IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 28, 2022, accepted April 28, 2022, date of publication May 9, 2022, date of current version May 13, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3173313

A Blockchain Ontology for DApps Development

LEO BESANCON“', CATARINA FERREIRA DA SILVA“2, PARISA GHODOUS !,

AND JEAN-PATRICK GELAS""!

ILIRIS, Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
2Instituto Universitdrio de Lisboa (ISCTE-IUL), ISTAR, 1649-026 Lisboa, Portugal

Corresponding author: Léo Besangon (leo.besancon.38 @ gmail.com)

The work of Léo Bensangon was supported by B2Expand, Lyon, France.

ABSTRACT Decentralized Applications, or DApps, provide distributed trusted applications that use
blockchains. They are often composed of several services, such as transaction scalability protocols, decen-
tralized storage and distributed computing solutions. In order to help formalize these applications, facilitate
their development and improve their interoperability, we propose a novel blockchain Ontology focused
on the concepts involving DApps. This ontology extends the existing EthOn ontology. It defines several
key concepts related to DApps development, as well as the relations between these concepts. It features
the formalization of known use cases and design patterns of blockchain technology through blockchain
patterns. We use Semantic Web Rule language (SWRL) in order to define rules that express constraints on
the formalized concepts. We then execute an inference engine and obtain new constraints on the properties of
a defined DApp, such as its cost, based on the DApp characteristics and the services it uses. For illustration
we show the inference of constraints between the Ethereum blockchain and its sidechain Polygon. We apply
our research work in the field of blockchain video games. This application shows how to use the ontology

to model DApps, and can be adapted to other fields.

INDEX TERMS Blockchain, interoperability, decentralized applications, DApps, ontology.

I. INTRODUCTION

Blockchains are a disruptive technology. They are the
foundations for Decentralized Applications (DApps) with
interesting properties: transaction transparency, application
auditability and censorship resistance [1]. It has applications
in various fields, such as finance [2], healthcare [3] or video
games [4] and has evolved a lot since the creation of Bitcoin
in 2008.

However, as seen in [5], the interoperability within
blockchain systems is one of several challenges the tech-
nology faces today. Interoperability has an important role in
maturing the blockchain industry. This industry is composed
of various organisations, platforms, projects and services
which can be improved greatly by interacting with other
systems. We consider blockchain interoperability in three
ways. The first type of blockchain interoperability is between
different blockchain systems such as Bitcoin and Ethereum.
Its goal is to transfer information and value between these
blockchain systems. A second type of interoperability is
between projects using the same blockchain system. As an

The associate editor coordinating the review of this manuscript and

approving it for publication was Thanh Ngoc Dinh

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

example, projects on the Ethereum blockchain may need
to use common standards and interfaces, such as Ethereum
Request for Comments, to allow for a better integration
between these projects. Finally, the interoperability between
the services that compose a DApp is also needed [6]. A DApp
may need to implement several components that have to
interact with each-other, for example distributed storage or
scalability solutions.

Our paper focuses on this last type of blockchain inter-
operability. We find that interoperability research for DApps
development is lacking. As a result, we focus on the semantic
interoperability of services used within a DApp.

Our contributions are as follows:

« We propose a DApps ontology, enabling the formaliza-
tion of the concepts related to DApps and their relations.
This includes the formalization of the concepts related to
blockchain services, which support an operative DApp.
This ontology extends an existing blockchain ontology,
EthOn [7].

o We show the modeling capabilities of our DApps
ontology by exemplifying and extending our formal-
isation with several blockchain design, which are

49905

https://orcid.org/0000-0001-5613-4823
https://orcid.org/0000-0003-3222-081X
https://orcid.org/0000-0003-3222-0043
https://orcid.org/0000-0002-2146-8513
https://orcid.org/0000-0001-6698-8419

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

common design patterns in blockchain DApps such as
Non-Fungible Tokens (NFT) management App, NFT
marketplaces, Decentralized Autonomous Organization
(DAO), blockchain oracles, supply chain and blockchain
non-blocking user interfaces.

o We specify Semantic Web Rule Language (SWRL) rules
to facilitate the coherence verification of our DApps
ontology. They aim to constrain the concepts of our
ontology. These rules are indeed used to infer new
axioms for the ontology.

o« We show the application of these DApp ontology
and SWRL languages in helping the interoperability
between two blockchain platforms.

o We exemplify and validate these contributions within the
Light Trail Rush (LTR) industrial video game.

The remainder of the paper is organised as follows. Firstly,

a literature review is presented on blockchain ontologies
and their capabilities. We also analyze various blockchain
services used within a DApp. Then, we propose a novel
ontology that focuses on formalizing DApps. We addition-
ally provide the modeling of blockchain patterns [8]. Then,
we present Semantic Web Rule Language (SWRL) rules.
We then present the applications of our research in the Video
Game Industry, followed by the results and discussions.
Finally, we present our conclusions, which include the per-
spectives of our work.

Il. CURRENT STATE OF THE ART

A. SEMANTIC INTEROPERABILITY IN THE BLOCKCHAIN
INDUSTRY

The semantic interoperability of blockchains is a complex
subject as many blockchains seemed incompatible at a fun-
damental level until recently [5].

One example is how different blockchains propose differ-
ent characteristics for what is called finality. Finality of a
blockchain transaction occurs when it has been confirmed
by the network and can no longer be modified. The Proof
of Work (PoW) [9] consensus algorithm, used by many
blockchains such as Bitcoin, is inherently probabilistic. Even
when the network is not attacked by malicious actors, it is
possible for two miners to create a valid block simultane-
ously. It is thus possible that a block considered valid at
one point is deleted or modified. This is called probabilistic
finality.

Other consensus algorithms, such as Proof of Authority
(PoA) [10], have an absolute finality, which means that once
a block is considered valid by a node of the network, it cannot
be modified or deleted from the blockchain.

These two types of blockchains are then incompatible.
Indeed, if we wish to transfer information from a blockchain
with a probabilistic purpose to a blockchain with a certain
purpose, it is possible to validate the information and transmit
it even though it will be invalidated later.

However, there are probabilistic ways to link a blockchain
without immediate finality with a blockchain with immedi-
ate finality, such as those presented in the publications [11]

49906

ProofOrAuthority ProofoMork

Subciass of

ProofOfStake

nnnnn

FIGURE 1. Example of a blockchain ontology.

and [12]. From a semantic point of view, these allow to
automatically translate incompatible concepts under specific
hypothesis.

Furthermore, some terminologies related to smart con-
tracts, such as control flow graphs or states, are formalized
by Chatterjee et al. [13]. This kind of work can be useful to
interconnect two blockchains supporting smart contracts, but
also to connect a blockchain with other systems interacting
with smart contracts on this blockchain.

Finally, other works, such as blockchain Ontology with
Dynamic Extensibility (BLONDIE) [14] and Ethereum
Ontology (EthOn) [7], aim at developing ontologies on
the blockchain ecosystem. The blockchain ecosystem is
composed by all of the blockchain development projects.
However, these projects are incomplete hindering consistent
and non-trivial implementations of semantically compatible
blockchains.

Fig. 1 presents our proposal of a simple blockchain
ontology. Different concepts, and also their relations, are
defined thanks to Web Ontology Language (OWL) [15].
Here, we have modeled a small part of the concepts and
relations related to the Ethereum blockchain. This ontology
models the following elements:

o Blockchain contains blocks,

« Block contains a block header and a transaction list,

o Transaction list contains transactions,

« Blockchain uses a consensus algorithm,

« Finally, Ethereum is a blockchain, which uses the PoW

as a consensus algorithm.

Sandra [16] is an ontology engine created by the company
EverdreamSoft. The company uses this engine to build the
Crystal Spark Cannon library, integrating blockchain con-
cepts such as addresses or collectable assets of a game, the
Non-Fungible Tokens (NFTs). NFTs are representations on

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

blondie:Ethereu l

blondie:Ethereu
elock mAccount
blondie:Bitcoin e :
" blondie:Bitcoin blondie:NormalA
Transaction 1 Block]
A%

/ ccount

blondie:Bitcoin | Payload ‘
k- °

blondie:Ethereu T e —_® owlThing | [® bondie:Contrac |
mTransaction e rﬁ\ tEthereumAccoun...
blondie! Messﬂge blondie:Bitcoin . blondie:Blockhe D blondie: Payload
CallEthereumTra... ‘ ader ‘

blondle Contrac blondie:Ethereu blondie:Bitcoin mPaonad

Ti Outp.

blondie:NormalE blondie:Ethereu
thereumTransact... mOmmerBlockhead... l

FIGURE 2. Visual representation of the BLONDIE ontology.

the blockchain of game assets. Players can buy, sell or trade
them freely. The possession of an NFT is then reflected in the
game.

The main difference between Crystal Spark Cannon and
the two previous ontologies is its use within industrial
projects and within the EverdreamSoft company developing
the tool. Thus, it is possible to carry out simple queries such
as retrieving all the assets associated with a given address.
Based on the address format given, the tool then automatically
deduces the blockchain on which to perform the query and
provides as output all the elements found.

We have seen previously that ontologies are useful to
describe blockchain systems. Indeed, ontologies aim at
semantically defining the different concepts needed in a given
domain. Blockchain systems often involve different domains
that use similar concepts, which may not have consistent def-
initions. Therefore, several works try to semantically define
what a blockchain is.

For example, BLONDIE [14], Fig. 2, and EthOn [7], Fig. 3
use OWL to describe such ontologies. They are useful for
getting a global understanding of how different blockchain
concepts such as transactions, address and signatures are
related to each other, as well as for formalizing these con-
cepts, but we did not find any applications using these ontolo-
gies. However, the PHP framework Sandra [16] allows users
to easily design their blockchain ontologies, and is used by
EverdreamSoft’s Crystal Spark Cannon to query blockchain
assets.

One downside of using Sandra is the lack of integration
with existing tools for OWL ontologies. This is why our
ontology focuses on extending EthOn instead.

Through the use of ontologies, the different systems that
interact with and within a DApp all have the same definition
of the concepts and data structures they use, which improves
the semantic interoperability of a DApp.

a: BLONDIE
BLONDIE [14] seeks to formalize the basic concepts related
to the Bitcoin and Ethereum blockchains. This ontology
presents the blockchain as a data-only structure, detailing the
composition of the blocks, and the transactions included in
these blocks.

One of the interests of this ontology is to formalize the
differences between these two blockchains. For example, Bit-

VOLUME 10, 2022

coin is based on a transaction model by Unspent Transaction
Output (UTXO) [17], so BLONDiE defines the concepts
of BitcoinTransactionOutput and BitcoinTransactionInput.
Since Ethereum is based on an account and account bal-
ance model, those two concepts have no meaning within the
Ethereum ecosystem, and are therefore not specified for the
Ethereum realm within BLONDIE.

On the other hand, currently, this ontology does not pro-
pose any formalization related to the protocols governing
these two blockchains. This is an important limitation, since
it restricts the possible applications of such an ontology.

b: ETHON

EthOn [7] only seeks to define concepts related to the
Ethereum blockchain, but goes into more detail about the
protocol. For example, the relationship of mining a block by
an Ethereum account is defined within EthOn.

One of the limitations of this ontology is that it is restricted
to concepts related to the Ethereum blockchain itself, and
therefore does not formalize the whole ecosystem around
the blockchain. For example, the various blockchain services
such as scalability solutions of layer two [18] or cryptocur-
rency wallets [19] are not modeled within EthOn.

c: CONCEPTS RELATED TO BLOCKCHAIN SERVICES
Existing blockchain ontologies, such as BLONDIE and
EthOn, do not specify concepts related to blockchain ser-
vices. However, these concepts are fundamental to properly
formalize a DApp. Sandra and Crystal Spark Cannon do pro-
vide this option, but they lack the expressive OWL environ-
ment. We thus propose in section III a blockchain ontology
focused on DApps and associated blockchain services.

B. BLOCKCHAIN SERVICES

Blockchain services are projects that can be integrated by
other blockchain projects in order to change the character-
istics of the application. For example, a blockchain service
can provide the scalability of the number of transactions that
can be handled by the application, or a storage solution for
the data of the application.

1) SCALABILITY

There are many different approaches to increase the capabili-
ties of a given blockchain. These solutions are called Layer 2
scalability, since they are overlays of a blockchain. Thus,
for an application running on Ethereum, it is possible to
integrate technologies that improve the characteristics of the
application. We can distinguish the proposed approaches as
follows:

o Solutions that check the validity of transactions sent
through Validity Proofs,

« Solutions requiring proofs of invalid transactions, called
Fraud Proofs, which must be provided within a specified
time period. This deadline is called the challenge period,
as mentioned by Warren and Bandeali [20].

In addition, we also differentiate between:

49907

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

| @ ethon:ContractA l @ ethon:ProtocolA

@ ethon:FullNode

,J;f/
| @ ethon:Node | 4 @ ethon:LightNode

ccount ccount

@ ethon:ExternalA <1 @ ethon:Account /
ccount T

@ owlThing

@ ethon:StateTran
sition

@ ethon:Block '/; >

-

sg X
@ ethon:ValueTx

@ ethon:CreateCon

® ethonState |~ @ ethomAccountSt | | g ethon:Protocols
~ ate tate
- ® ethon:ModifiedM
erklePatriciaTr...

@ ethon:PostBlock
State

@ ethon:Blockchai
n

tractMsg

ariant

@ ethon:ProtocolV

\ © ethon:WorldStat @ ethon:PostTxSta
[l te
© foaf:Agent 2 — i

@ ethon:ValueCont

@ ethon:CreateTx

@ ethon:CallTx

ractMsg
@ ethon:Selfdestr
uctContractMsg

FIGURE 3. Visual representation of the EthOn ontology.

@ ethon:LogTopic

@ ethon:CallContr
actMsg

o Solutions with off-chain data storage such as state-
channels [21],
o Solutions with on-chain data
rollups [22],
Finally, Buildblockchain Tech and Avihu Levy [23] pro-
pose to classify the existing Layer 2 features according to
these two characteristics, as shown in the table 1.

storage such as

TABLE 1. Table of characteristics of different Layer 2 scalability solutions,
adapted from [23].

Verification |y jidity Proofs

ZK-rollups
Validium

Data storage Fraud Proofs

On-chain
Off-chain

Optimistic rollups
Plasma

a: STATE-CHANNELS

State-channels consist in the exchange of off-chain messages
between the parties involved. In case of conflict between
these parties, each one can publish on the blockchain the
transmitted messages, and a smart contract will verify the
exchanged information. The concept of state-channel is for
example used by FunFair [24], but only between two par-
ticipants. A schematic version of this concept is presented
Fig. 4.

More general approaches exist, such as the Lightning
Network [21] for the Bitcoin blockchain, the Raiden Net-
work for Ethereum, and Counterfactual [25]. However, these
approaches require additional research. For example, for the
Lightning Network and the Raiden Network, research is
needed to find optimal routing of transactions across nodes
that form users on the network. Fig. 5 explains how these
networks can connect two nodes through a channel in an
indirect way.

One of the characteristics of state-channels is the need for
cash to run the system. Thus, it is likely that Aubs will be
created to offer this liquidity for a fee.

49908

X
1 Y
@ ethon:Network @ ethon:ExternalA
ctor
1 rie
@ ethon:LogEntry @ ethon:TxReceipt

@ ethon:TxTrie @ ethon:PostMsgSt
ate

@ ethon:ReceiptsT

@ ethon:AccountSt
orage

Blockchain

State Channel
smart contract

FIGURE 4. Explanatory diagram of the functioning of state-channels.

b: ROLLUPS

Rollups [22] are a type of scalability solution aiming at
compressing blockchain transactions. To do this, different
techniques can be used, such as aggregating transactions into
batches. Another technique is to store a certain amount of
data within off-chain transactions. However, some data for
each transaction remains on the blockchain.

The concept of Rollups is depicted in Fig. 6. Transaction
aggregation allows to compress data efficiently. For example,
a multi-signature, which is a single signature that is valid
if all the signatures of the underlying transactions are valid,
is smaller than all the individual signatures.

In addition, as we will see, there are two main meth-
ods for increasing the scalability of transactions through
rollups: Zero-Knowledge Rollups (ZK-rollups) and Opti-
mistic rollups.

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

:

]
A
[
=
@

® UL

U U

FIGURE 5. Explanatory diagram of the functioning of the Lightning
Network and the Raiden Network.

/Block without Rollup\ Block with Rollup
Tx

1

Tx1,2et3

Signature Recipient Compressed

Signatures

Value Sender

Compressed
values

Tx 2
Compressed

Recipients

Signature

Recipient

Compressed

Senders

Value Sender

Tx 3

Signature Recipient

\ Value Sender J

FIGURE 6. Explanatory diagram of how Rollups work.

¢: ZK-ROLLUPS

ZK-rollups are based on the use of Zero Knowledge Proofs
(ZKP). ZKPs allow to prove information about data without
disclosing other information.

ZK-rolls use this concept to compress transaction data,
while proving the validity of the compression. It is therefore
the use of Validity Proofs.

Loopring [26] is an example of a project using ZK-rolls to
increase the number of transactions possible on their decen-
tralized exchange.

An example of a project that enables scalability of DApps
is ZKSync [27], a Layer Two platform for Ethereum that also
uses ZK-rollups.

d: OPTIMISTIC ROLLUPS

Unlike ZK-rollups, Optimistic rollups do not rely on formal
proof of validity of compressed transaction data. Instead,
so-called Fraud Proofs are used. This means that if no evi-
dence of the invalidity of a transaction is provided within a
specified time, then that transaction is declared valid.

VOLUME 10, 2022

An example of an optimistic
Arbitrum [28].

rollup project is

e: SUMMARY ON ROLLUPS
Buterin [22] quantitatively compares the characteristics of
these two types of rollups.

In addition to the differences between the two types of
rollups presented here, each rollup must choose certain char-
acteristics that may impact the properties of the rollup. For
example, the centralization, or not, of the transaction submis-
sion process. The centralization of this process makes it pos-
sible to simplify it, but also makes it possible to censor certain
transactions, since a single actor chooses which transactions
are included in the batch.

f- VALIDIUM (StarkEx)

StarkEx [29], developed by StarkWare, is a ZKP-based scal-
ability solution. It can be used as ZK-rolls, keeping the data
on chain.

However, StarkEx can also be used off-chain. The data
availability problem is circumvented via a Data Availability
Committee, which must ensure the availability of any data
included in the Merkle Tree of a checkpoint.

We had mentioned Loopring, a decentralized marketplace
using ZK-rollups. One of their competitors, DeversiFi [30],
is based on StarkEx, with the use of Validium instead of
ZK-rollups.

g: SIDECHAINS
A sidechain is a blockchain, which is linked to another
blockchain, called mainchain by a two-way peg [31]. This
blockchain is usually used for a single application, such
as a video game. It is then possible to use a consen-
sus method different from the parent blockchain, such as
PoA [10], DPoS [32], or PoS [33]. The advantage of using
a sidechain and not a separate blockchain is that if the
daughter blockchain consensus fails, users can prove on the
parent blockchain what happened on the daughter blockchain.
A generic sidechain design, called Plasma [34], is imple-
mented in several projects. We will focus on two existing
sidechain solutions, Loom Network [35] and Polygon [36].
Finally, sidechains are one of the most flexible scalability
solutions for developers. Fig. 7 shows the basic principle of
sidechains. This principle has four main steps:

1) A user transfers a cryptocurrency A to the sidechain
deposit contract on the main chain.

2) The sidechain will then automatically allocate the
deposited funds to the user.

3) The user can then use these funds on the sidechain,
at a greatly reduced cost compared to transactions on
the main blockchain. Regularly, a checkpoint of the
last blocks of the sidechain is created and submitted
to the main blockchain. This checkpoint is obtained by
hashing these blocks, and contributes to the security of
the system.

49909

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

Sidechain Blockchain

Block 1

Block 2

Block N

FIGURE 7. Explanatory diagram of how sidechains work.

4) Finally, the user can retrieve his funds from the main
chain at any time. A certain delay is however necessary
before the transfer is effective in order to leave time for
challenges in case of disputes. Indeed, since sidechains
work by Fraud Proofs, if a user tries to validate invalid
transactions, another user can bring proof of the inva-
lidity of these transactions. A certain amount of time
must be allowed to make this principle work.

h: POLYGON

Polygon [37], rebranded from Matic [38] is a sidechain linked
to Ethereum, working by Fraud Proofs, and allowing for
example the mint of tokens on Polygon before sending them
back to Ethereum. The mint is the generation of a new
copy of a token. We detail the features of Polygon later,
in section V-A, as we have studied its operation in detail to
validate our contributions within a game.

i LOOM

Loom [35] started as another Ethereum-related sidechain,
dedicated mainly to the video game world. Today, they are
developing a multi-chain platform.

J: MULTI-CHAIN
Multichains are scalability solutions using interoperabil-
ity between different blockchains through Bridges [39].
As shown in Fig. 8, we can sort of see these solutions as
a generalization of sidechains. Each of the four blockchains
shown on this diagram is indeed linked to another one, called
Hub or Relay Chain by the same bidirectional anchoring
mechanism. The “daughter” blockchains are called shards.
Thus, instead of having a parent blockchain linked to
a daughter blockchain, a set of blockchains can be linked

49910

Blockchain B

FIGURE 8. Schematic representation of the operation of multichains.

Hub / Relay Chain

together by a common validation layer. However, the prin-
ciples of communication between the shards of a multi-chain
vary between different implementations of this principle,
which we will now detail.

k: POLKADOT

Polkadot [39] proposes a multichain running on their consen-
sus algorithm called Nominated Proof of Stake (NPoS). This
algorithm is a hybrid between PoS and DPoS.

A particularity of Polkadot is that each shard has the same
security. The security of the multi-string is therefore cooper-
ative, which means that each shard has the same validators.

Polkadot proposes the use of a main chain, called Relay
Chain, to facilitate communication between the other chains.

I: COSMOS/TENDERMINT

Cosmos [40] is a project very similar to Polkadot, and works
by PoS. The main difference is on the validation model of the
different chains. Unlike Polkadot, Cosmos offers competitive
security. This means that each chain manages its own valida-
tion, and must therefore take into account the security of the
other chains with which it communicates.

Just as Polkadot proposes a relay chain, Cosmos proposes
the use of particular chains called hubs. However, several
different hubs can be used, and their use is intrinsically nec-
essary. Indeed, it is these hubs that implement the necessary
bridges between the different shards of Cosmos.

m: HARMONY

Harmony [41] proposes a multi-chain by sharding, via a
validation in PoS. Their bridge with Ethereum allows, con-
cretely, to use Harmony as a multitude of sidechains linked
to Ethereum.

2) DATA STORAGE

a: InterPlanetary FILE SYSTEM

InterPlanetary File System (IPFS) [42] is a free, peer-to-peer
distributed storage system. It works in a simple way: anyone
can choose to create an IPFS node on their system, and add
files to it.

On IPFS, each file is represented by its hash, so that anyone
can access a resource stored on IPFS for free through its
hash. Thus, to access a resource, an IPFS node will propagate
the request to neighboring nodes. The set of nodes being a
mesh of the network, after a certain routing, the request is
propagated to a node which has a resource with the same hash

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

as the request. This node will then transmit the data to the
requesting node.

Fig. 9 shows how an IPFS user can obtain a resource
that they do not yet own, based on its simple hash. In this
example, user 1 is looking for a file whose hash is Hashl,
which only user 3 owns. However, users 1 and 3 are not
directly connected, they must communicate with the user 2,
intermediary of the requests. Steps 1 and 2 correspond to
network discovery: the nodes of the network propagate the
file request requests until they find a user who owns the right
file. Once a client with the desired file is found, steps 3 and
4 correspond to sending the file, by traversing the file request
path in reverse.

This system has interesting properties, since it is free.
Moreover, the risk of losing access to a data is mitigated, since
an actor wishing to have a data accessible on IPFS can very
well host an IPFS node himself. However, other resources
may become inaccessible, since no financial compensation is
offered to those who share their storage capacity with the rest
of the network. In addition, the latency of this peer-to-peer
system is quite high, averaging 7 seconds [43].

b: FILECOIN

Filecoin [44] is an overlay to IPFS that offers financial com-
pensation to participants. This solution can be seen as sales
made on the blockchain of distributed storage capacity.

c: STORJ

Storj [45] is another distributed storage solution. Unlike IPFS
or Filecoin, it is more akin to a decentralized cloud, since data
is replicated, clustered, and encrypted.

C. SYNTHESIS

Many services, of different types, offer solutions to
improve the DApps ecosystem. Some of these services can
change the cost and latency characteristics of a blockchain.
This is the case of sidechains, state-channels, rollups or
multichain. These different technical solutions have their
advantages and disadvantages. For example, state-channels
are easier to implement than multichains, but they can only
be used for two-party interactions. Moreover, the different
instances of these services make different implementation
choices. This is for example the case of Loopring and Arbi-
trum. Both are instances of rollups, but Loopring relies on
ZKPs to validate changes in the state of the blockchain, while
Arbitrum relies on Fraud Proofs, which means that in case of
conflicts one of the actors must propose a formal proof of
error. Other services also offer new functionalities that would
not be possible via a simple blockchain, such as distributed
computing or distributed data storage.

Each of the presented solutions has different properties
and constraints, in terms of cost, security, decentralization,
maturity or even possible application cases. This means that
choosing which services to use to build a DApp is complex,
and requires to study all the suitable services. Thus, to fully
understand these properties and constraints, we formalize

VOLUME 10, 2022

how they work and their use cases, in the next section. Table 2
presents some of the trade-offs involved in the choice of a
scalability solution for a given DApp.

IIl. PROPOSED ONTOLOGY

We have described in the previous chapter the interest of
having a formalization of the different concepts of a DApp
within an ontology. In order to facilitate the construction of
an ontology specific to an application, we propose a generic
blockchain ontology. This ontology can then be extended
when we want to formalize a DApp. In this ontology, we use
the Decentralized blockchain Applications (DBA) termi-
nology to formalize DApps in order to avoid ambiguities
between these applications and decentralized applications
that do not integrate the blockchain technology.

A. GLOBAL VIEW OF THE ONTOLOGY

With the help of the OntoGraph Plugin for Protégé, a par-
tial graph of the ontology is in Fig. 10. In this graph,
we can see one of the fundamental concepts related to
blockchains: transactions. A blockchain transaction is a mes-
sage signed by a user, which will be added to a block of
the blockchain. A transaction can be pending, i.e. waiting for
validation, or settled, i.e. validated or invalidated. Once vali-
dated, a transaction cannot be removed from the blockchain.
Another concept shown in this figure is the blockchain, which
Polygon and Ethereum inherit. For the sake of readability,
we do not detail in this figure all the other concepts of the
ontology, such as DApps, transaction scalability solutions
or consensus methods. However, figures detailing restricted
parts of the ontology are presented later.

We have previously presented two existing blockchain
ontologies, BLONDIE and EthOn. In order to build our
ontology, we study the possibility of extending these existing
ontologies.

The EthOn ontology formalizes many concepts related to
the Ethereum blockchain. For example, it formalizes the
concepts of Ethereum transactions and Ethereum blocks, but
also contract calls and their creation, as well as the changes of
state of the blockchain, and more generally the data structures
used by Ethereum and their uses. We have therefore chosen
to extend the EthOn ontology, since it already has many
important concepts for the formalization of DApps.

BLONDIE is the other existing blockchain ontology.
It is interesting since it formalizes different blockchains:
Ethereum, Bitcoin, and the private blockchain Hyperledger
Fabric. However, the concepts presented are not detailed
enough. The transactions of each blockchain are defined, but
little information about their use within the blockchain is
present. For example, the calls or creations of Ethereum smart
contracts are formalized as it is the case within EthOn, but
not the data structures used for each blockchain. Thus, the
concept of Merkle-Patricia Trie, which defines the tree stor-
ing the set of transactions and the associated state changes,
is present in EthOn but not in BLONDIE. For this reason,
we do not extend the BLONDiE ontology. On the other

49911

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

User 1

Wanted file
Hash1

R
o

User 2

Available files
Hash2

o
R
o

User3

Available files

Hash1
Hash2
Hash3

FIGURE 9. Explanatory diagram of the functioning of IPFS.

TABLE 2. Table summarizing some advantages and disadvantages of the main methods of scalability of blockchain transactions.

Scalability solution | Advantages

Trade-offs

Ease of implementation

State~channels Negligible costs

Collateral needed
Complex for n > 3 parties

ZK-rollups Same security

as the underlying blockchain

Complexity of
Zero-Knowledge Proofs

Optimistic Rollups Ease of implementation

Challenge period needed

Sidechains Ease of implementation

Many projects have functioning sidechains

Challenge period needed

Multichains

numerous blockchains

Allows for interoperability between

Complexity of the system

@ ethon:ProtocolV

I' @ sbo:LayerTwo]
ariant

[@ ethon:LogEntry] [@ gbo:Ethereum H @ gbo:Matic I

) [\]m
= :

@ gbo:EthereumTra
nsaction

@ gbo:MaticCheckp
oint

* @ gbo:c
chanism

@ gbo:Oracle l

I\‘ @ ethon:LogTopic
+

I' @ gbo:SmartContra
ct

N
® sbo: A
@ gbo:Ti i X
List * @ ethon:Account P /
*® ethon:StateTran <)
sition
P .

*® sbo:Engine

@ owl:Thing

[+

N
@ gbo:Transaction r
KN\ 7>
@ gbo:SettledTran @ gbo:MaticTransa
saction ction

@ ethon:TxReceipt

@ ethon:Network

@ gbo:Hash

;. foaf:Agent V

® & g {ead y = %
ode - 2
'® gbo:Block "
*® sbo:D g ® gbo:FailedTrans l I ® gbo:ValidTransa l

er
edBlockchainApp... [t‘. e] l action ction

FIGURE 10. Partial visualization of our ontology. Only the transaction and
blockchain concepts are detailed for the sake of readability.

hand, we still used this ontology to understand how con-
cepts from different blockchains can coexist within the same
ontology.

The proposed ontology uses the following prefixes:

« ethon, for the imported EthOn ontology.

« gbo, to formalize the generic concepts of the blockchain.
With the help of the OntoGraph Plugin for Protégé,
a graph showing the generic part of the ontology is
presented Fig. 11.

e sbo, to formalize the concepts specific to DApps.
A graph showing the DApp-specific part of the ontology
is presented Fig. 12.

« bpo, to formalize different blockchain patterns. The part
dedicated to the blockchain patterns of the ontology is
presented Fig. 13. We will then list all the blockchain
patterns that we have formalized, as well as examples of
their application.

49912

B. CLASSES
This subsection details the set of main classes in our ontology.
Each class represents a concept related to blockchain or
DApps, and can be described by an annotation, constraints,
as well as with example individuals of that class. The con-
straints of each concept can be linked to another concept
of the ontology, or not. In the first case, the ontology will
represent the constraint through object properties or Object-
Properties. Otherwise, the ontology will represent it through
a data property or DataProperties.

Hereafter we present some of the concepts, including
their annotation in natural language, we formalize in the our
blockchain ontology extension.

1) GBO:BLOCKCHAIN

a: ANNOTATION

According to NIST, a blockchain is a collaborative ledger that
is resistant to tampering and maintains transactional data [46].

b: CONSTRAINTS

The constraints of a gbo:Blockchain, described in the fol-
lowing list, represent all the data and classes related to this
concept. Concretely, these constraints will manifest in our
ontology as DataProperties and ObjectProperties.

o Uses a Consensus Method, described in the class
gbo:ConsensusMechanism

« Contains Blocks, described in the class gbo:Block

« Average time to create a block (seconds), the average
time between each block

« Block size (bytes), the maximum size of each block

« Possibility of smart contracts (0/1)

« Finality (seconds, estimated confirmation time for a
fixed certainty threshold)

« Complexity of operations (if smart contracts possible)

o Cost of an operation (€/op)

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

[" foaf:Agent] |

gbo:BlockchainU
ser I

gb":Ke]wakzse] gbo:ERC20Contra
ct

gbo:HashFunctio l gbo:ERC721Contr l
act

gbo:SmartContra

ct
gbo:BlockchainC
lient

gbo:Oracle

gbo:C
chanism

gbo:BlockHeader

gbo:EthereumTra

nsaction
gbo:MaticCheckp
oint

gbo:MaticTransa
ction

gbo:SettledTran

gbo:InvalidBloc
k
{ saction

gbo:MaticBlock /

gbo:EthereumBlo gbo:ValidTransa gbo:FailedTrans
ction action

ck
FIGURE 11. Visualization of the generic part of our ontology, including

the main concepts related to blockchains.

sbo:P2PStorage. sbo:IPFS

sboCentralized sboNuliStorage
Storage

. —
*® sbo:Decentraliz.

edBlockchainApp...

sboRollps
sboMutichains |— @ oo}
T e
B Is
ofBasedLayerTwo

eoSogaragen
perbi

sbo:NullLayerTw

FIGURE 12. Visualization of the DApp-specific part of our ontology.
3 @ sbo:Decentraliz
bpo:NFTMarketpl |) : - =
e edBlockchainApp...
*© bpo:DAO_DBA bpo:NonBlocking \’ bpo:NFT_DBA bpo:SupplyChain
UI_DBA _DBA

FIGURE 13. Visualization of the part dedicated to the blockchain patterns
of our ontology.

*® bpo:Oracle_DBA

The constraints listed here correspond either to the
blockchain as a data structure (e.g. block size) or to the
characteristics of the protocol (e.g. the finality).

c: EXAMPLES OF POSSIBLE INDIVIDUALS
o Bitcoin: PoW, 360s, 4Mo, O,
0.10€ - 10€
o Ethereum: PoW, 14s, 1Mo, 1, 300s, N/A, 0.05€ - 5€

3600s, N/A,

VOLUME 10, 2022

« EOS: DPoS, 360s, 4Mo, 0, 3600s, N/A, 0.01€
o HyperLedger Fabric: PoA, 360s, 4Mo, 0, 3600s,
N/A, 0€

2) GBO:BLOCK

a: ANNOTATION

A block is the atomic unit of state changes within the
blockchain. It is cryptographically linked to the next block
by its hash.

b: CONSTRAINTS
« Contains a list of transactions, whose concept is formal-
ized in the class gbo:Transaction
« Size of a Block (bytes)

¢: EXAMPLES OF POSSIBLE INDIVIDUALS
o The first block of a blockchain is special because it

cannot reference previous blocks. It is called the Genesis
block.

3) GBO:TRANSACTION

a: ANNOTATION

Validated transactions are contained in a block. Before being
included in a block, a transaction is said to be ‘“‘awaiting
validation,” and belongs to a mempool.

b: EXAMPLES OF POSSIBLE INDIVIDUALS

o For each block, a particular transaction is called the
coinbase transaction. This is a transaction that pays the
miner of this block. This type of transaction is the only
one that allows a monetary creation.

o The sidechain Polygon needs to realize regular
checkpoints on Ethereum [47]. As described in
paragraph I[I-B1.g II-B1g Sidechains., these check-
points are transactions on Ethereum, and allow the
Polygon transactions included in the checkpoint to get
the same security as if they were regular transactions
on Ethereum. Ethereum uses a more secure consensus
algorithm than Polygon, so these checkpoints are funda-
mental to the proper functioning of the sidechain.

4) GBO:BLOCKCHAINUSER

a: ANNOTATION

A user of a blockchain is a human who owns and manages
an account on this blockchain. The access to this account
can be done through a third-party service such as Metamask,
or directly by the user if they own a node of the blockchain.
A user can be a cryptocurrency owner, a DApp user, or a
miner. A miner, for a blockchain operating by PoW, partic-
ipates in the creation of new blocks, secures the blockchain,
and is paid for this task.

5) GBO:CONSENSUSMECHANISM

a: ANNOTATION

A consensus mechanism is an algorithm for solving the
Byzantine Generals Problem [48]. In particular, it is used to

49913

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

define which blocks and transactions will be considered valid
by the network.

b: EXAMPLES OF POSSIBLE INDIVIDUALS
o Proof of Work
o Proof of Stake
o Delegated Proof of Stake
o Proof of Authority

6) GBO:SMARTCONTRACT

a: ANNOTATION

In our ontology, a smart contract is used by a DApp and is
included in a blockchain.

In addition to decentralized transfers of monetary value
through crypto-currencies, blockchains can also act as infor-
mation registers, being able to provide, for example, iden-
tity management and authentication of a person. Another
feature of some blockchains is the ability to run programs
on the blockchain. These programs are called ‘““smart con-
tracts,” and their execution has the same properties as other
transactions: immutability, pseudonymity, traceability and
reliability. The smart contract concept, initially proposed in
1997 by Szabo [49], can benefit greatly from the properties
of blockchains.

Vitalik Buterin proposed Ethereum [50] in 2014, the first
blockchain dedicated to smart contracts. Hyperledger Fab-
ric [51] is another example of such a blockchain, pushed
by International Business Machines Corporation (IBM) and
the Hyperledger consortium of the Linux foundation. The
latter is a private blockchain, which means that the con-
sensus algorithm used relies on the trust that users have in
the network administrators. Thus, the execution of a smart
contract on Hyperledger Fabric is not decentralized, unlike a
smart contract on Ethereum. Other technologies belonging to
the category of distributed ledgers, or Decentralized Ledger
Technologies (DLTs), of which blockchains are a part, can
offer smart contracts. El Ioini and Pahl [52] present the dif-
ferent types of DLTs that exist today, such as blockchains,
Tangle, Hashgraph or Sidechain.

7) SBO:DECENTRALIZEDBLOCKCHAINAPPLICATION
a: ANNOTATION
A DApp is an application that uses blockchain technology.
However, most existing DApps need other associated services
to work, such as a engine that can act as a front-end for the
application, storage solutions, or scalability solutions for the
blockchain used.

In section V-A, we define several SWRL rules that allow
us to infer the properties of a DApp from its characteristics
and the technologies it uses.

b: CONSTRAINTS
o Uses a gbo:Blockchain
o Uses at least one gbo:SmartContract
o Uses an engine as defined in the following via the
sbo:Engine class

49914

o Uses a sbo:LayerTwo as defined hereafter

o Uses a sbo:Storage as defined hereafter

« Number of transactions to execute

« Running costs

o Operating latency

« Amount of data storage required for operation

We detail all the DataProperties related to this class in the
section III-E.

8) SBO:ENGINE

a: ANNOTATION

Engines are a generic concept related to DApps. Depending
on the DApp considered, the associated engine can be a web
page, a game engine, an application management framework,
etc. We define sbo:Engine as tools allowing to develop inter-
faces for a DApp.

9) SBO:LAYERTWO

a: EXAMPLES OF POSSIBLE INDIVIDUALS
« Polygon
o Zero-Knowledge Rollups
o Validium

10) SBO:STORAGE

a: EXAMPLES OF POSSIBLE INDIVIDUALS
o Centralized Storage
o IPFS
« Filecoin

11) GBO:POLYGONCHECKPOINT

a: ANNOTATION

A Polygon checkpoint is an Ethereum transaction that
validates Polygon transactions. A new checkpoint is sub-
mitted every 30 minutes to synchronize Polygon with
Ethereum.

b: CONSTRAINTS
« Contains a list of Polygon transactions validated by this
checkpoint, referenced by their hash.
Appendix present additional classes of our ontology.

C. OBJECT PROPERTIES

ObjectProperties are relations between two of the concepts
defined in the ontology. Here, we define several properties,
related to the blockchain as a data structure (e.g. gbo:Contains
or gbo:IncludedIn), or to functional usage of actors or ser-
vices (e.g. gbo:Uses).

1) GBO:CONTAINS

The relationship gbo:Contains relates two objects when one
contains the other, from the point of view of data struc-
tures. Thus, a blockchain contains blocks, and blocks contain
transactions.

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

2) GBO:INCLUDEDIN
The relationship gbo:IncludedlIn is the inverse of the rela-

tionship gbo:Contains. Thus, a valid block is included in a
blockchain.

3) GBO:USES
The gbo:Uses relation is rather generic. It can represent an
actor who uses a system. For example, a blockchain user will
use a blockchain.

This relation is also suitable to indicate that a technology
needs another one to work. For example, a blockchain uses a
consensus method, and a DApp uses a blockchain.

4) GBO:NEXTBLOCK
The gbo:NextBlock relation is used to reference the next
block that is mined by a blockchain at a certain time.

5) GBO:LASTCHECKPOINT

The gbo:LastCheckpoint relation allows a blockchain that
uses a checkpoint system on another to reference the last
checkpoint created. For example, the Ethereum Polygon
sidechain regularly publishes checkpoints on the Ethereum
blockchain.

6) GBO:MINESFOR

The gbo:MinesFor relation connects a blockchain user to a
blockchain where he is a miner. This relation can only involve
blockchains with miners, thus using PoW as a consensus
method.

7) GBO:HASBENEFICIARY
The relation gbo:HasBeneficiary links a valid block of a
blockchain to the miner who mined it.

D. INDIVIDUALS BY CLASS

We define the individuals we need to properly formalize a
complete DApp. In particular, these individuals are necessary
to apply the SWRL rules that we define in section V-A.

1) GBO:BLOCKCHAIN
a: SBO:_POLYGONMAINNET
This individual represents the main Polygon blockchain.

b: SBO: ETHEREUMMAINNET
This individual represents the main Ethereum blockchain,
in its current version (ETH 1.0).

¢: SBO:_ETHEREUMROPSTENTESTNET

This individual represents a test version of the Ethereum
blockchain. This version, called Ropsten, runs by PoW, like
the main chain, and thus replicates the behavior of the main
chain quite well. As with the other testnets, the main differ-
ence with the Ethereum mainnet is that Ropsten’s cryptocur-
rency (the Ropsten ETH) has no financial value. Thus, it is
not possible to test or simulate the economic characteristics

VOLUME 10, 2022

of a DApp with a testnet. Indeed, since cryptocurrency has no
financial value in the testnet, a DApp actor who would have
an interest in acting in a certain way on the mainnet may not
behave in the same way on the testnet.

2) GBO:LAYERTWO

a: SBO:_POLYGONLAYERTWO

This individual is very similar to sbo:_PolygonMainnet. The
difference is that it is considered here as a scalability solution
for Ethereum, and not a simple blockchain. The associated
properties will therefore be different.

b: SBO:_NULLLAYERTWO

This individual allows to consider a DApp which does not
have a Layer Two. It will be useful when writing SWRL rules,
in section V-A.

3) GBO:DECENTRALIZEDBLOCKCHAINAPPLICATIONS

We have detailed three different cases of DApps useful for
B2Expand. The following three individuals represent DApps
with the same objective, that of managing LTR assets. How-
ever, they use different technologies. The objective is to
compare the characteristics of these individuals according to
the technologies used.

a: SBO:_DBAT
This individual represents a DApp using only Ethereum, with
no scalability solution in Layer Two.

b: SBO:_DBA2
This individual represents a DApp using Ethereum, as well as
its sidechain Polygon.

¢: SBO:_DBA3

This individual represents a DApp using only Polygon. Here,
Polygon is therefore used as the main blockchain and not as
a sidechain of Ethereum.

4) GBO:POLYGONTRANSACTION
We have defined three individuals that represent Polygon
transactions submitted at different times.

a: SBO:_POLYGONTRANSACTION1
This transaction is submitted to the Polygon blockchain on
10/18/2021 at 6:20pm.

b: SBO:_POLYGONTRANSACTION2

This transaction is submitted to the Polygon blockchain on
10/18/2021 at 18:45.

¢: SBO:_POLYGONTRANSACTION3
This transaction is submitted to the Polygon blockchain on
10/18/2021 at 18:50.

49915

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

5) GBO:POLYGONCHECKPOINT
We have also defined two individuals that represent two
successive Polygon checkpoints.

a: SBO:_POLYGONCHECKPOINT1

This transaction is submitted to the Ethereum blockchain on
10/18/2021 at 6:30pm.

b: SBO:_POLYGONCHECKPOINT2

This transaction is submitted to the Ethereum blockchain on
10/18/2021 at 7:00pm.

E. DATA PROPERTIES
DataProperties, are properties that link a class with basic data.
This data can be integers, character strings, dates, etc.

We have chosen to formalize the main data properties for a
few concepts, as well as those we need to apply SWRL rules
in the V-A section.

DApp-specific DataProperties are divided into four cate-
gories: costs, transaction counts, data quantities, and latency.

First of all, the Cost data allows us to formalize the different
costs of an application or of the services that make it up.
We have chosen to differentiate the costs paid by the user
from the costs paid by the developer of the DApp. Indeed,
some developers may prefer to perform some transactions
instead of the DApp users. This improves the user experience,
as users do not have to pay transaction fees for certain features
of the app. For example, many cryptocurrency exchanges
pay the transaction fee of withdrawing a cryptocurrency to
a user’s wallet. The costs of storing data and transactions on
a blockchain are also considered.

o Cost: Properties related to costs

e CostDevPerUser: Developer Costs per user

CostUser: Cost for each user

CostPerMb: Cost for a megabyte of storage

CostTx: Cost of a transaction

e CostBasicTx: Cost of a
cryptocurrencies

e CostTxTokens: Cost of a transfer of ERC-20
tokens, smart contract calls being more expen-
sive than basic transfer of cryptocurrencies

e CostTxDeploy: Cost of the deployment of a
smart contract.

transfer of

The NbTx data formalizes, for each DApp, an estimate of
the number of blockchain transactions to be realized for a
normal functioning of the application. This is an estimate
since it is difficult to predict precisely the use that different
users will have of the application. As with the differentiation
of developer and user costs, we differentiate between trans-
actions made by users and those made by the application’s
developers. As stated earlier, in some cases, a feature of a
DApp will only be called by developers. Other features, such
as the creation and purchase of ERC-721 assets on Ethereum,
will require multiple transactions, performed by both the
developer and users.

49916

One of the objectives of this formalization being to for-
malize the costs of an application, we also differentiate the
transactions that must be performed on a blockchain, from
those that can be performed on a scalability service such as
Layer Two. Indeed, the costs of transactions associated with
these services can be very different. It is therefore important
to know the constraints on the transactions in order to model
all the costs as well as possible.

o NbTx: Properties related to the number of transactions

needed for the application to function
e NbTxDevPerUser: Number of transactions the
developer needs to execute per user
e NbTxDevPerUserOnMainchain: Number of
transactions the developer needs to execute per
user on the main blockchain
e NbTxDevPerUserOnLayerTwo: Number of
transactions the developer needs to execute per
user on the Layer Two platform.
e NbTxPerUser: Number of transactions each user
needs to execute
e NbTxPerUserOnMainchain: Number of transac-
tions each user needs to execute on the main
blockchain
e NbTxPerUserOnLayerTwo: Number of transac-
tions each user needs to execute on the Layer
Two platform.

In a similar way to the number of transactions, the NbMb
properties are intended to model the quantities of data neces-
sary for the functioning of the application. As before, we dif-
ferentiate between data stored by the developer and by the
users. Indeed, in most applications, some data, such as user
accounts, are stored by the developers, whereas other data,
such as an executable of the application itself, are stored
locally on the users’ machines. We also differentiate between
data on the blockchain and data that can be stored outside the
blockchain.

o NbMb: Data properties related to the amount of data

needed to be stored for the application to function
e NbMbDevPerUser: Amount of data the developer
needs to store for each user
e NbMbDevPerUserOnMainchain: Amount of
data the developer needs to store for each user
on the main blockchain
¢ NbMbDevPerUserOnLayerTwo: Amount of
data the developer needs to store for each user
on the Layer Two platform
e NbMbDevPerUserOnStorage: Amount of data
the developer needs to store for each user on the
storage service.
e NbMbPerUser: Amount of data each user needs to
store
e NbMbPerUserOnMainchain: Amount of data
each user needs to store on the main blockchain
e NbMbPerUserOnLayerTwo: Amount of data
each user needs to store on the Layer Two
platform

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

*® sbo:Decentralz 4 bpo:Oracle_DBA l —[" bpe:MakerDAO
edBlockchainApp. .. T
1

lJ;JD.IZ\raw:\E,EIE:A‘«‘. - gholUses

*@ gbo:Oracle

FIGURE 14. Modeling of an example DApp.

e NbMbPerUserOnStorage: Amount of data each
user needs to store on the storage service.

Finally, the last type of DataProperties corresponds to the
notions of latency of an application. As reads on a blockchain
do not require the application of the consensus algorithm, it is
important to differentiate the latency in reading or writing of
the DApp and the services that compose it.

o Latency: Properties related to the latency of the

application
e LatencyReads: Read latency
e LatencyReadsStorage: Read latency of the stor-
age solution used by the application
e LatencyReadsTx: Read latency of a transaction.
e LatencyWrites: Write latency
e LatencyWritesStorage: Write latency of the stor-
age solution used by the application
e LatencyWritesTx: Write latency of a transaction.

Figure 14 shows the example of the model of an application
that uses an Oracle. We model the relation between the appli-
cation and the oracle with an Object Property. In the following
section, we present how to model different use cases such as
this one, through design patterns.

IV. MODELING OF BLOCKCHAIN DESIGN PATTERNS

In order to show the possibility of modeling, thanks to our
ontology and various use cases, we decided to model different
design patterns existing in the blockchain industry. These pat-
terns correspond either to types of blockchain use cases, or to
design methods for a DApp element. The term blockchain
pattern is taken up by Xu et al. [53] to study the design
patterns used in the blockchain industry.

A. NFT MANAGEMENT DAPP
Many of the existing DApps aim to manage NFTs, usually
symbolized by ERC-721 tokens. Most NFT management
DApps, such as the one developed by B2Expand, create a new
NFT by modifying the state of an existing contract.
However, some projects, such as Mintable [54], offer
NFT creators two other alternatives. First of all, they have
deployed a smart contract allowing the free creation of NFT,
called Gasless minting. The created NFT is indeed on the
blockchain, but the cost of changing the state of the contract is
paid by the buyer of an NFT, only at the time of its purchase.
By this system, a seller does not need to pay for the creation
of unsold assets.

VOLUME 10, 2022

FIGURE 15. Example of an NFT Marketplace, https://opensea.io.

In addition, they offer another contract that makes it easy
to deploy a sales contract, even for a single NFT. This also
allows for more customization of each NFT. However, it also
increases the costs considerably.

An example of a DApp that follows this blockchain pattern
is CryptoKitties [55]. This DApp gives the possibility to
players to collect virtual cats. These cats are NFT, and players
can buy, sell, or breed them. Each CryptoKitty has a set of
attributes, giving it a higher or lower financial value. Fig. 15
shows various NFTs on sale. Each on of these NFT can be
used in a specific DApp built around them.

The DataProperties specific to NFT management DApps
are as follows:

« DeployContractForEachNFT: Defines whether to deploy

a smart contract for each NFT or not

o GaslessMinting: Defines whether the creation of NFTs

is free or not.

These two properties are sufficient to describe the funda-
mental characteristics of such an application. In particular,
they allow to formalize the costs of asset creation. Another
important property for such a DApp is the storage solution
used for the asset images. Cryptokitties uses a centralized
storage of NFT metadata, like most NFT management appli-
cations. However, this property is not exclusive to such appli-
cations, and our ontology proposes the formalization of the
storage solution used for all DApps through the sbo:Storage
class.

B. NFT MARKETPLACE

NFT Marketplaces, such as OpenSea [56], propose to their
users the purchase and sale of NFT. Fig. 15 shows the user
interface of OpenSea.

On this application, sellers are mostly companies that sell
their NFTs, or users of the secondary market. On average,
they will generate a large number of NFT creation and sale
transactions on the platform.

On the other hand, buyers have a low number of transac-
tions: few of them buy hundreds of different NFTs. It can then
be interesting to differentiate in the modeling of the DApp the
two types of users.

The DataProperties specific to NFT Marketplaces are as
follows:

« UserBuyer: Properties related to an NFT Buyer

49917

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

e NbTxPerUserBuyer: Number of transactions each
user buyer needs to execute
e NbTxPerUserBuyerOnMainchain: Number of
transactions each user buyer needs to execute on
the main blockchain
e NbTxPerUserBuyerOnLayerTwo: Number of
transactions each user buyer needs to execute on
the Layer Two platform.
e NbMbPerUserBuyer: Amount of data each user
buyer needs to store
e NbMbPerUserBuyerOnMainchain: Amount of
data each user buyer needs to store on the main
blockchain
e NbMbPerUserBuyerOnLayerTwo: Amount of
data each user buyer needs to store on the Layer
Two platform
e NbMbPerUserBuyerOnStorage: Amount of data
each user buyer needs to store on the storage
service.
o UserSeller: Properties related to an NFT Seller
e NbTxPerUserSeller: Number of transactions each
user seller needs to execute
e NbTxPerUserSellerOnMainchain: Number of
transactions each user seller needs to execute on
the main blockchain
e NbTxPerUserSellerOnLayerTwo: Number of
transactions each user seller needs to execute on
the Layer Two platform.
e NbMbPerUserSeller: Amount of data each user
seller needs to store
e NbMbPerUserSellerOnMainchain: Amount of
data each user seller needs to store on the main
blockchain
e NbMbPerUserSellerOnLayerTwo: Amount of
data each user seller needs to store on the Layer
Two platform
e NbMbPerUserSellerOnStorage: Amount of data
each user seller needs to store on the storage
service.

We use the same DataProperties that we defined in
section III-E, relating to the transaction costs and data storage
of the application. However, the two types of users will not
use the application in the same way, so a duplication of the
user properties is made to take these differences into account.

C. DECENTRALIZED AUTONOMOUS ORGANIZATIONS
DAOs [57], are DApps operating on the model of companies.
Thus, like the shares of a company, a DAO has a token,
which offers to its owners access rights to the governance of
the DAO. This governance can concern the updating of the
application, its properties, etc.

A well-known example of a DAO is MakerDAO, which
manages the Dai [58] stablecoin. The token associated with
the DAO is Maker, and Maker owners can vote to influence
many parameters of the application. The different governance
interactions on this DAO are presented in Fig. 16. We see

49918

Governance Module Oracle Module

. DS Shutdown
H MOdUIe

Main Module of MakerDAO

User owning

MKR tokens

Collateral
Module

Stabilization Module Fees Module

ﬂ

FIGURE 16. Example of a DAO, adapted from https://github.com/
makerdao/dss/wiki#system-architecture. This figure shows the set of
MakerDAO services that a user responsible for governance can
influence.

flip

in this diagram the whole of the modules of the DApp that
the owners of the Maker (MKR) token can influence. These
influences can be related to the classical functioning of the
application, such as a modification of the loan rates or the
stabilization of the protocol, but also on the critical function-
ing such as the shutdown of the system in case of a particular
event like a fault or an abnormal behavior of the markets.
Finally, our ontology proposes to model DAOSs in a similar
way as NFT Marketplace, differentiating two types of users:
o Those who are responsible for the governance of the
DAO,
o Those who simply use the services of the DAO.
The DAO-specific DataProperties are the following, for
which we use the same nomenclature as before:
« UserForGovernance: Properties related to a user that
participate in the governance of the DAO
e NbTxPerUserForGovernance: Number of transac-
tions each governance user needs to execute
e NbTxPerUserForGovernanceOnMainchain:
Number of transactions each governance user
needs to execute on the main blockchain
e NbTxPerUserForGovernanceOnLayerTwo:
Number of transactions each governance user
needs to execute on the Layer Two platform.
e NbMbPerUserForGovernance: Amount of data
each governance user needs to store
e NbMbPerUserForGovernanceOnMainchain:
Amount of data each governance user needs to
store on the main blockchain
o NbMbPerUserForGovernanceOnLayerTwo:
Amount of data each governance user needs to
store on the Layer Two platform
e NbMbPerUserForGovernanceOnStorage:
Amount of data each governance user needs to
store on the storage service.
o TargetUser: Properties related to a target user of the DAO
o NbTxPerTargetUser: Number of transactions each
target user needs to execute

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

e NbTxPerTargetUserOnMainchain: Number of
transactions each target user needs to execute on
the main blockchain

e NbTxPerTargetUserOnLayerTwo: Number of
transactions each target user needs to execute on
the Layer Two platform.

e NbMbPerTargetUser: Amount of data each target
user needs

e NbMbPerTargetUserOnMainchain: Amount of
data each target user needs to store on the main
blockchain

e NbMbPerTargetUserOnLayerTwo: Amount of
data each target user needs to store on the Layer
Two platform

e NbMbPerTargetUserOnStorage: Amount of data
each target user needs to store on the storage
service.

D. ORACLES

Oracles are solutions for reading data from the outside world
into a blockchain. To do this, DApp developers must define
data sources that are considered secure. The values taken
by these data sources can then be used as a source of
truth.

The DAO MakerDAO, for example, requires for its opera-
tion that the DAO’s smart contracts have access to the current
price values of different cryptocurrencies. Indeed, Maker-
DAO users can recover Dai by placing different cryptocur-
rencies such as Ether as collateral. Collateral is a monetary
value, in this case in cryptocurrency, that the user transfers
to the contract. They will only be able to get this currency
back if they repay the loan in Dai granted by the contract.
In case the user does not repay the loan, then the contract
keeps the collateral as compensation. The contract thus needs
to know the value of the Ether to know how much Dai a
user can receive from the value of the collateral they have
placed. For this, a certain list of ETH price data sources are
defined and managed by Omnia Relay. A consensus system
for choosing the final value taken into account must also
be defined. Liu er al. [59] specify the critical aspect of the
received information: if the coalition of actors allowed to act
on the oracle act maliciously, the currencies collateralized
within the system become vulnerable. This example is spec-
ified in Fig. 17.

In this figure, several cryptocurrency exchanges provide
real-time prices of different cryptocurrencies through their
API. Then Omnia aggregates all these values, and pro-
vides them to MakerDAO contracts. Omnia’s addresses are
whitelisted to manage access to this functionality of the con-
tracts. The smart contracts then calculate the final value of the
prices they take into account.

Within our ontology, we can model the fact that a certain
DApp uses an Oracle. However, this does not a priori impact
the characteristics of the DApp we are studying, in terms of
cost or latency.

VOLUME 10, 2022

Blockchain

ETH median
market price OSM ETH

Exchange A

Main smart
OSMIBGD contrat

DGD median

Exchange B market price

Omnia
Relay

1

BAT median OSM BAT
market price

Exchange C

FIGURE 17. Example of an Oracle, inspired from https://docs.makerdao.
com/smart-contract-modules/oracle-module.

Farmer Producer Distributor Retailer Consumer

Blockchain

query

EEE

v
Blockchain ‘ ‘

Block 0 Block 1 Block2 Ltid Block N Block N+1

FIGURE 18. Example of an application of blockchain technology in supply
chain, inspired from https://resolvesp.com/blockchains-supply-chains-
part-ii.

E. SUPPLY CHAINS

The traceability of the transactions brought by the blockchain
makes this technology relevant for the supply chain
domain [60]. In particular, it is interesting to have a complete
traceability of products, according to their references. Each
reference corresponds to a family of identical products. For
example, a furniture seller can propose in their catalog two
references of tables and one reference of chair. Each of these
references can then be produced in a certain number of units.
The salesman could have 2000 different products: 250 tables
of each reference and 1500 chairs.

Thus, for such DApps, a formalization centered on
products and product references is relevant, and forms a
blockchain pattern, presented in Fig. 18. This example shows
a process of breeding and production of meat, in which all
the actors involved in this process are users of the DApp. The
different actors scan QR-codes allowing the data to be put on
the blockchain in a simplified way for the users. At the end,
the traceability of all products can be realized.

The DataProperties specific to supply chain DApps are the
following, for which we use the same nomenclature as before:

o Product: Properties related to a product

e NbTxPerProduct: Number of transactions for each
product
e NbTxPerProductOnMainchain: Number of tra-
nsactions for each product on the main
blockchain

49919

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

e NbTxPerProductOnLayerTwo: Number of trans-
actions for each product on the Layer Two
platform.

e NbMbPerProduct: Amount of data to store for each
product

e NbMbPerProductOnMainchain: Amount of data
to store for each product on the main blockchain

e NbMbPerProductOnLayerTwo: Amount of data
to store for each product on the Layer Two
platform

e NbMbPerProductOnStorage: Amount of data to
store for each product on the storage service.

« Reference: Properties related to a specific product’s ref-

erence in the supply chain DApp
e NbTxPerReference: Number of transactions for
each reference

e NbTxPerReferenceOnMainchain: Number of
transactions for each reference on the main
blockchain

e NbTxPerReferenceOnLayerTwo: Number of
transactions for each reference on the Layer Two
platform.

e NbMbPerReference: Amount of data to store for
each reference

e NbMbPerReferenceOnMainchain: Amount of
data to store for each reference on the main
blockchain

e NbMbPerReferenceOnLayerTwo: Amount of
data to store for each reference on the Layer Two
platform

o NbMbPerReferenceOnStorage: Amount of data
to store for each reference on the storage service.

In the case of blockchain Apps, we use the same pattern as
defined in III-E. This pattern is illustrated by the NFT market
place pattern.

However, here we do not differentiate according to the type
of user, but according to the type of use of the application.
A DApp with a single reference with many products will not
be used in the same way as a DApp with many references
in very limited quantities. Using the example of furniture
sellers, the DApp of a seller offering 100000 products through
a single reference will not have the same needs as a seller
offering 50 products through 25 references. Indeed, in this
last case, the DApp would need a way to search and filter the
different references to make it easy for the buyer. The smart
contracts developed need additional functionalities as a result.

F. NON-BLOCKING USER INTERFACES

A last blockchain pattern that we formalized corresponds to
non-blocking user interfaces, proposed by Ojha [61]. With
this type of user interfaces, a user can initiate several actions,
without having to wait for the first action to be completed.
This pattern is important in the blockchain domain, since
this domain relies heavily on event-driven programming. This
pattern describes that within a DApp, the user interface must
not be blocking.

49920

Notifications

The Notifications tab lists all recent operations/transactions
invoked by the user and their status.

Iy uploaded.

[PDFI Document tempor incididunt successfully uploaded.

IxtS] Docur slly uploaded.

[PDF] Repret

FIGURE 19. Example of a non-blocking user interface, taken from [61].

Fig. 19 shows an example of use of this blockchain pattern.
It represents a website where a user can upload files in an
interface, and use them. As uploading can take some time,
a queue is visible on the left side of the figure. The user can
interact with their uploaded files while others are still in the
queue: adding a new file to the queue is non-blocking.

Concretely, for our ontology, we have chosen to differen-
tiate the actions that can be performed simultaneously, and
the actions that must be sequential. For example, for a DApp
allowing the creation and sale of NFTs, a user who wishes
to create one must upload an image file. Before the end of
the file transfer, the user keeps the control of the application
and can modify the description of the created NFT. These two
actions can therefore be performed simultaneously. On the
other hand, when another user wants to buy this NFT, they
have to wait for the confirmation of the transaction before
they can own it and use it, for example in a game. The pur-
chase of the NFT is a blocking action for its use. However, the
transaction can take several minutes before being validated.
Thus, the application must leave the control to the user until
the transaction is completed. Indeed, the user may decide to
buy another NFT before the transaction purchasing the first
one is completed.

The DataProperties specific to DApps implementing the
blockchain pattern of non-blocking user interfaces are:

o ActionQueueSize:

available
o ActionCriticalQueueSize: Maximal number of sequen-
tial user actions.

Total number of wuser actions

G. SYNTHESIS ON BLOCKCHAIN PATTERNS
For each of these blockchain design patterns, we have defined
DataProperties useful for their modeling. Thus, if we wish to
model any application within our ontology, it is possible to
use the DataProperties in order to create an adapted model.
We did not need to add any new concepts or object properties.
Indeed, the existing concepts and ObjectProperties are suffi-
cient to formalize the blockchain patterns presented above.
It will then be necessary to write SWRL rules that allow to
use these properties in order to deduce the operating charac-
teristics of the concrete application. Indeed, it is difficult to
write generic SWRL rules for each pattern, which do not need

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

ValidBlock

i

i
@ ValidTransaction

. Transaction
Transaction .
List

FIGURE 20. Graphical representation of rule 1. On the left, the
antecedent of the rule. On the right, its consequent.

elements specific to the application to be modeled. However,
the study of the SWRL rules present in the ontology allows
the researchers to easily adapt them to their application, and
thus to deduce an exhaustive modeling.

V. SEMANTIC WEB RULE LANGUAGE (SWRL)

A. SWRL AXIOMS DEFINITIONS

SWRL [62] is a language used to express rules acting on an
OWL ontology. Each rule can be used by an inference engine
to deduce ew axioms for the ontology. Then, new rules can
be written in an iterative process.

SWRL rules follow a specific pattern. We define axioms
that constrain individuals or their relations. These axioms can
be part of the antecedent or the consequent of the rule. If each
axiom of the antecedent is verified, then each axiom of the
consequent will be verified as well.

1) RULES DEFINED FOR OUR ONTOLOGY

In the following, we describe 17 SWRL rules we defined for
our blockchain ontology. First of all, the rules 1, 1bis and
2 define constraints on the main concepts of blockchain tech-
nology, and ensure our ontology formalizes the technology
accurately.

Then, the rules 3 to 6 define constraints on the relation
between the Ethereum blockchain and its sidechain Polygon.
They let us understand how these two blockchains operate
together, which improves their interoperability.

We then propose ten rules specific to DApps constraints,
numbered A to D4. For example, they can deduce the cost and
latency characteristics of a DApp, given its properties and the
services used by the DApp.

a: RULE 1

A transaction included in the transaction list of a valid block
is itself valid.

I gbo:Transaction (?x) A

gbo:TransactionList () A
gbo:ValidBlock (?b) A

+ gbo:Contains (?b,) A

s gbo:Contains (, ?X)

6 H

gbo:ValidTransaction (?x)

LISTING 1. Rule 1.

VOLUME 10, 2022

Transaction

List Block
X
["
1 ’
Invalid
Block
1
1
Failed

Transaction

FIGURE 21. Graphical representation of the rule 1bis. On the left, the
sequence of properties of the antecedent of the rule. On the right, the
consequent of the rule.

The rule of listing 1 is simple. The lines 1 to 3 define
the three individuals used: a transaction ?x, a transaction list
?1ist, and a valid block ?b. Then, lines 4 and 5 define their
inclusion: the ?b block contains the list ?11ist, which con-
tains the transaction ? x. Finally, line 7 defines the consequent
of the rule, which is that the transaction ?x is valid if all the
axioms of the antecedent are valid.

The Protégé plugin called Aided OWL Notation
(AOWLN) [63] gives a graphical representation of this rule,
shown in Fig. 20. On the left, the antecedent of the rule. On the
right, its consequent.

b: RULE 1BIS
A block that contains in its transaction list an invalid transac-
tion is not valid.

1 gboiFailedTransaction (?x) A

gbo:TransactionList () A
gbo:Block (?b) A

. gbo:Contains (?b,) A
gbo:Contains (, ?X)

6 %

gbo:InvalidBlock (?b)

LISTING 2. Rule 1bis.

The listing rule 2 is thus complementary to the first rule,
and is based on the same construction principle. Lines 1 to 3
define the three individuals used: a failed transaction ?x,
a transaction list ?11ist, and a block ?b. Then, lines 4 and 5
define their inclusion relations, and line 7 defines the conse-
quence of the rule.

As before, we use the AOWLN plugin to obtain a graphical
representation of this rule in Fig. 21.

c: RULE 2
A valid block on a blockchain using PoW is necessarily a
block mined by a person on that same blockchain.

Like the previous rules, this second rule, defined in the
listing 3, deals with the basic concepts of blockchains. The
first four lines define the individuals used: a blockchain
?blockchain, a valid block ?b, the proof of work ?pow
and a blockchain account ?x. Line 5 ensures that the

49921

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

I gbo:ValidBlock (?b) A
gbo:Blockchain () A
gbo:ProofOfWork (?pow) A

1+ gbo:BlockchainAccount (?x) A

s gbo:Uses (, ?pow) A

s gbo:Contains (; 2b) A
gbo:HasBeneficiary (?b, ?x)

8 —>

s gbo:MinesFor (?x,)

LISTING 3. Rule 2.

considered blockchain works by PoW, the other consensus
methods not having miners. Lines 6 and 7 define respectively
the links “the blockchain ?b1lockchain contains the block
20" and “‘the block ?b is mined by the account ?x.” Finally,
the last line concludes that ?x mines for ?blockchain.

d: RULE 3

If a Polygon transaction is referenced by its hash within a
valid Ethereum transaction, then it is also valid.

i gbo:PolygonTransaction (?x) A
gbo:EthereumTransaction (?y) A
gbo:ValidTransaction (?y) A

+ gbo:HasHash (?x, ?h) A

s gbo:Contains (?y, ?h)

6 —
gbo:ValidTransaction (?x)

LISTING 4. Rule 3.

The rule in the listing 4, as well as the three following
ones, deals with the links between the Ethereum blockchain
and its Polygon sidechain. Here, we consider that a Polygon
transaction is fully validated by Ethereum via a Checkpoint.

We define lines 1 to 3 a Polygon transaction, an Ethereum
transaction that is also a valid transaction. Lines 4 and 5 state
that the Ethereum transaction must contain the hash of the
Polygon transaction. In this case, line 7 states that this
Polygon transaction is valid.

e: RULE 4

If a Polygon transaction has existed for more than a week,
then it is either valid or invalid. This means that the transac-
tion is no longer awaiting validation by a challenge, since the
time limit for someone to provide proof of the transaction’s
invalidity has passed.

The listing 5 defines a fourth rule, a little more complex
than the previous ones. It relies on the fact that Polygon
works through a system of Fraud proof as defined in the II-B1
section. Thus, if a transaction between Polygon and Ethereum
is propagated by a node, the other nodes of the network
have one week to contradict the given claims. Therefore, if a
Polygon transaction is older than 7 days, then it is either
validated or rejected by the network.

49922

I gbo:Polygon () A
gbo:PolygonTransaction (?x) A
gbo:TxSubmittedTime (?x, ?y) A
gbo:Contains (, ?x) A
gbo:LastBlockTime (, 2z) A

s swrlb:dayTimeDuration (

; 1, 0, 0,
0) A
swrlb:subtract (
; 2z, 2y) A
s swrlb:greaterThan (

1 —
» gbo:SettledTransaction (?x)

LISTING 5. Rule 4.

TimeDurationVariable)

dayTimeDuration

dayTimeDurationVariable

FIGURE 22. Graphical representation of the rule 4. On the left, the
sequence of properties of the antecedent of the rule. On the right, the
consequent of the rule.

Here, lines 1 to 4 define a Polygon transaction that
is time-subjected and included in the Polygon blockchain.
In lines 5 to 10, we use functions provided by SWRL, called
built-ins, which allow time management. We compute the
time difference between the transaction submission time ?x
and the time of the last Polygon block, ?z. We then compare
this gap to a time literal describing the delay of one week.
Lines 8 to 12 indicate that if the time difference is greater
than one week, then the transaction is either valid or invalid.

Again, AOWLN allows us to obtain Fig. 22. We see graph-
ically that the rule involves more complex constraints than
before.

f: RULE 5
The Polygon sidechain is periodically saved on the Ethereum
mainchain (in the form of a Merkel root of new blocks).
Similarly to rule 4, we use the built-ins of SWRL time. The
rule in the listing 6 proposes to include a Polygon checkpoint
on the next block mined on Ethereum. However, one must be
aware that this rule is not necessarily respected, but rather
reflects the expected functioning of Polygon. Indeed, each

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

I gbo:Polygon (?m) A
gbo:LastBlockTime (?m, ?y) A
gbo:LastCheckpointTime (?m, ?z) A
swrlb:dayTimeDuration (

0, 30, 0) A
swrlb:subtract (
; 2?2z, 2y) A

s swrlb:greaterThan (

) A
v gbo:Ethereum () A
0 gbo:NextBlock (, ?b) A
i gbo:PolygonCheckpoint (?h)
2 —

3 gbo:Contains (?b, ?h)

LISTING 6. Rule 5.

miner chooses the transactions they include in their blocks.
The miner of the next block can thus choose not to include the
Polygon checkpoint, even if it has already been propagated
through the network. Indeed, the users of a blockchain prop-
agate desired transactions through the network: transactions
waiting for validation are included in the mempool. However,
nothing prevents a miner from not including a certain trans-
action in the created block.

We define lines 1 to 3 the Polygon blockchain, the date
of its last block and the date of the last Checkpoint per-
formed. Then, lines 4 to 8, we look if the difference between
these two times is more than 30 minutes. In lines 9 to 11,
we define the Ethereum blockchain, its next block, and a
Polygon checkpoint. Finally, line 13 concludes that if the last
Polygon checkpoint is more than 30 minutes old, then a new
Checkpoint will be included in the next Ethereum block.

g: RULE 6

A Polygon transaction is included in a Polygon checkpoint
if it is submitted between the date the Polygon transaction is
submitted, but not later than 30 minutes.

1 gbo:PolygonTransaction (?tx) A
gbo:TxSubmittedTime (?tx, ?x) A
gbo:PolygonCheckpoint (?checkpoint) A

+ gbo:TxSubmittedTime (?checkpoint, ?y) A

s temporal:add (?xPlusHalfHour, ?x, 30, "

Minutes") A

o temporal:before (?x, ?y) A

» temporal:before (?y, ?xPlusHalfHour)
%

s> gbo:IncludedIn (?x, ?checkpoint) A

0w gbo:Contains (?checkpoint, ?x)

LISTING 7. Rule 6.

The rule of the listing 7 allows to link a Polygon transaction
to the Ethereum transaction in which it is included, by the

VOLUME 10, 2022

checkpoint process. Lines 1 to 4 allow to define a Polygon
transaction ?tx submitted to a time ?x, as well as a Polygon
checkpoint ?checkpoint submitted to a time ?y. Then,
we use the temporal time built-ins which allow some calcu-
lations on dates, in a more robust way than those included in
SWRL. Lines 5 through 7 ensure that the transaction is older
than the checkpoint, but not older than 30 minutes. If these
constraints are not met, the transaction would be included
within another checkpoint. Lines 9 and 10 define the object
properties linking the Polygon transaction and its checkpoint:
the transaction ?tx is included in the checkpoint, and the
checkpoint ?checkpoint contains the transaction.

h: SPECIFIC RULE A

Specific Rules A to D4 allow to constrain the concept of
DApp and their properties, according to the services used by
the application.

The rule in the listing 8 allows to deduce the developer
costs of a DApp, from the number of transactions to be per-
formed, the amount of data to be stored, and the technologies
used by the application.

i sbo:DecentralizedBlockchainApplication (
) A
gbo:Uses (,)
i gbo:Blockchain ()
+ gbo:Uses (,) N
5 sbo:LayerTwo () A
s gbo:Uses (.) A
sbo:Storage () A
s sbo:NbTxDevPerUserOnMainchain (, ?a)
A
o sbo:CostTx (, ?b) A
0 sbo:NbTxDevPerUserOnLayerTwo (p @)
A
11 sbo:CostTx (, 2d) A
» sbo:NbMbDevPerUserOnMainchain (, ?e)
A
5 sbo:CostPerMb (, 2f) A
1+ sbo:NbMbDevPerUserOnLayerTwo (; 29)
A
5 sbo:CostPerMb (, 2h) A
16 sbo:NbMbDevPerUserOnStorage (, 21) A
7 sbo:CostPerMb (r 27) A
s swrlbmultiply (?productl, ?a, ?b
v swrlbmmultiply (?product2, 2c
» swrlbmultiply (?product3, ?e, ?2f
swrlbmultiply (?product4,
swrlbmultiply (?product5, ?2i, ?7)
swrlb:add (?k, ?productl, ?productz,
?product3, ?product4, ?product))
. —r
sbo:CostDevPerUser (, ?k)

A
A

>>>>>

LISTING 8. Specific Rule A.

Rules A and B are relatively complex since they consist
in the calculation of the costs associated with the considered
DApp.

49923

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

Lines 1 to 7 define a DApp and the technologies used by
it: the blockchain used ?blockchain, the transaction scal-
ability solution 212, and the storage solution ?storage.
If a DApp does not use one of these services, the individual
will simplybeaNullLayerTwooraNullStoage, which
does not interfere in the rest of the rule.

Then, lines 8 to 17 aim at defining the characteristics of
the DApp, thus the number of transactions to be carried out
by the developer and the quantity of data to be stored, as well
as the properties of the blockchain services used: the costs of
the transactions and the data storage. Lines 18 to 23 use this
data to calculate the cost of the DApp, which is applied in
property of the DApp in line 25. The calculation formula is
as follows:

CostDevPerUser

= NbTxDevPerUserOnMainchain x CostTXpjockchain
+ NbTxDevPerUserOnLayerTwo x CostTXLayerTwo
+ NbMbDevPerUserOnMainchain x CostPerMby)ockchain
+ NbMbDevPerUserOnLayerTwo x CostPerMbr ayertwo
+ NbMbDevPerUserOnStorage x CostPerMbsiorage

i: SPECIFIC RULE B

The listing 9 describes the specific rule B, which makes it
possible to deduce the user costs of a DApp, starting from the
number of transactions to be carried out, the quantity of data
to be stored, and the technologies used by the application.
This rule is therefore analogous to rule A, but for user and
non-developer costs.

This rule reproduces exactly the same pattern as the pre-
vious one, but considers user costs instead of developers.
Lines 1 to 7 define a DApp and the technologies used by it.
Then, lines 8§ to 17 aim at defining the characteristics of the
DApp. Lines 18 to 23 use this data to calculate the cost of the
DApp, which is applied in property of the DApp in line 25.
The calculation formula is as follows:

CostPerUser
= NbTxPerUserOnMainchain x CostTXBjockchain
+NbTxPerUserOnLayerTwo x CostTXLayerTwo
+NbMbPerUserOnMainchain x CostPerMbgiockchain
+NbMbPerUserOnLayerTwo x CostPerMbyayerTwo
+NbMbPerUserOnStorage x CostPerMbstorage

J: SPECIFIC RULES C
The rules described below allow to deduce the latency (in
reading and writing) of the transactions of a DApp.

Fig. 23 shows the graph obtained with AOWLN for the first
of these rules.

The rule C1 of the listing 10 allows to deduce the read
latency of the transactions of a DApp, when a transaction
scalability service is used by the application.

49924

sbo:DecentralizedBlockchainApplication (

) A
gbo:Uses (0) A

s gbo:Blockchain () A

1+ gbo:Uses (.) A

s sbo:LayerTwo () A

o« gbo:Uses (.) A

7 sbo:Storage () A

s Sbo:NbTxPerUserOnMainchain (,2a) A
v sbo:CostTx (, ?b) A
0 sbo:NbTxPerUserOnLayerTwo (,2c) A
11 sbo:CostTx (, 2d) A
2 sbo:NbMbPerUserOnMainchain (, 2e) A
3 sbo:CostPerMb (, 2E) A
1= sbo:NbMbPerUserOnLayerTwo (; ?29) A
5 sbo:CostPerMb (, 2h) A
v sbo:NbMbPerUserOnStorage (;, 21) A
I sbo:CostPerMb (; 23) A

s swrlbmultiply (?productl, ?a, ?b
v swrlbmultiply (?product2, ?c, -
0 swrlbmultiply (?product3, ?2e, ?
a swrlbmultiply (?product4, ?g, ?h
swrlbmultiply (?product5, ?i, ?7)
swrlb:add(?k, ?productl, ?product2z,
?product3, ?producti4, ?producth)
% —>
sbo:CostUser (, ?k)

> > > > >

LISTING 9. Specific Rule B.

Decentralized

Blockchain
Application
!
Decentralized
Blockchain
Application
i
LayerTwo Latency

ReadsTx

Latency
ReadsTx

FIGURE 23. Graphical representation of the specific rule C1. On the left,
the sequence of properties of the antecedent of the rule. On the right, the
consequent of the rule.

The C2 rule of the listing 11 specifies that a DApp
may not implement a scalability service. The class
sbo:NullLayerTwo allows to manage this case easily.

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

I sbo:DecentralizedBlockchainApplication (

) A
gbo:Uses (’) A
sbo:LayerTwo () A
. sbo:LatencyReadsTx (, ?lat)
—
s sbo:LatencyReadsTx (, ?lat)

LISTING 10. Specific Rule C1.

I sbo:DecentralizedBlockchainApplication (
) A
gbo:Uses (’) A
sbo:NullLayerTwo () A
. gbo:Uses (o)
s gbo:Blockchain ()
o sbo:LatencyReadsTx (0
%
s sbo:LatencyReadsTx (o

> >

?lat)

?lat)

LISTING 11. Specific Rule C2.

sbo:DecentralizedBlockchainApplication (

) A
gbo:Uses (v) A
sbo:LayerTwo () A
+ sbo:LatencyWritesTx (, 2lat)
_>
¢ sbo:LatencyWritesTx (, ?lat)

LISTING 12. Specific Rule C3.

The C3 rule, defined by the listing 12, allows to deduce the
latency in writing transactions of a DApp, when a transaction
scalability service is used by the application.

i sbo:DecentralizedBlockchainApplication (
) A
gbo:Uses (0) A
sbo:NullLayerTwo () A
+ gbo:Uses (o)
s gbo:Blockchain ()
s sbo:LatencyWritesTx (.
*>
s sbo:LatencyWritesTx (,

> >

?lat)

?lat)

LISTING 13. Specific Rule C4.

The rule C4 proposed in the listing 13 specifies that a
DApp may not implement a scalability service. The class
sbo:NullLayerTwo allows to manage this case easily.

k: SPECIFIC RULES D
The rules described below are used to deduce the latency
(read and write) of a DApp’s data storage.

VOLUME 10, 2022

i sbo:DecentralizedBlockchainApplication (

) A
gbo:Uses (,) A
sbo:Storage () A
. sbo:LatencyReadsStorage (, ?lat)
—
s sbo:LatencyReadsStorage (, ?lat)

LISTING 14. Specific Rule D1.

Rule D1 in the listing 14 is used to infer the read latency of
a DApp’s data storage, when a storage service is used by the
application.

sbo:DecentralizedBlockchainApplication (
) A
gbo:Uses (.) A
sbo:NullStorage (
4+ gbo:Uses (;)
s gbo:Blockchain ()
s sbo:LatencyReadsStorage (7
?lat)
N

s sbo:LatencyReadsStorage (, ?lat)

LISTING 15. Specific Rule D2.
The D2 rule of the listing 15 specifies that a DApp may not

implement a storage service. The class sbo:NullStorage
allows to manage this case easily.

I sbo:DecentralizedBlockchainApplication (

) A
gbo:Uses (.) A
sbo:Storage () A
. sbo:LatencyWritesStorage (, 2lat
)
_>
s sbo:LatencyWritesStorage (, ?lat)

LISTING 16. Specific Rule D3.

The listing 16 introduces a new rule, D3, which is used
to infer the write latency of a DApp’s data storage, when a
storage service is used by the application.

Similarly to rule D2 we specified a rule to infer the write
latency regarding a DApps without a storage service, which
is then managed with the class sbo:NullStorage.

2) OPEN WORLD ASSUMPTION ISSUES

OWL is a language supporting Open World Assumption
(OWA). OWA means that OWL considers as potentially true
everything that has not been defined in the ontology. This
aspect in particular considerably limits the inferences that can
be made about our case study. Indeed, the blockchain being
a decentralized and distributed technology, it is impossible to
know that a certain data does not exist. Concretely, for the

49925

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

rule 5, we had to define the concept of CheckpointPolygon,
but we cannot retrieve all the Polygon blocks over a period of
time.

3) INFERENCES FOUND

Within the section III-D, we defined three individuals
sbo:_DBA1, sbo:_ DBA2 and sbo:_DBA3. For each of these
individuals, we determined some DataProperties values after
modeling the applications. We also determined some typical
values of transaction and storage costs for the technologies
used.

With this information and the rules described above,
we were able to use the Drools [64] inference engine to
derive new axioms for our ontology. We chose this rea-
soner since it is directly integrated with the SWRLTab [65]
Protege plugin used for our SWRL rules. The reasoner must
first translate the OWL ontology and the SWRL rules into
Drools, then run the inference engine, and finally translate
the result into OWL axioms, which are then automatically
added to the ontology. All these three tasks are executed in
a negligible time of 750ms, and produce 469 new axioms,
including 261 axioms related to data or object proper-
ties. Examples of inferred axioms are presented in the list-
ing 17. This first axiom defines the latency in writing of the
individual sbo:_DBAI. The second axiom defines that the
checkpoint sbo:_PolygonCheckpoint2 contains the transac-
tion sbo:_PolygonTransaction2. We detail this second axiom
in the section V-B.

1 sbo:_DBAl sbo:LatencyWrites "14.0"""xsd:
double

> sbo:_PolygonCheckpoint2 gbo:Contains sbo:
_PolygonTransaction?2

LISTING 17. Inferences found from DApp-specific SWRL rules.

The inductions found by the inference engine are detailed
in the listing 18 and in the table 3.

For the first two cases (lines 1 and 3 of listing 18), the
developer costs are the same, 2€ per user according to our
assumptions. However, the user costs are higher for the first
application case (lines 2 and 4 of listing 18). Indeed, users
perform transactions on Ethereum in this first case, whereas
they perform them on Polygon for the second. The user costs
are therefore 10€ for the first case, and only 0.01€ for the
second case.

The third application case also uses Polygon, so the
user costs are the same as for the second DApp. However,
using Polygon as a blockchain and not just as an Ethereum
sidechain also reduces the developer costs from 2€ per user
to only 0.002€.

The results obtained are analyzed in the next section.

4) ANALYSIS OF THE RESULTS
First, we see that our ontology allows us to differentiate
the characteristics of the three modeled DApps. From these

49926

1 sbo:CostDevPerUser (s 2:0)

> sbo:CostUser (, 10)

; sbo:CostDevPerUser (, 2.0)

1+ sbo:CostUser (, 0.01)

s sbo:CostDevPerUser (, 0.002)
s sbo:CostUser (, 0.01)

LISTING 18. Inferences found from DApp-specific SWRL rules.

results, we can better understand the impact that the dif-
ferent potential technologies have on the properties of the
application.

TABLE 3. Characteristics of the 3 defined DApps found by Drools,
in average euro.

DApp | CostDevPerUser | CostUser
DBA1 | 2 10

DBA2 | 2 0.01
DBA2 | 0.002 0.01

We see that the differences in costs, both for developers and
users of the DApp, have a very significant variance depending
on the technology used to develop the application. Here we
see that:

o The costs of an Ethereum-only solution are consider-

able, both for developers and users.

« Using Polygon in conjunction with Ethereum reduces
user costs considerably. Developer costs are not reduced,
since they perform all their transactions on Ethereum.
This solution is well suited if the DApp does not have
too many users.

o The use of Polygon alone does not change the user costs,
compared to the second case considered. However, the
developer costs are greatly reduced.

One of the limitations of the results obtained is the
non-inclusion of the constraints related to the security of the
DApp. Indeed, we could think that we should then choose to
use only Polygon, as the main blockchain, for this use case,
since the costs are reduced. However, Polygon uses a con-
sensus method, DPoS, which has a weaker intrinsic security
than Ethereum’s POW. When Polygon is used as a sidechain of
Ethereum, this disadvantage is reduced, since Ethereum pro-
vides some of the security of the DApp. Thus, because of this
limitation, we would not recommend using Polygon alone.
If the developer costs are prohibitive, we would recommend
using other developer transaction scalability solutions, such
as rollups.

B. MAPPING BETWEEN TWO BLOCKCHAIN PLATFORMS
An application of the written SWRL rules is the mapping
between two blockchain platforms, in our case Ethereum and
Polygon.

The ontology presented in section IIT allows, among other
things, to formalize various blockchain services, including
specific blockchain instances. Within this ontology, we were

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

able to model the concepts related to Ethereum and those
related to Polygon.

We then constrained the concepts of the ontology by
SWRL rules. In particular, the rules Rule 3 to Rule 6 allow
to constrain the concepts related to Ethereum, Polygon, and
their links. Indeed, the Rule 5 indicates that every 30 minutes,
anew Polygon checkpoint is created on Ethereum, through an
Ethereum transaction. The Rule 3 indicates that the Polygon
transactions that are included in this checkpoint are vali-
dated, and the Rule 6 links the Polygon transactions to their
checkpoint. Finally, the Rule 4 describes the operation of the
one-week challenge period linking Polygon and Ethereum.

The objective is then to run the Drools reasoner on the
ontology and the defined SWRL rules, in order to obtain
elements of comparison between Polygon and Ethereum.
Indeed, understanding the differences between the properties
of, for example, a Polygon transaction and an Ethereum trans-
action allows a DApps developer to know the consequences
of a platform change for his application.

As mentioned before, the inference engine has allowed to
define some axioms linking Ethereum to Polygon. In par-
ticular, the Rule 6, allowing to match a Polygon transac-
tion with the checkpoint that includes it, allows to find
the inferences detailed in the listing 19. Thus, the check-
point _PolygonCheckpointl contains the first transaction,
and the checkpoint _PolygonCheckpoint2 contains the other
two transactions.

This is the expected result, since _PolygonCheckpointl,
submitted to Ethereum on 18/10/2021 at 18:30, validates the
Polygon transactions submitted that same day between 18:00
and 18:30, which is the case for _PolygonTransactionl. Sim-
ilarly, _PolygonCheckpoint2 validates Polygon transactions
submitted between 6:30pm and 7:00pm, which is the case
for _PolygonTransaction2 and _PolygonTransaction3.

gbo:Contains (_PolygonCheckpointl,
_PolygonTransactionl)

> gbo:IncludedIn (_PolygonTransactionl,
_PolygonCheckpointl)

s gbo:Contains (_PolygonCheckpoint2,
_PolygonTransaction?2)

1+ gbo:IncludedIn (_PolygonTransaction2,
_PolygonCheckpoint2)

s gbo:Contains (_PolygonCheckpoint2,
_PolygonTransaction3)

s gbo:IncludedIn (_PolygonTransaction3,

_PolygonCheckpoint?2)

LISTING 19. Inferences found from rule 6.

Thus, we have found inferences to link the concepts of
Ethereum and Polygon, which improves the interoperability
between these two blockchains.

In the application section of our research, we will detail the
concrete use of this mapping.

VOLUME 10, 2022

C. CONSTRAINING BLOCKCHAIN CONCEPTS

When a new concept is formalized within our ontology,
we had to constrain it. To do this, a first step is to consider
the relations with the other defined classes. With OWL,
we can link two classes by ObjectProperties. In our case,
as blockchains can be seen as particular data structures, sev-
eral of its relations are inclusion or content relations.

If we wish to constrain the data associated with a class
that has no direct link with another existing class, we can use
DataProperties. These properties allow one to declare certain
properties associated with a class.

Sometimes, the OWL language is not expressive enough
to constrain concepts sufficiently. In this case, we use SWRL
rules to constrain several concepts, the ObjectProperties, and
the DataProperties that link them.

D. SYNTHESIS

We specify SWRL rules to improve the expressiveness of the
ontology described in section III. Indeed, SWRL allows to
obtain constraints between the concepts of the ontology more
simply and efficiently than using only OWL. For example,
when running the SWRL rules defined earlier, 469 additional
axioms are added to the ontology that would have been
difficult to manually determine.

Our specification of SWRL rules have three objectives:

o Formalize fundamental constraints related to
blockchains, such as the validity rules of blocks and
transactions of a blockchain

« Formalize the links between the Ethereum blockchain
and its sidechain Polygon

« Formalize the properties of DApps, and in particular the
costs and latency of these applications.

Other advantages of the defined SWRL rules are their scal-
ability and modularity. Indeed, it is easy for other researchers
or developers to formalize their applications by adapting
these rules or by adding new ones. For example, rules analo-
gous to the specific rules for DApps A and B can be written to
formalize the cost constraints of DApps that use blockchain
patterns as described in section I'V.

Finally, SWRL has other applications in the blockchain
domain. Choudhury et al. [66] indeed proposes the use
of SWRL rules in order to automatically generate smart
contracts from documents detailing the regulations of any
domain. This kind of application can also help the devel-
opment of DApps, and our rules allow to support their
formalization.

VI. APPLICATION IN THE VIDEO GAME INDUSTRY
A. MOTIVATIONS
Our goal is to apply our research and use the ontology previ-
ously designed in a concrete industrial example. As a result,
in the following, we apply our research to the blockchain
video game industry. In particular, we use the ontology to
formalize B2Expand’s game LTR.

LTR is a multiplayer real time game.

49927

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

B. APPLICATION OF OUR RESEARCH

Thanks to our ontology, we can describe in more detail
the technical differences in the transition from one of the
two blockchains to the other. We have formalized the two
blockchains, as well as some rules constraining the function-
ing of Ethereum and Polygon. We could deduce that using
Polygon as a scalability solution for Ethereum was the best
solution for our application.

We thus modeled the different concepts of Ethereum and
Polygon within our ontology. We also wrote the SWRL
rules corresponding to the interactions between these two
blockchains, described in Rule 3 to Rule 6.

These rules constrain the concepts of Polygon and
Ethereum transactions, and include for example the concepts
of checkpoints and transaction hashes.

We were able to infer correspondences between Poly-
gon transactions and the Polygon checkpoints that validate
these transactions. These mappings provide insight into the
semantic differences between Polygon and Ethereum. On the
other hand, we did not obtain any other inferences to better
define these differences. This may mean that we did not con-
strain the modeled concepts enough, or that the relationships
between these concepts are too broad to be quantified without
using too many intermediate concepts. Indeed, the objective
is not to manually model the differences between the two
blockchains, but to obtain them from reasoning on simple
rules.

Nevertheless, this ontology allows us to deduce other con-
straints. A simple example of such a constraint is that the
users need to have a blockchain Polygon account. Fortu-
nately, obtaining this account is straightforward since it fol-
lows the same standards as Ethereum. Thus, every Ethereum
user automatically has an associated Polygon account.

Finally, to use Polygon within LTR, our methodology pro-
poses to proceed as follows:

1) Within the game developed with Unity, replace all calls
to the Ethereum blockchain with calls to the Polygon
blockchain. This works since Polygon is based on the
same ecosystem as Ethereum.

2) Similarly, on the NFTs management DApp developed
with web technologies, it is possible to ask users to
connect to Polygon with the same tools they usually
use for Ethereum.

3) The mint of the assets, realized by B2Expand, is real-
ized only on Ethereum, so this part does not change of
functioning.

4) However, the transfer of assets between players will
now be done on Polygon, reducing the associated costs.

Fig. 20 shows a Business Process Model and Nota-
tion (BPMN) model describing an example of an LTR
asset lifecycle using the Polygon solution as an Ethereum
sidechain.

Here, B2Expand creates and mints the asset only on
Ethereum, then transfers it to Polygon’s master contract via an
Ethereum transaction. User 1 then buys the asset on Polygon,
and can transfer it with very low costs to user 2. User 2 wants

49928

to recover the asset on Ethereum. Indeed, it is possible that
they want to use this asset on a platform that does not support
the use of Polygon. They then request the withdrawal of the
asset on Ethereum and wait for the challenge period.

VII. EVALUATION OF THE PROPOSED BLOCKCHAIN
ONTOLOGY
A. EVALUATION CRITERIA OF THE BLOCKCHAIN
ONTOLOGY
1) EVOLUTIVITY
As the field of blockchain evolves rapidly, it is essential to
ensure that the contributions of our work do not become
obsolete with the arrival of a new technology. The scalability
of our contributions consists in the elaboration of a protocol
providing for their updates according to the changes that the
blockchain ecosystem undergoes.

For our ontology, scalability consists in ensuring that the
formalization of new concepts remains possible, without con-
siderably impacting the concepts already modeled.

2) EASE OF USE OF THE ONTOLOGY

Similarly, it should be easy to extend an ontology if one
wants it to be used. Ontology experts can be supported with
guidelines to the formalization of certain common concepts
in DApps.

3) SYNTHESIS
The table 4 summarizes the different evaluation criteria
chosen.

TABLE 4. Criteria for evaluating our ontology.

Criteria Operationalization

Resilience to the appearance of new
blockchain services

knowledge level to have in order

to formalize a new DApp

Scalability

Ease of use ontology

B. RESULTS OF THE EVALUATION OF THE BLOCKCHAIN
ONTOLOGY

1) EVOLUTIVITY

Our ontology is scalable for several reasons. First, if a new
type of blockchain service appears, we can associate latency
and cost properties to it like other services. The model-
ing is modular: we can define which components form a
given DApp. Other SWRL rules can also be written if one
needs to formalize more complex constraints on a particular
blockchain service.

In addition, other researchers can add concepts, or extend
our ontology with new blockchain ontologies. Adding con-
cepts related to the economic issues of different actors could
be considered.

2) EASE OF USE OF THE ONTOLOGY

As mentioned before, we have integrated partial formaliza-
tions of common blockchain patterns. This makes it easy to
use the ontology to formalize new use cases of it.

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

B2Expand

| an Ethereum
ERC721 LTR

asset

f

|

i ()

i Create and mint
|

|

|

|

+

Receive the ‘
asset from the
Polygon root

contract ‘

\
|
|
; \ -
: i
Sell the asset | il
on Ethereum i !
|
|
\ J |
\ / i

|

| .

: Transfer the

i Poalssz;?'got List the sale
| va on OpenSea
i contract on
|

|

Ethereum

Buy the asset Receive the LTR
on Polygon aseel on
through Polygon
OpenSea Ve

Transfer the
asset to User 2
on Polygon

Ask Polygon for
the asset's
withdrawal

Withdraw the Ask the
asset ProcessExit

Wait 30 Wait 1 week

minutes for the for the
next Checkpoint challenge period

LISTING 20. BPMN showing the transfer of LTR assets between Ethereum and Polygon.

To formalize more complex constraints, expertise in
SWRL is necessary. It is possible to use existing rules within
the ontology to write new ones, but the expressiveness of this
language can make this task difficult for complex problems.

The table 5 summarizes the results for the criteria we
considered.

TABLE 5. Results obtained on the evaluation of our research
contributions.

Results

The ontology is evolutive
The ontology guides users
with blockchain patterns

Criteria
Evolutivity

Ease of use ontology

VIIl. EVALUATION OF THE INDUSTRIAL APPLICATION

A. EVALUATION CRITERIA FOR THE INDUSTRIAL
APPLICATION

1) EVOLUTIVITY

The blockchain technology and the associated ecosystems
are very innovative. This leads to a common difficulty when
developing DApps: new technical solutions appear regularly,
which can make the developments obsolete.

One of the evaluation criteria of our industrial application
is therefore scalability. We have to make sure that the adopted
solution cannot be made obsolete quickly without having the
means to adapt it.

2) MODULARITY

The modularity of an application refers to its architecture. The
maintenance of a modular application is easier than for a non-
modular application. An architecture by microservices was
particularly adapted for DApps.

Concretely, our application will have a good modularity
if it is possible to adapt the different components of the
application easily. This concept is therefore complementary
to scalability.

3) USE OF THE ONTOLOGY
As the industrial application is used to validate our contribu-
tions, it is important that we use the developed ontology to

VOLUME 10, 2022

the maximum. This allows us to study the possibilities that
our ontology offers in terms of DApp formalization, but also
its limitations.

4) SATISFACTION OF FUNCTIONAL CONSTRAINTS

The main objective of our methodology is to translate the
specifications of a DApp into a list of service instances to be
used to build the application. Thus, we have to evaluate the
degree of satisfaction of the functional constraints present in
the initial specifications.

5) SATISFACTION OF TECHNOLOGICAL CONSTRAINTS
Another objective of the methodology is the satisfaction of
the technological constraints obtained from the BPMN mod-
elling and the ontology constructed.

Concretely, if this evaluation criterion is not fully satisfied,
it means that the final application will not work correctly,
since the constraints of scalability, latency or service integra-
tion will not be well respected.

6) USER EVALUATION

A final interesting criterion for our evaluation is to take into
account the opinions of experts in blockchain game develop-
ment and users of our game. This will allow us to compare
the results obtained with what they think is the correct way
to develop such a DApp, and to make sure that the user
experience is ergonomic.

7) SYNTHESIS
The table 6 summarizes the different evaluation criteria
chosen.

B. RESULTS FOR THE INDUSTRIAL APPLICATION

1) EVOLUTIVITY

Our industrial application depends on the blockchain on
two main points. First, the LTR game, developed with the
help of the Unity game engine, must have read access to
the information contained in the deployed smart contracts.
Indeed, we need to know, for each player, which graphical
assets they have access to. The connection to the blockchain

49929

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

TABLE 6. Evaluation criteria for our industrial application.

Criteria Operationalization
Evolutivit Resilience to new
volutivity blockchain services
Modularity Possibility of updating a functionality

without modifying the others
Degree of formalization by ontology
Number of constraints taken

into account

Number of constraints taken

into account

User evaluation N.A.

Usage of ontology

Functional constraints

Technological constraints

is done by the Nethereum package for Unity, specific to the
Ethereum ecosystem. Thus, we depend on this ecosystem for
the LTR game. However, an important part of blockchain
projects being developed today remain compatible with this
ecosystem.

A second point concerns the application to manage the
NFT of a player. This application needs a write access to the
blockchain. Indeed, each player can connect to his Metamask
account to perform transactions on our DApp. Here, we also
depend on the Ethereum ecosystem, but in a less important
way. Indeed, the integration with web technologies is a pri-
ority of the new projects. Thus, it will be easy to make the
transition to another solution if needed. We will only need to
call different APIs.

As for the transition process between Ethereum and Poly-
gon, our application must be scalable in order to adapt to
the changes of the different third party projects involved.
Indeed, Ethereum and Polygon protocols are still under devel-
opment at the moment. Ethereum is aiming for the tran-
sition to PoS during 2022, and Polygon is developing an
ecosystem conducive to multi-chain. For this, in addition to
the elements detailed in the previous point, the application
being modular, we can develop test modules calling the
APIs of the protocols under development. Once the specifi-
cations are fixed, we can then validate the proper functioning
of the new protocols. This point is further detailed in the
paragraph VIII-B2c Modularity of the blockchain platforms
used.

2) MODULARITY

a: MODULARITY OF SMART CONTRACTS

The smart contracts for managing LTR assets are partly
modular. Indeed, the proxy design pattern allows one to
change certain functionalities of the application by deploying
again only the smart contract managing this functionality.
The other contracts are then not impacted by this change.
An example of a possible application of this feature is the
change of the asset creation cost formula. The creation of
LTR assets requires the burning of the B2Expand cryptocur-
rency, the Nexium. We can adjust the number of Nexium
to be burned depending on the crypto-economic conjunc-
ture at a certain time, i.e. the prices of the crypto-currency
markets.

49930

b: MODULARITY OF USER INTERFACES

The set of user interfaces supporting the blockchain allows
to use all the required functionality: calling a specific
smart contract, reading data on the blockchain, connect-
ing to the account of a blockchain, managing different
networks, etc.

So if we develop a new game that doesn’t use Unity like
LTR does, the new game engine will be able to reuse all the
other features of our applications. Of course, this works on
the condition that it is possible to connect to the blockchain
with this new engine. That’s why the different user interfaces
are modular.

c: MODULARITY OF THE BLOCKCHAIN PLATFORMS USED
As mentioned earlier, the tools for connecting to the
blockchain support different protocols. Thus, the connection
tools to Ethereum or to Polygon are the same. The modularity
of the blockchain platforms used thus comes down to the
modularity of the configuration files used, as well as the
different technical constraints.

For example, if we were to move from Polygon to another
platform, we will have to make sure, thanks to our methodol-
ogy, that this new platform is well adapted to the constraints
of the application. If it is the case, the transition to a new Layer
Two is done in a similar way to the transition from Ethereum
to Polygon.

3) USE OF THE ONTOLOGY

The ontology in our research contributions allow us, among
other things, to formalize the transition from Ethereum to
Polygon for our DApp. Detailing the different concepts
related to these two platforms then allows us to ensure the
relevance of the written programs.

We also used SWRL rules related to cost and latency
constraints to analyze the three possible use cases of our
application. The use of SWRL allows a great expressiveness
of these constraints.

4) SATISFACTION OF FUNCTIONAL CONSTRAINTS

The basic functional constraint of the developed application
is the management of NFT for the LTR game. This constraint
is fully validated, since all the standards allowing this man-
agement are implemented. Moreover, we have added some
specific functionalities to our DApp, such as the burning of
Nexium or the grouping of assets.

The transition to the use of Polygon also allows us to pre-
pare the satisfaction of new functional constraints. For exam-
ple, it will be possible to perform writes to the blockchain
during game-related events, such as a player’s victory or the
collection of items in the game that could give the player a
corresponding NFT. However, these new features are not yet
implemented within the game, so it is not possible for us to
fully evaluate them.

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

5) SATISFACTION OF TECHNOLOGICAL CONSTRAINTS

For the satisfaction of the functional constraints, we have
carried out integration tests to validate the fact that the use
of Polygon does not pose any particular problems for the
management of our assets. These tests show no difficulties
in replacing the Ethereum APIs by Polygon APIs for the
in-game blockchain queries.

6) USER EVALUATION
Once a new version of the LTR game incorporating the new
functionalities brought by our work will be released, we will
then be able to collect feedback from users and our industrial
partners on our DApp.

7) SYNTHESIS
The table 7 synthesizes the different results obtained.

TABLE 7. Results obtained on the evaluation of our industrial application.

Criteria Results
Evolutivity The DApp is evolutive

The DApp is modular on three axes: smart
Modularity contracts, user interfaces, and the blockchain

platforms used

The formalizations of the three cases (using
only Ethereum, only Polygon, or Polygon

as a sidechain of Ethereum) allowed us

to choose which case to implement

The functional constraints of NFT management
are validated.

The functional constraints linked to the use

of Polygon will be validated once the LTR
game new version is released.

The technological constraints linked to the
management of NFT on Polygon are validated.
The writing on the blockchain from the game
will be validated once the game is released.
The NFT management solution for LTR will be
open so that all users can test the application

Usage ontology

Functional
constraints

Technological
constraints

User evaluation

IX. CONCLUSION AND PERSPECTIVES

We built a DApps blockchain ontology to formalize DApps.
Existing ontologies are modeling blockchain systems and
therefore do not have the same goal as our DApps ontology.
In particular, our DApps ontology can aid the development of
DApps by modeling blockchain services that can be used in
a DApp.

We applied and validated our contributions in the Video
Game industry, particularly with the LTR game, and wrote
SWRL rules to constrain the concepts of a DApp. Through
the definition of blockchain patterns, this application of our
DApps ontology can be easily generalized to many use cases.

As a perspective, additional SWRL rules can be added in
order to add new constraints. For example, an SWRL rule
could translate the concepts related to different blockchain
systems. Another way to aid the interoperability between
multiple blockchain systems would be by extending our
ontology to formalize current solutions to cross-chain
transfers.

VOLUME 10, 2022

APPENDIX

ADDITIONAL INDIVIDUALS OF THE ONTOLOGY

This appendix gives additional classes in our ontology.
We have not included them in III-B for sake of simplicity.

8) GBO:LAYERTWO
a: SBO:_MULTICHAIN
This individual represents a scalability solution in multichain.

b: SBO:_ROLLUP
This individual represents a scalability solution via rollups.

9) GBO:STORAGE

a: SBO:_CENTRALIZEDSTORAGE

This individual represents a centralized storage, such as a
classic website.

b: SBO:_IPFS
This individual represents IPFS distributed storage.

¢: SBO:_NULLSTORAGE
This individual allows to consider a DApp which does not
have a dedicated storage.

d: SBO:_P2PSTORAGE

This individual represents peer-to-peer distributed storage.
This means that DApp users share DApp files directly with
each other.

10) GBO:ENGINE

a: SBO:_UNITY

This individual represents a front-end created by the Unity
game engine. It is for example useful for the B2Expand com-
pany Light Trail Rush (LTR) game, since this game needs to
call smart contracts on Ethereum from an executable created
with Unity.

b: SBO:_SPA

This individual represents a front-end created with web tech-
nologies such as React or Angular. These are SPAs. This
example is useful to model our Non-Fungible Token (NFT)
management DApp developed for the B2Expand LTR game.
As explained earlier, NFTs are representations on the
blockchain of game assets. Players can buy, sell or trade them
freely. The possession of an NFT is then reflected in the game.

REFERENCES

[1] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain chal-
lenges and opportunities: A survey,” Int. J. Web Grid Services, vol. 14,
no. 4, pp. 352-375, 2018.

[2] Y. Guo and C. Liang, “Blockchain application and outlook in the banking
industry,” Financial Innov., vol. 2, no. 1, pp. 1-12, Dec. 2016.

[3] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “MedRec: Using
blockchain for medical data access and permission management,” in Proc.
2nd Int. Conf. Open Big Data (OBD), Aug. 2016, pp. 25-30.

[4] T. Min, H. Wang, Y. Guo, and W. Cai, “Blockchain games: A survey,” in
Proc. IEEE Conf. Games (CoG), Aug. 2019, pp. 1-8.

49931

IEEE Access

L. Besancon et al.: Blockchain Ontology for DApps Development

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A survey
on blockchain interoperability: Past, present, and future trends,” ACM
Comput. Surveys, vol. 54, no. 8, pp. 1-41, Nov. 2022.

L. Besancon, C. F. D. Silva, and P. Ghodous, ‘“Towards blockchain interop-
erability: Improving video games data exchange,” in Proc. IEEE Int. Conf.
Blockchain Cryptocurrency (ICBC), May 2019, pp. 81-85.

J. Pfeffer, “EthOnlIntroducing semantic Ethereum,” ConsenSys Media,
New York, NY, USA, Tech. Rep., 2017. Accessed: May 8, 2022. [Online].
Available: https://media.consensys.net/ethon-introducing-semantic-
ethereum-15f1f0696986

N. Six, N. Herbaut, and C. Salinesi, “Blockchain software patterns for
the design of decentralized applications: A systematic literature review,”
Blockchain, Res. Appl., vol. 3, no. 2, Jun. 2022, Art. no. 100061.

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 3-16.

Proof of Authority: Consensus Model. With Identity at Stake, Poa Network,
San Francisco, CA, USA, 2017.

B. Magri, C. Matt, J. B. Nielsen, and D. Tschudi, “Afgjort—A semi
synchronous finality layer for blockchains,” Cryptol. ePrint Arch., Tech.
Rep. 2019/504, 2019, p. 44. Accessed: May 8, 2022. [Online]. Available:
https://eprint.iacr.org/2019/504

E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, Dept. School Eng., Univ. Guelph,
Guelph, ON, Canada, 2016.

K. Chatterjee, A. K. Goharshady, and Y. Velner, “Quantitative analysis
of smart contracts,” in Proc. Eur. Symp. Program., Cham, Switzerland:
Springer, 2018, pp. 739-767.

U.-R. Hector and C.-L. Boris, “BLONDIE: Blockchain ontology with
dynamic extensibility,” 2020, arXiv:2008.09518.

D. L. McGuinness and F. Van Harmelen, “Owl web ontology language
overview,” W3C Recommendation, vol. 10, no. 10, p. 2004, 2004.
Everdreamsoft/Sandra, EverdreamSoft, Geneva, Switzerland, Sep. 2019.
S. Delgado-Segura, C. Pérez-Sola, G. Navarro-Arribas, and J. Herrera-
Joancomarti, “Analysis of the bitcoin UTXO set,” in Proc. Int. Conf.
Financial Cryptogr. Data Secur., Cham, Switzerland: Springer, 2018,
pp. 78-91.

C. Sguanci, R. Spatafora, and A. M. Vergani, “Layer 2 blockchain scaling:
A survey,” 2021, arXiv:2107.10881.

K. Karantias, “SoK: A taxonomy of cryptocurrency wallets,” Cryptol.
ePrint Arch., Tech. Rep. 2020/868, 2020. Accessed: May 8, 2022. [Online].
Auvailable: https://eprint.iacr.org/2020/868

W. Warren and A. Bandeali. (2017). Ox: An Open Protocol for Decen-
tralized Exchange on the Ethereum Blockchain. [Online]. Available:
https://github.com/OxProject/whitepaper

J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” Tech. Rep., 2016. Accessed: May 8, 2022. [Online].
Available: https://lightning.network/lightning-network-paper.pdf

V. Buterin, “An incomplete guide to rollups,” Tech. Rep.,
2021. Accessed: May 8, 2022. [Online]. Available: https://
vitalik.ca/general/2021/01/05/rollup.html

B. DiFrancesco, ‘“Validium and the layer 2 two-by-two—

Issue No 99,7 Build Blockchain Tech, Tech. Rep. 99, 2020.
Accessed: May 8, 2022. [Online]. Available: https://www.buildblockchain.
tech/newsletter/issues/no-99-validium-and-the-layer-2-two-by-two
Blockchain Solutions for Gaming. Whitepaper V2 Draft, Funfair
Technologies, Dublin, Ireland, 2018. Accessed: May 8, 2022. [Online].
Available: https://funfair.io/wp-content/uploads/FunFair-Commercial-
White-Paper-v2-draft.pdf

J. Coleman, L. Horne, and L. Xuanji, “Counterfactual: Generalized state
channels,” L4 Res., Tech Rep., 2018. Accessed: May 8, 2022. [Online].
Available: https://14.ventures/papers/statechannels.pdf

Loopring Protocol Design, Loopring, Shanghai, China, Sep. 2021.
Accessed: May 8, 2022. [Online]. Available: https://github.com/
Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md
Overview|Zksync: Secure, Scalable Crypto Payments, Matter Labs, George
Town, Cayman Islands, Sep. 2021. Accessed: May 8, 2022. [Online].
Available: https://docs.zksync.io/userdocs/intro.html
Offchain Labs Dev Center, Inside Arbitrum, New
USA, 2022. Accessed: May 8, 2022. [Online].
https://developer.offchainlabs.com/docs/inside_arbitrum

York, NY,
Available:

49932

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

(40]

[41]

[42]

[43]

[44]

(45]

[46]

[47]

(48]

(49]

(50]

[51]

(52]

Introduction| StarkEx V3, StarkWare
Israel, Sep. 2021. Accessed:May 8, 2022.
https://docs.starkware.co/starkex-v4/

Deversifi Javascript Trading API, Deversifi, Tel Aviv, Israel, Jan. 2022.
Accessed: May 8, 2022. [Online]. Available: https://docs.deversifi.com/
A. Back, “Enabling blockchain innovations with pegged sidechains,”
Blockstream, San Francisco, CA, USA, Tech. Rep., 2014. Accessed:
May 8, 2022. Available: https://blockstream.com/sidechains.pdf

D Larimer, “DPOS consensus algorithm—The missing white paper—
Steemit,” Tech. Rep., Nov. 2019. Accessed: May 8, 2022. [Online].
Available: https://steemit.com/dpos/ @dantheman/dpos-consensus-
algorithm-this-missing-white-paper

S. King and S. Nadal, “PPCoin: Peer-to-Peer crypto-currency with proof-
of-stake,” Self-Published Paper. Accessed: May 8, 2022. [Online]. Avail-
able: https://decred.org/research/king2012.pdf

J. Poon and V. Buterin, ‘“Plasma: Scalable autonomous smart con-
tracts,” Tech. Rep., 2017. Accessed: May 8, 2022. [Online]. Available:
https://plasma.io/plasma-deprecated.pdf

Loom Network—The Next-Generation Blockchain Application Platform
for Ethereum, Loom Network, Seoul, South Korea, 2022. Accessed:
May 8, 2022. [Online]. Available: https://loomx.io/

Polygon Ethereum’s Internet of Blockchains, Polygon, North Andover,
MA, USA, Feb. 2021.

Polygon|Ethereum’s Internet of Blockchains, Polygon, Bengaluru,
India, 2022. Accessed: May 8, 2022. [Online]. Available:
https://polygon.technology/

J. Kanani, S. Nailwal, and A. Arjun, “Matic whitepaper,” Polygon, Ben-
galuru, India, Tech. Rep., Sep. 2021. Accessed: Sep. 16, 2021. [Online].
Available: https://github.com/maticnetwork/whitepaper

G. Wood, “Polkadot: Vision for a heterogeneous multi-
chain framework,” Parity Technologies, London, U.K.,
White Paper 21, 2016. Accessed: May 8, 2022. [Online]. Available:
https://polkadot.network/PolkaDotPaper.pdf

J. Kwon and E. Buchman, “Cosmos whitepaper, Cosmos, Zug, Switzer-
land, Tech. Rep., 2019. Accessed: May 8, 2022. [Online]. Available:
https://v1.cosmos.network/resources/whitepaper

(2022). Harmony—Scaling Ethereum Applications and Cross-Chain
Finance. Harmony, Mountain View, CA, USA. Accessed: May 8, 2022.
[Online]. Available: https://blog.harmony.one/harmony-keynote-scaling-
ethereum-applications-cross-chain-finance/

J. Benet, “IPFS—content addressed, versioned, P2P file system,” 2014,
arXiv:1407.3561.

M. Zichichi, S. Ferretti, and G. D’ Angelo, “On the efficiency of decentral-
ized file storage for personal information management systems,” in Proc.
IEEE Symp. Comput. Commun. (ISCC), Jul. 2020, pp. 1-6.

A Decentralized Storage Network for Humanity’s Most Important Infor-
mation, Filecoin, Palo Alto, CA, USA, 2017. Accessed: May 8, 2022.
[Online]. Available: https:/filecoin.io/

S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, Storj a Peer-to-
Peer Cloud Storage Network. Atlanta, GA, USA: Storj Labs, 2014.

R. Materese, “Blockchain,” Nat. Inst. Standards Technol., Gaithersburg,
MD, USA, Tech. Rep., Sep. 2019. Accessed: May 8, 2022. [Online].
Available: https://www.nist.gov/blockchain

(Mar. 2022). Checkpoint|Polygon Technology|Documentation. Polygon,
Bengaluru, India. Accessed: May 8, 2022. [Online]. Available:
https://docs.polygon.technology/docs/contribute/heimdall/checkpoint/

L. Lamport, R. Shostak, and M. Pease, ““The Byzantine generals problem,”
in Concurrency, Works Leslie Lamport. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 203-226.

N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, pp. 1-21, Sep. 1997.

V. Buterin, “A next-generation smart contract and decentralized
application platform,” Tech. Rep., 2014. Accessed: May 8, 2022. [Online].
Available: https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_
generation_smart_contract_and_decentralized_application_platform-
vitalik-buterin.pdf

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A.D. Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, and
S. Muralidharan, “Hyperledger fabric: A distributed operating system
for permissioned blockchains,” in Proc. 13th EuroSys Conf., Apr. 2018,
pp. 1-15.

N. E. Ioini and C. Pahl, “A review of distributed ledger technolo-
gies,” in Proc. Move Meaningful Internet Syst. (OTM) Conf., H. Panetto,
C. Debruyne, H. A. Proper, C. A. Ardagna, D. Roman, and R. Meersman,
Eds. Cham, Switzerland: Springer, 2018, pp. 277-288.

Industries,
[Online].

Netanya,
Available:

VOLUME 10, 2022

L. Besancon et al.: Blockchain Ontology for DApps Development

IEEE Access

[53] X. Xu, I. Weber, and M. Staples, “Blockchain patterns,” in Architec-
ture for Blockchain Applications. Cham, Switzerland: Springer, 2019,
pp. 113-148.

[54] (Sep. 2021). Mintable.App Home. Mintable, Singapore. Accessed:
May 8, 2022. [Online]. Available: https://mintable.app/

[55] (2022). Cryptokitties. Cryptokitties | Collect and Breed Digital Cats,
Dapper Labs, Vancouver, BC, Canada. Accessed: May 8, 2022. [Online].
Available: https://www.cryptokitties.co/

[56] OpenSea, the Largest NFT Marketplace, OpenSea, New York, NY, USA,
Sep. 2021.

[57] C. Jentzsch, “Decentralized autonomous organization to automate
governance,” Slock.it, Berlin, Germany, White Paper, Nov. 2016.
Accessed: May 8, 2022. [Online]. Available: https://lawofthe
level.lexblogplatformthree.com/wp-content/uploads/sites/187/2017/07/
WhitePaper-1.pdf

[58] The Dai Stablecoin System, Maker, Loretto, KY, USA, 2017.

[59] B. Liu, P. Szalachowski, and J. Zhou, “A first look into DeFi oracles,”
2020, arXiv:2005.04377.

[60] G. M. Hastig and M. S. Sodhi, “Blockchain for supply chain traceability:
Bus. requirements and critical success factors,” Prod. Operations Man-
age., vol. 29, no. 4, pp. 935-954, Apr. 2020.

[61]1 V. Ojha. (2020). GitHub—IBM/BlockchainDevelopmentDesignPatterns.
IBM, Armonk, NY, USA. Accessed: May 8, 2022. [Online]. Available:
https://github.com/IBM/BlockchainDevelopmentDesignPatterns

[62] 1. Horrocks, “SWRL: A semantic web rule language combining OWL
and RuleML,” W3C Member Submission, vol. 21, no. 79, pp. 1-31,
2004,

[63] J.Nguyen,J. Geyer, T. Farrenkopf, and M. Guckert, “Aided OWL notation
(AOWLN): Conceptual modelling and visualisation of advanced SWRL
rules,” in Proc. 10th Int. Joint Conf. Knowl. Discovery, Knowl. Eng. Knowl.
Manage., 2018, pp. 175-182.

[64] M. Proctor, “Drools: A rule engine for complex event processing,” in
Proc. Int. Symp. Appl. Graph Transformations With Ind. Relevance. Cham,
Switzerland: Springer, 2011, p. 2.

[65] (Oct. 2021). Home Protegeproject/Swrlapi Wiki. Protégé Project,
Stanford, CA, USA. Accessed: May 8, 2022. [Online]. Available:
https://github.com/protegeproject/swrlapi

[66] O. Choudhury, M. Dhuliawala, N. Fay, N. Rudolph, I. Sylla, N. Fairoza,
D. Gruen, and A. Das, “Auto-translation of regulatory documents into
smart contracts,” in Proc. IEEE Blockchain Initiative, Sep. 2018, pp. 1-5.

[67] L. Besancon, P. Ghodous, J.-P. Gelas, and C. F. D. Silva, “Modelling of
decentralised blockchain applications development,” in Proc. Int. Conf.
High Perform. Comput. Simulation (HPCS), Barcelone, Spain, Mar. 2021,

pp- 1-7.

LEO BESANCON received the degree in
computer science engineering from the Ecole
Centrale de Lyon, in 2018, the master’s
degree in artificial intelligence from Uni-
versit¢é Claude Bernard Lyon 1, in 2018,
and the Ph.D. degree in computer science
from the LIRIS Laboratory, Université Claude
Bernard Lyon 1, as well as the company
B2Expand, in 2021, focused on blockchain sys-
tems interoperability.

He has published a poster paper for the 2019 IEEE International Con-
ference on Blockchain and Cryptocurrencies and a conference paper for
the 2020 International Conference on High Performance Computing and
Simulation.

VOLUME 10, 2022

CATARINA FERREIRA DA SILVA received the
Ph.D. degree, in 2007, and the Habilitation degree
in information science and technology, in 2020.

She is an Associate Professor and the Director
of the master program in management of informa-
tion systems with the Department of Information
Science and Technology, University Institute of
Lisbon (ISCTE), Portugal. She is a member of the
Expert Panel of the European Blockchain Observa-
tory and Forum, which is an initiative sponsored by
the European Comm1ssmn and the Directorate-General of communications
networks, content and technology. She had the pleasure of co-supervise
five defended Ph.D. students and has been involved in several European
funded projects, such as Blockchain for ICT Professionals, VET4APPS,
Keystone, Nebula, Trust, Towntology, Tempus Mitcon, CONNIE, FUN-
SIEC, and SPICE. She has published several journals and conference papers
in prestigious venues, such as IEEE International Conference on Blockchain
and Cryptocurrency, Telematics and Informatics Journal, the International
Journal of Agile Systems and Management, Computers in Industry, and Jour-
nal of Intelligent Manufacturing. She is a member of the Program Committee
of the Track Decentralized Applications (DAPP) with Blockchain, DLT and
Crypto-Currencies of the ACM Symposium on Applied Computing and the
European, Mediterranean and Middle Eastern Conference on Information
Systems.

PARISA GHODOUS is currently a Full Pro-
fessor with the Computer Science Department,
University of Lyon I; and a member of the Lab-
oratory of Computer Graphics, Images and Infor-
mation Systems (LIRIS UMR 5205). She was
involved in more than 20 European projects, four
as a Coordinator, such as VET4APPS, BLISS,
MACHINA, and CHAISE. Her research interests
include blockchain, cloud computing, interoper-
W ability, web semantic, service science, collabora-
tive modeling, product data exchange, and modeling and standards.
Prof. Ghodous is in editorial boards of CERA, ICAE, and IJAM journals;
and in the committees of many relevant international associations, such as
concurrent engineering and interoperability.

JEAN-PATRICK GELAS received the graduate
degree (D.E.A.) in computer science from the
Ecole Normale Supérieure de Lyon (ENS), Lyon,
France, in 2000, and the Ph.D. degree from Univer-
site Claude Bernard Lyon 1, France, in December
2003.

He was awarded the National Grant from
the French Ministry of Research and Tech-
nology (MENRT), he pursued his doctorate
research/work at INRIA Team (called RESO) of
the LIP Laboratory, ENS Lyon. He has spent the next year in USA, holding
a postdoctoral (a Research Associate) position at the Logistical Computing
and Internetworking (LoCI) Laboratory, Computer Science Department,
The University of Tennessee. He is currently an Assistant Professor, teach-
ing computer science (system, computer networks, embedded system, and
blockchain technologies) at the Université Claude Bernard Lyon 1. His
research interests include large scale distributed systems, like blockchain
technologies.

49933

