from the European market, which is larger 

than the majority of the studies on the topic of portfolio selection. Second, since most of the 

empirical studies focus on the mean-variance framework, we analyze a portfolio allocation 

strategy based on TB model, assuming inefficiently priced stocks. Third, we highlight the 

principal drawbacks of using TB model empirically. Finally, we use a sampling technique that 

deals with delisted stocks over the period to avoid survivorship bias. 

The results show that, in the U.S. and European markets, the TB model strategy with 

highest Sharpe measure (when the market index is used as the market portfolio) has lower return 

and higher risk than the passive portfolio. We point out three reasons that lead TB model to 

have not a consistently superior risk-adjusted return over the passive portfolio. Alpha estimation 

error (long positions with lower realized return than expectations and short positions with 

higher realized return than expectations), small weight of investment on the active portfolio 

when the active portfolio return is larger than the passive portfolio return, and large when the 

inverse occurs, and extreme weights of the active portfolio that lead to high levels of risk. 

The remainder of this dissertation is organized as follows. Chapter 2 describes the dataset 

in detail, which is common for the three studies. Chapter 3 investigates the minimum number 

of stocks that a portfolio should have to achieve the major benefits of diversification in terms 

of risk and return. Chapter 4 studies the relationship between next month return and risk 

variables (standard deviation, skewness and kurtosis). Chapter 5 studies the empirically 

implementation of three investment strategies based on TB model. Chapter 6 summarizes the 

conclusions.   
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Chapter 2. Data Description and General Methodology 

 

In this Chapter, we describe the dataset used in this study, as well as, the methodological aspects 

common to the three studies that form the empirical analysis of this dissertation. In section 2.1, 

we identify the stocks, indexes and rates of the dataset, the period to which their prices refer 

and the details regarding the adjustments applied. In section 2.2, we present the methodologies 

used throughout the dissertation. More methodological aspects are explained in each of the 

chapters. 

 

2.1 Data Description 

 

All data used in this dissertation was collected from Bloomberg. The dataset is based on last 

prices provided by the exchange recorded each trading day of all stocks ever traded on Standard 

& Poor’s 500 (hereafter S&P 500) and STOXX Europe 600 (hereafter STOXX 600), and their 

respective market indexes, during the period between January 2002 and December 2019. This 

range of dates corresponds to the longest annual sample available at the start of the time of 

writing this dissertation after the introduction of the euro currency. The prices are adjusted to 

reflect cash dividends, spin-offs, stock splits/consolidations, stock dividend/bonus and rights 

offerings/entitlement. 

S&P 500 is a value-weighted stock market index tracking the prices of 500 large U.S. 

companies listed on stock exchanges. It is one of the most followed equity indices. As of 

December 31, 2020, more than $5.4 trillion was invested in assets tied to the performance of 

the index. The S&P 500 was launched in 1957 (S&P Dow Jones Indices, 2021). 

STOXX 600 is a value-weighted stock index of European stocks designed by STOXX Ltd. 

This index has a fixed number of 600 components representing large, mid, and small 

capitalization companies among 17 European countries, covering approximately 90% of the 

free-float market capitalization of the European stock market. The countries that make up the 

index are the United Kingdom, France, Germany, Switzerland, Austria, Belgium, Denmark, 

Finland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Spain, and 

Sweden. The STOXX 600 was introduced in 1998 (STOXX, 2021). 

Gilbert and Strugnell (2010) comment that it is well established in financial research that 

ignoring delisted companies when conducting historical research leads to survivorship bias in 

results. They conclude that including data for delisted stocks is likely to have a significant effect 

on the results reached and researchers should attempt to include such data in any empirical 
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analysis of this sort. In our study, the survivorship bias is removed since the calculations are 

based in all available stocks traded on S&P 500 or STOXX 600 at the beginning of each period. 

Thus, the return of the delisted stocks before the portfolio rebalancing are included in our 

dataset. 

For companies that list stocks on two or more different exchanges (dual listing), the market 

value considered is the market value of the stock listed in the market index in analysis. 

In the European market, the market value of stocks issued by companies from countries 1 

that do not use Euro as their domestic currency is translated to Euro using the exchange rate of 

the respective date. 

Tables 2.1 and 2.2 present descriptive statistics in the U.S. and European markets, 

respectively, of annual return and risk by year for stocks listed in the corresponding market 

index at the beginning of each period. 

Regarding annual return, the negative means in 2002, 2008 and 2018 of U.S. and European 

stocks are related with dot.com bubble in 2002, the global financial crisis in 2008 and bitcoin 

crash in 2018. Additionally, we observe a negative mean in 2011 in European stocks associated 

with the Euro crisis that reached a peak in 2011. In both markets, the standard deviation and 

kurtosis estimates of annual stock returns do not have the highest values when the stock market 

crashes. This suggests that in periods of negative returns, most stocks have negative returns 

reducing the dispersion among stock returns. On the other hand, in periods of high returns, the 

dispersion among stock return is higher, indicating that stocks could have high or low returns. 

In periods of negative returns in the stock market, the maximum return of a single stock tends 

to be lower compared with periods of positive returns. On the other hand, the minimum return 

of a single stock has a lower sensibility to increases or decreases in stock market values. Often, 

annual maximum return shows a difference of 100 percentage points (hereafter p.p.) between 

periods of expansion and recession, while annual minimum returns never have a difference 

higher than 70 p.p. Thus, standard deviation and kurtosis estimates of annual stock returns are 

generally lower when the prices in stock markets fall. Finally, we also observe in U.S. and 

European markets that annual stock returns mean tends to be superior to the median. This fact 

is related with the positive skewness, which tends to be higher when the positive difference 

between the mean and the median is higher. 

                                                             
1 Stocks from companies belonging to Czech Republic, Denmark, Iceland, Norway, Poland, Sweden, 

Switzerland and United Kingdom. 
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With respect to the average annual risk, the largest observed values are associated with 

crashes or bubbles in stock market prices. The year with lowest return (2008) has the highest 

annual risk mean in the U.S. market (66.2%) and in the European market (58.6%) and the year 

with highest return (2009) has the second highest annual risk mean in the U.S. market (51.2%) 

and in the European market (45.7%). In every year and in both markets, the annual risk mean 

is higher than the median, which is also reflected in the positive skewness. Standard deviation 

of annual risk has the maximum values in 2002, 2008 and 2009 in the U.S. and European 

markets. These years are related with large negative (2002 and 2008) and large positive (2009) 

variations in stock market prices. 

Table 2.3 presents the annual return and risk of equal-weighted and value-weighted 

portfolios composed by all the stocks in the market index in the U.S. and European markets. 

The results indicate that equal-weighted portfolios have higher return, on average, than value-

weighted portfolios in both markets. This result suggests that stocks of smaller firms tend to 

outperform stocks of larger companies. In fact, this effect is included in Fama and French 

(1993) three-factor model to explain returns. 

The scope of this dataset does not replicate the market index return using single stocks. 

There are two main reasons for the differences. First, market indexes have quarterly 

rebalancing, and we use annual rebalancing in Chapter 3 and monthly rebalancing in Chapters 

4 and 5. Second, market indexes managers may substitute stocks before the rebalancing date 

due to merger, acquisition or bankruptcy and we do not substitute any stock before the 

rebalancing date. 

The dataset also includes the 1-month USD LIBOR, used as proxy for the risk-free rate in 

the U.S. market, in line with Fabozzi, Cheng and Chen (2007), and 1-month Euribor, used as 

proxy for the risk-free rate in the European market, in line with Breitenfellner and Wagner 

(2012) and Elyasiani, Gambarelli and Muzzioli (2020). The 1-month USD LIBOR is the 

average interest rate at which several banks in London are prepared to lend to one another in 

USD with a maturity of one month. The 1-month Euribor is the interest rate at which several 

European banks lend one another funds denominated in euros with a maturity of one month. 

Table 2.4 presents risk-free rate annual return and risk by year in the U.S. and European 

markets. We measure the risk-free rate return as the daily logarithmic differences of the implic it 

prices in pure discount bonds having a yield that corresponds to our risk-free rates proxies. The 

results show a positive return in 2008 and 2009, in both markets, which is related with the 

decrease in interest rates originated by the global financial crisis in 2008. In 2019, the positive 
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return in the U.S. market is due the Federal Reserve cuts on interest rates that reverse nearly all 

the 2018's rate increases. 

 

2.2 General Methodology 

 

For each stock i, the return (geometric return) is defined as:  
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where pd is the adjusted price of stock i at day d and pd-1 is the adjusted price of stock i on the 

day d-1, n is the number of trading days considered in each period. For each portfolio p, the 

rate of return is the weighted average return of all stocks included in the portfolio, and is defined 

as: 
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where m is the number of stocks in the portfolio p and wi is the weight of stock i in the portfolio 

p. For each stock i, the risk is defined as the standard deviation of daily logarithmic returns2.  

For each portfolio p, portfolio risk is defined as: 
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In the following chapters, we use a market model defined as 

 

 , , , , ,i t f t i i M t f t i tr r r r                                                (2.4) 

 

                                                             
2 Levy (1968) argues that since the geometric return is the correct measure of central tendency, it should 

be the reference point for the computation of dispersion. And since the geometric return is simply the 

antilog of the average logarithm of a set of numbers, the appropriate measure of dispersion is the 

standard deviation of the logarithm returns. 
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where 
,f tr  is the risk-free rate, 

i  and 
i  are the estimation parameters, 

,M tr  is the market 

portfolio return and 
,i t  is the random error at period t. Equation (2.4) is based on a concept of 

market equilibrium in which the expected excess return on any single risky asset is proportional 

to the expected excess return on the market portfolio. The coefficient 
i  represents the asset 

return’s sensitivity to changes in the market portfolio return. So, 
i  is a sensitivity risk measure 

relative to the market risk factor. For simplicity, we refer to this risk measure as the CAPM beta 

of the asset. The term inside the brackets on the right-hand side is the market risk premium: it 

is the additional return (above the risk-free rate) that investors can expect to be compensated 

for the risk of holding the market portfolio. In equilibrium no single asset may have an abnormal 

return where it earns a return above (or below) the risk-free rate without taking any market risk. 

Therefore, any asset with a positive alpha has an expected return that is more than its 

equilibrium return and should be bought, and any asset with a negative alpha has an expected 

return that is below its equilibrium return, and so, should be sold. The stock’s specific return 

and the respective intercept term i  should be zero if the equilibrium holds. We assume that (i) 

the error term is independent and identically distributed with mean equal to zero and some 

specific disturbance and (ii) the error terms for two different stocks are contemporaneously 

uncorrelated. 

Frankfurter (1976) affirms that usually a stock market index is substituted as a proxy for 

the market portfolio in CAPM. Following Lim, Durand and Yang (2014), for the U.S. market, 

we use S&P 500 as market index and for the European market, we use STOXX 600 under the 

same rational. 
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Table 2.1: Descriptive statistics of annual return and risk in the U.S. market 

Table 2.1 presents descriptive statistics of annual return (Panel A) and risk (Panel B) by year 

for the stocks traded in the U.S. market (S&P 500) at the beginning of each period. 

   



 

11 

 

Table 2.2: Descriptive statistics of annual return and risk in the European market 

Table 2.2 presents descriptive statistics of annual return (Panel A) and risk (Panel B) by year 

for the stocks traded in the European market (STOXX 600) at the beginning of each period. 
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Table 2.3: Annual return and risk of equal-weighted and value-weighted portfolios 

Table 2.3 presents annual return and risk of equal-weighted (EW) and value-weighted (VW) 

portfolios composed by all the stocks in the market index by year in the U.S. and European 

markets. The market index is S&P 500 for the U.S. market and STOXX 600 for the European 

market. 
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Table 2.4: Risk-free rate annual return and risk 

Table 2.4 presents risk-free rate annual return and risk by year in the U.S. and European 

markets. We use 1-month USD LIBOR and 1-month Euribor as proxies for the risk-free rate in 

the U.S. and European markets, respectively. 
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Chapter 3. How Many Stocks Should be Included in a Portfolio to Cancel Out the 

Diversifiable Risk? 

 

3.1 Introduction 

 

The seminal work of Markovitz (1952) about portfolio theory is one of the most important 

theoretical developments in finance, implying that portfolios should be mean-variance 

optimized. In the traditional capital-asset pricing model proposed by Sharpe (1964), Lintner 

(1965) and Mossin (1966) diversification allows the investor to eliminate all but the risk 

resulting from swings in economic activity, even in efficient portfolios. The required number 

of stocks in a portfolio to achieve satisfactory benefits of diversification is still a debate in the 

literature. Numerous studies have shown that 10 stocks are sufficient to achieve satisfactory 

benefits of diversification, but on the other hand, various works, especially recently, have 

challenged this fact by showing that 100 stocks or more are required for satisfactory benefits of 

diversification. 

Being the U.S. stock market the largest in the world, the great majority of empirical studies 

on diversification and portfolio size are concentrated in stocks of this market. Following a 

pioneer approach, Evans and Archer (1968) examine the rate at which the variance of returns 

for randomly selected portfolios is reduced as a function of the number of stocks included in 

the portfolio. Using semi-annual returns of 470 stocks traded on S&P 500 during the period 

between January 1958 and July 1967, the authors raise doubts about the economic justification 

for increasing the portfolio size beyond 10 stocks. 

Latane and Young (1969) measure the effect of diversification with the expected geometric 

returns for portfolios with different dimensions. Using monthly returns of 224 stocks from the 

U.S. market during the period between January 1953 and December 1960, the authors’ results 

indicate that 84% and 96% of the possible gains through diversification can be achieved with a 

portfolio size of 8 and 16 stocks, respectively. 

Fisher and Lorie (1970) study the wealth ratios (ratio of the ending value of the investment 

portfolio to the initial amount invested in the portfolio) resulting from investment in portfolios 

of specified numbers of stocks, ranging from 1 through 128 and in all stocks traded in the market 

index. Using annual returns of stocks listed on the New York Stock Exchange (hereafter NYSE) 

during the 1926-1965 period, the results show that 95% of the achievable reduction in the 

dispersion of portfolio returns is obtained by holding 32 stocks and 99% by holding 128 stocks.  
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Jennings (1971) measures the effect of diversification by examining the trade-off between 

loss probability of the return being smaller than 75% of market return and gain probability of 

the return being higher than 115% of market return. Using annual returns of all stocks listed on 

the NYSE from January 1956 to December 1965, the author finds that a portfolio of 

approximately 15 stocks has an appropriate size in order to mitigate the diversifiable risk.  

Wagner and Lau (1971) show how diversification can be used to offset the riskiness of 

individual stocks, so that portfolios with large numbers of high-risk stocks may be less risky 

than portfolios with small numbers of low-risk stocks, and earn a higher rate of return. Using 

monthly returns from the U.S. stock market over the period June 1960 through May 1970, they 

show that the rate of return on well-diversified low risk portfolios is significantly lower than 

the return on well-diversified higher risk portfolios. 

Fielitz (1974) explores the issues of investing in an equal-weighted portfolio and 

reexamines the Evans and Archer (1968) regression. Using quarterly returns of 200 stocks listed 

on the NYSE during the period between January 1964 and September 1968, the author suggests 

that eight stocks should be enough to assure reasonable diversification. 

Johnson and Shannon (1974) suggest an allocation method of stocks in a portfolio by 

resolving a quadratic programming problem. Using quarterly returns of 50 stocks listed on the 

NYSE during the period between April 1965 and December 1972, the results indicate that 

similar risk and superior returns can be obtained with less than 10 stocks in a portfolio. 

Klemkosky and Martin (1975) test the relationship between market and residual risk and 

assess the significance of that association on the process of diversification. Using monthly 

returns of approximately 350 stocks listed on the NYSE in the period between July 1963 and 

June 1973, the results show that the levels of diversification achieved for high versus low beta 

portfolios for a given portfolio size were significantly different. High beta portfolios require a 

substantially larger number of stocks to achieve the same level of diversification as a low beta 

portfolio. 

Bloomfield, Leftwich and Long (1977) assess the performance (before estimated 

transaction costs) of five different portfolio strategies that employ one or more cost reduction 

techniques. The authors used monthly returns of more than 800 stocks during the period 

between April 1953 and June 1970. The results were consistent with the well-documented 

relationship between portfolio size and portfolio efficiency. For all the strategies considered, 

the larger the portfolio size, the more efficient is the chosen portfolio. 

Tole (1982) studies the adequate diversification levels by selecting stocks from 

recommendations of brokerage firms, research services, and other sources of investment 



 

17 

 

information. Since these portfolios should contain stocks highly correlated with one another, 

the number of stocks should be higher than random selected portfolios for attain adequate 

diversification. The author concludes that an investor with a portfolio of stocks that have been 

selected in a biased manner should own substantially more than the 10 stocks suggested in 

previous studies, where portfolios were randomly constructed. 

Newbould and Poon (1996) explore the return and risk of a portfolio, as a function of the 

number of stocks, considering two different investment styles: small and large companies from 

the U.S. market. Using monthly returns during the 1987-1993 period, the results show that an 

investor who wants to be within 5% of the average return and 5% of the average risk would 

need more than 100 stocks, either for a portfolio of small or large companies.  

Beck, Perfect and Peterson (1996) develop alternative methods to reduce the effect that the 

number of repeated replications has in the results of some approaches used to indicate the 

number of stocks that constitute a well-diversified portfolio. Using monthly returns of 1,221 

stocks listed on the NYSE or the American Stock Exchange during the period between January 

1982 and December 1991, the authors find that the return variance of a sample portfolio with 

more than 19 stocks is not statistically different from the market return variance.  

Domian, Louton and Racine (2003) examine returns and ending wealth over a 20-year 

holding period. Using returns of 100 large U.S. stocks from January 1979 through December 

1998, the authors demonstrate that investors need more than 60 stocks to avoid a shortfall risk 

below 10%. Domian, Louton and Racine (2007) update their previous study by increasing the 

number of stocks of their dataset to 1,000 large U.S. stocks for the period between January 1985 

and December 2004. The authors conclude that investors need at least 164 stocks to have a 99% 

chance of outperforming Treasury bonds in long-term.  

Benjelloun (2010) uses two risk measures (standard deviation of returns and standard 

deviation of end-of-period wealth) and two weighting schemes (equal-weighted and value-

weighted portfolios) to evaluate how large a well-diversified portfolio needed to be. Using 

monthly returns of all stocks listed in the Center for Research in Security prices tape during the 

1980-2000 period, the author concludes that a portfolio of 40 to 50 stocks is straight enough to 

achieve a high level of diversification. 

Empirical studies on diversification and portfolio size using stocks are rather limited 

outside U.S. market. Bird and Tippett (1986) derive an exact parametric relationship between 

portfolio standard deviation and size and emphasize the dangers of modeling the risk reduction 

advantages of naive diversification. Using monthly returns of 188 stocks from the Australian 

market during the period between January 1958 and December 1973, the authors argue that a 
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portfolio of 22 stocks is required to obtain the same level of diversification calculated by Evans 

and Archer (1968) regression in a portfolio of 10 stocks. 

Solnik (1974) studies risk reduction benefits from diversifying portfolios across foreign as 

well as domestic common stocks. Using more than 300 stocks from the U.S. and European 

markets for the period 1966-1971, the author concludes that adding 50 different stocks to a 

portfolio with 20 stocks would reduce total risk by a residual amount. 

Copp and Cleary (1999) study the average standard deviation resulting from investing in 

portfolios with specified numbers of stocks, ranging from 1 through more than 200 stocks. 

Using monthly returns of stocks listed on the Toronto Stock Exchange during the period 

between January 1985 and December 1997, the results suggest that 30 to 50 stocks are required 

to capture most of the benefits associated with diversification. Nevertheless, substantial benefits 

occur with a portfolio of 10 stocks. 

Kryzanowski and Singh (2010) use various metrics to measure the benefits of 

diversification to determine if a minimum portfolio size should be recommended to achieve a 

sufficiently well-diversified portfolio. Using monthly returns of all stocks listed on the Toronto 

Stock Exchange during the 1975-2003 period, the authors find that the minimum portfolio size 

required to achieve a sufficiently well-diversified portfolio is very sensitive to the performance 

metric used to measure such benefits. In order to achieve about 90% of the potential benefits 

from diversification, a portfolio with 20 to 25 stocks is required when diversification is 

measured with conventional metrics of risk or kurtosis; 45 stocks are required to achieve about 

90% of the potential benefits from diversification when measured by average time-series 

measures; and only 2 stocks when measured by skewness. 

Bradfield and Munro (2017) contrast the construction of equal-weighted portfolios with 

value-weighted portfolios. The authors use weekly returns of 167 stocks listed on Johannesburg 

Stock Exchange All Share Index during the period between June 2002 and December 2014, and 

show that, for levels of risk reduction between 90% and 95%, equal-weighted portfolios require 

between 15 and 29 stocks while value-weighted portfolios require between 33 and 60 stocks. 

Analytical solutions have also been used to study diversification and portfolio size. Elton 

and Gruber (1977) study the effects on risk from introducing new stocks into a portfolio by 

developing an analytical relationship between the average variance of portfolio return and the 

size of the portfolio. They conclude that a portfolio with 15 stocks has 32% more risk than a 

portfolio with 100 stocks, with significant gains in decreasing risk from adding stocks beyond 

15.  
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Statman (1987) analyses the trade-off between costs and benefits of increasing the number 

of stocks in a portfolio. The benefit is defined as the expected increase in return, calculated 

using the Capital Market Line equation, from investing in a portfolio considered well-

diversified (Vanguard Index Trust that mimics the S&P 500) compared to a portfolio with less 

stocks. The cost is defined as the mean return differential between S&P 500 and the fund since 

the fund underperforms the S&P 500 due to transaction costs and administrative expenses. The 

results show that the optimal number of stocks in a portfolio is, at least, 30 stocks for a 

borrowing investor, and 40 stocks for a lending investor. Using the same procedure of his 

former study, Statman (2004) finds that the optimal number of stocks in a portfolio is, at least, 

300 when using Vanguard Total Stock Market Index Fund with 3,444 stocks as the well-

diversified portfolio instead of Vanguard Index Trust. However, the analytical method used in 

both studies is highly dependent on the number of stocks included in the well-diversif ied 

portfolio. 

Tang (2004) shows through an analytical solution that a portfolio of 20 stocks is required 

to eliminate 95% of the diversifiable risk in a universe of 600 stocks. A portfolio of 86 stocks 

is required to eliminate 99% of diversifiable risk.  

Haensly (2020) examines several methods for decomposing total portfolio risk into 

systematic and unsystematic components and then carries out simulations to compare cross-

sectional distributions of estimated and true risk as number of stocks increases in equal-

weighted portfolios. The author shows that risk and magnitude of shocks in return due to 

diversifiable risk are not negligible, even for a portfolio with 300 stocks. 

Studies about portfolio diversification, generally, focus only on stocks from one market and 

on equal-weighted portfolios. In addition, datasets fail to include delisted stocks due to merger, 

acquisition or bankruptcy, for example. Finally, to the best of our knowledge, the results of 

similar studies only report the results for the full sample period studied without analyzing the 

results year by year. In our study, we try to incorporate these issues.  

The main contributions of this Chapter are as follows. First, we compare the benefits of 

diversification in the U.S. and European markets instead of using only one market as the 

majority of studies about diversification. Second, although most empirical studies focus on the 

equal-weighted portfolios, we also analyze the benefits of diversification of value-weighted 

portfolios. Third, we simulate more than seven million portfolios to obtain return and risk of 

portfolios with different sizes, assuring the robustness of the results by increasing and 

decreasing the number of simulations performed for each portfolio size. Fourth, we use a 

sampling technique that deals with delisted stocks over the period to avoid survivorship bias. 
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Finally, whereas most studies are concerned solely on the full sample period, our analysis is 

performed year by year. 

The present Chapter proceeds as follows. Section 3.2 describes the methodology of 

portfolio construction used to study the benefits of diversification and define the diversification 

measures used. Section 3.3 reports and discuss the results of the empirical analysis, and Section 

3.4 concludes. 

 

3.2 Methodology 

 

In line with Jennings (1971), we assume long-only portfolios that contain only common stocks 

and where purchases are financed without borrowing. In addition, investment transactions do 

not influence the price or dividend of any stock and taxes and transaction costs are not 

considered. In the following subsections, we describe the portfolio construction method and the 

diversification metrics used in our study. 

 

3.2.1 Portfolio Construction 

 

This subsection describes the method of portfolio construction employed as a means of 

understanding the diversification benefits from adding stocks to a portfolio.  

We randomly generate 10,0003 portfolios (without replacement) with different sizes from 

stocks that were traded on S&P 500 or STOXX 600 at the beginning of each year, during the 

period between 2002 and 2019. Most of the studies on diversification and portfolio size uses 

random generation technique to select portfolios (see, for example, Evans and Archer, 1968; 

Latane and Young, 1969; Fisher and Lorie, 1970; Jennings, 1971; Wagner and Lau, 1971; 

Fielitz, 1974; Johnson and Shannon, 1974; Solnik, 1974; Klemkosky and Martin, 1975; 

Bloomfield et al., 1977; Bird and Tippett, 1986; Beck et al., 1996; Newbould and Poon, 1996; 

Copp and Cleary, 1999; Domian et al., 2003; Domian et al., 2007; Benjelloun, 2010; 

Kryzanowski and Singh, 2010; Bradfield and Munro, 2017). As a robustness check4, we 

generate 5,000 and 20,000 portfolios for all the results presented and we find that the 

conclusions of this study would be the same. This suggests that the results reported are robust, 

                                                             
3 To the best of our knowledge, 10,000 is the one of the highest number of simulations used in the 

literature and was the same number of simulations used by Benjelloun (2010). 
4  Results are available upon request. 
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in contrast with Beck et al. (1996) that provide evidence that results of diversification studies 

are sensitive to the number of replications. 

Table 3.1 describes in tabular form the portfolio selection process for one computer run. 

The portfolio sizes are 2, 4, 6, 8, 10, 12, 16, 25, 32, 50, 64, 100 and 128 stocks. The number of 

simulations is 10,000 for each portfolio size specified and for each year. For a portfolio with 

one stock, the number of simulations are the number of stocks traded in the market index. For 

a portfolio with all stocks traded in the market index, the number of simulations is one. For 

every simulation, portfolios have 1-year holding period. 

   

3.2.2 Portfolio End-of-Period Wealth 

 

The end-of-period wealth standard deviation (hereafter EPWSD) is used to analyze changes in 

the dispersion of 1 EUR or 1 USD investment as the number of stocks in a portfolio increases. 

Other studies also analyze end-of-period wealth (see, for example, Domian et al., 2003; Domian 

et al., 2007; Benjelloun, 2010). The portfolio’s end-of-period wealth (EPW) is defined as: 

 

1pEPW r                                                             (3.1) 

 

where pr  is the portfolio return defined in equation (2.2). The EPWSD is the standard deviation 

of the EPW. 

 

3.2.3 Risk Distributions Test 

 

The Kolmogorov-Smirnov test5 is used to compare risk distributions of all simulations of 

different portfolio sizes. The risk obtained by each portfolio simulation described in subsection 

3.2.1 for a specific portfolio size constitute the empirical distribution. Therefore, each portfolio 

size has one risk distribution that is compared with the corresponding distribution of the next 

portfolio size in ascending order.  

The Kolmogorov-Smirnov test is a nonparametric test of the equality of continuous, not 

divided into bins, one-dimensional data samples. It assumes that a list of data points can be 

easily converted to a cumulative distribution function. The test uses the maximum absolute 

                                                             
5 Bibliography on Kolmogorov-Smirnov test is given by Massey (1951). 
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difference between two cumulative distribution functions. The null distribution of this statistic 

is calculated under the null hypothesis that the samples are drawn from the same distribution. 

 

3.2.4 Evans and Archer (1968) Regression Revisited 

 

This subsection describes the procedure used to revisit the topic of adequate diversification 

under the assumptions of Evans and Archer (1968) regression.  

Based on Evans and Archer (1968) regression, standard deviation decreases to an 

asymptote as the number of stocks increases. The regression for fitting this relationship, using 

least-squares method, is defined as: 

 

1
pea A B

m

 
   

 
                                                      (3.2) 

 

where pea  is the average standard deviation of all simulated equal-weighted portfolios with m 

stocks, A is the intercept that stands for systematic risk component and B is the slope that stands 

for unsystematic risk component. The authors choose this method because there is a relatively 

stable and predictable relationship between the number of stocks included in a portfolio and the 

level of portfolio dispersion.  

To compare the systematic risk under Evans and Archer (1968) regression, for equal-

weighted portfolios, we express the squared portfolio risk equation defined in equation (2.3), 

into two separate components:  
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where the portfolio p average variance is: 
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and the portfolio p average covariance is: 
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expressing portfolio variance as: 

 

2 21 1
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
                                                     (3.6) 

 

From equation (3.6), we observe that average variance reduces as the number of stocks in a 

portfolio increases, leaving only the average covariance. Consequently, the average covariance 

could be used as a proxy of systematic risk. 

The comparison between equations (3.2) and (3.6) is important to assess if Evans and 

Archer (1968) regression provides biased estimates for the absolute level of systematic risk. 

Value-weighted portfolios are not studied in this subsection because equation (3.3) only holds 

for equal-weighted portfolios. 

 

3.3 Empirical Results 

 

Armed with the 10,000 simulations for each portfolio size following the approach described in 

subsection 3.2.1, we can now study the changes in risk, end-of-period wealth standard deviation 

and risk distributions as the number of stocks in a portfolio increases. 

Figures 3.1 and 3.2 show the empirical return and risk density distributions, respectively, 

of equal-weighted portfolios with 2, 8, 32 and 128 stocks, as well as the equal-weighted 

portfolio composed by all stocks traded in the S&P 500 (U.S. market). Figures 3.3 and 3.4 show 

the same information as Figures 3.1 and 3.2, respectively, for value-weighted portfolios instead 

of equal-weighted portfolios. Figures 3.5, 3.6, 3.7 and 3.8 show the same information as Figures 

3.1, 3.2, 3.3 and 3.4, respectively, for the STOXX 600 (European market) instead of the U.S. 

market. In all figures mentioned, we present the results for the years 2003, 2008, 2013 and 2018 

as examples. The pattern of the distributions for the years not reported are equivalent. 

 Regardless the number of stocks included in the portfolio, for equal-weighted and value-

weighted portfolios and for both markets, the return distribution shows an average close to the 
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return of the portfolio with all stocks traded in the market index. Concerning risk, the average 

risk tends to decrease as the number of stocks in a portfolio increases. In both distributions, the 

dispersion of return and risk reduces as the number of stocks in a portfolio increases. 

 

3.3.1 Portfolio Risk 

 

Tables 3.2 and 3.3 present the average risk for the U.S. and European markets, respectively. 

The results are presented by year, for portfolios with the specified number of stocks, ranging 

from one through all stocks traded in the market index, and for equal-weighted and value-

weighted portfolios. This risk measure is widely used in studies on diversification and portfolio 

size (see, for example, Evans and Archer, 1968; Latane and Young, 1969; Fisher and Lorie, 

1970; Wagner and Lau, 1971; Johnson and Shannon, 1974; Solnik, 1974; Bloomfield et al., 

1977; Bird and Tippett, 1986; Beck et al., 1996; Newbould and Poon, 1996; Copp and Cleary, 

1999; Benjelloun, 2010; Kryzanowski and Singh, 2010; Bradfield and Munro, 2017). 

The results show that average risk always decreases when portfolio size increases, 

independently of the year, market, and weighting scheme. In the U.S. market, when the number 

of stocks in a portfolio increases from one to all stocks traded in the market index, the decrease 

in average risk is 14 p.p. and 15 p.p., on average, in equal-weighted and value-weighted 

portfolios, respectively. In the European market, when the same increase in the portfolio size is 

present, the decrease in average risk is 15 p.p. in both weighting schemes. 

As expected, the decrease in risk that arises from increasing the number of stocks in a 

portfolio from one to all stocks traded in the market index, is higher when high levels of 

volatility are present. According to Table 2.3, the years with highest risk in the U.S. and 

European markets were 2008 and 2009. In these years, regardless the market and the weighting 

scheme, the risk difference between a portfolio with one stock and a portfolio with all stocks 

traded in the market index is superior compared to years with lower risk. In the U.S. market, 

the highest risk reduction occurs in 2008 (-26 p.p. in equal-weighted portfolios and -27 p.p. in 

value-weighted portfolios) while the lowest risk reduction occurs in 2010 in equal-weighted 

portfolios (-9 p.p.) and in 2014 in value-weighted portfolios (-11 p.p.). In the European market, 

the highest risk reduction occurs in 2002 in equal-weighted portfolios (-26 p.p.) and in 2008 in 

value-weighted portfolios (-24 p.p.) while the lowest risk reduction occurs in 2010 (-11 p.p. in 

both weighting schemes). 

When comparing equal-weighted with value-weighted portfolios in the U.S. market, we 

observe that equal-weighted portfolios with 12 stocks or less have, on average, less risk than 
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value-weighted portfolios of the same size (difference lower than 0.3 p.p.). For portfolios with 

16 stocks or more, equal-weighted portfolios have, on average, more risk than value-weighted 

portfolios. However, the difference is also small (inferior to 1.1 p.p.). In the European market, 

equal-weighted portfolios have, on average, less risk than value-weighted portfolios, 

independently of the number of stocks in a portfolio. The difference of risk, on average, between 

the two weighting schemes, as in the U.S. market, is not substantial (inferior to 1.8 p.p.). 

Tables 3.4 and 3.5 summarize the difference of average risk in the U.S. and European 

markets, respectively, presented by year and for equal-weighted and value-weighted portfolios. 

The mentioned difference is the difference of risk between a portfolio with 1 stock and a 

portfolio with a specified portfolio size, ranging from 1 to 128, as a percentage of the difference 

of average risk between a portfolio with 1 stock and a portfolio with all stocks traded in the 

market index. The results show that risk reduction is not a linear function of the number of 

stocks included in the portfolio 

We observe that when the number of stocks in an equal-weighted portfolio of the U.S or 

the European markets increases from 1 to 16 stocks, on average, we obtain 91% of the 

difference between a portfolio with 1 stock and a portfolio with all available stocks in the 

respective market index (hereafter diversifiable risk reduction). With an equal-weighted 

portfolio of 32 stocks, we obtain, on average, at least 95% of the diversifiable risk reduction, in 

both markets. To achieve more than 90% of diversifiable risk reduction, on average, using 

value-weighted portfolios, in the U.S. and European markets, we need 25 and 32 stocks, 

respectively. To obtain 95% of diversifiable risk reduction, on average, we need to double the 

number of stocks in a portfolio: 50 and 64 stocks, in the U.S. and European markets, 

respectively. 

Considering the diversifiable risk reduction by year, equal-weighed portfolios with 50 

stocks in the U.S. and European markets achieve at least 95% of risk reduction every year. With 

respect to value-weighted portfolios, in the U.S. market a portfolio with 64 stocks achieves at 

least 95% of risk reduction every year except for 2013 (94% of diversifiable risk reduction). In 

the European market, only in 2008 (87% of diversifiable risk reduction) and in 2017 (94% of 

diversifiable risk reduction) a portfolio with 64 stocks does not have a risk reduction of at least 

95%. 

These results suggest that, in the U.S. and European markets most benefits of risk reduction 

in equal-weighted portfolios are obtained by holding a portfolio with 50 stocks. If we add stocks 

to an equal-weighted portfolio of 50 stocks until all stocks traded in the market index are 

included in the portfolio, we will not reduce the risk more than 1 p.p. in any of the years 
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considered in our sample period. Additionally, equal-weighted portfolios seem to require fewer 

stocks than value-weighted portfolios to have approximately the same risk as a portfolio with 

all stocks traded in the market index using the same weighting scheme. This finding is in line 

with Bradfield and Munro (2017). 

Regarding value-weighted portfolios, in the U.S. market most benefits of diversifiable risk 

reduction are obtained by holding a portfolio with 64 stocks. If we add stocks to a value-

weighted portfolio of 64 stocks until all stocks traded in the market index are included in the 

portfolio, we will not reduce the risk more than 1 p.p. in any of the years considered in our 

sample period. In the European market, the referred reduction of 1 p.p. is only not possible in 

2008 with a value-weighted portfolio with 64 stocks. 

Our results contrast with studies that suggest a number of stocks lower than 25 (for 

example, Evans and Archer, 1968; Latane and Young, 1969; Jennings, 1971; Fielitz, 1974; 

Johnson and Shannon, 1974; Elton and Gruber, 1977; Bird and Tippett, 1986; Beck et al., 1996; 

Tang, 2004) and those who suggest the inclusion of more than 100 stocks (Newbould and Poon, 

1996; Statman, 2004). Nevertheless, our findings are in line with Copp and Cleary (1999), 

Benjelloun (2010) and Bradfield and Munro (2017). 

 

3.3.2 Portfolio End-of-Period Wealth 

 

Tables 3.6 and 3.7 summarize, for the U.S. and European markets, respectively, the average 

end-of-period wealth. The results are presented by year, for all the portfolios sizes specified and 

the portfolio with all stocks traded in the market index, and for equal-weighted and value-

weighted portfolios. 

The results show that increasing the number of stocks in a portfolio has no significant 

impact on average end-of-period wealth for equal-weighted portfolios in the U.S. and European 

markets. For value-weighted portfolios, the number of stocks increase had a slight negative 

effect on average end-of-period wealth in both markets. 

The change in end-of-period wealth from higher/lower than 1 to lower/higher than 1 as the 

number of stocks in a portfolio increases is very rare. The exceptions are value-weighted 

portfolios in the U.S. market in 2015 (the average end-of-period wealth from 0.98 to 1.01 when 

the portfolio size changes from 1 to 8 stocks) and value-weighted portfolios in the European 

market in 2007 (the average end-of-period wealth from 0.99 to 1.01 when the portfolio size 

changes from 1 to 2 stocks). 
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Tables 3.8 and 3.9 summarize, for the U.S. and European markets, respectively, the 

EPWSD. The results are presented by year, for all the portfolios sizes specified, and for equal-

weighted and value-weighted portfolios. 

The results show that EPWSD decreases as the number of stocks included in a portfolio 

increases, in both markets and weighting schemes. Our results are in line with those presented 

by Domian et al. (2007). We find no substantial differences on EPWSD between equal-

weighted and value-weighted portfolios in both markets. Equal-weighted portfolios with 50 

stocks have an EPWSD lower than 0.05 in the U.S. and European markets. About value-

weighted portfolios, a portfolio with 64 stocks is required to achieve an EPWSD lower than 

0.05 in the U.S. and European markets. Those portfolios sizes are required to obtain a dispersion 

lower than 0.05 per $1 or 1€ of investment in the U.S. and European markets, respectively. 

 

3.3.3 Risk Distributions 

 

The results presented in the previous subsections show that the benefits of adding stocks to a 

portfolio are quite superior when portfolios have few stocks rather than when portfolios have a 

high number of stocks. This conclusion applies to the U.S. and to the European markets, and 

for equal-weighted and value-weighted portfolios. Nevertheless, there are evidence of benefits 

(even residual) of adding stocks to portfolios with a large number of stocks. 

When we compare the distribution of risk of all simulations with a specific portfolio size 

with the corresponding distribution of the next portfolio size in ascending order, we reject the 

null hypothesis of Kolmogorov-Smirnov test that samples are drawn from the same distribution. 

The p-values are inferior to 5% for every portfolio size, year, market and weighting scheme, 

thus the results are not reported. 

From Figures 3.2, 3.4, 3.6 and 3.8, we observe that risk distributions average decreases as 

we increase the number of stocks in a portfolio. Additionally, the dispersion of risk also reduces 

as the number of stocks in a portfolio increases. Hence, these findings in conjunction with the 

rejection of the null hypothesis that the samples are drawn from a population with the same risk 

distribution shows evidence that the benefits of increasing the number of stocks in a portfolio 

exists, even in portfolios with a large number of stocks. Nevertheless, in subsections 3.3.1 and 

3.3.2 we find that an equal-weighted portfolio with 50 stocks and a value-weighted portfolio 

with 64 stocks almost exhaust all the benefits of diversification. This suggest that the benefits 

of increasing the number of stocks beyond 50 in an equal-weighted portfolio and 64 in a value-

weighted portfolio are negligible. 
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3.3.4 Evans and Archer (1968) Regression Revisited 

 

Table 3.10 summarizes, in the U.S. and European markets, the coefficient of determination, the 

slope, and the intercept (systematic risk) of Evans and Archer (1968) regression procedure 

described in subsection 3.2.4. The squared intercept and the average covariance of a portfolio 

with all stocks traded in the market index are also reported. 

The results show that the regression yields a good fit, as indicated by the coefficient of 

determination close to one. The slope, which stands for unsystematic risk component, exhibits 

higher values in years associated with largely negative returns (2002 and 2008). This shows 

evidence that increasing the number of stocks in a portfolio have more impact in risk reduction 

when the market plunge. The squared intercept, which stands for the systematic variance, is 

higher than the average covariance of equal-weighted portfolios of all stocks traded in the S&P 

500 and STOXX 600 for every year considered. Accordingly to equation (3.6), as the number 

of stocks in a portfolio increases, the variance of a portfolio converges to the average 

covariance. In this context, average covariance is, in fact, a proxy of the systematic variance. 

This result suggests that Evans and Archer (1968) regression overestimates systematic risk 

since the portfolios with all stocks traded in the market index, on average, have lower average 

covariance than the systematic risk component of Evans and Archer regression, and confirms 

the findings of Bird and Tippett (1986). 

Table 3.11 summarizes the average covariance of portfolios with a specified number of 

stocks, ranging from 2 through 128 and with all stocks traded in the S&P 500 and STOXX 600. 

The average covariance of portfolios with 10 stocks is only 0.2 p.p. lower, on average, than 

the average covariance of portfolios with all stocks traded in the U.S. and European markets. 

However, analyzing the results year by year, we conclude that a portfolio with 16 stocks is 

required to have an average covariance with a maximum difference of 1.0 p.p. to the average 

covariance of a portfolios with all stocks traded in the market index. The referred difference is 

higher in periods of negative returns (especially 2008), where the covariance between stocks is 

higher. These results may be of sufficient importance to use average covariance of portfolios 

with at least 16 stocks as a proxy of systematic risk. 
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3.4 Conclusion 

 

This Chapter analyzes the changes in risk, end-of-period wealth standard deviation and risk 

distributions as the number of stocks in a portfolio increases. We also revisit the topic of 

adequate diversification under the assumptions of Evans and Archer (1968) regression. We 

randomly generate equal-weighted and value-weighted portfolios with different sizes from 

stocks traded on S&P 500 or STOXX 600, in the beginning of each year, during the period 

between 2002 and 2019. The results of the simulations are averaged and used to study the 

benefits of diversifications as the portfolio size increases. We also perform a comparison 

between the U.S. and European markets, as well as, between equal-weighted and value-

weighted portfolios. 

Our first finding is that equal-weighted portfolios require fewer stocks than value-weighted 

portfolios to have the same benefits of diversification. Equal-weighted portfolios require fewer 

stocks than value-weighted portfolios to have approximately the same risk than a portfolio with 

all stocks traded in the market index in the respective weighting scheme, in line with Bradfield 

and Munro (2017). If we add stocks to an equal-weighted portfolio with 50 stocks or to a value-

weighted portfolio with 64 stocks, until all stocks traded in the market index are in the portfolio, 

we will not reduce more than 1 p.p. of risk in any of the years considered in our sample period.  

Secondly, the results show that, in the U.S. and European markets, the increase of the 

number of stocks in equal-weighted portfolios has no significant impact on average end-of-

period wealth, while the mentioned increase has a slight negative effect in value-weighted 

portfolios. Regarding EPWSD, the results show that EPWSD decreases as the number of stocks 

in a portfolio increases in both markets and in both weighting schemes, in line with Domian et 

al. (2007). Equal-weighted portfolios with 50 stocks and value-weighted portfolios with 64 

stocks have an EPWSD lower than 0.05. Thus, a dispersion lower than 0.05 per $1 or 1€ of 

investment can be obtained in the U.S. and European markets, respectively.  

The results of this Chapter suggest that the major benefits of diversification, in the U.S. and 

European markets, can be achieved with an equal-weighted portfolio with 50 stocks and a 

value-weighted portfolio with 64 stocks. These portfolios reduce, at least, 95% of diversifiable 

risk. This finding contrasts with studies that suggest a lower number of stocks than 25 (for 

example, Evans and Archer, 1968; Latane and Young, 1969; Jennings, 1971; Fielitz, 1974; 

Johnson and Shannon, 1974; Elton and Gruber, 1977; Bird and Tippett, 1986; Beck et al., 1996; 

Tang, 2004) and those who suggest the inclusion of more than 100 stocks (Newbould and Poon, 
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1996; Statman, 2004). Nevertheless, our findings are in line with Copp and Cleary (1999), 

Benjelloun (2010) and Bradfield and Munro (2017). 

Finally, we find that Evans and Archer (1968) regression overestimates systematic risk 

since portfolios with all stocks traded in the market index, on average, have lower average 

covariance than the systematic risk component of Evans and Archer regression, confirming the 

findings of Bird and Tippett (1986). Additionally, we find that portfolios with 16 stocks are 

required to obtain an average covariance that can be used as a proxy of systematic risk. 
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Table 3.1: Portfolio selection process 

Table 3.1 describes in tabular form the portfolio selection process for one computer run. Stocks 

are ordered alphabetically and attributed numbers that identify their position in the sample. For 

a portfolio with two stocks, we randomly select two stocks without replacement (228 and 84). 

For the following portfolio (portfolio with four stocks), we randomly select two more stocks 

(16 and 497) which are different from the previous stocks. This process is repeated until we 

have one portfolio for each specified size. 
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Table 3.2: Average risk in the U.S. market 

Table 3.2 summarizes the portfolio average risk for the U.S. market. The results are presented 

by year, for portfolios with a specified number of stocks, ranging from 1 through 128 and with 

all stocks traded in the S&P 500 (All). Panel A reports the results for equal-weighted portfolios 

and Panel B reports the results for value-weighted portfolios. 
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Table 3.3: Average risk in the European market 

Table 3.3 summarizes the portfolio average risk for the European market. The results are 

presented by year, for portfolios with a specified number of stocks, ranging from 1 through 128 

and with all stocks traded in the STOXX 600 (All). Panel A reports the results for equal-

weighted portfolios and Panel B reports the results for value-weighted portfolios. 
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Table 3.4: Average risk reduction in the U.S. market 

Table 3.4 summarizes the difference in average risk between a portfolio with 1 stock and a 

portfolio with a specified portfolio size, ranging from 2 to 128, as a percentage of the difference 

in average risk between a portfolio with 1 stock and a portfolio with all stocks traded in the 

S&P 500 (U.S. market). The results are presented by year, for equal-weighted portfolios (Panel 

A) and value-weighted portfolios (Panel B). 
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Table 3.5: Average risk reduction in the European market 

Table 3.5 summarizes the difference in average risk between a portfolio with 1 stock and a 

portfolio with a specified portfolio size, ranging from 2 to 128, as a percentage of the difference 

in average risk between a portfolio with 1 stock and a portfolio with all stocks traded in the 

STOXX 600 (European market). The results are presented by year, for equal-weighted 

portfolios (Panel A) and value-weighted portfolios (Panel B). 

  



 

36 

 

Table 3.6: Average end-of-period wealth in the U.S. market 

Table 3.6 summarizes the average end-of-period wealth in the U.S. market. The results are 

presented by year, for portfolios with a specified numbers of stocks, ranging from 1 through 

128 and for portfolios with all stocks traded in the S&P 500 (All). Panel A reports the results  

for equal-weighted portfolios and Panel B reports the results for value-weighted portfolios. 
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Table 3.7: Average end-of-period wealth in the European market 

Table 3.7 summarizes the average end-of-period wealth in the European market. The results are 

presented by year, for portfolios with a specified numbers of stocks, ranging from 1 through 

128 and for portfolios with all stocks traded in the STOXX 600 (All). Panel A reports the results  

for equal-weighted portfolios and Panel B reports the results for value-weighted portfolios. 
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Table 3.8: End-of-period wealth standard deviation in the U.S. market 

Table 3.8 summarizes the end-of-period wealth standard deviation in the U.S. market. The 

results are presented by year, for portfolios with a specified numbers of stocks, ranging from 1 

through 128. Panel A reports the results for equal-weighted portfolios and Panel B reports the 

results for value-weighted portfolios. 
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Table 3.9: End-of-period wealth standard deviation in the European market 

Table 3.9 summarizes the end-of-period wealth standard deviation in the European market. The 

results are presented by year, for portfolios with a specified numbers of stocks, ranging from 1 

through 128. Panel A reports the results for equal-weighted portfolios and Panel B reports the 

results for value-weighted portfolios. 

 

  



 

40 

 

Table 3.10: Evans and Archer (1968) regression 

Table 3.10 summarizes the coefficient of determination, the slope, and the intercept (systematic 

risk) of Evans and Archer (1968) regression procedure described in subsection 3.2.4, by year 

and in the U.S. and European markets. The squared intercept (Inter. Sq.) and the average 

covariance of a portfolio with all stocks traded in the market index (Av. Cov.) are also reported, 

as well as the difference between them (Dif.). 
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Table 3.11: Average covariance in the U.S. and European markets  

Table 3.11 summarizes the average covariance of portfolios with a specified number of stocks, 

ranging from 2 through 128 and with all stocks (All) traded in the S&P 500 (U.S. market) and 

STOXX 600 (European market). The results are presented by year, and for the U.S. market 

(Panel A) and for the European market (Panel B). 
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Figure 3.1: Return distributions of equal-weighted portfolios in the U.S. market 

Figure 3.1 shows the return density probability distributions of equal-weighted portfolios with 

2, 8, 32 and 128 stocks, as well as the equal-weighted portfolio with all stocks (EW) traded in 

the S&P 500 (U.S. market) in 2003, 2008, 2013 and 2019. 
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Figure 3.2: Risk distributions of equal-weighted portfolios in the U.S. market 

Figure 3.2 shows the risk density probability distributions of equal-weighted portfolios with 2, 

8, 32 and 128 stocks, as well as the equal-weighted portfolio with all stocks (EW) traded in the 

S&P 500 (U.S. market) in 2003, 2008, 2013 and 2019. 
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Figure 3.3: Return distributions of value-weighted portfolios in the U.S. market 

Figure 3.3 shows the return density probability distributions of value-weighted portfolios with 

2, 8, 32 and 128 stocks, as well as the value-weighted portfolio with all stocks (VW) traded in 

the S&P 500 (U.S. market) in 2003, 2008, 2013 and 2019. 
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Figure 3.4: Risk distributions of value-weighted portfolios in the U.S. market 

Figure 3.4 shows the risk density probability distributions of value-weighted portfolios with 2, 

8, 32 and 128 stocks, as well as the value-weighted portfolio with all stocks (VW) traded in the 

S&P 500 (U.S. market) in 2003, 2008, 2013 and 2019. 
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Figure 3.5: Return distributions of equal-weighted portfolios in the European market 

Figure 3.5 shows the return density probability distributions of equal-weighted portfolios with 

2, 8, 32 and 128 stocks, as well as the equal-weighted portfolio with all stocks (EW) traded in 

the STOXX 600 (European market) in 2003, 2008, 2013 and 2019. 
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Figure 3.6: Risk distributions of equal-weighted portfolios in the European market 

Figure 3.6 shows the risk density probability distributions of equal-weighted portfolios with 2, 

8, 32 and 128 stocks, as well as the equal-weighted portfolio with all stocks (EW) traded in the 

STOXX 600 (European market) in 2003, 2008, 2013 and 2019. 
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Figure 3.7: Return distributions of value-weighted portfolios in the European market 

Figure 3.7 shows the return density probability distributions of value-weighted portfolios with 

2, 8, 32 and 128 stocks, as well as the value-weighted portfolio with all stocks (VW) traded in 

the STOXX 600 (European market) in 2003, 2008, 2013 and 2019. 
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Figure 3.8: Risk distributions of value-weighted portfolios in the European market 

Figure 3.8 shows the risk density probability distributions of value-weighted portfolios with 2, 

8, 32 and 128 stocks, as well as the value-weighted portfolio with all stocks (VW) traded in the 

STOXX 600 (European market) in 2003, 2008, 2013 and 2019. 
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Chapter 4. Can Volatility, Skewness and Kurtosis Predict Stocks Returns? 

 

4.1 Introduction 

 

The capital asset pricing model (hereafter CAPM) proposed by Sharpe (1964), Lintner (1965) 

and Mossin (1966) implies a positive linear relationship between risk and return of a stock. 

However, there is no agreement in the literature whether the relationship between stock returns 

and standard deviation is negative or positive, or even if there is a statistically significant 

relation. Due to this uncertainty, empirical and theoretical studies began to consider moments 

of higher order than the second moment to explain stock returns. 

Some authors contradict CAPM, arguing that the relationship between stock returns and 

volatility is negative. Campbell (1987) examines the relationship between conditional means 

and conditional variances of returns on stocks. Using stock returns, obtained from the Center 

for Research in Security Prices (hereafter CRSP) and measured by the value-weighted return 

on the New York Stock Exchange (hereafter NYSE), for the period between February 1959 and 

November 1983, the author finds that stock returns have a negative relationship with their 

conditional variance. 

Glosten, Jagannathan and Runkle (1993) use a modified GARCH-M model for determining 

the estimated relationship between risk and return. Using monthly excess returns on the CRSP 

value-weighted stock index portfolio from April 1951 to December 1989, they find support for 

a negative relationship between conditional expected monthly return and conditional variance 

of monthly return. They also show that their conclusions do not change when they use Nelson 

(1991) EGARCH model modified to include the risk-free rate and/or seasonality. 

Ang, Hodrick, Xing and Zhang (2006) examine the cross-sectional relationship between 

idiosyncratic volatility and expected returns, where idiosyncratic volatility is defined as the 

variance of the residuals from Fama and French (1993) three-factor model (hereafter FF-3). 

They form value-weighted portfolios every month, in the period between July 1963 and 

December 2000, using stocks from American Stock Exchange (hereafter AMEX), Nasdaq and 

NYSE. The results show a statistically significant difference of −1.06% per month between 

average return of the quintile portfolio with the highest idiosyncratic volatility stocks and the 

quintile portfolio with the lowest idiosyncratic volatility stocks. Ang, Hodrick, Xing and Zhang 

(2009) study if the anomalous relationship between idiosyncratic volatility and next month 

return in the U.S. market exists in other markets. They conclude that the difference in average 
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return between the extreme quintile portfolios sorted by idiosyncratic volatility is negative, even 

after controlling for world market, size and value factors across 23 developed markets. 

Guo and Savickas (2006) study the relationship between stock market returns and 

idiosyncratic stock volatility and aggregate stock market volatility through an ordinary least 

squares regression. Using the 500 stocks with the biggest market capitalization from CRSP 

during the period between July 1962 and December 2002, they find that value-weighted 

idiosyncratic stock volatility and aggregate stock market volatility jointly exhibit strong 

predictive power for excess stock market returns. The stock market risk–return relation is found 

to be positive, as stipulated by the CAPM. However, idiosyncratic volatility is negatively 

related with future stock market returns. 

Despite the negative relationship between return and idiosyncratic volatility referred in the 

over mentioned studies, some research shows evidence of a positive relationship between return 

and standard deviation. Malkiel and Xu (2002) provide a theory of idiosyncratic risk and test 

some of the implications with constructed portfolio return, individual stock return and equity 

mutual fund return. Using monthly returns from stocks listed on NYSE, AMEX, Nasdaq and 

Tokyo Stock Exchange in the period between January 1935 and June 2000, they demonstrate 

that idiosyncratic volatility is more powerful than either beta or size measures in explaining the 

cross section of returns. Additionally, they also find a significantly positive relationship 

between idiosyncratic risk and the cross section of expected returns.  

Goyal and Santa-Clara (2003) consider the average stock risk in addition to market risk in 

order to explain relationship between risk and return. Using CRSP data from July of 1962 to 

December of 1999, they find that the variance of the market (adjusted for autocorrelation) has 

no forecasting power for the excess market return. However, they identify a positive 

relationship between average stock variance (adjusted for autocorrelation) and excess market 

return.  

Jiang and Lee (2006) examine the dynamic relationship between idiosyncratic volatility 

and return by addressing the problems associated with persistent volatility. Using CRSP daily 

data for the sample period from July 1962 to December 2002 to construct monthly market 

volatility, average stock volatility, and idiosyncratic volatility, they find significant positive 

effects of idiosyncratic volatility on stock returns, although the effects tend to be delayed. The 

positive effect is robust for small and large firm portfolios, equal-weighted and value-weighted 

volatilities, average volatility and idiosyncratic volatility, and for different sample periods. 

Fu (2009) examines whether under-diversified investors are compensated for bearing 

idiosyncratic risk and explore the findings of Ang et al. (2006) study. Using stocks listed on 
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NYSE, the AMEX, and the Nasdaq during the period from July 1963 to December 2006, he 

shows that idiosyncratic volatilities are time varying and thus the findings of Ang et al. (2006) 

study should not be used to imply the relationship between idiosyncratic risk and expected 

return. Additionally, using an EGARCH model to estimate expected idiosyncratic volatility, he 

finds a significantly positive relationship between the estimated conditional idiosyncratic 

volatility and expected return. 

Huang, Liu, Rhee and Zhang (2010) investigate the relationship between idiosyncratic risk 

and expected return with a particular interest in understanding the contrasting results between 

idiosyncratic risk estimated by daily data and monthly data. Using daily and monthly returns of 

NYSE, AMEX and Nasdaq common stocks from July 1963 to December 2004, they 

demonstrate the existence of a negative relationship between idiosyncratic risk and expected 

monthly returns in cross-sectional regressions. This negative relationship is present when the 

estimates of conditional idiosyncratic volatility are based on the time series of realized monthly 

idiosyncratic volatilities from daily returns. However, after controlling for return reversals, the 

negative relation is no longer significant. In addition, they estimate conditional idiosyncratic 

volatility with an EGARCH model, using monthly returns, and confirm the significantly 

positive relationship between this proxy for idiosyncratic risk and expected return. This relation 

is still significantly positive after return reversals control. 

Besides the positive and negative relationship between risk and return, Bali and Cakici 

(2008) find no robustly significant relationship between idiosyncratic volatility and expected 

return. They use two different measures of idiosyncratic volatility (estimated using daily and 

monthly data), three weighting schemes (value-weighted, equal-weighted, inverse volatilit y-

weighted), three breakpoints (CRSP, NYSE, equal market share) and two different samples 

(NYSE/AMEX/Nasdaq and NYSE). 

Qadan (2019) tries to provide an explanation for the changes in the relationship between 

idiosyncratic volatility and a cross-section of expected return, using daily returns of all firms 

recorded by CRSP, covering stocks listed on NYSE, AMEX and Nasdaq during the 1980–2016 

period and employing Fama-French's 5-factor model to extract the idiosyncratic volatility. The 

author establishes that the relationship between idiosyncratic volatility and expected return is 

not constant over time. That relationship is positive when considering pro-cyclical investor 

sentiment, but negative when using contrarian investor sentiment. These findings hold true for 

both value-weighted and equal-weighted portfolios and for different econometrics 

specifications. 
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The lack of agreement in the relationship between standard deviation and return is also 

present in the relationship between realized return of next periods and skewness or kurtosis. 

Nevertheless, most studies find a negative relationship between realized return of next periods 

and skewness. Regarding the relationship between next period return and kurtosis, studies tend 

to show a positive relation. Kraus and Litzenberger (1976) extend the CAPM to incorporate the 

effect of skewness on valuation. Using monthly excess rates of return of stocks that were listed 

on NYSE from January 1926 through June 1970, they predict a significant negative relationship 

between skewness and next period return.  

Harvey and Siddique (2000) introduce skewness in asset pricing since they consider that 

there is considerable evidence that unconditional distributions of returns cannot be adequately 

characterized by mean and variance alone. Using monthly U.S. stock returns from CRSP, 

NYSE/AMEX and Nasdaq during the period between July 1963 and December 1993, they find 

that conditional skewness (the component of an asset's skewness related to the market 

portfolio's skewness) has a negative relation with the cross-asset variation of stock returns. 

Fang and Lai (1997) examine the impact of conditional kurtosis (the component of an 

asset's kurtosis related to the market portfolio's kurtosis) on asset pricing using a four-moment 

capital asset pricing model. Armed with monthly returns of all the stocks that were continuously 

exchanged on NYSE over the period January 1969 through December 1988, they find that 

higher systematic variance and higher systematic kurtosis are related with higher expected 

return, while higher systematic skewness tends to be associated with lower expected return. 

Boyer, Mitton and Vorkink (2010) investigate the pricing implications of idiosyncratic 

standard deviation and skewness. Based on daily returns of stocks listed on NYSE and AMEX, 

from January 1925 through December 2005, and of stocks listed on Nasdaq from January 1973 

through December 2005, they sort stocks based on their level of expected standard deviation 

and skewness. Their results show that average return of low expected skewness quintile exceed 

the average return of high expected skewness quintile by 0.67% per month. The average return 

of low expected standard deviation quintile exceed the average return of the high expected 

standard deviation quintile by 1.09% per month. 

Chang, Christoffersen and Jacobs (2013) extend the investigation of Ang et al. (2006) and 

examine if market skewness and kurtosis affect the cross-sectional returns. Using risk measures 

implied by S&P 500 index options, they find that stocks with high exposure to innovations in 

implied market skewness exhibit low return, on average, and stocks with high exposure to 

volatility and kurtosis exhibit, on average, higher return.  
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Conrad, Dittmar and Ghysels (2013) examine the importance of higher moments under the 

hypothesis that, if option and stock prices reflect the same information, then it is possible to use 

options market data to extract estimates of higher moments of the stocks’ risk-neutral 

probability density function. Using option prices and stock returns from 1996 to 2005 for all 

individual stocks covered by CRSP with common shares outstanding, they find that risk-neutral 

volatility and skewness have a negative relation with subsequent return, while risk-neutral 

kurtosis has a significant positive relation with subsequent return.  

Bali, Hu and Murray (2019) develop a forward-looking measure of a stock's expected return 

derived from analyst price targets. Using monthly returns from all U.S. based common stocks 

in CRSP with no missing data from March 1999 through December 2012, they show that ex-

ante measures of volatility, skewness and kurtosis implied from stock option prices are 

positively related to the cross section of ex-ante expected stock return. 

Ayadi, Cao, Lazrak and Wang (2019) examine the relationship between idiosyncratic 

volatility, skewness, and kurtosis and future realized stock return. Using daily and monthly 

returns of all stocks listed on NYSE, AMEX and Nasdaq during the period from January 1960 

to December 2016, they show that portfolios sorted by the level of expected idiosyncratic 

volatility, skewness and kurtosis do not observe monotonic changes in portfolio deciles return. 

Elyasiani, Gambarelli and Muzzioli (2020) investigate whether volatility, skewness, and 

kurtosis are priced in the European stock market and assess the signs and the magnitudes of the 

corresponding risk premium. Using stocks listed on STOXX Europe 600 Index from 21 January 

2005 to 29 December 2017, based on availability, they find a negative volatility risk premium 

and a positive skewness risk premium. These findings are robust to different estimation 

methods. 

Studies about the relation between risk and return, generally, focus only on stocks from one 

market and on one weighting scheme. In addition, the number of risk variables studied are 

generally inferior to four and datasets fail to include delisted stocks due to merger, acquisition, 

or bankruptcy, for example. To the best of our knowledge, studies on this subject do not analyze 

if the average return of extreme quintile portfolios is superior to a passive portfolio. In our 

study, we try to incorporate these issues.  

The main contributions of this Chapter are as follows. First, we compare the relationship 

between risk and next month return in the U.S. and European markets, instead of using only 

one market as the majority of studies about this topic. Second, we analyze if the referred 

comparison shows significant differences in equal-weighted versus value-weighted portfolios. 

Third, we study the relation of next month return with nine variables, including realized and 
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expected variables, to cover most of the approaches used in other studies of this subject. Fourth, 

we analyze the performance of a self-financing portfolio that consists in buying or selling the 

quintile portfolio of stocks with the lowest value of each risk variable and selling or buying the 

quintile portfolio of stocks with the highest value of each risk variable. Fifth, we evaluate if an 

investment strategy based on quintile portfolios of stocks with lowest or highest values of risk 

variables achieve higher return than a benchmark portfolio. Finally, to avoid survivorship bias 

we use a sampling technique that deals with delisted stocks over the period. 

This Chapter proceeds as follows. Section 4.2 describes the methodology used to study the 

relationship between risk variables and next month return. Section 4.3 reports the results of the 

empirical analysis and section 4.4 concludes. 

 

4.2 Methodology 

 

From the stocks traded in the S&P 500 (U.S. market) and STOXX 600 (European market) in 

the beginning of each month, we form value-weighted and equal-weighted quintile portfolios 

for each market sorted by nine different variables: standard deviation, skewness and kurtosis of 

daily returns (total risk variables), standard deviation, skewness and kurtosis of the residuals of 

market model (idiosyncratic risk variables measured by market model) and standard deviation, 

skewness and kurtosis of the residuals of Fama and French (1993) three-factor model (hereafter 

FF-3) (idiosyncratic risk variables measured by FF-3). The sorting procedure is widely used in 

the literature (see for example Harvey and Siddique, 2000; Malkiel and Xu, 2002; Ang et al.  

2006; Bali and Cakici, 2008; Ang et. al., 2009; Fu, 2009; Boyer et al., 2010; Huang et al., 2010; 

Chang et al., 2013; Conrad et al., 2013; Ayadi et al., 2019; Qadan, 2019). This procedure yields  

five portfolios for each risk variable corresponding to quintiles, with Portfolio 1 containing 

stocks with the lowest values of the chosen variable and Portfolio 5 containing stocks with the 

highest values. The next step is to compute the return of each portfolio in the next month. These 

45 portfolios are rebalanced every month. Following Fu (2009), we only include stocks that 

have a minimum of 15 trading days in each month of the estimation period. 

Forming portfolios sorted by risk variables allows us to examine the relationship between 

risk variables and next month return. In addition, this procedure can also be used to assess the 

performance of a self-financing strategy that buys or sells the Portfolio 1 and sells or buys the 

Portfolio 5. Armed with this self-financing strategy, we can analyze if it is possible to obtain a 

profit using the negative or positive relationship between risk variables and next month return. 

This type of strategy is considered extensively in the literature (see for example Ang et al. 2006; 
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Bali and Cakici, 2008; Ang et. al., 2009; Boyer et al., 2010; Huang et al., 2010; Chang et al., 

2013; Conrad et al., 2013; Ayadi et al., 2019; Qadan, 2019). 

Besides the self-financing portfolio, we compare the return of the extreme quintile  

portfolios with the return of a highly diversified portfolio that contains all stocks traded in the 

respective index at the respective date. We use a portfolio composed by all stocks traded in the 

market index instead of the market index itself to keep the analysis comparable. Our rebalancing 

procedure is twofold different from the rebalancing procedure in the market index. First, we 

rebalance the portfolio monthly while the market index is rebalanced quarterly; and second, we 

do not substitute stocks before the rebalancing date in case of merger, acquisition, or bankruptcy 

opposed to the market index case.  With this comparison, we can analyze if a quintile portfolio 

composed by stocks with the highest or lowest risk variables can achieve higher return than an 

equal-weighted or value-weighted portfolio composed by all stocks traded in the market index.  

Investment transactions do not influence the price or dividend of any stock and taxes and 

transaction costs are not considered. 

Total standard deviation, skewness and kurtosis are estimated from the daily returns of each 

stock. They are obtained by substituting the regression residuals in equations (4.2), (4.3) and 

(4.4) by the daily returns. 

We compute idiosyncratic risk variables relative to the market model and FF-3 in the spirit 

of other studies related with the relationship between return and risk (see for example Malkiel 

and Xu, 2002; Ang et al. 2006; Bali and Cakici, 2008; Ang et. al., 2009; Fu, 2009; Boyer et al., 

2010; Huang et al., 2010; Ayadi et al., 2019). Market model is defined in equation (2.4). FF-3 

is defined as: 

 

 , , , , ,i t f t i i M t f t i t i t i tr r r r SMB HML                                  (4.1) 

 

where SMBt is the return from a strategy involving a long position on a portfolio of small stocks 

and a short position on a portfolio of large stocks, HMLt is the return from a strategy involving 

a long position on a portfolio of high book-to-market (value) stocks and a short position on a 

portfolio of low book-to-market (growth) stocks. Also ri,t is the monthly geometric return of 

stock i, rf,t is the risk-free rate, i , i , i  and i  are the estimation parameters, rM,t is the 

market portfolio return and ,i t  is the random error at period t which follows the same 

assumptions identified in equation (2.4). Following Lim, Durand and Yang (2014), for the U.S. 

market, we use S&P 500 as market portfolio, the difference between S&P Small Cap 600 and 
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S&P 100 returns as SMB factor and the difference between S&P Value and S&P Growth returns 

as HML factor. For the European market, we follow the same rational used in the U.S. market. 

We use STOXX 600 as market portfolio, the difference between STOXX Europe Small 200 

and STOXX Europe Large 200 returns as SMB factor and the difference between STOXX 

Europe TMI Value and STOXX Europe TMI Growth returns as HML factor. 

We define idiosyncratic standard deviation (IVi), idiosyncratic skewness (ISi), and 

idiosyncratic kurtosis (IKi) of stock i as: 
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where n is the number of trading days of the estimation period and ,i de  is the regression residual 

obtained in equations (2.4) or (4.1) of day d for stock i. 

For each risk variable, we use three estimation methods: two based on realized values and 

one based on estimated values. The methods based on realized values are distinguish on the 

estimation period. For one method, we obtain the realized values using the returns of the 

previous month, while for the other method we use the previous 12 months. In both methods, 

we sort portfolios into quintiles based on the realized values of each stock and then compute 

the return of each quintile portfolio in the following month. Ang et al. (2006, 2009) and Conrad 

et al. (2013) also use an estimation period of 1 month and 12 months. The third method relies 

on estimated values modeled with an EGARCH(1,1) for standard deviation and a first-order 

autoregressive (AR(1)) model for skewness and kurtosis. In line with the dominant literature  

(see for example Malkiel and Xu, 2002; Goyal and Santa-Clara, 2003; Bali and Cakici, 2008; 

Boyer et al., 2010; Ayadi et al., 2019), we use a rolling window period of 60 months to obtain 

the model used to predict risk variables of each stock in the following month. We sort portfolios 
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into quintiles based on the estimated risk variables given by the model for each stock and then 

compute the return of each quintile portfolio in the following month. 

Bali and Cakici (2008), Fu (2009) and Huang et al. (2010) also use an EGARCH developed 

by Nelson (1991). The explicit functional forms are as follows: 
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where yi,t is the standard deviation measure of stock i at time t and ai, bi and ci are the estimation 

parameters. Bollerslev, Chou and Kroner (1992) show that the linear GARCH model is not able 

to capture the negative relationship between the future volatility and the current return on the 

stock since the conditional variance is only linked to past conditional variances. Thus, the sign 

of returns plays no role in affecting volatilities. This limitation of the standard ARCH 

formulation is one of the primary motivations for the EGARCH model developed by Nelson 

(1991). Engle and Mustafa (1992) use the option prices to compute the implied variances and 

find that simple GARCH and EGARCH are the best models. Engle and Ng (1993) test the 

specifications of various volatility models using Lagrange Multiplier tests and conclude that 

EGARCH does a good job in capturing the asymmetry of conditional volatilities.  

Skewness and kurtosis display a mean reversion pattern since they tend to oscillate up and 

down around the mean without diverging from it indefinitely. Figures 4.1 and 4.2 show the 

mean reverting pattern of skewness in the U.S. and European markets, respectively. Figures 4.3 

and 4.4 show the mean reverting pattern of kurtosis in the U.S. and European markets, 

respectively. In this context, an AR(1) is used to model and forecast skewness and kurtosis 

since it is one of the most popular model for mean reversion among practitioners. We define 

the AR(1) process as: 

 

, , 1 ,i t i i i t i tz z                           (4.7) 

 

where zi,t is the skewness or kurtosis of stock i at time t, i  and i  are the estimation parameters 

and ,i t  is the random error. 
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4.3 Empirical Results 

 

Before analyzing the relationship between next month return and the risk variables mentioned 

in the previous section, we investigate the relationship between return and the referred risk 

variables in the same month. 

Tables 4.1 and 4.2 report the monthly average return, total standard deviation, skewness, 

and kurtosis, and idiosyncratic risk variables estimated by the market model and by the FF-3 of 

portfolio quintiles sorted by monthly return in the U.S. and European markets, respectively.  

For each risk variable, we observe the same behavior in the U.S. and European markets. 

Standard deviation and kurtosis have their minimum value in the third quintile and their 

maximum value in the first quintile when portfolios are sorted by return. This suggests that 

stocks with low return are associated with high standard deviation and high kurtosis. On the 

other hand, skewness shows a monotonically increasing relationship as the return increases. 

This result shows evidence that stocks with high return are associated with high skewness and 

stocks with low return are associated with low skewness. 

Since stocks with high absolute values of skewness have higher return than stocks with low 

absolute values of skewness, investing in stocks with high absolute values of skewness should 

be a profitable strategy. Stocks with high absolute values of standard deviation and of kurtosis 

are present in the first and fifth quintile when portfolios are sorted by return. This turns difficult 

to differentiate between stocks that have high or low return based only on standard deviation or 

kurtosis without considering skewness. Thus, a stock with higher absolute values of standard 

deviation and kurtosis, in conjunction with high absolute values of skewness, should be 

associated with high return. 

Tables 4.3 and 4.4 report the average monthly return, in the U.S and European markets, 

respectively, of equal-weighted and value-weighted portfolios sorted by realized values of risk 

variables with an estimation period of one month. 

Regarding the standard deviation, the results show a negative difference but not statistically 

significant between the next month return of the fifth and the first quintile of stocks in the U.S. 

and European markets for both weighting schemes. Ang et al. (2006), Guo and Savickas (2006) 

and Boyer et al. (2010) using stocks from the U.S. market and Ang et al. (2009) using stocks 

from France, Germany, Italy, U.K. and U.S. markets also find a negative relationship between 

idiosyncratic volatility and next month return. Bali and Cakici (2008) in their study attribute 

the negative relation to the value weighting scheme that yields an anomalously low return in 

quintile 5, which contains very small, illiquid, and low-priced stocks. However, this explanation 
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is not applicable to our dataset since we only include liquid stocks, and both weighted schemes 

have a negative relation. Boyer et al. (2010) suggest that a starting point for understanding the 

negative relationship between idiosyncratic volatility and expected return lies in the preferences 

of investors since they find that forecasted skewness explains the mentioned negative relation. 

Huang et al. (2010) suggest that short-term return reversals are the primary reason for the 

negative relationship between realized idiosyncratic volatility and stock return. We highlight 

the monotonically decreasing relation in average return of value-weighted portfolios sorted by 

total standard deviation and by idiosyncratic standard deviation (market model) in the U.S. 

market.  

However, this does not occur with equal-weighted portfolios, suggesting that the referred 

relation is more evident in stocks with large market capitalization and/or less in stocks with 

small market capitalization. The results of the European market confirm the findings of Fu 

(2009), who find that return of equal-weighted and value-weighted portfolios is not 

monotonically increasing or decreasing across portfolios sorted by idiosyncratic standard 

deviation. Finally, we do not find any statistically significant superiority of the average return 

of extreme quintile portfolios over the average return of all stocks traded in the market index 

when sorting portfolios by standard deviation. 

Regarding skewness, in the U.S. market, we observe a negative relationship between 

skewness and next month return, for equal-weighted and value-weighted portfolios. This result 

is in line with Boyer et al. (2010), who find that, on average, stocks with low absolute values 

of skewness or idiosyncratic skewness in the previous month have higher return than stocks 

with high absolute values of skewness or idiosyncratic skewness. Nevertheless, the mentioned 

relation is not monotonically decreasing and the difference between the average return of 

quintile portfolios of stocks with high and low absolute values of skewness is only statistically 

significant, at a 5% level, for idiosyncratic skewness measured by market model in value-

weighted portfolios. The value-weighted self-financing portfolio based on idiosyncratic 

skewness measured by market model yields 0.27% per month, which is statistically significant, 

at a 5% level6. In the European market, in both weighting schemes, the relationship between 

next month return and total skewness is negative while the relationship between next month 

return and idiosyncratic skewness is positive. The difference in average return between the 

                                                             
6 A self-financing portfolio based on portfolios 2 and 4 does not have a statistically significant difference 

in average returns. 
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extreme quintile portfolios sorted by total skewness in equal-weighted portfolios is statistically 

significant, at a 5% level, with a self-financing portfolio yielding 0.24% per month. 

The average return of lowest quintiles value-weighted portfolios sorted by skewness have 

a statistically significant superiority, at a 5% level, over the average return of all stocks traded 

in the market index, in the U.S. market. This superiority of value-weighted portfolios, in the 

European market, is present in the highest quintile portfolios of idiosyncratic skewness, with a 

statistically significant, at a 10% level, superiority over the average return of all stocks traded 

in the market index. 

In terms of kurtosis, the results show, on average, a positive difference between the next 

month return of the fifth and the first quintile of stocks sorted by any of the kurtosis variables 

in the U.S. market in both weighting schemes. In the European market, the mentioned difference 

is mostly negative. The only positive relation in the European market occurs in value-weighted 

portfolios sorted by idiosyncratic kurtosis measured by FF-3. Despite the opposite sign between 

U.S. and European markets, there is not a monotonically increasing or decreasing relation in 

any market. In addition, the difference in average return between the first and fifth quintile 

portfolios and the difference in average return between the lowest quintile portfolio and the 

portfolio with all stocks traded in the market index are only statistically significant for total 

kurtosis in the European market in both weighting schemes. The statistical significance is 5% 

for equal-weighted portfolios and 10% for value-weighted portfolios. 

Tables 4.5 and 4.6 report the average monthly return, in the U.S and European markets, 

respectively, of equal-weighted and value-weighted portfolios. The average return is sorted into 

quintiles based on each variable computed from daily data over the previous 12 months. 

In the U.S. market, the results of value-weighted portfolios of stocks sorted by total 

standard deviation and idiosyncratic standard deviation (FF-3) show, on average, a positive 

relation with next month return, in contrast with Ang et al. (2006, 2009) and Boyer et al. (2010). 

The same risk variables have a negative relation in equal-weighted portfolios. Nevertheless, 

none of the differences in average return between the quintile portfolio of stocks with lowest 

standard deviation and the quintile portfolio of stocks with highest standard deviation are 

statistically significant. In addition, the average return of extreme quintile portfolios is not 

statistically different from the average return of a portfolio composed by all stocks traded in the 

market index. 

In the European market, the relationship between next month return and each of the 

standard deviation variables is, on average, negative in both weighting schemes. Additionally, 

as in the U.S. market, the difference in average return between the quintile portfolio of stocks 
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with lowest standard deviation and the quintile portfolio of stocks with highest standard 

deviation is not statistically significant. The difference between average return of extreme 

quintile portfolios and the average return of a portfolio composed by all stocks traded in the 

market index is also not statistically significant. 

Concerning skewness, in the U.S. market the findings are similar for equal-weighted and 

value-weighted portfolios. There is not a monotonically decreasing or increasing relationship , 

on average, between skewness and the next month return. Additionally, the difference in 

average return between the quintile portfolios of stocks with lowest skewness and the quintile 

portfolios of stocks with highest skewness is not statistically significant. 

In the European market, we highlight the idiosyncratic skewness measured by market 

model and FF-3 of equal-weighted portfolios, where the self-financing portfolio yields 0.33% 

and 0.34% per month, respectively, with a statistical significance at a 1% level7. In addition, 

the differences in average return between the fifth quintile of equal-weighted portfolios sorted 

by idiosyncratic skewness measured by market model and FF-3 and the portfolio composed by 

all stocks traded in the market index are significant at a 1% level. 

Regarding kurtosis, in the U.S. market we observe that the relationship between kurtosis 

and next month return is, on average, mostly positive. The only negative relation occurs in 

value-weighted portfolios sorted by total kurtosis. We highlight that value-weighted portfolios 

sorted by idiosyncratic kurtosis (market model) average return has a monotonically increasing 

relationship with the risk variable, but the average return difference between the portfolios of 

stocks with lowest values and highest values of idiosyncratic kurtosis (market model) is only 

statistically significant, at a 10% level. On the other hand, equal-weighted portfolios sorted by 

idiosyncratic kurtosis average return has not a monotonically increasing relationship with the 

risk variables but the average return difference between the portfolios of stocks with lowest 

values and highest values of idiosyncratic kurtosis is statistically significant, at a 5% level. The 

average return difference between the equal-weighted quintile portfolios of stocks with highest 

values of idiosyncratic kurtosis and the portfolio composed by all stocks traded in the market 

index is also statistically significant, at a 5% level. 

In the European market, the results show, on average, that none of the variables considered 

has a monotonically increasing or decreasing relation with next month return in both weighting 

schemes. In addition, for equal-weighted and value-weighted portfolios, the self-financing 

                                                             
7 A self-financing portfolio based on portfolios 2 and 4 does not have a statistically significant difference 

in average returns. 
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portfolio average return is not statistically significant and the extreme quintile portfolios 

average return is not statistically different from the average return of a portfolio composed by 

all stocks traded in the market index. 

So far, in the U.S. and European markets, the relationship between the majorities of realized 

values of standard deviation and next month return, on average, do not show evidence of being 

monotonically increasing or decreasing. In addition, the self-financing portfolio average return 

is not statistically different from zero in any case. These findings confirm those presented by 

Fu (2009) but are not in line with those of Ang et al. (2006), who find a statistically significant 

difference in the average return between the quintile portfolios of stocks with lowest and highest 

standard deviation. Fu (2009) argues that using this month’s idiosyncratic volatility to 

approximate the value in the next month could introduce severe measurement errors. As a result, 

Ang et al. (2006) findings should not be used to draw inference on the relationship between 

idiosyncratic risk and next month return.  Huang et al. (2010) find that value-weighted and 

equal-weighted portfolios with the highest idiosyncratic volatility stocks have lower average 

returns than portfolios composed by low idiosyncratic volatility stocks. Although only value-

weighted portfolios have statistically significant difference in average returns between the 

quintile portfolios of stocks with highest and lowest idiosyncratic volatility. Huang et al. (2010) 

study contradict our results for value-weighted portfolios but are in line with respect to equal-

weighted portfolios. 

Tables 4.7 and 4.8 report the average monthly return, in the U.S and European markets, 

respectively, of equal-weighted and value-weighted portfolios. The average monthly return is  

sorted into quintiles based on the estimated value modeled by a EGARCH(1,1) for standard 

deviation and by an AR(1) for skewness and kurtosis, using monthly data over the previous 60 

months. 

With respect to standard deviation, the results for the U.S. and European markets in both 

weighting schemes indicate that none of the variables considered have a monotonically 

increasing or decreasing relation with next month return, on average. These results are not in 

line with Fu (2009). In addition, the self-financing portfolio average return is not statistically 

different from zero and the extreme quintile portfolios average return is not statistically 

different from the average return of a portfolio composed by all stocks traded in the market 

index.  

Regarding skewness, in the U.S. and European markets and in both weighting schemes, the 

relationship between skewness and next month return is, on average, positive. This result is not 

in line with Boyer et al. (2010) that find a monotonically decreasing relation. In the U.S. market, 
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the average return of equal-weighted portfolios sorted by idiosyncratic skewness (market 

model) and value-weighted portfolios sorted by idiosyncratic skewness (FF-3) has a 

monotonically increasing relation with the risk variables. 

In the European market, on average, we do not observe any monotonically increasing 

relation between skewness and next month return, opposite to the U.S. market. About self-

financing portfolio, the results indicate that, in the U.S. market, the value-weighted self-

financing portfolio sorted by total skewness and idiosyncratic skewness (FF-3) has a 

statistically significant average return, at a 5% level8. In the European market, the equal-

weighted self-financing portfolio sorted by any skewness variable has a statistically significant 

average return, at a 5% level. With respect to the average return of extreme quintile portfolios 

that is higher than the average return of a portfolio composed by all stocks traded in the market 

index, we observe mixed results between markets. In the U.S. market, there is a statistically 

significant difference, at a 1% level, of value-weighted quintile portfolios of stocks with high 

total skewness. In the European, there is a statistically significant difference, at a 5% level, for 

both weighting schemes, of quintile portfolios of stocks with high idiosyncratic skewness. 

As for kurtosis, in the U.S. market we observe a monotonically increasing relationship 

between most of the kurtosis variables and next month return, on average, in both weighting 

schemes, as well as a statistically significant difference, at a 5% level, between the average 

return of quintile portfolios of stocks with lowest and highest values of kurtosis. The average 

return difference between the fifth quintile portfolio and a portfolio with all stocks traded in the 

market index is statistically significant, at a 5% level and at a 1% level, for equal-weighted and 

value-weighted portfolios, respectively, for every kurtosis variable. 

In the European market, the relationship between kurtosis is positive, as in the U.S. market, 

although, on average, none of the kurtosis variables have a monotonically increasing relation 

with next month return. Despite the absence of any monotonically increasing relation, the 

average return of a value-weighted self-financing portfolio sorted by idiosyncratic kurtosis (FF-

3) is statistically significant, at a 5% level, yielding 0.27% per month. The average return 

difference between the fifth quintile portfolio and a portfolio with all stocks traded in the market 

index is statistically significant, at a 5% level, when value-weighted portfolios are sorted by 

total kurtosis or idiosyncratic kurtosis (FF-3) and when equal-weighted portfolios are sorted by 

idiosyncratic kurtosis (FF-3). 

                                                             
8 A self-financing portfolio based on portfolios 2 and 4 does not have a statistically significant difference 

in average returns. 
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In the U.S. and European markets for both weighting schemes, the results of realized and 

estimated variables are similar to Bali and Cakici (2008) and Ayadi et al. (2019). As the 

mentioned studies, generally, we see no monotonic relationship between risk variables and next 

month return. In the European market, none of the nine risk variables obtained by three different 

methods used to sort portfolios by two weighting schemes observe a monotonically relation 

with next month return. In the U.S. market, we have nine situations where the relationship 

between the risk variable and next month return is monotonically increasing or decreasing. 

However, only idiosyncratic kurtosis measured by market model modeled by an AR(1) has a 

monotonically relation with next month return, simultaneously, in equal-weighted and value-

weighted portfolios. 

Regarding the self-financing portfolio average return (average return difference between 

the quintile portfolios of stocks with lowest and highest values of risk variables), we observe 

some statistically significant differences, at a 5% level. In the U.S. market, the results show 12 

situations where a self-financing portfolio yields a statistically significant positive average 

return, at a 5% level. The most profitable strategies respect to estimated risk variables, where 

value-weighted portfolios yield an average return per month superior to 0.50% using kurtosis 

variables. In the European market, we observe eight situations where a self-financing portfolio 

yields an average return that is statistically significant. Nevertheless, the results do not indicate 

any situation where the self-financing portfolio, for the same risk variable, yields an average 

return statistically different from zero, in the U.S. and European markets, simultaneously. 

Finally, we find that when the difference in average return between extreme quintile 

portfolios and a portfolio composed by all stocks traded in the market index is statistically 

significant, generally, the self-financing portfolio has an average return statistically different 

from zero. Nevertheless, the self-financing portfolio tends to exhibit higher average return than 

the difference in average return between extreme quintile portfolios and a portfolio composed 

by all stocks traded in the market index. From all the statistically significant differences, at a 

5% level, between extreme quintile portfolios and a portfolio composed by all stocks traded in 

the market index, in the U.S. market, the self-financing portfolio has always higher average 

return for the respective risk variable. In the European market, the self-financing portfolio has 

lower average return than the difference between extreme quintile portfolios and a portfolio 

composed by all stocks traded in the market index, when we consider equal-weighted portfolios 

sorted by realized idiosyncratic skewness (market model) with an estimation period of one 

month and by estimated values of idiosyncratic kurtosis (FF-3) and value-weighted portfolios 

sorted by estimated values of idiosyncratic skewness (FF-3).  
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4.4 Conclusion 

 

This Chapter analyzes the relationship between next month return and risk variables (standard 

deviation, skewness, and kurtosis). We analyze the mentioned relationship by forming value -

weighted and equal-weighted quintile portfolios sorted by risk variables. We present a large set 

of results to understand the conflicting evidence presented in the literature about the relationship 

between risk variables and next month return. Negative, as well as positive, relationships 

between next month return and the same risk variables are reported. In addition, we analyze if 

it is possible to obtain a positive average return using the negative or positive relationship 

between risk variables and next month return by buying or selling the quintile portfolio formed 

with stocks with lowest risk variables and by selling or buying the quintile portfolio formed 

with stocks with highest risk variables (self-financing portfolio). Besides the self-financing 

portfolio, we also compare the average return of the extreme quintile portfolios with the average 

return of a portfolio composed by all stocks traded in the market index. 

The first finding confirms the results of Bali and Cakici (2008) and Ayadi et al. (2019). 

Generally, we see no clear increasing or decreasing monotonic relationships between risk 

variables and next month return. These relations are only present in the U.S. market. 

Secondly, although we observe some statistically significant differences, at a 5% level, 

between the average return of quintile portfolios formed with stocks of lowest values and stocks 

with highest values of risk variables, these differences are rarely statistically different from 

zero, simultaneously, in both weighting schemes or in both markets. These cases are important 

if a self-financing portfolio consisting in buy or sell a quintile portfolio of stocks with the lowest 

risk variables values and sell or buy a quintile portfolio of stocks with the highest risk variables 

values is implemented. 

Thirdly, with respect to the difference of average return between extreme quintile portfolios 

and a portfolio composed by all stocks traded in the market index, we observe that, generally, 

this difference yields lower average return than the self-financing portfolio using the same risk 

variables. 

Given the lack of similarity between the results in the U.S. and European markets for the 

same risk variables, it appears that relations between risk variables and next month return are 

originated randomly rather than by economic significance. The results for both markets and 

both weighting schemes show that, at least one negative relation and one positive relation, can 

be found for standard deviation, skewness, and kurtosis estimates. 
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Table 4.1: Risk variables for portfolios sorted by monthly return in the U.S. market 

Table 4.1 reports the monthly average return, total standard deviation, skewness, and kurtosis, 

and idiosyncratic risk variables estimated by the market model and by the FF-3 in the U.S. 

market. Portfolios are sorted by monthly return into quintiles each month between January 2007 

and December 2019 (156 months). 
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Table 4.2: Risk variables for portfolios sorted by monthly return in the European 

market 

Table 4.2 reports the monthly average return, total standard deviation, skewness, and kurtosis, 

and idiosyncratic risk variables estimated by the market model and by the FF-3 in the European 

market. Portfolios are sorted by monthly return into quintiles each month between January 2007 

and December 2019 (156 months). 

 

  



 

70 

 

Table 4.3: Average monthly return of portfolios sorted by realized values of risk variables in the U.S. market (estimation period of one 

month) 

Table 4.3 reports the average monthly return of equal-weighted portfolios (Panel A) and value-weighted portfolios (Panel B) in the U.S. market. 

Quintile portfolios are formed every month from January 2007 to December 2019 (156 months) by sorting stocks based on the risk variable  

computed over the previous month. The risk variables are total standard deviation, skewness, and kurtosis, and idiosyncratic risk variables estimated 

by the market model and by the FF-3. We also report the average return difference between quintile 5 and quintile 1 (5-1), between quintile 1 and 

full sample portfolio (1-FS) and between quintile 5 and full sample portfolio (5-FS). The full sample portfolio is composed by all stocks traded in 

the market index. t-statistics of the null hypothesis that the mentioned differences are zero are also reported. ∗∗∗, ∗∗, ∗ indicate significance at the 

1%, 5%, and 10% levels, respectively. 
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Table 4.4: Average monthly return of portfolios sorted by realized values of risk variables in the European market (estimation period of 

one month) 

Table 4.4 reports the average monthly return of equal-weighted portfolios (Panel A) and value-weighted portfolios (Panel B) in the European 

market. Quintile portfolios are formed every month from January 2007 to December 2019 (156 months) by sorting stocks based on the risk variable  

computed over the previous month. The risk variables are total standard deviation, skewness, and kurtosis, and idiosyncratic risk variables estimated 

by the market model and by the FF-3. We also report the average return difference between quintile 5 and quintile 1 (5-1), between quintile 1 and 

full sample portfolio (1-FS) and between quintile 5 and full sample portfolio (5-FS). The full sample portfolio is composed by all stocks traded in 

the market index. t-statistics of the null hypothesis that the mentioned differences are zero are also reported. ∗∗∗, ∗∗, ∗ indicate significance at the 

1%, 5%, and 10% levels, respectively. 
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Table 4.5: Average monthly return of portfolios sorted by realized values of risk variables in the U.S. market (estimation period of 12 

months) 

Table 4.5 reports the average monthly return of equal-weighted portfolios (Panel A) and value-weighted portfolios (Panel B) in the U.S. market. 

Quintile portfolios are formed every month from January 2007 to December 2019 (156 months) by sorting stocks based on the risk variable 

computed over the previous 12 months. The risk variables are total standard deviation, skewness, and kurtosis, and idiosyncratic risk variables 

estimated by the market model and by the FF-3. We also report the average return difference between quintile 5 and quintile 1 (5-1), between 

quintile 1 and full sample portfolio (1-FS) and between quintile 5 and full sample portfolio (5-FS). The full sample portfolio is composed by all 

stocks traded in the market index. t-statistics of the null hypothesis that the mentioned differences are zero are also reported. ∗∗∗, ∗∗, ∗ indicate 

significance at the 1%, 5%, and 10% levels, respectively. 
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Table 4.6: Average monthly return of portfolios sorted by realized values of risk variables in the European market (estimation period of 

12 months) 

Table 4.6 reports the average monthly return of equal-weighted portfolios (Panel A) and value-weighted portfolios (Panel B) in the European 

market. Quintile portfolios are formed every month from January 2007 to December 2019 (156 months) by sorting stocks based on the risk variable  

computed over the previous 12 months. The risk variables are total standard deviation, skewness, and kurtosis, and idiosyncratic risk variables 

estimated by the market model and by the FF-3. We also report the average return difference between quintile 5 and quintile 1 (5-1), between 

quintile 1 and full sample portfolio (1-FS) and between quintile 5 and full sample portfolio (5-FS). The full sample portfolio is composed by all 

stocks traded in the market index. t-statistics of the null hypothesis that the mentioned differences are zero are also reported. ∗∗∗, ∗∗, ∗ indicate 

significance at the 1%, 5%, and 10% levels, respectively. 
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Table 4.7: Average monthly return of portfolios sorted by estimated values of risk variables in the U.S. market 

Table 4.7 reports the average monthly return of equal-weighted portfolios (Panel A) and value-weighted portfolios (Panel B) in the U.S. market. 

Quintile portfolios are formed every month from January 2007 to December 2019 (156 months) by sorting stocks based on the expected value of 

risk variables modeled by an EGARCH(1,1) for standard deviation and by an AR(1) for skewness and kurtosis. The risk variables are total standard 

deviation, skewness, and kurtosis, and idiosyncratic risk variables estimated by the market model and by the FF-3. We also report the average 

return difference between quintile 5 and quintile 1 (5-1), between quintile 1 and full sample portfolio (1-FS) and between quintile 5 and full sample 

portfolio (5-FS). The full sample portfolio is composed by all stocks traded in the market index. t-statistics of the null hypothesis that the mentioned 

differences are zero are also reported. ∗∗∗, ∗∗, ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. 
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Table 4.8: Average monthly return of portfolios sorted by estimated values of risk variables in the European market 

Table 4.8 reports the average monthly return of equal-weighted portfolios (Panel A) and value-weighted portfolios (Panel B) in the European 

market. Quintile portfolios are formed every month from January 2007 to December 2019 (156 months) by sorting stocks based on the expected 

value of risk variables modeled by an EGARCH(1,1) for standard deviation and by an AR(1) for skewness and kurtosis. The risk variables are total 

standard deviation, skewness, and kurtosis, and idiosyncratic risk variables estimated by the market model and by the FF-3. We also report the 

average return difference between quintile 5 and quintile 1 (5-1), between quintile 1 and full sample portfolio (1-FS) and between quintile 5 and 

full sample portfolio (5-FS). The full sample portfolio is composed by all stocks traded in the market index. t-statistics of the null hypothesis that 

the mentioned differences are zero are also reported. ∗∗∗, ∗∗, ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.  
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Figure 4.1: Total skewness and idiosyncratic skewness measured by the market model and by FF-3 in the U.S. market 

Figure 4.1 shows the monthly values of total skewness (Panel A), idiosyncratic skewness measured by the market model (Panel B) and measured 

by the FF-3 (Panel C) in the U.S. market. The sample period runs from January 2002 to the end of 2019. 

 

  

 

 

  



 

77 

 

Figure 4.2: Total skewness and idiosyncratic skewness measured by the market model and by FF-3 in the European market 

Figure 4.2 shows the monthly values of total skewness (Panel A), idiosyncratic skewness measured by the market model (Panel B) and measured 

by the FF-3 (Panel C) in the European market. The sample period runs from January 2002 to the end of 2019. 
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Figure 4.3: Total kurtosis and idiosyncratic kurtosis measured by the market model and by FF-3 in the U.S. market 

Figure 4.3 shows the monthly values of total kurtosis (Panel A), idiosyncratic kurtosis measured by the market model (Panel B) and measured by 

the FF-3 (Panel C) in the U.S. market. The sample period runs from January 2002 to the end of 2019. 
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Figure 4.4: Total kurtosis and idiosyncratic kurtosis measured by the market model and by FF-3 in the European market 

Figure 4.4 shows the monthly values of total kurtosis (Panel A), idiosyncratic kurtosis measured by the market model (Panel B) and measured by 

the FF-3 (Panel C) in the European market. The sample period runs from January 2002 to the end of 2019. 
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Chapter 5. Active versus Passive Strategies: Treynor-Black Model Empirically Revisited 

 

5.1 Introduction 

 

Passive or indexed strategies follow the Capital Asset Pricing Model idea that investors should 

hold a replica of the market portfolio (Sharpe, 1964). Since then, indexed mutual funds and 

exchange-traded funds become popular investment strategies and one of the fastest-growing 

investments in the world. The pioneering work of Markowitz (1952) motivates a handful of 

studies in the mean–variance framework, variations or generalizations, proving that it could be 

possible to improve substantially the performance of actively managed portfolios. Active 

portfolio management is based on the notion that stocks can temporarily deviate from their 

intrinsic prices, usually determined through some equilibrium asset pricing model. The goal of 

fund managers is to spot those mispricing opportunities and take advantage of them. However, 

consensus on which strategy achieves the best results or whether active strategies outperform, 

in terms of risk-adjusted return, passive strategies is far from being found. Additionally , 

historical returns of mutual funds show that most active managers do not achieve higher risk-

adjusted return than passive strategies. Despite the drawbacks on mean–variance framework 

and the doubts that active strategies perform better than passive strategies, Treynor and Black 

(1973) (hereafter TB) model did not become popular in the investment industry although it 

provides an efficient and simple way of implementing an active investment strategy. Kane, Kim 

and White (2010) argue that TB model is not the standard operating procedure of active 

managers due to the poor track record of active strategies and Bernstein (2004) expresses 

concern on the difficulties and risks involved in generating alphas. 

Frankfurter, Phillips and Seagle (1971), assuming a world where only three stocks exist, 

demonstrate that error in estimating the required parameters for selecting portfolios according 

to the mean-variance criteria is, potentially, of sufficient importance to bring into question the 

usefulness of models that ignore it. They suggest that portfolios selected according to the mean-

variance criteria are not more efficient than portfolios selected randomly. Merton (1980) 

acknowledges the estimation error of using realized returns and variances as estimators, 

suggesting a nonnegative restriction on expected returns and an adjustment for 

heteroscedasticity in realized return time series. Chopra and Ziemba (1993) show that 

estimation error in means is much higher than estimation error in variances or covariances.  

These estimation errors lead to a suboptimal portfolio composition and thus to a poor portfolio 

out-of-sample performance. 
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Studies on TB model are considerably less compared with studies about mean-variance 

framework. He (2007) develops an integrated Bayesian framework to account for alpha 

uncertainty in TB model. In his proposed model, the ordinary least squares estimates of alpha 

converges to zero as the beliefs in market efficiency reduce. Using monthly returns of 48 

industry portfolios from Kenneth French’s data library during the period between July 1963 

and December 2005, the author constructs a set of 10 active assets. The set is obtained by 

ranking all of the 48 industry portfolios by their information ratios, selecting the top five 

industries with the highest ratios and the bottom five industries with the lowest ratios. With this 

set of active assets, the author characterizes the active portfolio, the overall portfolio, and the 

portfolio weights as a function of different levels of active risk budget. The author concludes 

that active risk budget could be important to limit active management investments according to 

the confidence in their ability to generate alphas. 

Kane et al. (2010) investigate the connection between the abnormal returns forecast 

precision and the superior performance of portfolios constructed optimally based on their 

predictions. Through a simulation where the mean and standard deviation of the benchmark 

portfolio return, as well as the betas and abnormal returns of the stocks follow a normal 

distribution and the correlation coefficient is 0.1 between any pair of stocks, they show the 

potential of TB model to be used as a tool to exploit benchmark inefficiency. Despite TB model 

is not superior than the benchmark portfolio when less than 10 stocks are used, TB model 

becomes superior to the benchmark portfolio when the prediction power and/or the number of 

stocks is sufficiently large. The authors also argue that the performance of TB model improves 

as the length of the estimation window increases. An estimation window with 60 months 

achieves better results opposed to 36 and 48 months. Finally, the authors show that TB model 

portfolio outperforms the equal-weighted portfolio in terms of Sharpe ratio, especially when 

the portfolio has a large number of stocks. 

Allen, Lizieri and Satchell (2019) replicate the simulation research design of Kane et al.  

(2010) using an out-of-sample period of 120 months instead of 60 months. They show that TB 

model was superior to the equal-weighted portfolio strategy, in terms of Sharpe ratio, when 

investors have modest forecasting ability, and the investment universe size is of 100 or 500 

assets. 

Ramírez-Hassan and Guerra-Urzola (2020) propose a decision theory framework based on 

a Bayesian approach to mitigate estimation risk by minimizing the posterior expected loss 

function rather than the risk function, with a loss function based on the trading strategy rather 

than the utility function. Using weekly returns from June 2009 to June 2017 of 21 MSCI 
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international equity indices to construct randomly portfolios with three different sizes (5, 10 

and 15 indexes), they show that the minimum expected loss approach is the best statistical 

strategy when minimum-variance or tangency portfolios are used as the trading strategy. 

Concerning TB model, the naive approach got better out-of-sample results than the minimum 

expected loss approach, but the equal-weighted portfolio outperformed TB model for every 

approach considered in their study. 

Studies about TB model, to the best of our knowledge, do not test the model using real data 

on assets and on the efficiency of the benchmark. In addition, studies on portfolio selection 

techniques, generally, fail to point out what are the eventual causes for the inferior return of the 

active strategy compared to the passive strategy. Finally, although most studies claim that 

survivorship bias should not affect the comparison between the strategies, datasets with large 

negative returns associated with delisted stocks, give disadvantages to the equal-weighted 

portfolio strategy. These datasets do prevent other strategies to put large weights of investment 

in assets with large negative returns while equal-weighted portfolio strategy will only have a 

small investment. The motivation of this Chapter is to incorporate and test these issues in the 

empirical analysis and answer to our investigation question if an active strategy based on TB 

model is superior to a passive strategy. 

The main contributions of this Chapter are as follows. First, we have large dataset with 500 

stocks of the U.S. market and 600 stocks of the European market, which is larger than most 

studies on the topic of portfolio selection. Second, since the majority of empirical studies focus 

on the mean-variance framework, we analyze a portfolio allocation strategy based on TB model, 

assuming inefficiently priced stocks. Third, we highlight the principal drawbacks of using TB 

model empirically. Finally, we use a sampling technique that deals with delisted stocks over 

the period to avoid survivorship bias. 

This Chapter proceeds as follows. Section 5.2 describes the methodology used to 

implement and evaluate TB model. Section 5.3 reports the results of the empirical analysis. 

Section 5.4 highlights the downsides of implementing TB model empirically and Section 5.5 

concludes. 

 

5.2 Methodology 

 

Treynor and Black (1973) developed an optimizing model that combines the weights of a 

passive portfolio and an active portfolio (the optimal portfolio). In TB model, investors use a 

limited number of stocks that are not efficiently priced to form an active portfolio. Thus, stocks 
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that are not included in the active portfolio are considered efficiently priced. TB model 

identifies the portfolio of inefficiently priced stocks (active portfolio) that can be mixed with 

the passive portfolio to obtain the optimal portfolio. In the following subsections, we describe 

how we implement TB model empirically, in general, and how we use efficient portfolios as 

market portfolios in particular. 

 

5.2.1 Treynor-Black (1973) Model Implementation 

 

We use a rolling window estimation period of 60 months of returns to estimate all the necessary 

parameters to obtain the active portfolio. The rolling window procedure is widely used in the 

literature (see, for example, MacKinlay and Pastor, 2000; Larsen and Resnick, 2001; Clarke, 

Silva and Thorley, 2006; DeMiguel and Nogales, 2009; Kirby and Ostdiek, 2012; Kourtis , 

Dotsis and Markellos, 2012; Bessler, Opfer and Wolff, 2017; Allen et al., 2019). For all the 

stocks traded on the market index at the beginning of each month, we consider the previous 60 

months of returns to calculate the portfolio weights. These portfolio weights are used to 

compute risk and return of our investment strategy. At the end of the month, we repeat the 

procedure by moving the estimation window forward: we include the data for the next month 

and drop the oldest month until we reach the end of the dataset. The performance of each 

strategy is measured with the returns observed in the month (out-of-sample test procedure) 

following the formation of each portfolio during the period between January 2007 and 

December 2019 (156 months). Investment transactions do not influence the price or dividend 

of any stock and taxes and transaction costs are not considered. 

To calculate active portfolio weights, we need to estimate alphas, betas, and idiosyncratic 

variances, measured through the variance of the residuals, for each stock. The estimates of alpha 

and beta using ordinary least squares are given by the market model defined in equation (2.4) 

where i  represents the extra expected return (abnormal return) and i  measures the extent to 

which returns on the stock and the market portfolio move together. Following Treynor and 

Black (1973), the weights of each stock i in the active portfolio are calculated as: 
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where 2

i  is the variance of the residuals of stock i, representing the nonsystematic variance, 

and m is the number of stocks in the active portfolio. Using the estimates for the parameters of 

equation (2.4) and the weights of equation (5.1), we estimate the alpha (
A ), beta (

A ) and 

idiosyncratic variance ( 2

A ) of the active portfolio as: 
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With equation (5.2), we determine the fraction invested in the active portfolio  Aw , which 

is as follows: 
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where Mr  is the monthly return of the market portfolio, M  is the monthly standard deviation 

of market portfolio returns and fr  is the risk-free rate. The active portfolio weight is adjusted 

for the beta exposure of the active portfolio, resulting in: 
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The remaining optimal investment proportion is allocated to the passive portfolio is given by: 

 

100% *P Aw w             (5.5) 

 

In order to implement TB model, from all stocks with alpha and beta estimates statistically 

significant at a 10% level, we rank them by alpha. We select the top five stocks with the highest 

alpha and the bottom five stocks with the lowest alpha to construct our active portfolio. 
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Regarding the benchmark portfolio, we consider three different portfolios: tangency portfolio 

(hereafter TP-Unrest), tangency portfolio with short selling restriction (hereafter TP-Rest) and 

market index (hereafter TB-MI). Each benchmark portfolio corresponds to one different 

investment strategy. Following Lim, Durand and Yang (2014), for the U.S. market, we use S&P 

500 as market index and for the European market, we use STOXX 600 under the same rational.  

The tangency portfolio (hereafter TP) is the portfolio with the highest excess return per unit 

of risk, satisfying the constraint that portfolio weights (positive or negative) sum to 1. 

Therefore, we solve a mathematically problem formally written as: 
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The TP with short selling restriction satisfies the constraint that portfolio weights are all 

nonnegative. Therefore, we solve a mathematically problem formally written as: 
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We compare the difference between out-of-sample performance of the different active TB 

model strategies and passive portfolios on three different criteria: (i) portfolio returns; (ii) 

portfolio risk; and (iii) Sharpe measure. 

 

 

Sharpe measure (hereafter SR) is the excess return divided by the standard deviation of 

excess return defined as: 
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SR is probably the most widely used metric among the studies about portfolio selection and 

portfolio performance assessment (see, for example, Larsen and Resnick, 2001; DeMiguel and 
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Nogales, 2009; Kirby and Ostdiek, 2012; Kourtis et al., 2012; Bessler et al., 2017; Allen et al., 

2019). Large positive values are an indication of superior portfolio performance and SR is 

invariant to the relative weights on the riskless asset and the risky portfolio. 

 

5.2.2 Efficient Portfolios as Market Portfolios 

 

Tables 5.1 and 5.2 report the number of stocks in the U.S. and European markets, respectively, 

segregated by their coefficient’s signs and significance, for three different market portfolios : 

tangency portfolio, tangency portfolio with short selling restriction and market index.  

The results show that stocks with positive and statistically significant coefficient estimates, 

at the 10% level, are only found when a market index is used as market portfolio. Thus, no 

significant positive relation and significant positive alpha estimates are found between stocks 

of the U.S. and European markets and the tangency portfolio, restricted or not. The application 

of TB model in these circumstances points to a null weight in the active portfolio and, therefore, 

the strategy results in a strictly passive strategy invested in the tangency portfolio. In general, a 

significant negative relationship between restricted and non-restricted tangency portfolios are 

the dominant characteristic. Since tangency portfolio returns are, generally, positive in every 

period, the absence of positive relations (and the existence of negative relations) suggests that 

stocks have consistently negative returns. The results also suggest that stocks with a superior 

performance, in terms of risk and return, are not related with the efficient portfolio, however, 

stocks with a poor performance could be negatively related with the efficient portfolio. 

Moreover, for stocks with estimates of alpha and beta statistically significant, we observe 

that, when the non-restricted tangency portfolio is the benchmark portfolio, most stocks have a 

positive alpha and a negative beta. When the restricted tangency portfolio is the benchmark 

portfolio, most stocks have a negative alpha and a positive beta. These very curious results 

suggest that short selling restriction allows a positive relationship between stocks and efficient 

portfolio. Despite the positive relationship, on average, stocks underperform the market 

portfolio in terms of return due to the negative alpha. 

When the market index is the market portfolio, stocks with a statistically significant 

negative beta are rare and stocks with a statistically significant positive beta are almost equally 

divided between stocks with positive and negative alpha. This result suggests that some stocks 

have higher return than the market index, while others have a lower return, which is not 

surprisingly since the market index return is an average return of all stocks traded on that market 

index. 
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In this context, TP-Unrest and TP-Rest strategies consist in a strictly passive strategy 

invested in non-restricted tangency portfolio and restricted tangency portfolio, respectively, 

since inefficiently priced stocks are not identified in these strategies. Regarding TB-MI 

strategy, there is a mixed investment between a portfolio of inefficiently priced stocks (active 

portfolio) and the market index (passive portfolio). 

 

5.3 Empirical Results 

 

Table 5.3 reports the average return, risk and SR for the U.S. and European markets and for 

three strategies: TP-Unrest, TP-Rest and TB-MI. From Table 5.3, we observe that the highest 

average return in the U.S. and European markets occurs when the tangency portfolio is the 

market portfolio (TP-Unrest strategy). In the U.S. market, the average return is 5.5% for TP-

Unrest strategy, compared with 0.7% and 0.9% of the TP-Rest and TB-MI strategies, 

respectively. In the European market, the average return is 13.7% for TP-Unrest strategy, 

compared with 0.1% and 0.7% of the TP-Rest and TB-MI strategies, respectively. 

We notice from the average risk that these high returns are associated with high risk. The 

average risk of TP-Unrest strategy is also the highest in both markets among the strategies 

analyzed (107.0% in the U.S. market and 120.3% in the European market). The high level of 

return and risk of TP-Unrest strategy is due to the large positions (long and short) of the 

tangency portfolio weights that arise when equation (5.6) is solved. Thus, if some stocks of the 

active portfolio with large long positions have large positive returns and some stocks with large 

short positions have large negative returns, this strategy return will be high. However, if stocks 

with large long positions have low returns or if stocks with large short positions have high 

returns, the strategy return will, generally, be negative, and in some cases could be inferior to -

100%. In the U.S. and European markets, the TP-Unrest strategy has a return inferior to -100% 

in 10 months and 12 months, respectively, out of 156 months (13 years). Hence, this strategy is 

very risky and difficult to implement in the long-term since it loses all the investment almost, 

on average, in one month of each year. 

The strategies that do not allow short-selling (TP-Rest and TB-MI strategies) have a 

significant decrease in the average risk compared to TP-Unrest strategy. In the U.S. market, 

TP-Rest and TB-MI strategies have an average risk of 5.3% and 9.8%, respectively. In the 

European market, TP-Rest and TB-MI strategies have an average risk of 4.2% and 11.3%, 

respectively. These levels of risk are significantly lower than TP-Unrest strategy, where average 
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risk is 107.0% and 120.3% in the U.S. and European markets, respectively. However, the 

decrease in average risk also decreases the average return.  

Focusing the analysis on TP-Rest and TB-MI strategies, we observe in Table 5.3 that TB-

MI strategy has higher average return, higher average risk and higher SR when compared with 

TP-Rest strategy in the U.S. and European markets. The SR indicates that the average risk 

increase of using the market index as market portfolio, opposed to the tangency portfolio with 

short selling restriction, is compensated by the increase in average return. Thus, there is 

evidence of superior performance of TB-MI strategy over the TP-Rest strategy in terms of SR. 

The increase of average risk when the market index is used as the market portfolio comes from 

the short positions of the active portfolio. In TP-Rest strategy no short positions are taken. 

Since stocks with positive and statistically significant coefficients estimates, at the 10% 

level, are only found when a market index is used as benchmark portfolio, the strategies using 

tangency portfolio and tangency portfolio with short selling restriction as market portfolios in 

TB model are simply the weights of the referred portfolios invested in the next period. This 

results from the impossibility to construct an active portfolio, and so, the strategy allocates all 

the investment in the passive portfolio: tangency portfolio or tangency portfolio with short 

selling restriction. 

When a market index is the market portfolio, a comparison between the performance of TB 

model and the passive portfolio is possible since an active portfolio is formed. Table 5.4 reports 

the average return, risk and SR for the TB-MI strategy, the respective passive portfolio and the 

percentage of months that TB-MI strategy was superior to the passive portfolio (market index) 

on each criterion, for the U.S. and European markets. In both markets, the TB-MI strategy is 

superior to the passive portfolio in more than 50% of the months in terms of return.  

Furthermore, a small superiority of 0.1 p.p. and 0.2 p.p. in the U.S. market and the European 

market, respectively, is observed in the average return of TB-MI strategy over the market index. 

The active portfolio is a portfolio with a substantial level of risk since the risk of TB-MI 

strategy more than double the risk of passive portfolio. The increase in risk of adopting the TB-

MI strategy is compensated by the increase in average return in the European market but is not 

compensated in the U.S. market. In fact, the average SR of TB-MI strategy is 0.43 in the U.S. 

market while the average SR of the passive portfolio is 0.47. In the European market, the 

average SR of TB-MI strategy is 0.37 while the average SR of the passive portfolio is 0.32. 

Figure 5.1 shows the cumulative return of TP-Rest strategy, TB-MI strategy and market 

index for the U.S. and European markets. Since we already observed that TP-Unrest strategy is 

not feasible in the long-term due to monthly returns lower than -100% this strategy was not 
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included in Figure 5.1. In addition, due to the inability to identify stocks with alphas estimates 

statistically different from zero when the tangency portfolio with short selling restriction is the 

market portfolio, the investment is always 100% in the passive portfolio. Thus, the TP-Rest 

strategy do not have a passive portfolio to be compared.  

From Table 5.3 is possible to verify that TB-MI strategy has a superior average return 

compared to TP-Rest strategy in both markets. Figure 5.1 indicates the same superiority in 

terms of cumulative return. In the U.S. market, the TB-MI strategy has a cumulative return of 

193% opposed to 133% of cumulative return of the TP-Rest strategy. In the European market, 

the TB-MI strategy has a cumulative return of 68% opposed to 11% of cumulative return of the 

TP-Rest strategy. Despite the referred superiority, between January 2007 and December 2019, 

the TP-Rest strategy had superior cumulative return compared to TB-MI strategy in 51 and 52 

months in the U.S. and European markets, respectively. For example, in the U.S. market 

between January 2007 and June 2018, the TP-Rest strategy had 170% of cumulative return 

while TB-MI strategy had 163%. In the case of the European market, between January 2007 

and November 2014 the TP-Rest strategy had -23% of cumulative return while TB-MI strategy 

had -24%. These outcomes support the conclusion that the superiority of TB-MI strategy over 

TP-Rest strategy depends on the periods that are considered, i.e. the superiority of the TB-MI 

strategy is not systematic. 

Figure 5.1 shows distinct results on each market when the cumulative return of TB-MI 

strategy is compared with the respective passive portfolio (market index). In the U.S. market, 

despite the higher cumulative return of market index in the end of the period (200% versus 

193% of the TB-MI strategy), the market index had only superior cumulative return in 19 out 

of 156 months. In the European market, the market index is substantially superior in terms of 

cumulative return. The cumulative return of the market index in the end of the period was 79%, 

opposed to the cumulative return of 68% of the TB-MI strategy and the market index had 

superior cumulative returns in 139 out of 156 months. 

Table 5.5 reports the cumulative performance from January 2007 to December 2019 of TP-

Rest strategy, TB-MI strategy and market index in annualized return, risk and SR in the U.S. 

and European markets. In the U.S. market, the market index had 8.8% of annualized return 

while TP-Rest and TB-MI strategies had 6.7% and 8.6%, respectively. In the European market, 

the market index had 4.6% of annualized return while TP-Rest and TB-MI strategies had 0.8% 

and 4.1%, respectively. In addition, we observe that SR of market index is also superior over 

the other strategies in both markets. 
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The findings of this section call into question the superiority of TB model over the passive 

portfolio in terms of risk and return. In the markets and time series studied in this Chapter, there 

is no evidence of a consistent superior risk-adjusted average return over the market index by 

pursuing a strategy based on TB model using the market index as market portfolio. 

 

5.4 Major Downsides of Implementing Treynor-Black (1973) Model Empirically 

 

To better understand how the TB model implementation could be improved to allow a better 

risk-adjusted return, in this section we highlight the main reasons that lead TB model to have 

not a consistently superior risk-adjusted average return over the market index. 

 

5.4.1 Alpha Estimation Error 

 

The effectiveness of any investment strategy is highly dependent on the inputs, mostly returns. 

The failure in estimating accurately these inputs could lead to poor out-of-sample performance 

because the expected values will be different from the realized values. Table 5.6 shows the 

number of stocks segregated by alpha estimation error (hereafter EE) intervals for positive and 

negative alphas in the U.S. and European markets. Alpha EE is given by the difference between 

stocks realized excess return over the market index and alpha estimation. In our TB model 

implementation, we select the top five stocks with the highest alpha and the bottom five stocks 

with the lowest alpha estimates to calculate the weights of the active portfolio. Since our out-

of-sample period have 156 months, we calculated 156 active portfolios with 780 stocks with 

positive alpha estimates and 780 stocks with negative alpha estimates for each market. In the 

U.S. market, we only have 764 stocks with negative alpha estimates since some months do not 

have five stocks with a negative and an alpha statistically different from zero. 

The EE could not be problematic if the error is in a favorable direction. For example, if the 

expected alpha is 2% and the realized alpha is 4%. Thus, positive EE for positive alphas is not 

the major problem. On the other hand, if the expected alpha is -2%, and accordingly we take a 

short position on that stock, and the realized alpha is -4%, the EE will also not be a problem. 

EE is a problem when positive alphas have a negative EE and negative alphas have a positive 

EE. This implies long positions with realized values inferior to the expected values and short 

positions with realized values superior to expected values. Table 5.6 indicates that 486 and 504 

stocks with positive alpha, in the U.S. and European markets, respectively, had a negative EE. 
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Hence, 62% and 65% of the stocks with positive alpha used to construct the active portfolio 

had a lower alpha than our estimation. Regarding the negative alpha stocks, we observe that, in 

the U.S. and European markets, 426 and 439 stocks, respectively, had a positive EE. 

Consequently, 56% of the stocks with negative estimate for alpha of each market that were 

included in the active portfolio had a higher alpha than our estimated result. 

Despite most stocks have an EE that is not favorable to our investment strategy, this would 

be mitigated if the average EE, in the favorable direction, is higher than the average EE in the 

unfavorable direction. Table 5.7 shows the average alpha EE divided in positive and negative 

EE for positive and negative alphas in the U.S. and European markets. In both markets, the 

average EE in absolute terms of positive alphas is lower for stocks with positive EE compared 

to stocks with negative EE. In addition, the average EE in absolute terms of negative alphas is 

higher for stocks with positive EE compared to stocks with negative EE. 

The lack of evidence of superiority of TB model over the passive portfolio in terms of return 

could be partially explained by alpha EE, not by the EE itself but by the EE in an unfavorable 

direction. We recall that negative EE for positive alpha and positive EE for negative alpha are 

harmful to return when we implement TB model. The results suggest that passive portfolio has 

higher risk-adjusted average return compared to TB model because most stocks have an 

unfavorable deviation in EE and a higher EE average in the unfavorable direction. 

 

5.4.2 Allocation of Investment Between Active and Passive Portfolios 

 

Despite the estimation error mentioned in the previous subsection leads to an active portfolio 

with lower return than the passive portfolio in several periods, this downside could be mitigated 

if the weight of investment on the active portfolio is large when the active portfolio return is 

larger than the passive portfolio return, and small when the inverse occurs. 

Table 5.8 reports the average weight of active portfolio when the active portfolio return is 

larger or smaller than the passive portfolio return in the U.S. and European markets, as well the 

average weight in active portfolio after the beta adjustment of our sensitivity analysis when this 

portfolio return is higher or lower than the passive portfolio return. 

We observe that average weight of investment in the active portfolio is not substantial 

different when the active portfolio return is larger or smaller than the passive portfolio. In the 

U.S. market, the average weight of the active portfolio is 16.3% when the active portfolio return 

is higher than the passive portfolio return while it is 19.2% when the passive portfolio return is 

superior to the return of active portfolio. We highlight that this situation is the least desirable 
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since this strategy invests more on the active portfolio when the active portfolio has a lower 

return than the passive portfolio. On the other hand, in the European market, the average weight 

of the active portfolio is 27.1% when the active portfolio return is higher than the passive 

portfolio return, while it is 25.6% when the passive portfolio return is superior to the return of 

active portfolio. In this case, the TB-MI strategy invests more, on average, on the active 

portfolio when the active portfolio return is higher than the passive portfolio return. However, 

this was not sufficient to produce higher cumulative return than the market index (the passive 

portfolio). As shown in Figure 5.1, the cumulative return in the end of the out-of-sample period 

of the market index was 79%, opposed to the cumulative return of 68% of the TB-MI strategy. 

To evaluate the change in the cumulative return given a variation of beta estimates, we 

perform a sensitivity analysis on this parameter. Our sensitivity analysis is an increase of 0.25 

or 0.5 in beta estimates when the active portfolio return is higher than the passive portfolio 

return and a decrease by the same amount when the active portfolio return is lower than the 

passive portfolio return. This way, we increase the investment weight in active portfolio when 

the active portfolio has a higher return than the passive portfolio and decrease the investment 

weight in active portfolio when the opposite happens. 

The average weight of active portfolio has a positive relation with the variation of beta. 

However, the average increase in the active portfolio weight is not very expressive when beta 

changes 0.25 or 0.5. We observe, for a beta adjustment of 0.5, that when the active portfolio 

return is higher than the passive portfolio return the average weight in active portfolio increases 

from 16.3% to 18.4% in the U.S. market and from 27.1% to 33.4% in the European market. 

Nevertheless, the cumulative return suffers a significant impact due to the beta adjustment.  

Table 5.9 reports the cumulative return of TB-MI strategy, with and without our beta 

adjustment, in the U.S. and European markets. Despite the reduced increase in the average 

weight of active portfolio when the active portfolio return is higher than the passive portfolio 

return, the cumulative return changes considerably. An increase of 0.25 in beta when the active 

portfolio has a higher return than the passive portfolio and a decrease by the same amount in 

beta when the opposite happens results in an increase of cumulative return from 192.9% to 

281.1% in the U.S. market and from 67.9% to 188.6% in the European market. Therefore, even 

with alpha estimation error, there is evidence that TB model could achieve a constant 

superiority over the passive portfolio with an accurate estimation of beta. By beta accuracy, we 

assume that beta will be large when the active portfolio has higher return than the passive 

portfolio and will be small when the opposite is true. 
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5.4.3 Extreme Positions in the Active Portfolio 

 

In this subsection, we focus our analysis on risk rather than on return, which was the focus of 

the previous subsections. In Table 5.4, we observe that TB-MI strategy risk is substantially 

higher than the passive portfolio. This is due to the extreme long and short positions of the 

active portfolio. These extreme positions arise, essentially, when the denominator of equation 

(5.1) is close to zero, which is true when the positive and negative alphas divided by the variance 

of the residuals offset each other.  

Table 5.10 reports estimates of alpha, variance of residuals, alpha divided by the variance 

of residuals and the weight of each stock in the active portfolio in July 2008 for the U.S. market 

and in February 2008 for the European market. These months were selected as examples where 

extreme weights that turn the active portfolio very risky are present. For example, in the U.S. 

market, we have a long position of 2204% and a short position of -1579%, leading to 709% of 

risk. In the European market, we have long and short positions of 845% and -814%, 

respectively, resulting in 121% of risk. These extreme positions can be avoided if we restrict 

the positions in the active portfolio to long positions. 

 

5.5 Conclusion 

 

This Chapter analyzes the empirical implementation of TB model in the U.S. and European 

market using three different market portfolios: tangency portfolio, tangency portfolio with short  

selling restriction and market index. We use a rolling window approach with an estimation 

window of 60 months of returns to compute all the necessary parameters to obtain the active 

portfolio. The strategies are evaluated each month of the out-of-sample period between January 

2007 and December 2019 (156 months). 

The results suggest an absence of a statistically significant positive relation between stock 

returns and unrestricted tangency portfolio returns. Also, there is no evidence of a statistically 

significant positive alpha estimate when tangency portfolio with short selling restriction is the 

market portfolio. In this context, the weight of investment in the active portfolio of TB model 

is zero, and so, strategies based on these portfolios as market portfolios have a weight of 100% 

in the passive portfolio: restricted and non-restricted tangency portfolios. 

The TB model strategy that uses unrestricted tangency portfolio as market portfolio has 

returns inferior to -100% in several months. Hence, this strategy is very risky and difficult to 

implement in the long-term since it can lose all investment in just one month. Regarding 
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strategies that use tangency portfolio with short selling restriction and market index as market 

portfolios, we observe higher return, higher risk and higher Sharpe measure when the market 

index is the market portfolio in both markets. 

When we compare TB model, using the market index as market portfolio, with the passive 

portfolio (the market index), we conclude that market index had a higher Sharpe measure in 

both markets, showing no advantages of pursuing an active strategy based on TB model. 

To understand how the TB model implementation could be improved to allow a better risk-

adjusted average return, we highlight the main reasons that lead TB model to have not a 

consistently superior risk-adjusted average return over the market index: alpha estimation error, 

allocation of investment between the active and passive portfolios and extreme positions of the 

active portfolio. 

Alpha estimation error is only a problem when positive alphas have a negative estimation 

error and negative alphas have a positive estimation error, meaning that our long positions had 

a lower realized return than our expectations and short positions had a higher realized return. 

We observe that average estimation error in absolute terms of positive alphas is lower for stocks 

with positive estimation error compared to stocks with negative estimation error. In addition, 

average estimation error in absolute terms of negative alphas is higher for stocks with positive 

estimation error compared to stocks with negative estimation error. 

Even with alpha estimation error, TB model will probability have a better risk-adjusted 

average return than the passive portfolio if the weight of investment on the active portfolio is 

large when the active portfolio return is larger than the passive portfolio return, and small then 

the inverse occurs. Despite the average weight of investment in the active portfolio is not 

substantial different when the active portfolio return is larger or smaller than the passive 

portfolio in both markets, we find evidence that TB model could achieve a constant superiority 

over the passive portfolio with an accurate estimation of beta. By beta accuracy, we assume 

that beta is large when the active portfolio has higher average return than the passive portfolio 

and is small when the opposite is true. 

Finally, we observe that active portfolio is very risky due to the extreme weights generated 

by TB model when the weights of the active portfolio are calculated. These extreme positions 

arise, essentially, when the positive and negative alphas divided by the variance of the residuals 

offset each other. Extreme weights are eliminated if the active portfolio is only composed by 

long positions. 

Since the reduction of uncertainty in alpha and betas estimates appears to improve the risk-

adjusted performance of TB model, our results may be useful as a starting point to study the 
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effect of new estimation procedures of alphas and betas to serve as inputs of TB model. Despite 

studies on these subjects go beyond the scope of our study, they seem interesting for future 

research. 
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Table 5.1: Alphas and betas in the U.S. market 

Table 5.1 reports the number of stocks in the U.S. market, segregated by their coefficient’s 

signs and significances, for three different market portfolios: tangency portfolio, tangency 

portfolio with short selling (SS) restriction and market index. Alphas and betas are calculated 

using 60 monthly returns through an ordinary least squares (OLS) regression. The number of 

stocks reported in the last row as not calculated respect to stocks that did not have returns in the 

full period of 60 months used as estimation period. 
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Table 5.2: Alphas and betas in the European market 

Table 5.2 reports the number of stocks in the European market, segregated by their coefficient’s 

signs and significances, for three different market portfolios: tangency portfolio, tangency 

portfolio with short selling (SS) restriction and market index. Alphas and betas are calculated 

using 60 monthly returns through an ordinary least squares (OLS) regression. The number of 

stocks reported in the last row as not calculated respect to stocks that did not have returns in the 

full period of 60 months used as estimation period. 
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Table 5.3: Average return, risk and Sharpe measure of each strategy 

Table 5.3 reports the average monthly return, risk and Sharpe measure (SR) for three strategies: 

tangency portfolio (TP-Unrest), tangency portfolio with short selling restriction (TP-Rest) and 

market index (TB-MI). Panel A reports the results for the U.S. market while Panel B reports 

the results for the European market. The sample period runs from January 2007 to December 

2019 (156 months). 
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Table 5.4: Average return, risk and Sharpe measure of TB-MI strategy and the 

respective passive portfolio 

Table 5.4 reports the average monthly return, risk and Sharpe measure (SR) for the TB-MI 

strategy and the respective passive portfolio, as well as the percentage of months that TB-MI 

strategy was superior to the passive portfolio (market index) on each criterion. Panel A reports 

the results for the U.S. market while Panel B reports the results for the European market. The 

sample period runs from January 2007 to December 2019 (156 months). 
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Table 5.5: Annualized return, risk and Sharpe measure of TP-Rest, TB-MI and market 

index strategies 

Table 5.5 reports the cumulative performance from January 2007 to December 2019 (156 

months) of TP-Rest, TB-MI and market index (MI) strategies in annualized return, risk and 

Sharpe measure. Panel A reports the results for the U.S. market while Panel B reports the results 

for the European market. 
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Table 5.6: Number of stocks segregated by alpha estimation error 

Table 5.6 shows the number of stocks segregated by alpha estimation error (EE) intervals for 

positive and negative alphas in the U.S. and European markets. Alpha EE is given by the 

difference between stocks realized excess return over the market index and alpha estimation. 

The sample period runs from January 2007 to December 2019. 
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Table 5.7: Average alpha estimation error 

Table 5.7 shows the average alpha estimation error (EE) for positive and negative alphas in the 

U.S. and European markets. The sample period runs from January 2007 to December 2019. 
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Table 5.8: Average weight of active portfolio of TB-MI strategy 

Table 5.8 reports the average weight of active portfolio (AP) of TB-MI strategy, in the period 

between January 2007 and December 2019, when the AP return is larger or smaller than the 

passive portfolio (PP) return in the U.S. market (Panel A) and in the European market (Panel 

B). The average weight of AP with no beta adjustment respects to the average weight of the AP 

calculated accordingly to the methodology described in subsection 5.2.1. The beta adjustments 

respect to an increase in the beta when the AP return is higher than the PP return, and a decrease 

when the AP return is lower than the PP return. 
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Table 5.9: Cumulative return of TB-MI strategy 

Table 5.9 reports the cumulative return of TB model when the market index is the market 

portfolio (TB-MI strategy) in the U.S. and European markets. The beta adjustments respect to 

an increase in beta when the active portfolio (AP) return is higher than the passive portfolio 

(PP) returns, and a decrease in beta when the AP return is lower than the PP return. The sample 

period runs from January 2007 to December 2019. 
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Table 5.10: Weights of the active portfolio of TB-MI strategy in July 2008 for the U.S. 

market and in February 2008 for the European market 

Table 5.10 reports estimates of alpha, residuals variance, alpha divided by the residuals variance 

and the weight of each stock in the active portfolio (AP) of TB-MI strategy in July 2008 for the 

U.S. market (Panel A) and in February 2008 for the European market (Panel B). Stocks that 

compose the AP are the five stocks with the highest alpha and the five stocks with the lowest 

alpha. 
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Figure 5.1: Cumulative return of TP-Rest strategy, TB-MI strategy and market index 

Figure 5.1 shows the cumulative return between January 2007 and December 2019 of Treynor-Black (1973) model considering the tangency 

portfolio with short selling restriction as market portfolio (TP-Rest), Treynor-Black (1973) model considering the market index as market portfolio 

(TB-MI) and market index (MI). Panel A reports the results for the U.S. market while Panel B reports the results for the European market. 
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Chapter 6. Conclusions 

 

Using adjusted daily prices of all stocks traded on Standard & Poor’s 500 (S&P 500) and 

STOXX Europe 600 (STOXX 600), and their respective market indexes, during the period 

between January 2002 and December 2019, we examine three topics related with portfolio 

management. First, the minimum number of stocks that a portfolio should have to achieve the 

major benefits of diversification in terms of risk and return. We investigate how risk and return 

of a portfolio change as the number of stocks in equal-weighted and value-weighted portfolios 

increases. Second, the relationship between next month return and risk variables (standard 

deviation, skewness, and kurtosis). We analyze the mentioned relationship by forming value -

weighted and equal-weighted quintile portfolios sorted by risk variables. Third, the 

implementation of three investment strategies based on Treynor-Black (1973) model: tangency 

portfolio, tangency portfolio with short selling restriction and market index as market 

portfolios. We investigate how average risk and average return of the referred investment 

strategies compare with a passive strategy. All relevant parameters are obtained through an 

ordinary least squares regression using a rolling window approach with an estimation period of 

60 months. 

We find that major benefits of diversification, in the U.S. and European markets, can be 

achieved with an equal-weighted portfolio with 50 stocks and a value-weighted portfolio with 

64 stocks. These portfolios reduce, at least, 95% of diversifiable risk. Moreover, we observe 

that the increase of the number of stocks in equal-weighted portfolios has no significant impact 

on average end-of-period wealth, while the mentioned increase has a slight negative effect in 

value-weighted portfolios. Additionally, end-of-period wealth standard deviation decreases as 

the number of stocks in a portfolio increases in both markets and in both weighting schemes. 

Equal-weighted portfolios with 50 stocks and value-weighted portfolios with 64 stocks have an 

end-of-period wealth standard deviation lower than 0.05 per $1 or 1€ of investment in the U.S. 

and European markets, respectively. 

Regarding the relationship between risk variables and next month return, generally, we see 

no clear increasing or decreasing monotonic relations. These relations are only present in the 

U.S. market. Moreover, we observe some statistically significant differences, at a 5% level, 

between the average return of the quintile portfolios formed stocks with lowest values and 

highest values of risk variables. These cases are important if a self-financing portfolio 

consisting in buy or sell a quintile portfolio of stocks with the lowest risk variables values and 

sell or buy a quintile portfolio of stocks with the highest risk variables values is implemented. 
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However, the differences in average return of extreme quintile portfolios are rarely statistically 

significant in both weighting schemes or in both markets, simultaneously. In addition, with 

respect to the difference of average return between extreme quintile portfolios and a portfolio 

composed by all the stocks in the market index, we observe that, generally, this difference yields 

lower average return than the self-financing portfolio average return. Given the lack of 

similarity between the results of the U.S. and European markets for the same risk variables, it 

appears that relations between risk variables and next month return are originated randomly 

rather than by economic significance. The results for both markets and both weighting schemes 

show that, at least one negative relation and one positive relation, can be found for standard 

deviation, skewness, and kurtosis estimates. 

With respect to Treynor-Black (1973) model strategies, in both market, we observe higher 

average return, higher average risk and higher Sharpe measure when the market index is the 

market portfolio. When we compare the Treynor-Black (1973) model, using the market index 

as market portfolio, with the passive portfolio (the market index), we conclude that market 

index had higher average Sharpe measure in both markets. We point out three reasons that lead 

Treynor-Black (1973) model to have not a consistently superior risk-adjusted average return 

over the passive portfolio. Alpha estimation error (long positions with lower realized return 

than expectations and short positions with higher realized return than expectations), small 

weight of investment on the active portfolio when the active portfolio return is larger than the 

passive portfolio return, and large when the inverse occurs, and extreme weights of the active 

portfolio that lead to high levels of risk.  
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