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Abstract 
Growing demand for reduced local hardware infrastructure is driving the adoption of Cloud 
Computing. In the Infrastructure-as-a-Service model, service providers offer virtualized 
computational resources in the form of virtual machine instances. The existence of a large 
variety of providers and instances makes the decision- making process a difficult task for 
users, especially as factors such as the datacenter location - where the virtual machine is 
hosted - have a direct influence on the price of instances. The same instance may present 
price differences when hosted in dif- ferent geographically distributed datacenters and, 
because of that, the datacenter location needs to be taken into account through the 
decision-making process. Given this problem, we propose the D-AHP, a methodology to aid 
decision-making based on Pareto Dominance and Analytic Hierarchy Process (AHP). In the D-
AHP, the dominance concept is applied to reduce the number of instances to be compared; 
the instances selection is based on a set of objectives, while AHP ranks the selected ones 
from a set of criteria and sub-criteria, among them the datacenter location. The results from 
case studies show that differences may arise in the results, regarding which instance is more 
suitable for the user, when considering the datacenter loca- tion as a criterion to choose an 
instance. This fact highlights the need to consider this factor during the process of migrating 
applications to the Cloud. In addition, Pareto Dominance applied early over the set of total 
instances has proved to be efficient, once it significantly reduces the number of instances to 
be compared and ordered by the AHP by excluding instances with less computational 
resources and higher cost in the decision-making process, mainly for larger application 
workloads. 
 
 
1 Introduction 
Cloud Computing has emerged as one of the most significant advancements in the field of 
Information Technology (IT) because of its advantages over local hardware infrastructures 
for aspects such as agility, elasticity [1], flexibility, and cost. Because of these attractive 
features, the International Data Corporation (IDC) estimates that spending on public cloud 
services is expected to reach US$ 370 billion in 2022 [2]. 



In Cloud Computing, providers offer computing services on a pay-per-use basis [3], providing 
significant savings in resources related to investment, management, and maintenance of 
local infrastructure. Software-as-a-Service (SaaS), Platform- as-a-Service (PaaS), and 
Infrastructure-as-a-Service (IaaS) are among the services offered by the providers [4]. 
Cloud Computing has been attracting interest from the scientific community. One of the 
identified gaps which still persists is lack of transparency on the part of providers regarding 
the pricing of Virtual Machine (VM) instances, and the variety (and constraints) of 
corresponding services when it comes to using these models in the decision-making process 
[5]. Thus, the decision to migrate is still considered complex due to the immaturity and 
dynamics of this environment. Even so, in the business field, migration is a strategic decision 
that can improve performance, pro- ductivity and growth, and increase competitiveness [6, 
7]. 
In the IaaS model, the prices of VM instances are based on a set of numerical var- iables 
(such as the CPU, memory, and storage amounts) and non-numeric variables (such as the 
VM operating system (OS) and the geographic datacenter location). 
To gain a better understanding of the problems associated with selection of ser- vices, 
researchers have followed different approaches. The studies of Li et al. [8], Kihal et al. [9], 
Menzel and Ranjan [10], Murthy et al. [11], Menzel et al. [12], Emeras et al. [13], López-Pires 
and Barán [14], Mitropoulou et al. [15], Al-Faifi et al. [16], Nagarajan and Thirunavukarasu 
[17], and Chauhan et al. [18] used CPU, memory, and storage resources simultaneously as 
decision variables. However, they did not present mechanisms to reduce the dimensionality 
of the problem; in addi- tion, many of these studies do not carry out a multi-provider 
approach, which may influence choice of services. Studies by Li et al. [8], Yao et al. [19], 
Malekimajd et al. [20], Souidi et al. [21], Menzel et al. [12], and Ziafat and Babamir [22] have 
considered the datacenter location as a decision variable, although they analyzed it in 
relation to the performance of the network. Mitropoulou et al. [15] have analyzed it in 
relation to cost, presenting regression models with low significance. 
Datacenter location is one of the factors that most affects the price of instances. In addition, 
the lack of transparency regarding the variables which affect price dif- ferences of instances 
from different datacenters, plus the wide variety of geographic locations distributed around 
the world, turn the decision-making process difficult. 
As a result, a user who wants to change datacenter for some reason without increasing the 
cost (for example, to improve latency) may be forced to select another instance with fewer 
computational resources in order to maintain a financial bal- ance. In such cases, the ideal 
scenario would be to select an instance that does not have significant price variations in 
different datacenter locations. 
Some important issues may arise while selecting a VM instance. When pri- oritizing cost, 
users tend to select lower-priced instances, which may compro- mise the performance of 
the application to be migrated, since the instance may not have enough computational 
resources to guarantee good performance of the application. When prioritizing 
computational resources, users tend to select instances with large capacity in terms of 
resources such as the CPU, memory, and storage. However, if the application does not need 
all the capacity available, the VM tends to become idle, making the migration process 
expensive. In both cases, in order to make the best decision and optimize the resources 
involved in the decision-making process, it is important to be aware of the requirements of 
the application to be migrated, in order for the cost-benefit ratio to be opti- mized. 
Therefore, users must have a methodology that facilitates choice of a VM instance by 



reducing the number of available instances and which allows selec- tion based on their 
preferences. 
The lack of tool support to automate migration tasks is highlighted by Jam- shidi et al. [23], 
whose work consists in the systematic analysis of studies about the migration of legacy 
applications from local infrastructures to the Cloud. In addition, the authors identify a need 
for both architectural adaptation and self-adaptive Cloud- enabled systems. 
In this sense, how can users be assisted during the decision-making process when choosing 
a provider and a VM instance when they are migrating their applications to an IaaS in the 
Cloud? Are the computational resources of the VM sufficient for the execution of such 
applications, considering the lowest price? Furthermore, how can the number of instances 
be reduced so that users have a smaller set of VM instances to compare, thereby reducing 
the resources involved in the decision-making process? 
In order to assist with this process, we present the D-AHP, a methodology to help the 
decision-making of a VM instance be more suitable for migration of applica- tions, using the 
Pareto Dominance concept and the multicriteria approach of the Analytic Hierarchy Process 
(AHP). For this, we define decision criteria as the price and amount of computational 
resources that comprise the VM instance. In addition, as a differential, we define different 
datacenter locations as sub-criteria due to the large influence of this variable on the price 
criterion. 
In summary, we can cite the following contributions: 
– To propose an easy-to-understand decision-making methodology, allowing an analysis 
based on the importance level of the decision criteria for the selection of VM instances, 
assuming as a premise that the prioritization of one criterion in relation to others tends to 
accommodate the needs of users better; 
– To analyze the influence of datacenter location on the price of VM instances imposed by 
providers, proving its importance in decision-making processes; 
– To reduce the dimensionality of the VM instances selection problem, by reduc- ing the 
number of comparable instances, thus providing greater agility to the decision-making 
process. 
The remainder of this paper is organized as follows: Sect. 2 highlights related studies; in 
Sect. 3, the problem modeling is done; Sect. 4 presents details of the D-AHP methodology; 
Sect. 5 presents different case studies for the validation of the proposed methodology; Sect. 
6 presents the conclusions. 
 
 
2 Related work 
A great number of researchers have focused their efforts on solving problems that involve 
IaaS selection to assist in the migration of applications to the Cloud by analyzing 
performance-related variables such as CPU, memory, storage, and cost, from the point of 
view of both the provider and user [24]. For this, they use dif- ferent approaches; among 
them, the use of heuristics [25] and the use of classifi- cation and ordering methods. 
In this section, the related and described studies were divided into two groups, both in the 
IaaS context. In the first one, we present studies that cover the selec- tion of services and 
modeling of prices; in the second group, we present stud- ies that use optimization 
techniques for the selection of services. Based on the related works shown in Tables 1 and 
2, we detail only of those that addresses the datacenter location in its proposals. 



Generally, studies that deal with IaaS selection processes in the Cloud admit, as the main 
hypothesis, the reduction of costs, directing more attention to the analysis of the policies 
adopted by the providers to define the prices of the VM instances. Thus, researchers seek to 
detect the variables that most influence prices, among which are the computational 
resources and the datacenter location. 
In Table 1, we present a list of related studies and the variables most com- monly used by 
researchers within the context of the selection of services and price modeling. 
For Al-Roomi et al. [46] and Mazrekaj et al. [57], despite the attempt to make the pricing 
policy practiced by providers more transparent through the search for an exact formula, the 
definition of these prices is made considering several fac- tors, including commercial ones, 
which makes this task more complex. 
 

 
 

 
 
Thus, in the case of a problem composed of several variables that involve the selection of 
IaaS in the Cloud, optimization methods are presented as a good alter- native to assist in the 
service selection process. 



Due to the wide applicability of optimization methods in problems of this nature, Alabool et 
al. [65] carried out a systematic review of studies that propose the use of Multicriteria 
Decision-Making (MCDM), in order to develop Cloud Service Evalua- tion Methods (CSEMs). 
The authors employed the Evaluation Theory to detect defi- ciencies in each proposal and 
created an information base so that researchers can better develop their CSEMs. 
Hosseinzadeh et al. [66] presented an overview on a set of articles suggesting the use of 
MCDM methods to develop schemes for services selection in the Cloud. In order to evaluate 
the proposed method, the authors identified the optimization method, the Quality-of-
Service (QoS) criteria, and the set of data and environments utilized. 
In Table 2, we present a list of related studies and the optimization method used by each 
one. It can be noticed that, in multiobjective optimization, the most used method is the 
Genetic Algorithm, while in multicriteria optimization the most used method is the AHP and 
its variants. 
In relation to the study that addresses the datacenter location in its proposals, Mitropoulou 
et al. [15] propose the construction of a price index based on a hedonic method of pricing. 
By using regression models, the authors analyzed a set of factors that affect the final price 
of VM instances, among them the datacenter location. The authors collected data from 
providers on a specific platform and analyzed in which regions they offer services, grouping 
them by continent. However, the models pre- sented low significance. 
Menzel and Ranjan [10] and Menzel et al. [12] presented CloudGenius, a frame- work based 
on the principles of AHP and the Genetic Algorithm to assist in the migration of Web 
applications. CloudGenius addresses the decision-making process based on three main 
goals: lower price, better latency, and better QoS. However, the authors evaluate the 
effects of datacenter location only on network performance, regardless of costs. 
Souidi et al. [21] used as a hypothesis of the selection problem the option of data- center 
location based on the location of the user, aiming at a better performance of the network. A 
similar approach is adopted by Li et al. [8], who assumed that the lower the distance 
between the datacenter location and the location of the user, the lower the latency of the 
network. Network latency in geographically distributed datacenters is also analyzed by Yao 
et al. [19] and Malekimajd et al. [20]. However, in none of these studies, the influence of the 
datacenter location on the cost of ser- vices in the Cloud is verified. 
Ziafat and Babamir [22, 43] used different multiobjective optimization algorithms for the 
selection of datacenters considering qualitative aspects such as the distance between 
datacenter and user, indices of reliability and availability, response time, and lower cost. 
However, when considering a large number of conflicting objectives, the selection of a 
datacenter that satisfies all the objectives, despite being considered optimal by the 
optimization algorithm, tends not to satisfy user needs effectively, since it is not possible to 
prioritize an objective in relation to another. 
In relation to the datacenter location, Marks and Lozano [103] highlight some important 
aspects to be considered, namely cost, since the same instance which is hosted in 
datacenters from different locations may present differences in its final price; data 
transmission, once possible delays may occur (due to the distance between the datacenter 
and the user), therefore compromising a quality service; and confidentiality of information, 
as some countries have specific laws regarding data hosting policy within its boundaries. 
In Table 3, we summarize a comparison between our proposed approach and other state-of-
the-art approaches that analyze datacenter location. 



Given this scenario, our proposal differs from those presented because, in addi- tion to 
analyzing all the resources that compose the instances, simultaneously, it analyzes the 
datacenter location in relation to the cost aspect. In a complementary way, when comparing 
our proposal with those that analyze the influence of the data- center location on the cost, 
the difference is that it allows the user to prioritize one objective over the others, making it 
adaptable for the user to define their preferences based on the requirements of their 
applications. In this way, we are not aware of any similar study in terms of adopted 
methodology, decision-making criteria, datacenter location analysis in the price of VMs, and 
combination of the optimization tech- niques used related to the selection of IaaS in the 
Cloud. 
 
 
3 Problem modeling 
When decision-makers (DMs) planning, for strategic reasons, the migration of applications 
from local infrastructures to an IaaS in the Cloud (for example, due to a cost reduction, 
market trends or a large volume of data), they should initially know whether it is possible or 
not. In addition, they need to decide whether to total or par- tial migration, which implies 
re-writing all the application or parts of it. 
 

 
 
Regardless of the type of migration, DMs need to select an IaaS provider from a set 
of providers P = {p1, p2,…, pt } capable of offering a better QoS at a low cost. These 
providers will present an extensive set of instances I = {i1, i2,…, in} which are composed 
of various computational resources Rn , such that: 
 

CT = CR + CL + COS      (2) 
 

The same instance hosted in different datacenter locations can have significantly 
different prices. For example, data obtained in July 2018 showed that Amazon’s 
instance r3.2xlarge (8 vCPU, 61 GB of memory, and 160 GB of SSD storage), 
hosted in Brazil, had been priced at US$ 1.3990/hour. The same instance, hosted 



in the USA, had been priced at US$ 0.6650/hour. In comparison, the instance 
r3.4xlarge (16 vCPU, 122 GB of memory, and 320 GB of SSD storage) had been 
priced at US$ 1.3300/hour, i.e., double the resources for half the price [104]. 
This price difference cannot be justified just by changing the datacenter location. 
Additional factors contribute to such difference, some of them related to the VM 
configurations, as vCPU cores, I/O rates, and older hardware. However, this information 
is not clear enough and many times difficult to be accessed by users with low technical 
knowledge. Thus, it is common that the first thing the user seeks is the number of 
computational resources and the price of the VM - both easy and quick information to 
access. 
Therefore, services are generally selected which offer greater amounts of computational 
resources at the lowest price, according to the requirements of the applications in 
question, and different priorities may be assigned to the decision criteria. Thus, in this 
case, we assume that the best option is to choose the provider pT ∈ P and the instance 
in ∈ I from which one can obtain the best cost-benefit relation, characterized by maximizing 
instance resources Rn and minimizing the final cost CT, such that: 
 

 
 
 

4 D-AHP methodology 
In this section, we present the D-AHP, a decision-making methodology to support 
processes for migrating applications to computational infrastructures in Cloud 
environments. 
We propose use of the D-AHP methodology to solve the following problem: 
Select a VM instance in ∈ I associated with an IaaS provider pt ∈ P , in such a 
way as to obtain the maximum amount of computational resources Rn at the lowest 
price CT, based on CPU, memory, and storage amounts, and the prices of the 
instances in different datacenter locations L. 
To do this, the D-AHP analyzes a set of variables arranged in two distinct sets: 
the set of numerical variables  and the set of non-numeric variables 

 , as shown in Tables 4 and 5. 
The D-AHP basically consists of four main steps included in three major phases, 
as shown in Fig. 1. 
The first step is to pre-select trusted providers that have a good range of services, 
comply with Service Level Agreement (SLA) terms and are able to quickly adapt to 
the characteristic dynamics of the Cloud environment. 
 
 
 
 
 
 
 
 
 
 



   Table 4 Set of numerical variables V 

 
 
                                                                _ 
Table 5 Set of non-numerical variables V 

 
 
 

 
Fig. 1 Major phases of D-AHP 
 
The second step is to apply Pareto Dominance [105] to a set of computational 
resources and its price in order to reduce the number of instances. As a result, only 
the non-dominated instances are selected for the next step. 
In the third step, the non-dominated instances are analyzed in relation to their 
availability regarding datacenter locations and the computational requirements of 
the application to be migrated. The instances resulting from this new filtering give 
rise to the set of selectable instances, arranged at the last level of the hierarchical 
structure present in the final step of the D-AHP. 
The fourth and final step of the D-AHP is to use the AHP method [106] to obtain 
a final classification of the selectable instances. In this process, they are compared to 
one another from the perspective of a set of decision criteria and sub-criteria which, 
as in the second step, are related to the amount of computational resources and price. 
The D-AHP is adaptable to any OS or storage system. In addition, it is possible to 
use it by considering a set of free-choice datacenter locations, or even only among 
availability zones within the same region. 
Moreover, the D-AHP considers that the application workload to be migrated 



from local infrastructures is constant. If we consider a dynamic application workload, 
the QoS values can be significantly changed, and problems of over-provisioning 
or under-provisioning of computational resources can be detected [107]. 
In the following subsections, we detail the steps in the D-AHP and specify the 
processes performed internally in each step. Also, we represent these steps and processes 
by a flowchart, as shown in Fig. 2. 
 
 
4.1 Step 1: selection of IaaS providers 
In this first step, we seek to select a subset of providers   so 
that the next steps in the D-AHP can be constructed. 
In the D-AHP proposal, users define the set of IaaS providers using inclusion or 
exclusion criteria, according to their preferences [108]. In this study, providers are 
selected using two approaches: the first is by definition of a set of services offered to 
the DMs when migrating their applications to the Cloud; the second is reference to 
Gartner’s Magic Quadrant for updated IaaS providers [109]. 
 

 
 
Fig. 2 Decision-making process of D-AHP 
 
The services adopted as criteria for choosing the set of selected providers P+ to be 
analyzed (15 providers) were as follows: Any Location (by continent), Hourly Pay-As- 
You-Go, Auto-Scaling, No Limit Transfer, Support 24x7, Load Balancing, Firewall, 
Operating System, GPU Instances, and SSD Storage [110]. 
The annual Magic Quadrant developed by Gartner uses aspects such as Ability to 
Execute and Completeness of Vision to classify IaaS providers for a given period of 
market observation. Among the ranking groups, the Leader providers are technologically 
more advanced. They are points of reference within the industry and they dictate 
the rules within the segment by having a better view of the market and the ability to 
carry forward the results of their research. 
Thus, we aim to verify, from the providers that are members of the Leaders’ quadrant, 
which ones offer the complete set of defined services. Joint analysis of both factors 
will identify providers belonging to the set of selected providers P+ and the set of 
unselected providers P−. 
 



 
4.2 Step 2: applying pareto dominance 
According to the Pareto Dominance, if X∗ is the set of feasible solutions to a minimization 
problem and if x, x∗ ∈ X∗ , then solution x dominates x∗ if, and only if, f(x) is 
better than f (x∗) in at least one objective, such that fi(x) < fi(x∗) , and it is not worse in 
any other, such that fj(x) ≤ fj(x∗) , for i, j = 1, 2,…, k and i ≠ j , where f is the objective 
function. If both have the same level of dominance, then f (x) ≰ f (x∗) and f (x∗) ≰ f (x) , 
and x is indifferent to x∗ [105]. 
Thus, for a solution to be non-dominated, there must be no other solution within the 
search space better than it, whenever all objectives are simultaneously considered. 
When applying Pareto Dominance in a set, we look for the best solutions belonging 
to it, with the best performance in relation to multiple objectives, which can be 
maximization or minimization. 
In the D-AHP proposal, Pareto Dominance is applied in order to reduce the number 
of instances provided by the providers of set P+ . As a direct consequence, the number 
of pairwise comparisons is significantly reduced, which is the basis of the AHP method 
(applied in the last step of the D-AHP). 
In the D-AHP, the dominance relationship is applied initially intra-provider, that is, 
in instances of the same provider. In our analysis, we only used On-demand instances 
in the Public Cloud model. 
From Eq. 1, it is known that Rn = (QMEM, QCPU , QSTO). Therefore, the maximization 
of Rn is conditioned to the maximization of its three components. Thus, the dominance 
relationship is applied considering four objectives and no prioritization among them, 
according to Eqs. 5–8. 
 

 
 

 
 
The dominance relationship is applied over the set of instances as follows: for example, 
according to the data obtained in July 2018, the provider Azure was offering 
instance H8 at a price of US$ 0.796/hour; the same provider was offering instance 
L8 at a price of US$ 0.624/hour [111]. According to Table 6, pairwise comparison 
of H8 and L8 showed that the amount of computational resources of L8 were bigger 
than (Memory and Storage) or equal to (vCPU) those of H8. Besides this, L8 had 
been priced lower than H8. Therefore, L8 dominates H8; i.e., L8 is non-dominated, 
and H8 is dominated. 
After this process is performed for all providers of set P+ selected in Step 1, the 
non-dominated and dominated instances of each are stored in the non-dominated 
and dominated instances sets, denoted by I+ and I− , respectively. Cases where there 



are indifferent instances, both are also added to set I+. An instance, when included 
in the set I− , is automatically eliminated from the next steps of the process, as it has 
already been dominated by some other instance in relation to all objectives. 
A new dominance relationship is applied in an inter-provider way over the 
instances of set I+ , which is composed of non-dominated instances from all providers 
of set P+ . Dominated instances are stored in set I− , together with the dominated 
ones resulting from the first dominance relationship, while the non-dominated 
ones are stored in the final set of non-dominated instances I∗ , which must then pass 
through a new filtering process in the third step of the D-AHP. Until this step, the 
computational demand of the application has not been analyzed. 
 
 
4.3 Step 3: instance filtering 
In this step, two constraints are established, applicable to the set of non-dominated 
instances I∗. 
The first constraint refers to the availability locations of the instances, which is 
necessary because of the multi-provider approach of the D-AHP. We assume that 
instances can only have their prices compared if they are hosted in datacenters 
whose locations L are common among the providers of set P+ . Thus, the selected 
and unselected locations are stored in sets L+ and L− , respectively. 
 
Table 6 Pairwise comparison between instances H8 and L8 [111] 

 
 
When this constraint is applied, instances that are not available in all common 
datacenter locations among providers of set P+ are omitted from selection for the 
next step; when this constraint is not applied, DMs can be prevented from expanding 
their searches for more attractive prices in other regions, invalidating one of the 
objectives of the D-AHP, which is the search for the lowest price. 
However, the adaptability of the D-AHP in relation to the number of datacenter 
locations should be noted. The D-AHP allows DMs to increase or decrease the 
number of datacenter locations when they want to analyze the prices of instances. 
In cases where the DM already has a defined provider, it is possible to apply the 
D-AHP only to this provider or even just to availability zones within the same 
region. 
The second constraint refers to the demand for computational resources consumed 
by the workload of the application to be migrated. Instances whose computational 
resources are lower than the demand of the application are not selected 
because it is assumed that there will not be enough resources to execute the application 
if one of these instances is selected during the process. 
Application of both constraints creates set I‡ , which is composed of the selectable 
instances to be arranged at the last level of the hierarchical structure of the final step 



of the D-AHP, whose number of instances tends to be smaller than the number of 
instances of set I∗ . This provides a smaller number of pairwise comparisons, and, 
as a result, there is a lower possibility of inconsistencies occurring during the DMs’ 
judgment. 
 
 
4.4 Step 4: elements of the AHP method 
The AHP method allows to structure a problem in the form of a hierarchy of criteria, 
which has at least three levels: at the top, the main objective O of the problem; in the 
middle, the set of decision criteria C = {Cj | j = 1, 2,…,m} that define the alternatives; 
and at the bottom, the set of competing alternatives A = {Ai | i = 1, 2,…, n}. 
The basis of the AHP consists of a pairwise comparison between the elements of 
each hierarchical level. For such, the Saaty scale is used, whose values vary from 
1 to 9 to represent the importance level between two criteria, in which 1 means the 
equal importance level; 3, 5, 7, and 9 mean the moderate, strong, very strong, and 
extreme importance level of one criterion over another, respectively; and 1/3, 1/5, 
1/7, and 1/9 represent reciprocal importance levels [112]. 
The elements resulting from the pairwise comparison are arranged in a comparison 
matrix M, whose elements represent the dominance level between two criteria. 
Based on the elements of M, the weight vector of the criteria  j can be obtained 
through the geometric mean method [106]. 
To obtain the final classification of the set of alternatives, an aggregation process 
is carried out, that is, the global valuation of Ai in relation to the main objective following 
the weighted sum model. 
Let V(Ai) be the global value of Ai in relation to O, wj the preference level (weight) 
of the jth criterion in relation to O, and D the decision matrix whose elements xij 
represent the preference level of Ai in relation to the criterion Cj . Therefore, V(Ai) is 
calculated by Eq. 9. 
 

 
where wj

T is the transpose of wj. 
The alternatives are classified according to their respective global values. The best 
alternative Abest is the one with the highest global value, according to Eq. 10. 
 

 
 
The verification of possible inconsistencies of judgments from contradictory comparisons 
can be calculated by the Consistency Index (CI) and the Consistency Ratio 
(CR), according to Eqs. 11 and 12. If CI, CR < 0.1 , then there is consistency in the 
judgments; if not consistent, judgments must be redone. 



 
 
where λmax is largest eigenvalue of the matrix M, m is the number of criteria and RI 
is the Random Consistency Index, whose values are shown in Table 7. 
The hierarchy proposed in the D-AHP methodology is represented in Fig. 3. It is 
composed of a main objective, two criteria, sub-criteria, and a set of n instances as 
decision alternatives whose number may vary depending on the result of the filtering in 
Steps 2 and 3. 
Below, we describe each of the elements of the hierarchy of the D-AHP shown in 
Fig. 3. These include the following: 
 
– Objective: Select VM Instance - The aim is to select an instance with enough 
computational resources for execution of the application to be migrated, at the lowest 
price, optimizing the cost-benefit ratio; 
– Criterion 1: Computational Resources - This refers to the amounts of computational 
resources of VM instances, specifically CPU, memory, and storage; 
– Criterion 2: Price - This refers to the price of instances in common countries 
where providers have datacenters; 
– Sub-criterion 1: CPU - This compares instances in relation to the amount of CPU; 
– Sub-criterion 2: Memory - This compares instances in relation to the amount of 
memory; 
 
Table 7 Random consistency index [106] 

 
 
 



 
 
Fig. 3 Hierarchy of D-AHP 
 
– Sub-criterion 3: Storage - This compares instances in relation to the amount of 
storage; 
– Sub-criteria 4 - : Datacenter Location - This compares instances in relation to 
prices in the countries in which providers have hosted datacenters; 
– Alternatives: Instances - This refers to the set of selectable instances I‡ , compared 
to one another and valued in relation to each decision criterion and subcriterion. 
 
At the end of this step, the selectable instances are classified, from best to worst, 
according to their respective performance in relation to each criterion and sub-criterion 
of the hierarchy, considering the weight defined by the DM for each of them in 
the decision-making process. 
In relation to the sub-criteria of the Price criterion, in countries where a given 
provider has more than one available datacenter, we chose the region within the 
same country with the minimum value of CT , which is not necessarily the same for 
all instances. 
 
 
5 Application of the methodology 
 
For application of the D-AHP, we defined new application profiles based on actual 
Cloud usage data contained in the dataset called Google Cluster Trace [113]. 
This contains, among other information, data relating to computational resources consumed 
by applications distributed in the form of jobs and tasks. To match the 
resource metrics of instances, we used GB as a measure of memory and storage 
resources in the dataset, and CPU resources were measured by cores. 
The information in the dataset refers to actual data on the consumption of computational 
resources by applications running in Google datacenters in the Cloud. 
Nonetheless, the data are considered sensitive and for this reason they are obfuscated 
through a rescaling value before becoming public; the reasons range from economic 



aspects to data security [114]. 
According to Reiss et al. [115], not knowing such factor, by which data were 
rescaled, makes researchers propose different ways of treating data. In face of this 
uncertainty, and since a standard is adopted, data can be manipulated in different 
ways depending on the purpose of use. 
 
 
5.1 Workload characterization 
Zhang et al. [116], in seeking workload models to accurately reproduce the performance 
characteristics of real workloads, found that simply capturing the average 
usage of each task would be sufficient to generate synthetic workload with high 
accuracy, when it comes to the resource usage and task waiting time. Thus, the 
authors assume that it is possible to realistically estimate the total waiting time and 
the use of resources for real or imaginary workloads. They came to these conclusions 
for two reasons: the low variability in the use of resources in the workload 
by tasks, and the characteristics from evaluation metrics (the use of resources, for 
instance) under different workload conditions. 
In order to generate a realistic and compatible workload with the amounts of 
computational resources offered by the instances, we propose a rescaling value to 
be applied to the values related to the total of resources consumed by applications in 
the dataset, with the aim of turning such values comparable to the resources offered 
by VM instances. For doing so, we used the second instance with more computational 
resources among the instances of set I∗ as the maximum value for the rescaling 
so that there are at least two in each decision-making process. In this way, MCPU , 
MMEM , and MSTO refer to the values set for rescaling the CPU, memory, and storage 
amounts, respectively. 
This then gives us a set of jobs T = {T1, T2,…, TY } , composed of a set of individual 
tasks TK ={tk1,tk2,… …,tkδ }. RT =(DCT , DMT , DST ) and Rtk =(DCtk , DMtk , DStk ) are ordered 
triples whose components are the CPU, memory, and storage 
resources consumed by a job and by a task, respectively. 
The values of the components of Rtk can be obtained from the dataset. To obtain 
the overall values of the components of RT , we assume that it is calculated by the 
sum of the values of the resources consumed by the tasks that make up the ψth job. 
According to Reiss et al. [113], applications that need to perform different types 
of tasks with different resource requirements usually run as multiple jobs. Therefore, 
let RA = (DCA,DMA, DSA) denote the amount of computational resources consumed 
by the workload of the application Ā. The components of RA can be obtained from 
the dataset through the sum of resource consumption of the jobs, which, in turn, 
is obtained through the sum of the consumption of the tasks that compose them. 
Thus, an estimate of computational resources R’A = (DC’A , DM’A , DS’A) consumed by the 
workload of Ā can be calculated by multiplying the resource consumption RA = (DCA,DMA, DSA) 
by its respective rescaling values MCPU , MMEM , and MSTO , such that (DCA,DMA, DSA) ≤ 1. 
Therefore, considering the task-job-application relation, we estimate that the 
computational resource consumption of an application workload from the dataset 
data is calculated by Eqs. 13–15, as follows: 



 
 
5.2 Defining application profiles 
Based on dataset values, we propose a set of usage levels based on the interval 
before rescaling (between 0 and 1). For this, we assume that the usage level of each 
computational resource (CPU, memory, and storage) by an application Ā can be 
Low Usage, Medium Usage or High Usage, as shown in Table 8. 
Using the values of RA , we can classify usage levels for the workload of Ā. By 
combining different usage levels for each of the three computational resources, we 
can generate a workload profile for Ā, which can be categorized in different ways, as 
shown in Table 9. 
 
5.3 Case studies 
Next, we present three case studies to better understand the proposal to estimate the 
computational resources consumed by applications from the dataset. From these 
input data, we apply the D-AHP methodology as a way of proving its effectiveness 
 
Table 8 Categorization of the usage level of computational resources by applications 

 
 

Table 9 Categorization of the application workload profile 



 
 
in solving problems that involve selection of VM instances for the migration of 
applications to the Cloud. 
In Case Study 1, we verified the effectiveness of the D-AHP over a reduced set 
of selectable instances, resulting from an application profile equal to or greater than 
that classified as Medium. In Case Study 2, we applied the D-AHP to a larger set of 
selectable instances, obtained through an application profile lower than that classified 
as Medium. In Case Study 3, we verified the influence of the datacenter location 
from the results obtained in Case Studies 1 and 2. 
 
5.3.1 Case Study 1 
In the first case study, we intended to migrate an application Ā comprising five jobs 
T = {T1, T2, T3, T4, T5} , each composed of a different number of tasks. 
In Table 10, jobs are identified by their JobID. Each of them is composed of a 
certain number of tasks, according to the dataset. The consumption of resources for 
each job was obtained through the sum of the consumption of their respective tasks. 
Table 10 shows that the application has resource usage levels classified as 
Medium Usage for the CPU, High Usage for Memory, and Low Usage for Storage 
(see Table 8), according to the values of DCA , DMA , and DSA , respectively. In this 
way, the workload profile of Ā is classified as Medium (see Table 9). 
Using these input data, one can then apply the D-AHP. 
Application of Step 1: Step 1 consists of selecting a subset of IaaS providers P+ 
belonging to set P by combining the service set offer and Gartner’s Magic Quadrant, 
as described in Subsection 4.1. 
 
Table 10 Consumption of computational resources for the jobs that comprise Ā 
 

 
 
Currently, the Leaders’ quadrant of Gartner’s Magic Quadrant for IaaS providers 
in 2019 is composed of Amazon (A) [104], Azure (Z) [111], and Google (G) 



[117]. In a complementary way, by analyzing the set of established services, it is 
evident that such providers are the only ones that offer the complete set of services. 
Thus, the set of selected providers P+ is composed of three providers, such 
that P+ = {A, Z,G}. 
Thus, we can define the set of VM instances of the elements of P+ , such that 
IA = {ia,1, ia,2,…, ia,q} , IZ = {iz,1, iz,2,…, iz,r} , and IG = {ig,1, ig,2,…, ig,s} are the 
sets of all VM instances offered by providers A, Z, and G, respectively. 
Among the datacenter location options for providers of set P+ , provider 
A has datacenters spread across the set of locations LA = {la,1, la,2,…, la,α} , 
while providers Z and G have set of locations LZ = {lz,1 , lz,2,…, lz,β} and 
LG = {lg,1, lg,2,…, lg,γ} , respectively. 
Application of Step 2: In Step 2, Pareto Dominance is applied over the set of 
instances IA , IZ , and IG for the selected providers. Thus, the intra-provider analysis 
facilitates comparison of the instances ia,q ∈ IA , iz,r ∈ IZ , and ig,s ∈ IG in a 
pairwise way, within their respective sets, in relation to the objectives defined in 
Eqs. 5–8. 
The set of non-dominated instances I+ resulting from the first phase of dominance 
application is composed of instances i+a,q , i+z,r , and i+g,s , which refer to providers 
A, Z, and G, respectively. The number of elements of set I+ can be changed 
according to the number of providers selected in Step 1. 
After executing the first dominance relationship for each provider’s instances, a 
second dominance relationship is applied to the instances of set I+ . As result, the 
non-dominated instances selected for the next step of the D-AHP are obtained, 
which make up the final set of non-dominated instances I∗. 
Application of Step 3: In Step 3, the set of datacenter locations is conditioned 
to the providers selected in Step 1, in order that only instances hosted in all common 
locations between them are selected. 
The elements of sets LA , LZ , and LG are not common to all providers of set 
P+ ; i.e., one provider may have a datacenter in a location where the others do not 
have a datacenter. However, when we conducted a country-by-country approach, 
common countries were identified through the intersection of sets LA , LZ , and LG . 
Thus, when only considering the elements resulting from this operation, the set of 
selected locations L+ is composed of the following countries: the USA, Canada, 
Brazil, England and Ireland, Japan, Australia, Germany, and India. 
Regarding definition of the workload application, the values used to rescale each 
computational resource were as follows: MCPU = 96 vCPU, MMEM = 624 GB, and 
MSTO = 6 × 375 = 2250 GB. These values correspond to the resources of Google’s 
instance n1-highmem-96, which has the second largest amount of resources among 
all non-dominated instances in set I∗. 
To estimate the workload of Ā , we multiply the sum of the resource consumption 
of the jobs obtained in Table 10 by the respective rescaling values. Thus,  
DC’A = 0.6151835 × 96 , DM’A = 0.76274 × 624 , and DS’A = 0.001858598 × 2250 . 
Thus, R’A = (59.06;475.95;4.18). 
After calculating R’A , the set of non-dominated instances I∗ is analyzed in order to 
identify the set of selectable instances I‡ , which must have enough resources to support 
this workload. Based on the R’A values, the instances in Table 11 were selected, 
along with their corresponding resources. 



Application of Step 4: In Step 4 of the D-AHP, we try to identify the instance that 
has the best performance in relation to a set of criteria and sub-criteria defined in the 
hierarchy shown in Fig. 3. For this, weights must be assigned to decision criteria and 
sub-criteria. 
In order to define the weights of the criteria, group decision-making was used. 
Multiple DMs can contribute a variety of experience, knowledge, and perspectives, 
and a group can deal with the complexity of the problem better than a single DM. 
A questionnaire was presented to a group of professionals (Ω) in the areas of Computing 
and Software Engineering, whose judgments were grouped using Aggregating 
Individual Priorities (AIP). In total, 11 DMs obtained consistency in their 
judgments based on the Consistency Index (CI) and Consistency Ratio (CR) values 
and, because of this, had their preferences considered. Therefore, Ω={DM1 , DM2,… 
,DM11}. 
Tables 19 and 20 in Appendix A present the judgments of the 11 DMs in relation 
to the criteria and sub-criteria of the Computational Resources criterion. These 
judgments were made according to the Saaty scale. 
Note that there was no unanimity in the judgments of all DMs, which may lead, 
at the end of the process, to selection of different instances. For datacenter locations, 
equal weights were defined without the influence of DMs to avoid prioritizing 
instances with a great deal of discrepancy between locations, or those priced more 
highly than others. Thus, each of the eight locations has a priority equal to 0.125 (or 
12.5%). 
 
Table 11 Set of selectable instances with resources equal to or greater than the demand of 
the application workload 
 

 
 
In relation to decision alternatives, the selectable instances of set I‡ are compared 
to one another according to the actual values of the resources that they have in the 
form of direct attributes for the sub-criteria linked to the Computational Resources 
criterion (or benefit criterion); that is, the bigger the better. For sub-criteria linked 
to the Price criterion, instances are compared with one another again according to 
the actual prices applicable in each of the countries represented by the sub-criteria, 
although in the form of indirect attributes (or cost criterion); that is, the smaller the 
better. 
From the data shown in Table 11, the selectable instances are evaluated considering 
the DMs’ preferences in relation to the decision criteria and sub-criteria, as 
shown in Tables 19 and 20 in Appendix A, in addition to the datacenter location 
weights (without DMs’ preferences). 
In the phase prior to applying the weights of the criteria on the selectable 
instances, the valuation of each one of them is directly related to the amounts of 



each resource they have. For example, the instance x1.32xlarge is the one that has 
the most CPU, memory, and storage, and is therefore ranked the best. Instance 
i3.16xlarge, on the other hand, has little storage, which makes its value very low 
when compared to the others. In relation to the price, because it is an indirect criterion, 
the instances with the highest price have a lower valuation. 
In Table 21 in Appendix A, instance values are shown in relation to the decision 
criteria, which already account for the values obtained in relation to their respective 
sub-criteria. In this step, distinct values are noted for different DMs, as per their 
individual judgments for Computational Resources criterion. With the Price criterion, 
due to definition of equal weights for all locations, the values obtained were the 
same for all DMs. 
The final classification of the instances, considering the individual judgments 
of the DMs and after aggregation of their judgments by the AIP, is presented in 
Table 12. In this case, it is evident that differences in prioritization of criteria and 
sub-criteria by different DMs result in different classifications of the instances. 
For DMs who prioritized the Price criterion over Computational Resources (as in 
the case of DM3 ), the instance with the highest price was the one ranked last, with 
a value well below the others, considering the maximum importance level (9 on the 
Saaty scale) attributed by this DM. As a consequence, the lowest-priced instance 
had the highest score. For the other DMs who did not prioritize any of the criteria, 
the score for the instances remained close. Such differences may be justified by 
the different weights assigned to the sub-criteria of the Computational Resources 
criterion. 
 
Table 12 Final classification of instances for each DM 

 
 
Thus, the Google’s instance n1-highmem-96 obtained the highest global value 
among the set of selectable instances I‡ . When analyzing the data in Table 12, it was 
noted that this instance was only classified as the best by one DM ( DM9 ), and it was 
given the second highest classification by all the others. Furthermore, it can be seen 
that DM3 judgments significantly influenced the decision of the group because of the 
larger differences between the evaluations of the instances for this DM in particular. 
Although some DMs have equal judgments at all levels of the D-AHP hierarchy 
(in this case, DM1 , DM2 , DM6 , DM7 , DM10 , and DM11) , the aggregation process 
using the geometric mean method (recommended by Saaty [106]) considers each 
DM as a member of the group, totaling 11 individual judgments. 
 
5.3.2 Case study 2 
In this second case study, we intend to migrate a new application Ā composed of 
three jobs T = {T1, T2, T3} , whose resource consumption values are shown in 
Table 13. 



According to Table 13, the application has a resource usage level rated Low 
Usage for CPU, memory, and storage (see Table 8). In this way, the workload profile 
of Ā is classified as Very Low (see Table 9). 
 
Table 13 Consumption of computational resources of the jobs that comprise Ā 

 
 
By applying the rescaling values on DCA , DMA , and DSA , we obtain 
DC’A = 0.1606273 × 96 , DM’A = 0.090343 × 624 , and DS’A = 0.0005655354 × 2250 . 
Thus, R’A = (15.42;56.37;1.27). 
Considering that the applications of Steps 1 and 2 are analogous to Case Study 
1 (described in Subsection 5.3.1), that is, the providers {A, Z,G} ∈ P+ and set of 
non-dominated instances I∗ are the same, we can directly define the set of selectable 
instances I‡ on the basis of the R’A values, as stated in Table 14. 
As in Case Study 1, by using the data shown in Table 14, the instances are evaluated 
considering DMs’ preferences (see Tables 19 and 20 in Appendix A). Again, 
equal weights were defined for all countries for all DMs. 
In Table 22 in Appendix A, instances are valued in relation to the decision criteria 
while already considering the values obtained in relation to their respective subcriteria. 
Regarding the sub-criteria of the Computational Resources criterion, once 
again, the instance x1.32xlarge is the one classified as the best since the amount of 
resources that it possesses is far superior to the majority of other instances. However, 
due to its higher price, this instance has the worst ranking in relation to the Price criterion. 
 
Table 14 Set of selectable instances with resources equal to or greater than the demand of 
the application workload 
 



 
 
As can be seen from the data in Table 15, most instances have similar classifications 
due to similar judgments, except for DM3 , whose judgments prioritize the lowest 
price. 
For DMs who define equal weights of importance for all criteria and sub-criteria 
( DM1 , DM2 , DM6 , DM7 , DM10 , and DM11 ), the final classification is characterized 
by the ratio of the values. This can be verified using the results obtained for the 
instances x1.16xlarge and x1.32xlarge. Because x1.32xlarge has exactly twice as 
many computational resources as x1.16xlarge, in order for x1.16xlarge to be a better 
option, its price must be less than half the price of x1.32xlarge, which was not 
the case in two of the eight countries analyzed. In addition, just as x1.32xlarge has 
practically double the valuation of x1.16xlarge in relation to the Computational 
Resources criterion, it scores half for the Price criterion. 
Regarding the final classification after AIP, Amazon’s instance x1.32xlarge 
obtained the highest global value among the set of selectable instances I‡ . When 
analyzing the values in Table 15 for each DM, we noted that it was ranked the 
best by 10 of a total of 11 DMs (i.e., not by DM3 , who ascribed a higher level of 
importance to the Price criterion in his judgment. Because of this, instance D16 v3 
was ranked second best. 
 
Table 15 Final classification of instances for each DM 



 
 
 
5.3.3 Case study 3 
In this case study, we intend to analyze the influence of the datacenter location in the 
selection of VM instances. For this, the same information contained in the Tables 
used in Case Studies 1 and 2 are used, except for the values referring to the weights 
of the datacenter locations, which will be modified in order to identify possible classification 
changes for the instances when defining countries in which providers have datacenters. 
To do this, of the eight countries analyzed, different importance levels were 
defined for three of them: the USA, Brazil, and Japan. The option for the USA is 
due to the fact that this country has the lowest prices among all the other countries 
analyzed; Brazil was admitted because it is the same country as the DM group and, 
consequently, had better latency [8, 21]; Japan was also chosen because of the time 
zone in relation to Brazil, and applications can always be performed outside peak 
hours, which usually occur during the day. 
The importance levels of these three countries in relation to the rest and to one 
another, following the Saaty scale, are represented in Table 16. 
 
Table 16 Results of pairwise comparison between sub-criteria of the Price criterion for all DMs 



 
 
Table 17 Final classification of instances after AIP 

 
 
From the data shown in Table 23 in Appendix A, in a comparison with Case 
Study 1 (see Table 12), we verified that the valuation of instances n1-highmem-96 
and i3.16xlarge were the ones that underwent the most changes, while the others 
had less notable changes. However, no instance classifications changed for any of 
the DMs. 
Table 17 shows the final classification of the instances after aggregation of the 
DMs’ judgments. For comparison purposes, two new columns were added to identify 
the changes in values and, consequently, in the ranking of the instances, when 
comparing such results with those obtained in Table 12. 
By analyzing Table 17, we concluded that the instance n1-highmem-96 is still 
classified as the best, although with a greater difference of values over the others. 
However, it was noted that prioritization of some datacenter locations in relation to 
others resulted in some changes in the final classification of instances, such as the 
inversion of classification between instances i3.16xlarge and x1.32xlarge. 
From the data shown in Table 24 in Appendix A, differences were also detected 
in relation to the results obtained in Table 15, mainly for instances with have an 
intermediate amount of computational resources, over which the DMs’ judgments 
that did not define equal weights for all elements of the hierarchy in all steps of 
the pairwise comparisons (i.e., DM3 , DM4 , DM5 , DM8 , and DM9 ) had a greater 
influence. 
Table 18 presents the final classification of the instances after aggregation of 
the DMs’ judgments, together with additional columns, to compare the results with 
those obtained in Table 15 (see Case Study 2). Based on the values of both tables, 
we can conclude that, for most instances, despite the final valuation not being the 
same in both simulations, the classification is maintained. 
 
Table 18 Final classification of instances after AIP 



 
 
However, we noticed that, once again, prioritization of some datacenter locations 
in relation to others caused changes in the final classification of the instances, 
which can be characterized by a simple inversion of the classification between two 
instances (as for D15 v2 and D32 v3) or by a more pronounced change (such as E32 
v3), which was classified three positions below its classification in Case Study 2. 
 
 
6 Conclusions 
The dynamic pace with which Cloud Computing has been evolving in recent years, 
providing reliable, affordable, and low-cost computational resources, is driving 
adoption of the IaaS model. However, there are still many uncertainties surrounding 
this new paradigm of distributed computing, making a migration process a 
very complex task. In a market characterized by the presence of multiple providers 
and the variety of VM instances that each one offers, decisions about the best provider/ 
instance set make decision-making difficult. In order to help with this problem, 
we are proposing the D-AHP, a methodology for selecting VM instances in 
the Cloud, based on Pareto Dominance and the AHP multicriteria optimization 
method. For this, the D-AHP uses the amount of computational resources and the 
price of instances in different datacenter locations as decision criteria and subcriteria. 
A set of new application workload profiles based on the Google Cluster 
Trace dataset were defined for the case studies presented here, to validate the 
D-AHP, and these were admitted as migrating to the Cloud. By using the D-AHP, 
we observed that execution of the Pareto Dominance between instances and filter 
steps significantly reduces the dimensionality of the problem, as they eliminate 
instances with less computational resources and have a higher cost if hosted in 



datacenters from different geographic locations, making the number of pairwise 
comparisons reduce considerably. The D-AHP method has proved to be efficient 
because it significantly reduced the number of alternatives to be compared in its 
last phase, considering that the AHP method is not as efficient when many alternatives 
are available in the hierarchy, and because with this type of problem it is 
essential to have the possibility of prioritizing one objective in relation to another 
in order to meet user needs better. This fact can be verified through different classifications 
within a set of selectable instances, which are the result of the individual 
preferences of a set of DMs responsible for the decision process. 
In future research, we will endeavor to solve the problem of manual collection 
of instance details by integrating the D-AHP with existing databases, from which 
it is possible to obtain information about the prices and computational resource 
amounts of VM instances belonging to a wide range of providers and, as a result, 
make the D-AHP an automated tool. In addition, when applying the D-AHP in 
this study, it was found that, for applications with lower computational demands, 
the number of selectable instances increases, which can make it difficult to apply 
the last step of the D-AHP. In order to deal with such situations, we intend, in 
future research, to seek new alternatives to reduce the dimensionality of the problem, 
e.g., by adding new criteria to the hierarchy of the D-AHP so that they can 
be considered in the migration processes of applications with specific demands, 
such as web applications and integration solutions. 
 
 
Appendix A: additional tables referring to the case studies 
See Tables 19, 20, 21, 22, 23, and 24. 
 
Table 19 Results of pairwise comparison between the criteria for each DM 

 
 
Table 20 Results of the pairwise comparison between sub-criteria of the Computational 
Resources criterion for each DM 



 
 
Table 21 Valuation of instances in relation to the decision criteria 

 
 
Table 22 Valuation of instances in relation to the decision criteria 



 
 
Table 23 Final classification of instances for each DM 



 
 
Table 24 Final classification of instances for each DM 
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