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Abstract

In this paper, we discuss how the combination of evolution-
ary techniques and engineering-oriented approaches is an ef-
fective methodology for leveraging the potential of evolu-
tionary robotics (ER) in the synthesis of behavioural control.
We argue that such combination can eliminate the issues that
have prevented ER from scaling to complex real-world tasks,
namely: (i) the bootstrap problem, (ii) deception, (iii) the re-
ality gap effect, and (iv) the prohibitive amount of time nec-
essary to evolve controllers directly in real robotic hardware.
We present recent studies carried out in our research group
involving real-robot and simulation-based experiments. We
provide examples of how the synergistic effects of evolution
and engineering overcome each other’s limitations and signif-
icantly extend their respective capabilities, thereby opening a
new path in the design of robot controllers.

Introduction
Evolutionary computation techniques have been widely
studied as a means to design robot controllers and body mor-
phologies (Floreano and Keller, 2010), a field of research
entitled evolutionary robotics (ER). ER has the potential to
automate the synthesis of control systems. The experimenter
relies on a self-organisation process, in which evaluation and
optimisation of controllers is holistic, thereby avoiding the
need for manual and detailed specification of the desired be-
haviour (Doncieux et al., 2011). The general idea is to op-
timise a population of genomes, each encoding a number of
parameters of the robots’ control system. Optimisation of
genomes is based on Darwin’s theory of evolution, namely
blind variations and survival of the fittest, as embodied in
the neo-Darwinian synthesis. The mapping from genotype
to phenotype can capture different properties of the devel-
opmental process of natural organisms, and the phenotype
can assume various degrees of biological realism (Stanley
and Miikkulainen, 2003). Thus, ER draws inspiration from
biological principles at multiple levels.

After approximately two decades of ER research, con-
trollers have been evolved for robots with varied functional-
ity, from terrestrial robots to flying robots (Floreano et al.,
2005). Although there has been a significant amount of

progress in the field (Doncieux et al., 2011), it is arguably
on a scale that has precluded ER techniques of being widely
adopted. Evolved controllers are in most cases not yet com-
petitive with human-designed solutions (Doncieux et al.,
2011), and have only proven capable of solving relatively
simple tasks such as obstacle avoidance, gait learning, and
distinct searching tasks (Nelson et al., 2009). In effect, re-
searchers have been consistently faced with a number of
issues that must be addressed before ER becomes a viable
approach, including: (i) the bootstrapping issues when solu-
tions to more complex tasks are sought (Nelson et al., 2009),
(ii) deception (Whitley, 1991), (iii) the reality gap (Jakobi,
1997), which occurs when controllers evolved in simulation
become inefficient once transferred to the physical robot,
and (iv) the prohibitively long time necessary to evolve con-
trollers directly on real robots (Matarić and Cliff, 1996).

This paper is concerned with the synthesis of behavioural
control for autonomous robots. We discuss the current limi-
tations of ER, and we present directions for future research.
We argue that it is conceivable to engineer the evolution of
robotic controllers, i.e., to combine evolved solutions and
human knowledge to better address the fundamental prob-
lems in ER. In effect, evolutionary algorithms are also en-
gineered algorithms and, above all, the fitness function is
usually the result of trial-and-error experiments involving a
substantial amount of experimentation and human interven-
tion. The key decision is therefore where to draw the line
between human design and evolution. We argue that the role
of evolution and of human expertise should be defined based
on when the synthesis of controllers takes place, namely of-
fline or online. We present recent research in our lab, and we
show the synergistic effects and potential of this combined
approach through a series of real robot and simulation-based
experiments involving an e-puck robot (Mondada et al.,
2009). By combining engineering-oriented approaches and
evolutionary techniques, we successfully evolve controllers
for three tasks: (i) a double T-maze rescue task, (ii) a two-
room cleaning task, and (iii) a deceptive phototaxis task.
The main conclusion is that the proposed methodology is
a viable new technique for leveraging the potential of ER.
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Background and Related Work
In traditional ER approaches, controllers are synthesised of-
fline, in simulation, to avoid the time-consuming nature of
performing all evaluations on real robotic hardware. When
a suitable controller is found, it is deployed on real robots.
One of the central issues with the simulate-and-transfer ap-
proach is the reality gap (Jakobi, 1997), a frequent phe-
nomenon in ER experiments. Controllers evolved in simula-
tion can become inefficient once transferred onto the physi-
cal robot due to their exploitation of features of the simulated
world that are different or that do not exist in the real world.

In online evolution, on the other hand, the evolutionary
algorithm is executed on the robots themselves, while they
perform their tasks. The main components of the evolution-
ary algorithm (evaluation, selection, and reproduction) are
carried out autonomously by the robots without any external
supervision. If the environmental conditions or task require-
ments change, the robots can modify their behaviour to cope
with the new circumstances. However, the prohibitively long
time required to evolve solutions on real robotic hardware is
still a central impediment to large-scale adoption.

Besides the specific shortcomings of offline evolution and
online evolution, there are two issues transversal to the two
approaches: (i) the bootstrap problem (Gomez and Miikku-
lainen, 1997), and (ii) deception (Whitley, 1991). Bootstrap-
ping issues occur when the task is too demanding to ap-
ply any meaningful selection pressure on a randomly gen-
erated population of candidate solutions. All individuals in
the early stages of evolution may perform equally poorly,
and evolution drifts in an uninteresting region of the search
space. Deception occurs when the fitness function fails to
build a gradient that leads to a global optimum, and in-
stead drives evolution towards local optima. The more com-
plex the task, the more susceptible is evolution to decep-
tion (Lehman and Stanley, 2011). Consequently to all these
issues, ER techniques do not yet scale to tasks with the level
of complexity found outside strictly controlled laboratory
conditions (Nelson et al., 2009). The next sections review
the current approaches introduced in ER for dealing with
the problems discussed above.

Crossing the Reality Gap
Miglino et al. (1996) proposed three complementary ap-
proaches to cross the reality gap: (i) using samples from
the real robots’ sensors to enable more accurate simulations,
(ii) introducing a conservative form of noise in simulated
sensors and actuators to reduce the performance gap be-
tween the simulated and the real world, and (iii) continu-
ing evolution for a small amount of time in real hardware if
a decrease in performance is observed when controllers are
transferred. The sensor sampling and the conservative noise
methods have since become widespread. Continuing evolu-
tion in real hardware has not been frequently used, despite
pioneering work in this direction (Nolfi et al., 1994).

Jakobi (1997) advocated the use of minimal simulations,
in which the experimenter only implements features of the
real world deemed needed for successful evolution of con-
trollers. The remaining features are hidden in an “envelope
of noise” to minimise the effects of simulation-only artifacts.
It is not clear if Jakobi’s approach scales well to complex
tasks, since such tasks: (i) naturally involve more robot-
environment interactions, and therefore more features, and
(ii) require that the experimenter can determine the set of
relevant features and build a task-specific simulation model.

Recently, Koos et al. (2013) introduced the transferabil-
ity approach, in which controllers are evaluated based on
their combined simulation and real-robot performance. To
avoid testing each candidate solution in a real robot, a sur-
rogate model is created and then updated periodically based
on the results of real-robot experiments. The transferability
approach has been shown to work when a solution can be
found in relatively few generations (100 or less), but it can
become unfeasible once the task requires several hundreds
or thousands of generations with long evaluations. Further-
more, the difficulties in automatically evaluating controllers
in real hardware represent an additional challenge.

Overcoming the Bootstrap Problem and Deception
Over the years, different approaches have been proposed
to solve increasingly more complex tasks. In incremental
evolution, the experimenter decomposes a task to bootstrap
evolution and circumvent deception. There are numerous
ways to apply incremental evolution (Mouret and Doncieux,
2008), such as dividing the task into sub-tasks that are solved
sequentially, or making the task progressively more difficult
through environmental complexification (Christensen and
Dorigo, 2006). Although incremental evolution can be seen
as an approach in which engineering and evolution are com-
bined, it is typically performed in an unstructured manner.
The experimenter has to perform a manual switch between
the execution of each component of the evolutionary setup,
such as different sub-tasks, which can significantly affect the
global performance of solutions evolved (Mouret and Don-
cieux, 2008). In addition, if the components of the setup are
highly integrated, incremental evolution can be difficult to
apply successfully (Christensen and Dorigo, 2006).

Lehman and Stanley (2011) introduced novelty search, in
which the idea is to maximise the novelty of behaviours in-
stead of their fitness, i.e., to search directly for novel be-
haviours as a means to circumvent convergence to local
optima. A number of studies outlined that novelty search
is unaffected by deception, less prone to bootstrapping is-
sues, and can evolve simpler solutions than those evolved by
traditional fitness-based optimisation (Lehman and Stanley,
2011). Novelty search is, however, significantly dependent
on the behaviour characterisation (Kistemaker and White-
son, 2011), and can be challenging to apply when such a
metric is not easy to define. That is, although novelty search
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operates independently of fitness, its effectiveness is depen-
dent on a similar form of human knowledge, despite re-
cent studies involving generic characterisations (Gomes and
Christensen, 2013).

Recently, a human-in-the-loop approach for avoiding de-
ception was introduced by Celis et al. (2013). The approach
allows non-expert users to guide evolution away from lo-
cal optima by indicating intermediate states that the robot
must go through during the task. A gradient is then created
to guide evolution through the states. This approach was
demonstrated in a deceptive object homing task, and it is
still unknown if it generalises to different types of tasks.

Evolution in Physical Hardware
The first example of online evolution in a real, neural
network-driven mobile robot was performed by Floreano
and Mondada (1996). The authors successfully evolved nav-
igation and homing behaviours for a Khepera robot. The
studies were a significant breakthrough as they showed the
possibility of online evolution of robot behaviour. Re-
searchers then focused on the challenges posed by evolving
controllers directly on physical robots, with a special focus
on the prohibitively long time required (Matarić and Cliff,
1996). Afterwards, Watson et al. (2002) introduced embod-
ied evolution, in which the use of multirobot systems was
motivated by an anticipated speed-up of evolution due to the
inherent parallelism in such systems.

Over the past decade, different approaches to online evo-
lution have been proposed (Silva et al., 2012). Notwith-
standing, few studies have been conducted on real robots.
Researchers have focused on developing different evolution-
ary approaches and evaluating them mainly through online
evolution in simulation. Despite the algorithmic advances,
the strikingly long time that the online evolutionary pro-
cess still requires during complex experiments renders the
approach infeasible.

Engineering the Evolution of Controllers
The main objective of our ongoing work is to enable ER
techniques to scale to more complex tasks by minimising
the current issues in the field. We propose the systematic use
of more practical, engineering-oriented approaches in which
the significant potential of evolution in controller design is
leveraged by human knowledge.

An engineering methodology in ER has not yet been
agreed upon (Trianni and Nolfi, 2011). For instance, while
different studies have combined evolved control and prepro-
grammed control, it is usually done in an ad-hoc manner,
see Groß et al. (2006) for example, or by imposing hard
behaviour-based architectures in which the role of evolu-
tion is minimal, see Urzelai et al. (1998). Contrary to such
approaches, we argue that there is a context-dependent com-
promise between engineering and evolution. When conduct-
ing evolution offline, the experimenter has complete control

over the experimental conditions and can modify and correct
the selection pressures. Furthermore, the experimenter can
take a methodical approach to find a suitable fitness func-
tion, an appropriate controller structure, or explore different
evolutionary algorithms. That is, evolution is put at the ser-
vice of engineering.

Complementarily, when evolving controllers online, the
evolutionary algorithms run autonomously from the start
and execute without any kind of human supervision. How-
ever, the experimenter can seed evolution with a bias to-
wards certain types of solutions or behaviours, thereby
inserting specific human knowledge into the evolutionary
search. That is, the experimenter can give evolution di-
rect access to task-related competences that are engineered
before online evolution is conducted. If the structure and
the parameters of these competences are under evolutionary
control, they can be optimised during task execution, and
evolution can progressively complexify controllers by using
these building blocks as a substrate. In this way, engineering
is put at the service of evolution.

At first sight, one may argue that the above perspectives
imply an antagonistic relationship between offline evolution
and online evolution. However, depending on the task com-
plexity and requirements, offline evolution and online evolu-
tion may complement each other. In relatively simple tasks,
it may be indifferent to conduct evolution offline or online.
As the complexity of the task increases, the issues of each
approach are exacerhated: (i) the more complex the con-
troller, the more difficult it is to ensure successful transfer
from simulation to reality, and the more time-consuming is
evolution directly on real hardware, and (ii) in both cases,
the more prone is evolution to bootstrap issues and decep-
tion. One solution is to exploit the benefits of each approach
to bypass each other’s limitations. Offline evolution can be
used as an initialisation procedure in which approximate,
yet effective solutions are engineered and deployed to real
robots. During task execution, online evolution can serve as
a refinement procedure that enables robots to adapt to chang-
ing or unforeseen circumstances.

In the following sections, we describe two complemen-
tary approaches for engineering ER: the hierarchical con-
troller approach for offline evolution and the macro-neurons
approach for online evolution, and we discuss how our ap-
proaches can mitigate the current issues in ER.

Engineering Offline Evolution
The hierarchical controller approach relies on a systematic
hierarchical decomposition of the task, and structured com-
position of controllers that can be either evolved or prepro-
grammed (Duarte et al., 2014). We divide the task into
simpler sub-tasks when evolution is unable to find a solu-
tion to a given task. Sub-controllers are evolved or prepro-
grammed to solve each sub-task, and the complete controller
is composed in a hierarchical, bottom-up manner as shown
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Figure 1: Representation of a hierarchical controller. Be-
haviour arbitrators determine which sub-controller to exe-
cute, and behaviour primitives control the actuators.

in Fig. 1. Each node in the hierarchy is either a behaviour
arbitrator or a behaviour primitive (Lee, 1999). Behaviour
primitives are at the bottom of the controller hierarchy and
control a number of actuators of the robot, while behaviour
arbitrators determine which primitive to execute at a given
time. The logic in each node is independent of the logic
in other nodes. Thus, evolved nodes can be synthesised by
different evolutionary processes.

The evolution of behaviour primitives is based on the
concept of an appropriate fitness function, which: (i) en-
ables evolution to bootstrap, (ii) leads to controllers that
consistently and efficiently solve the task in simulation, and
(iii) evolves controllers that are able to maintain their per-
formance levels in real robotic hardware. Provided an ap-
propriate fitness function can be defined for a given task,
we evolve a behaviour primitive composed of a single ANN.
Otherwise, we recursively divide the task into sub-tasks un-
til appropriate fitness functions have been found for each
sub-task. Behavioural primitives are manually programmed
when: (i) a sub-task cannot be further divided and an ap-
propriate fitness function cannot be found, or (ii) if a par-
ticular robot-environment interaction is too difficult to ac-
curately simulate. After the synthesis of behaviour primi-
tives, sub-controllers are created by evolving or program-
ming behaviour arbitrators in a bottom-up fashion. Each be-
haviour arbitrator receives a number of sensory inputs and
is responsible for delegating control to the level below. Sub-
controllers are then combined with other sub-controllers un-
til the hierarchical controller is completed. Each time a new
sub-controller has been synthesised, its performance on real
robotic hardware can be evaluated, which allows to address
transfer-related issues in an incrementally manner during the
development of the control system.

An important aspect of our approach is that, as we move
up the controller hierarchy and attempt to synthesise con-
trollers for increasingly complex tasks, appropriate fitness
functions may be increasingly difficult to define. In such
cases, the fitness function can be derived based on the task
decomposition and constructed to reward the arbitrator for
activating a valid sub-controller for the current sub-task,

rather than for solving the complete task. Thus, while pre-
vious studies have hierarchically decomposed controllers
based on different techniques, from genetic programming to
neuroevolution, see Duarte et al. (2014) for a review, our
approach is distinct in a number of aspects. Firstly, we syn-
thesise hybrid controllers in which preprogrammed control
and evolved control can be seamlessly integrated, thus com-
pounding the benefits of ER in the design of controllers, and
preprogrammed behaviours that would otherwise be diffi-
cult or infeasible to evolve. Secondly, we use derived fit-
ness functions to circumvent the otherwise increase in fit-
ness function complexity. Finally, we bypass bootstrapping
and deception-related issues due to the hierarchical task de-
composition.

Engineering Online Evolution
This section introduces the macro-neurons approach for on-
line evolution of neural network-based controllers (Silva
et al., 2014). In this approach, neural networks use standard
neurons as elementary components, and higher level units
representing behaviours called the macro-neurons.

Each macro-neuron M is defined by (I,O, f, P ), where
I and O are respectively the set of input connections and
of output connections, f is the function computed by the
macro-neuron, and P is the set of parameters that can be op-
timised through evolution. Each connection Ii ∈ I contains
a weight wi ∈ w and transmits to M an input value xi ∈ x.
The computation of M is given by f(w, x) = y, where y is
the output vector of M , and each yj ∈ y is transmitted to
other neurons via the corresponding connection Oj ∈ O.
Depending on the type of the macro-neuron M , the set P
contains different elements. If M is an evolved ANN, then
P refers to the connections and neurons that can be modi-
fied by evolution; if M is preprogrammed, P contains the
parameters of the behaviour, if any.

In our approach, the macro-neurons are prespecified in
the neural architecture before online evolution is conducted.
The construction of ANNs using macro-neurons is shown in
Fig. 2. Figure 2a illustrates how different preprogrammed
macro-neurons are specified. Each macro-neuron transmits
two values to each output neuron: (i) an activity value rep-
resenting the signal to be sent to the actuators controlled
by the output neurons, and (ii) a priority value, which rep-
resents the effective need of the behaviour to execute at a
given time. Priority and activity values are used to bet-
ter resolve conflicts when different preprogrammed macro-
neurons compete for control (Silva et al., 2014). Comple-
mentarily, Fig. 2b shows how an evolved ANN is repre-
sented as a macro-neuron. The connections from the macro-
neuron to the output neurons enable evolution to arbitrate
and shape the output values of different macro-neurons.

In the experiments described in the following section, the
macro-neurons are used in combination with odNEAT (Silva
et al., 2012), an online neuroevolutionary algorithm that
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Figure 2: Examples of the integration of different types
of macro-neurons in neural architectures. (a) Two pre-
programmed macro-neurons. (b) An evolved ANN-based
macro-neuron inserted into a larger controller.

evolves the weights and the topology of ANNs in single
and multirobot systems (Silva et al., 2012, 2014). Thus, the
evolutionary process can: (i) adapt the preprogrammed be-
haviours by adjusting their parameters, see PP1 in Fig. 2a,
(ii) modulate the execution of macro-neurons by increasing
or decreasing the strength of connections, including those
related to the priority and activity values, and (iii) optimise
evolved ANN-based macro-neurons and the entire network
by augmenting their structure and by adjusting the connec-
tion weights. By combining ANNs and macro-neurons, we
compound: (i) the ANNs’ robustness and tolerance to noise,
(ii) the benefits of each type of macro-neuron, which can
be synthesised by distinct evolutionary processes or man-
ually designed to shortcut complex evolutionary processes,
(iii) higher level bootstrapping, which can enable robots to
adapt to complex and dynamic tasks in a timely manner.

Experimental Results and Discussion
In this section, we assess the viability of our approaches
in both real-robot and simulation-based single robot exper-
iments. In our experiments, we use an e-puck (Mondada
et al., 2009), a 7.5 cm in diameter differential drive robot
capable of moving at a maximum speed of 13 cm/s. The ex-
periments were introduced in Duarte et al. (2012, 2014) and

Robot

Teammate

Start

Light Controller

(a) Real double T-maze environment

Buttons Robot

(b) Real two-room cleaning environment

Figure 3: The environments in which the hierarchical con-
troller is assessed: (a) double T-maze with size of 2 x 2 me-
ters, and (b) the two-room cleaning environment. The rooms
are connected by a corridor blocked by two doors. Each
room has one button that can be pushed to open the doors.

Silva et al. (2014). We review our previous results, and we
argue the importance and effectiveness of combining engi-
neering and evolution in the synthesis of robotic controllers.

Offline Design of Hierarchical Controllers
In this section, we apply the hierarchical controller ap-
proach to solve two tasks: (i) a rescue task in a dou-
ble T-maze (Duarte et al., 2012), and (ii) a dust cleaning
task (Duarte et al., 2014). The two environments are shown
in Fig. 3. In the rescue task, the robot must exit a room with
a number of obstacles, solve the T-maze, find the teammate,
and safely guide the teammate back to the initial room. Two
rows of flashing lights in the main corridor of the double
T-maze give the robot information by indicating the branch
leading to the teammate. In the dust cleaning task, dust spots
appear in two rooms that are connected by a corridor. A new
dust spot is randomly placed in one of the rooms every 10s,
up to a maximum of five dust spots in the environment at any
given time. Each room has one button that can be pushed to
open the doors that give access to the corridor.

We first tried to evolve a monolithic controller for the
complete rescue task using: (i) a standard (µ + λ) evolu-
tion strategy that optimised the weights of fixed-topology
continuous-time recurrent neural networks with one hid-
den layer of fully-connected neurons, and (ii) the prominent
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NEAT algorithm (Stanley and Miikkulainen, 2002), which
evolves both the neural network’s weights and topology.
While the controllers evolved by the respective algorithms
successfully solved initial parts of the task, none of them
was able to complete the entire rescue task in simulation.
We therefore divided the rescue task into three sub-tasks:
(i) exit the room, (ii) navigate through the double T-maze
and find the teammate, and (iii) return to the initial room
while guiding the teammate. We decomposed the control
system into three main sub-controllers: “Exit Room” primi-
tive, “Solve Maze” arbitrator, and “Return to Room” arbitra-
tor. Both the “Solve Maze” and the “Return to Room” arbi-
trators had access to three locomotion behaviour primitives:
“Follow Wall”, “Turn Left” and “Turn Right”. A top-level
arbitrator was evolved to select which sub-controller to acti-
vate at any given time. The controllers achieved an average
success rate of 85%. The highest scoring hierarchical con-
troller solved the task 93% of the times in simulation and of
92% in real robotic hardware.

To solve the two-room cleaning task, we decomposed the
control system into two main sub-controllers: an evolved
“Change Room” arbitrator and an evolved “Clean” primi-
tive. The “Change Room” arbitrator was given access to
an evolved “Open Door” arbitrator and to an evolved “En-
ter Corridor” primitive. The “Open Door” arbitrator had ac-
cess to an evolved “Go To Button” primitive and to a prepro-
grammed “Push Button” primitive. Thus, all arbitrators and
primitives were evolved, except for the “Push Button” prim-
itive. Pushing a button to open the doors requires fine senso-
rimotor coordination, since the buttons are difficult to detect
and hit. As this is a difficult interaction to model correctly
in simulation, and therefore a behaviour to evolve and trans-
fer successfully, the “Push Button” primitive was prepro-
grammed. In the complete task, the hierarchical controllers
were evaluated according to the number of dust spots they
cleaned in five minutes of real and simulated time. The con-
trollers displayed high performance levels as they cleaned
an average of 18.74 dust spots in simulation, and an average
of 18.44 dust spots on the real e-puck robot.

We successfully synthesised controllers to solve two tasks
with different requirements. One of the main ideas behind
our approach is that ER techniques should not be applied
blindly. We proposed an engineering methodology that ex-
ploits the knowledge acquired from negative results when a
suitable controller cannot be evolved, and enables the de-
composition of the task into simpler sub-tasks on an as-
needed basis. By taking a systematic approach that com-
bines evolution with engineering, we were able to overcome
three fundamental issues: (i) the bootstrap problem, (ii) de-
ception, and (iii) the reality gap, as the controllers main-
tained their performance levels in real robotic hardware. The
bootstrapping problem and deception are naturally bypassed
by dividing a complex task into simpler sub-tasks. The suc-
cess in crossing the reality gap is due to the hand-design of

sub-controllers when necessary and to the iterative tests of
evolved sub-controllers (Duarte et al., 2014), in which the
experimenter can address transfer-related issues locally in
the controller hierarchy.

Additionally, it should be noted that by recursively focus-
ing on controllers for simpler sub-tasks, the experimenter
can more easily encourage the evolution of robust solutions
that operate effectively in a large number of environmen-
tal conditions and that maintain their performance levels on
real robots. In this way, solutions evolved can be made more
general and therefore better sustain conditions not seen dur-
ing evolution. As a final remark, it is worth discussing the
role of human knowledge in our approach. In standard ER
experiments, evolutionary setups are often found in an ad-
hoc manner. The experimenter has to determine a suitable
fitness function, the controller type and structure, the evo-
lutionary algorithm, and the parameters associated with the
evolutionary algorithm through a trial-and-error process. All
these components are hand-designed, and usually involve a
substantial amount of experimentation and human interven-
tion. Contrary to unregulated trial-and-error methods, we
follow a structured approach in which human knowledge is
used to actively eliminate the factors that limit evolution and
guide it towards classes of controllers relevant to the task.

Online Evolution with Macro-neurons
To assess the macro-neurons approach, we study a single
robot deceptive and dynamic version of the phototaxis task
with three light sources (Silva et al., 2014). The task envi-
ronment is shown in Fig. 4. The robot has a constant virtual
energy consumption value. The light sources are sensed by
the robot within a 25 cm range. One source is beneficial to
the robot as it increases the energy level, one source is neu-
tral, and the remaining source is detrimental as it decreases
the energy level. The sources are static, but they switch their
type in a clockwise manner at five minute intervals. Decep-
tiveness is introduced by the fact that the three light sources
are indistinguishable to the robot’s light sensors. Thus, the
robot must discriminate between the different sources based
on the temporal correlation between its energy sensor read-
ings and proximity to a given source.

We conducted experiments using two types of macro-
neurons: evolved ANNs, synthesised offline using NEAT
(Stanley and Miikkulainen, 2002), and preprogrammed be-
haviours. We synthesised three basic primitives of each
type: (i) a move forward behaviour, (ii) a turn left behaviour,
and (iii) a turn right behaviour. We conducted four sets
of experiments: (i) evolution without macro-neurons, (ii)
and (iii) evolution with access respectively to the prepro-
grammed and the evolved macro-neurons, and (iv) an hy-
brid approach involving a preprogrammed “Move Forward”
macro-neuron and two evolved “Turn” behaviours.

The experimental setups involving macro-neurons en-
abled an efficient synthesis of controllers, with the advan-
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Figure 4: The task environment. The arena measures 3 x 3
meters. The dark areas denote obstacles, while the circular
areas represent the different sources. The distance between
the sources is set at 1.5 meters.

tage being in favour of evolved macro-neurons. Given the
deceptiveness and complexity of the task, evolution without
access to macro-neurons required an average of 9.50 hours
of simulated time to evolve controllers that solve the task.
The three types of controllers with macro-neurons required
between 1.78 hours and 2.91 hours, thereby reducing the
evolution time between 53% and 80%. In addition, the use
of macro-neurons yielded competitive or superior solutions
in terms of the fitness score (Silva et al., 2014).

Our current results suggest that approaches such as the
macro-neurons may be a viable solution to speed-up online
evolution in real robotic hardware. The key idea is that the
experimenter can compensate for the absence of control he
or she has during online evolution experiments by biasing
evolution towards desired classes of behaviour. In effect,
macro-neurons need not only to represent task-oriented be-
haviours. The macro-neurons can also represent prespeci-
fied survival-oriented behaviours that enable, for instance:
(i) a group of robots to coordinate and share the access to
battery charging stations, a task that been found to be highly
deceptive (Gomes and Christensen, 2013), and (ii) to self-
preserve by minimising collisions and hardware damage. By
giving evolution access to these fundamental building blocks
of distinct complexity and with different functions, boot-
strapping is made easier because partial solutions to the task
are already available. Additionally, evolution can focus on
combining the engineered building blocks with evolved be-
haviours to synthesise increasingly sophisticated action pat-
terns. New competences can be integrated in a scalable man-
ner by gradually expanding the behavioural repertoire of the
robot. Thus, rather than attempting to develop a purely au-
tomatic and potentially less efficient online evolutionary al-
gorithm, the experimenter can take advantage of his or her
knowledge to determine what are the basic components to
solve the task. Each of the components can then be used by
evolution in the search for a complete controller.

Intuitively, seeding evolution with specific behavioural
properties may restrict the search space, and therefore poten-
tially represents a trade-off between the adaptation time and

the generality of behaviours that can be evolved. Nonethe-
less, recent experiments (Silva et al., 2014) have shown
that evolution may be able to successfully adapt and reuse
macro-neurons that are less optimised or even unsuited to
the task. Additional experiments with different tasks are re-
quired to successfully answer this question.

Conclusions and Future Work

In this paper, we have argued that the combination of
engineering-oriented and evolutionary approaches can min-
imise the current issues in ER, namely: (i) the bootstrap
problem, (ii) deception, (iii) the reality gap, and (iv) the
long time required for online evolution experiments. There
are multiple reasons why our proposed methodology repre-
sents a valuable design tool, one of the most important being
that the experimenter can influence how human knowledge
and evolution are combined. In this way, the advantages
of engineering-oriented and evolutionary approaches can be
united to more easily overcome each other’s limitations.

We presented two methods that combine the strengths of
evolution and engineering: (i) the hierarchical controller ap-
proach, and (ii) the macro-neurons approach. The incorpo-
ration of evolution and engineering resulted in an effective
synergy that enabled us to successfully evolve controllers for
three tasks with a number of different traits. An important
methodological advantage of our approaches is that they can
be combined if deemed necessary. Hierarchical controllers
of distinct complexity and functionality can also be encapsu-
lated in a macro-neuron and adapted online. This versatility
moves engineering and evolution from the space of offline or
online synthesis of controllers to the space of offline approx-
imation and online refinement of solutions. Thus, the key
contribution of this paper is that our methodology is a flex-
ible and viable approach for scaling evolutionary robotics
to more complex tasks, without burdening the experimenter
with the responsibility of performing a manual and detailed
specification of the desired behaviour.

We are currently assessing our methodology in a varied
set of tasks that have proven challenging for existing tech-
niques, such as those that require a fine sensorimotor coor-
dination. Because in more complex tasks, the division of a
task into sub-tasks may not be intuitive, we are working to-
wards having the evolutionary algorithm to perform the task
decomposition itself. We are also extending our methods to
multirobot systems to take advantage of the properties of de-
centralisation and robustness that pertain to self-organising
systems. The main objective of our research is to reduce the
current gap between ER and ”mainstream” robotics.
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