
Received January 29, 2022, accepted February 7, 2022, date of publication April 8, 2022, date of current version May 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3165744

Resilience Enhancement at Edge Cloud Systems
JOSE MOURA 1 AND DAVID HUTCHISON 2
1Instituto de Telecomunicações-IUL, Departamento de Ciências e Tecnologias da Informação, ISCTE—Instituto Universitário Lisboa, 1649-026 Lisbon, Portugal
2School of Computing and Communications, Lancaster University, Lancaster LA1 4WA, U.K.

Corresponding author: Jose Moura (jose.moura@iscte-iul.pt)

The work of Jose Moura was supported by Fundação para a Ciência e Tecnologia / Ministério da Ciência, Tecnologia e Ensino Superior
(FCT/MCTES) through National Funds When Applicable Co-Funded European Union (EU) Funds under Project UIDB/50008/2020; and
in part by the Instituto de Telecomunicações, Lisbon, Portugal. The work of David Hutchison was supported in part by the Next
Generation-Converged Digital Infrastructure (NG-CDI) Project through U.K. Engineering and Physical Sciences Research Council
(EPSRC) under Grant EP/R004935/1, and in part by British Telecom plc.

ABSTRACT It is becoming common practice to push interactive and location-based services from remote
datacenters to resource-constrained edge domains. This trend creates new management challenges at the
network edge, not least to ensure resilience. These challenges now need to be investigated and overcome.
In this paper, we explore the use of open-source programmable asset orchestration at edge cloud systems
to guarantee operational resilience and a satisfactory performance level despite system incidents such as
faults, congestion, or cyber-attacks. We discuss the design and deployment of a new cross-level configurable
solution, Resilient Edge Cloud Systems (RECS). Results from appropriate tests made on RECS highlight
the positive effects of deploying novel service and resource management algorithms at both data and control
planes of the programmable edge system to mitigate against disruptive events such as control channel issues,
service overload, or link congestion. RECS offers the following benefits: i) the switch automatically selects
the standalone operationmode after its disconnection from the upper-level controllers; ii) deployment of edge
virtualized services is made, according to client requests; iii) the client requests are served by edge services
and the related traffic is balanced among the alternative on-demand routing paths to the edge location where
each service is available for its clients; iv) the TCP traffic quality is protected from unfair competitiveness of
UDP flows; and v) a set of redundant controllers is orchestrated by a top-level multi-thread cluster manager,
using a novel management protocol with low overhead.

INDEX TERMS Fault detection, software design, resilience, mobile computing.

I. INTRODUCTION
Programmable networking concepts including Software
Defined Networking (SDN) offer excellent prospects for
highly adaptable and fast management of network resources
and data flows [1] inmanymodern networking scenarios such
as Internet of Things (IoT)-enabled healthcare systems [2] or
Peer-to-Peer (P2P) energy trading in intelligent transporta-
tion systems [3]; these are typically hybrid systems joining
communication and computational edge resources. Neverthe-
less, SDN also brings potential problems such as increasing
management complexity and as a target for attack, potentially
compromising the desired resilience of such systems [4], [5].
In fact, an SDN-based system could experience significant
degradation of its performance due to various system threats
or congestion at both data forwarding and control levels. Con-
sequently, it is appropriate to explore suitable programmable

The associate editor coordinating the review of this manuscript and

approving it for publication was Fung Po Tso .

solutions to mitigate unexpected system faults [6], conges-
tion [7], or cyber-attacks [8].

A. BACKGROUND
The background of current research work as well as the
main operating scenario are now presented. The emerging
data-intensive, interactive, and location-sensitive user ser-
vices such as 5G, IoT, augmented reality, and vehicle-to-
vehicle communications [9] force computational resources
being moved from remote clouds [10] to edge clouds [11] in
order to diminish the data and service access latency, to pro-
vide the edge network infrastructure with local scalable pro-
cessing, and even to run local self-adaptable algorithms [12].
The higher heterogeneity and scarcity of edge resources must
not impair the upcoming demand for reliable and efficient
edge services. Therefore, we propose RECS (Resilient Edge
Cloud Systems), a programmable serverless system [13] that
orchestrates both elastic networking and computing resources
for enhancing the operational resilience of local on-demand

45190 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-3516-8781
https://orcid.org/0000-0001-6052-0559
https://orcid.org/0000-0001-9366-8285


J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

FIGURE 1. RECS - a programmable serverless computing system providing
on-demand edge resources and elastic virtualized services with enhanced
resilience.

virtualized services at edge network domains, shown
in Fig. 1.

B. CONTRIBUTION AND NOVELTY
This work proposes practical solutions to mitigate the neg-
ative effects on the system performance imposed by system
menaces or high loads. These solutions are deployed with a
cross-layer design at distinct vertical levels of the SDN-based
system (see Fig. 2), viz. data forwarding, switching logic, and
resilience management, aiming to build up a more resilient
SDN-assisted system for edge computing network scenarios.
In a nutshell, the main aims of this contribution are to design,
implement, and evaluate diverse programmable solutions to
satisfy a set of goals, as follows: i) increase the resilience of
a SDN-based system after communication failures between
network devices and their controllers by using a suitable
switch functional mode; ii) mitigate congestion situations at
the network server side, providing an elastic supply of virtu-
alized services that follows load variation; iii) overcome con-
gested links and collaborate with other solutions towards the
most effective use of system available resources; and iv) bal-
ance control workload among SDN controllers and increase
resilience at the system control level. By coherently integrat-
ing diverse programmable solutions, our SDN-based work
is a novel orchestrator for edge cloud distributed resources,
enhancing system operational resilience in challenging cases
such as faults, congestion, or attacks. We also envisage the
minimization of deployment and operational costs of the
network infrastructure owned by a specific Internet provider.

C. STRUCTURE
The paper structure is as follows. After the introduction,
Section II analyses related work, highlighting the novel
aspects of our work. Section III discusses the design of
RECS. The deployment of RECS is in Section IV, and
Section V broadly evaluates the proposed system. Section VI
summarizes the discussion about the main evaluation results
and describes how our proposal can be applied to real-life
scenarios. Finally, Section VII concludes the paper with some
suggestions for future research directions.

II. RELATED WORK
Recent advances have occurred in the resilient operation
of programmable edge systems [11], [14]–[16]. The work
reported here builds on the authors’ previous publica-
tions [14], [15] which investigate important design steps
towards resilient operation of programmable systems at
the network edge, in the face of severe threats to their
normal operation. Specifically, [14] discusses cooperation
models among system players together with a penalization
mechanism against defecting players, aiming for resilient
operation. The main outcome from [15] is that the offload-
ing of processes and data in (edge) cloud-based scenarios
may undermine the accuracy of anomaly system detection
components unless proper corrective actions are taken to
increase the robustness of these components. Ref. [11] dis-
cusses best practices, following European Telecommunica-
tions Standards Institute (ETSI) standards, to undermine
the negative impact induced by core and access threats
on the performance of Multi-Access Edge Computing sys-
tems as well as to preserve the privacy of mobile users.
The work in [16] thoroughly investigates the interaction
between SDN and edge computing. Using this techno-
logical synergy some key benefits are obtained such as
bringing low-cost computational solutions into the proxim-
ity of edge devices. Nevertheless, there are open issues,
viz: management complexity, mobility, energy and compu-
tational constrained edge assets, heterogeneity, scalability,
reliability, and security. In our work, we aim to study the
open issues associated with system reliability and system
scalability.

We have reviewed the literature for SDN-based techniques
to mitigate the negative performance effects induced by sys-
tem faults and congestion, i.e. two main perspectives of our
current work. On one hand, our literature analysis identifies
recent work [17], [18] that deals with fault management.
Ref. [17] uses a synchronized mechanism to periodically
update the controller’s state among a set of SDN controllers.
In case of failure of the current responsible controller, the
same mechanism can select another working controller based
on the distance and delays among different network entities.
The authors of [18] propose a SDN based fault-tolerant
routing architecture for IoT environments. Their solution dis-
covers redundant and non-overlapping routing paths between
network equipment by using link costs. The cost of each link
considers both the percentage of link usage and the rate of
link delay.

On the other hand, we have assumed load balancing
techniques [19]–[23] as a possible way to mitigate the
negative performance effects imposed by congestion in
programmable networks. The authors of [19] propose a
deep reinforcement learning-based routing scheme aimed
at balancing the load among the network links. In addi-
tion, [20] investigates a SDN-based solution to balance
the service load amongst data plane servers. Ref. [21]
scales out the control channel load across the diverse SDN
controllers.

VOLUME 10, 2022 45191



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

The authors of [22] propose an algorithm that enables
the SDN controller to select, from a server farm, the server
with the most suitable service response time to satisfy a
specific client request. Nevertheless, this proposal suffers
from system bottleneck and the issue of a single point of
failure because it uses only a single SDN controller. As an
alternative, we propose a solution with multiple controllers
to enforce both control robustness against failures and control
scalability. In addition, we propose a cluster manager at the
resilience management level that orchestrates the underly-
ing operation of the diverse SDN controllers. This orches-
tration is made via a novel signaling protocol detailed in
sub-sections III.D and IV.D, and tested in sub-section V.D.
The literature also points out many load balancing met-
rics as follows [23]: throughput, peak load ratio, utilization,
response time, overhead, root mean squared error, packet loss
rate, percentage of matched deadline flow, energy consump-
tion, migration cost, execution time, load balancing degree,
guaranteed bit rate, overload ratio, average number of syn-
chronizations, workload, cumulative frequency, and latency.
Our work uses the workload metric to coordinate SDN con-
trollers, and the load detection metric to balance traffic at the
data forwarding level.

We discuss below previous work on the control of pro-
grammable systems, concerning fault tolerance [24] and the
orchestrated control [25], [26] among a set of SDN con-
trollers. The authors of [24] propose a master-slave protocol
that replicates the control logic from a single controller to
other backup controllers for fault tolerance, without requir-
ing any code changes to the initial controller. The proposal
adds explicit acknowledgement messages to the OpenFlow
protocol and deploys buffers on existing switches for event
retransmission and command filtering. These changes are
necessary to support the exactly-once control action at the
switches after any system failure sequence. Nevertheless, the
need for previous alterations can be a serious handicap to
using that solution in real deployments. Alternatively, our
proposal (debated in sub-sections III.D and IV.D) orchestrates
the control logic among several SDN controllers without
modifying OpenFlow and switch code.

The work in [25] proposes a workload balancing mecha-
nism for distributed SDN controllers, where idle controllers
assume the control workload of overloaded controllers. The
authors in [26] go a step further by suggesting a more flexible
and elastic distributed controller design in which the number
of running controllers within a cluster follows the data plane
traffic load. Our proposal also offers an elastic behavior not at
the control level as in [26], but in our case at the data forward-
ing level, activating servers from a server farm as needed.
This is completely aligned with the model of serverless edge
computing [13].

Table 1 summarizes related discussed work and highlights
the novelty of our RECS research that, to our knowl-
edge, is the first to propose consolidation in a single solu-
tion all the following aspects: programmable edge system,
fault management, orchestration of redundant controllers,

TABLE 1. Literature comparison (+Aspects covered).

load balancing, and on-demand activation of virtual
services.

III. DESIGN
Now we present several cross-level design solutions for
increasing the resilience of an SDN-based system in adverse
situations such as system faults, congestion, or attacks.
These solutions are aggregated in our RECS (Resilient Edge
Cloud Systems) proposal. RECS has four parts: i) the first
describes the design of a solution whereby switching devices
autonomously detect and react against communication fail-
ures to the control level; ii) the second part shows how a SDN
controller can behave as a Proxy-ARP for ARP requests. This
Proxy-ARP operation can balance a high number of service
requests from clients among the available topological servers
of an elastic edge server farm; iii) the third part presents how
to architect a flexible and programmable solution to over-
come congested links using Select groups at the data message
forwarding level; and iv) the last part studies the workload
orchestration among SDN controllers and the associated sys-
tem overload. The RECS overall design layout is visualized in
Fig. 2. This design aims to enhance the system’s operational
resilience against both communications failures and con-
gestion in edge computing domains. It has three functional
levels. The data forwarding (lowest) level contains virtualized
servers, service clients, and switching devices controlled by
(higher level) SDN controllers. These redundant controllers
form the intermediate and reliable switching logic level. The
cluster manager of the resilience management (topmost) level
orchestrates the SDN diverse controllers of the intermediate
functional level.

A. ENHANCING SYSTEM RESILIENCE AGAINST CONTROL
CHANNEL COMMUNICATION FAILURE
We now discuss the most appropriate functional mode of an
SDN-based switch after a communication failure between
that switch and the SDN controller. Considering a software-
based switch, such as OpenvSwitch, there are two alternative
functional modes: secure (Fig. 3.a.) or standalone (Fig. 3.b.).
When the switch is on the secure mode, after a communi-
cation failure with the controller, the switch discards any
received message through any input port. In addition, the

45192 VOLUME 10, 2022



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

FIGURE 2. Architectural layout of the proposed cross-level programmable
solution (RECS) to enhance the system’s operational resilience against
both communications failures and congestion in edge computing
domains. Inside each block at the left are the paper sub-sections that
discuss the key block functionalities and their evaluation.

FIGURE 3. a. OpenvSwitch secure operation mode after the switch
becomes disconnected from the upper SDN controller. b. OpenvSwitch
standalone operation mode after the switch becomes disconnected from
the upper SDN controller.

switch tries to reconnect with the SDN controller. Alterna-
tively, when the switch is on the standalone mode and lacking
communication with the controller, the switch behaves like a
L2MAC learning autonomous switch. Also, in the standalone
mode, the switch tries to re-establish communication with
the SDN controllers. Considering the two discussed func-
tional modes and that we are mainly interested on a resilient
operation of the SDN-based system, the standalone is the
preferable mode, because switches can operate independently
of controllers.

B. AVOIDING SERVER CONGESTION
To avoid the server congestion problem, we virtualize elasti-
cally a cluster of servers at the data forwarding level and, with

FIGURE 4. Flowchart of SDN-based system involving clients, switches,
SDN controllers, and elastic servers particularly focused in the
communication between the clients and the server farm.

the help of the SDN controller we divert the traffic from each
client destined to a specific service towards a server different
from the alternative servers available to other clients. Thus,
we balance the load of all clients among the diverse servers
available in the cluster (i.e. the server farm). The design of
this solution is summarized in Fig. 4.

The current solution manages both the ARP protocol and
the service request message, making some IP address changes
in themessage header like a home-based wireless NAT router.
The first functional step of our solution is triggered by the
arrival of an ARP Request to a switch. Considering the switch
cannot make a positive match with any local flow rule, then
the switch, following a default flow table-miss rule, it sends
a copy of the received message to SDN controllers. Then,
each SDN controller verifies first if it should decide about
how to control that ARP Request (see sub-section III.D about
the coordination among SDN controllers). When the copy of
the received ARP Request is processed by an elected SDN
controller, that controller chooses the server (i.e. the physical
MAC address of the server network interface) from the pool
of servers which are offering the same service to the potential
clients. The controller should verify if the selected server is
already in operation. Otherwise, the SDN controller should
activate that server before sending to the client a new created
ARP Reply message associating the IP_VIRTUAL of the
required server farm service with the MAC of the selected
server. In this way, the SDN controller acts as a Proxy-ARP.

The second functional step (see Fig. 4) is when the SDN
controller receives a packet with a destination IP address
equal to IP_VIRTUAL. At this moment, the SDN controller
verifies again if the cluster infrastructure is in operation.
This new verification in the SDN controller is important to
support a correct functional system behavior because after
the last infrastructure activation the same server farm infras-
tructure, due to an idle timer, could have been switched
off and, at the same time, the client ARP table still locally
holds the last selected MAC address of the server farm.
Then, the SDN controller should be ready to activate the
server farm infrastructure in the presence of either an ARP
Request or another IP packet. After the previous verification

VOLUME 10, 2022 45193



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

was made, the SDN controller verifies if the switch that has
produced a control processing event is the last switch at the
communication path to the server farm. If this is true, the
SDN controller (acting as a NAT router) replaces the server
farm virtual IP address by the currently used IP address of
the selected server. In the case of the reply message to the
previous packet (when it is the first switch from the topo-
logical perspective of the server farm), the SDN controller
modifies the source IP address of the answering packet. This
bidirectional modification on IP addresses made by the SDN
controller is like a middleman attack on an authentication
security protocol, but in the current scenario for a ‘‘good’’
cause. In this way, from the client perspective, the client
gets the feeling he/she is interacting with a server via the
IP address IP_VIRTUAL and, at the other end, the server
perceives the client has tried to contact that server using (as
normally expected) the IP address assigned to the network
interface of that server. The main advantage of this IP address
modifying solution is to enable the SDN controller, using a
programmable criterion, to balance the load of many clients’
requests to a single service among any number of elastic
servers of a server farm offering that service. In addition, the
processing of the SDN controller described in this sub-section
can be also successfully employed in a distinct scenario from
the current one – namely service access control or protection
against cyberattacks. Then the controller, before replacing the
IP address of each initial flow packet, can verify whether the
client has enough privileges to use the requested service or if
the packet belongs to a legitimate flow. In either case, when
the SDN controller concludes that the client is not allowed to
use the service or the received packet belongs to an ongoing
attack, the controller can drop the current received packet and
even install flow rules in the switches to drop the subsequent
packets of flows that cannot be forwarded.

C. OVERCOME LINK CONGESTION AND PROTECT TCP
QUALITY AGAINST UDP RESOURCE USAGE UNFAIRNESS
We use here the OpenFlow Select group configured with the
help of the open-source NetworkX Python library to reduce
link congestion. The OpenFlow Select group is primarily
designed for load balancing at the switch via multipath rout-
ing to the same destination. In addition, the usage of this
group mitigates the negative impact of non-stopping data
forwarding traffic loops. As indicated in Fig. 5, each bucket
in a Select group has an assigned weight, and each packet that
enters the group is sent to a single bucket. There are several
possible ways to select the more feasible bucket for every
message flow. Each switch’s implementation imposes the
bucket selection method to be used. For example, in the case
of OpenvSwitch, the bucket of a Select group can be selected
as follows. In OpenvSwitch 2.3 and earlier, OpenvSwitch
used the destination Ethernet address to choose a bucket in
a select group. In a different way, OpenvSwitch 2.4 and later
by default hashes the source and destination Ethernet address,
VLAN ID, Ethernet type, IPv4/v6 source and destination
addresses, and protocol. Specifically, for TCP segments, the

FIGURE 5. Each Select group is formed by several buckets. Each bucket
has associated a list of OpenFlow actions.

FIGURE 6. Design of solution to mitigate link congestion based on the
collection of switch statistics by the SDN controller, update of link costs
and bucket weights, and transfer of renewed select groups from the SDN
controller to the controlled switches.

source and destination ports can be also used to select the
bucket.

The bucket weights allow the selection of a specific bucket
among others. Each bucket in a Select group has a list of
actions. These actions are supported by OpenFlow. In our
design, the bucket weights are evaluated using the lowest cost
path (i.e. Dijkstra’s shortest path algorithm from NetworkX)
to each possible destination. The costs of links are dynamic
because these are evaluated by the SDN controller using for
example transmission link rates. These rates are evaluated
from OpenFlow statistics periodically retrieved by the con-
troller from all the switches, as shown in Fig. 6. In phase 1,
the controller collects port and flow rule statistics from the
data plane switches.

Then, the controller uses the received statistics of
phase 1 and updates (in phases 2 and 3 respectively) the
link costs and bucket weights. Finally, in step 4, the con-
troller transfers Select groups to the switches with new bucket
weights reflecting the last status reported from the data plane.
This solution to overcome link congestion also protects the
TCP traffic quality against the unfair network resource usage
by UDP competitive traffic (see sub-sections IV.C and V.C).

D. ORCHESTRATING A CLUSTER OF SDN CONTROLLERS
AND THE CONTROL CHANNEL LOAD
We discuss the diverse roles each SDN controller can assume
in SDN configurations with multiple controllers, assuming

45194 VOLUME 10, 2022



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

FIGURE 7. Deployed cluster-based architecture and its associated
communication protocol that can manage any number of SDN controllers.

the SouthBound (S/B) API is using the OpenFlow protocol.
In this type of scenario, each SDN controller could assume
one of three possible roles in relation to each switch on
the data forwarding system level: master, slave or equal.
A SDN controller with the master role monitors and controls
the data forwarding switching devices; it can also process
asynchronous S/B messages such as Packet In. On the other
hand, an SDN controller with the slave role monitors only
the system operation. In this situation any received Packet In
message should be ignored by the SDN controller acting as
slave. Finally, the SDN controllers with the equal role share
among them the workload related to monitor and control the
data forwarding. That is, the equal role suggests the same
behavior when compared with the master role, but there are
some important differences. Within a cluster of several SDN
controllers only a single SDN controller can be selected as the
master role. Thus, the remaining SDN controllers should act
as slaves. Alternatively, when all the cluster controllers share
the same role, i.e. they are equal, this implies that the data
forwarding load should be shared among these controllers,
but in a coordinated way.We discuss now a new cluster server
(like ZooKeeper1) and a lightweight management protocol
for the resilient and orchestrated operation of any number
of SDN controllers. This cluster can manage any network
topology, eventually formed by the aggregation of diverse
networking domains. Without reducing the usage flexibility
of the proposed solution, in Fig. 7 we present an illustrative
scenario of the system control level, where are visible three
entities, namely the clustermanager and two SDNcontrollers.

Assuming the cluster manager was pre-configured to the
Master/Slave mode, we now describe how this mode works.
After the boot of each SDN controller, that controller selects a
random integer (i.e. cont_id). Then, each controller sends the
randomly selected number to the Cluster Manager (Fig. 7,
message 1 or 2). The messages are sent via TCP sockets,
where the manager and any controller have respectively the
server role and client role.

After the cluster manager has received the initial messages
from all the controllers previously configured to interact with
the cluster manager, this manager evaluates three parameters
that in the next protocol phase (messages 3 and 4) are returned

1Apache ZooKeeper, available at https://zookeeper.apache.org/(verified in
29/07/2021)

to each controller. These three evaluated parameters are the
role of each controller (in Fig. 7 controller #2 is the ‘Master’
because this controller obtained the highest cont_id), the total
number of controllers (i.e. num_server) and the individual
order of each controller (i.e. order). In respect to the last
parameter, the cluster manager gives the order = 0 to the
controller that previously has reported the minimum cont_id
value. In addition, the cluster manager gives the highest order
value to the controller, which has previously reported the
highest cont_id number.

We also need to have a distributed mechanism to establish
an orchestrated management among the SDN controllers,
avoiding conflicting decisions about what to do with the
same Packet-In message simultaneously received by all those
controllers. The expression (1) is used by each controller to
decide (or not) on how to process the last received Packet-In
message previously sent by an SDN-based switch with data-
path identifier given by dpid. We should note that, as already
explained, each controller has a unique order value.

dpid mod(num_server) == order (1)

When the equality in (1) becomes True, this occurs exclu-
sively at a single controller among any set of controllers.
Therefore, there is always a unique controller to decide how
the message within the received Packet-In should be analyzed
and processed. In this way, we have a distributed decision or
consensus mechanism among the controllers. This solution
offers the significant advantage of avoiding the exchange of
signaling traffic directly between the controllers. Neverthe-
less, it has a significant drawback. It is not completely fair in
terms of balancing the load among the controllers, i.e. taking
an equal share, in scenarios where there are distinct amounts
of data flows traversing the forwarding switches. In these
situations, there is a distinct (perhaps unfair) workload level
assigned to each controller. In the text below, we describe a
fairer algorithm, which balances better the workload among
controllers.

The alternative orchestration proposal is that each con-
troller could decide if it processes or not any received
Packet-In message as summarized in (2). The subtle dif-
ference in relation to (1) is the replace of dpid by
packet_in_counter, which is the aggregated value of all
received Packet-In messages by each controller. Assuming
every switch is simultaneously connected via OpenFlow with
every available controller, all the controllers share the same
trend on the packet_in_counter parameter. The decision algo-
rithm in (2) enables a fairer control load distribution among
the diverse controllers, keeping also all the referred positives
of the decision algorithm in (1).

packet_in_counter mod(num_server) == order (2)

The proposed solution based on the (random) identifier
of SDN controllers can be evolved: the initial decision of
the cluster manager based on cont_id can be later adjusted
considering the control channel delay measurement between
each controller and every switch. The posterior changes on

VOLUME 10, 2022 45195



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

FIGURE 8. Configure OpenvSwitch s1 to standalone functional mode.

controllers’ orchestration made by the cluster manager can
minimize the delay of each control channel. This will be
studied in future work.

To finalize this sub-section, a final design observation is the
need to guarantee status consistency within the SDN-based
system after a switch has changed its controller. In this case,
the new controller should replace the old flow rules stored in
each controlled switch by new ones.

IV. DEPLOYMENT
This section debates the deployment of several cross-level
solutions for increasing the resilience of an SDN-based sys-
tem in adverse scenarios such as system failures, high loads,
or attacks. These deployment aspects have been aggregated
in RECS, as explained at the beginning of section III. Due
to the availability of multiple SDN controllers, there are also
resilience gains at the switching logic system level.

A. ENHANCING SYSTEM RESILIENCE AGAINST CONTROL
CHANNEL COMMUNICATION FAILURE
The current sub-section presents the deployment of a solu-
tion that enables data forwarding devices to detect and react
autonomously against communication failures to the interme-
diate system level, which is responsible for the implemen-
tation of the switching logic behind the system operation.
As explained in sub-section III.A, the standalone functional
mode is the more suitable option to support a higher degree of
operational resilience at the data message forwarding level of
our programmable edge system. In this way, we configured
each OpenvSwitch to operate in the standalone mode, issuing
the ovs-vsctl command visualized in Fig. 8.

B. AVOIDING SERVER CONGESTION
To deal with the potential issue associated with server conges-
tion in the network, we propose a solution based on a server
farm, where several servers elastically offer the same service
to a high number of clients. Our programmable solution
deployed in the SDN controller has twomain steps: i) manage
the ARP protocol; and ii) manage the IP virtual address,
which identifies the server farm. In the following, we explain
the two algorithms behind these two steps.

1) MANAGE THE ARP PROTOCOL
The several main processing steps of the SDN controller to
manage the ARP protocol are summarized in Algorithm 1.
Steps 1-9 of Algorithm 1 allow the SDN controller to iden-
tify an ARP message requesting the MAC address of the
Server that should be associated with the IP virtual address
(i.e. Virtual_IP in step 4). Then steps 10-15 select the MAC
address of the Server that should be sent back to the client.
The N parameter represents the number of available servers

Algorithm 1Manage the ARP Protocol
1: for each Packet-In Event with pkt do
2: if pkt.ether.type = ARP
3: arp_header = pkt.get_protocol(arp)
4: if arp_header.opcode == ARP_Request and arp_header.dst

_ip == Virtual_IP
5: ARP_reply_packet = generate_arp_reply

(arp_header.src_ip,arp_header.src_mac)
6: send_msg(Packet-Out(ARP_reply_packet))
7: end if
8: end if
9: end for
10: generate_arp_reply(dst_ip, dst_mac)
11: arp_target_ip = dst_ip
12: arp_target_mac = dst_mac
13: src_ip = Virtual_IP
14: i← arp_target_mac mod(N)
15: src_mac =MAC_addr[i]
16: pkt = Packet()
17: pkt.add_protocol(ethernet(dst = dst_mac, src = src_mac))
18: pkt.add_protocol(arp(opcode = ARP_Reply, src_mac =

src_mac, src_ip = src_ip, dst_mac = arp_target_mac,
dst_ip = arp_target_ip))

19: pkt.serialize()
20: return pkt
21: end function

within the server farm. The number of available servers can be
dynamically adjusted to the total client demand for the service
provided by the edge server farm. The MAC address selected
for each client follows a round-robin scheduling principle.
This is an important characteristic of our solution to ensure
the server load balancing among the clients. Steps 16-21
create the ARP Reply packet and return it to the initial
calling code. In step 6 the ARP Reply packet is sent using
a Packet-Out message to the switch, which by its turn sends
the ARP Reply back to the client, following the instruction
action of previous OpenFlow message. After receiving that
packet, the client populates its ARP table with a new entry
mapping Virtual_IP to the server returned MAC address.

2) MANAGE THE IP VIRTUAL ADDRESS
After the MAC address of the selected server has been
returned to the client, the same client sends a packet des-
tined to the Virtual_IP. Then, the packet IP destination
address should be changed to the IP address used by the
selected server. This change is made in the last switch on
the destination path before the packet arriving to the selected
server. Otherwise, the selected server will not reply. The
Algorithm 2 summarizes how the IP address is changed.

Steps 1-19 of Algorithm 2 allow the SDN controller to
discover in the received IP message which protocol is being
used at the layer above the network layer. The eventual
change of the IP address is made inside the function han-
dle_ip_packet() (step 20). Inside this function (steps 26-31),
the SDN controller selects the server IP address (step 28)
according to the destination MAC address sent by the client.
This last MAC address was learned by the client via the ARP
protocol (see Algorithm 1). In addition, executing step 29, the
SDN controller selects the output_port of the switch directly
attached to the network interface of the Server. Steps 32-34

45196 VOLUME 10, 2022



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

Algorithm 2Manage the IP Virtual Address
1: for each Packet-In Event with pkt do
2: datapath = Event.msg.datapath
3: parser = datapath.ofproto_parser
4: in_port = msg.match[‘in_port’]
5: eth = pkt.get_protocol(ethernet)
6: src_mac = eth.src
7: dst_mac = eth.dst
8: if eth.type = IPv4 and datapath.id == last_switch_before

_Server
9: ip_header = pkt.get_protocol(ipv4)
10: up_header = None
11: if ip_header.proto == TCP
12: up_header = pkt.get_protocol(tcp)
13: elif ip_header.proto == UDP
14: up_header = pkt.get_protocol(udp)
15: elif ip_header.proto == ICMP
16: up_header = pkt.get_protocol(icmp)
17: else
18: print ‘‘Unsupported protocol!’’
19: end if
20: handle_ip_packet(datapath, in_port, ip_header, up_header,

parser, dst_mac, src_mac)
21: end if
22: end for
23: handle_ip_packet(datapath, in_port, ip_header, up_header,

parser, dst_mac, src_mac)
24: dpid = datapath.id
25: if ip_header == virtual_IP
26: for each i in all Servers do
27: if dst_mac == Server_MAC[i]
28: server_dst_ip = Server_IP[i]
29: server_out_port = Server_Port[i]
30: end if
31: end for
32: path = networkx.shortest_path(net, dpid, dst_mac)
33: next = path[1]
34: out_port = net[dpid][next][‘port’]
35: match = parser.OFPMatch(in_port = in_port, eth_type =

IPv4, ipv4_src = ip_header.src, ipv4_dst = Virtual_IP)
36: actions = [parser.OFPActionSetField(ipv4_dst =

server_dst_ip), parser.OFPActionOutput(out_port)]
37: add_flow(datapath, match, actions)
38: match = parser.OFPMatch(in_port = server_out_port,

eth_type = IPv4, ipv4_src = server_dst_ip, ipv4_dst =
ip_header.src)

39: actions = [parser.OFPActionSetField(ipv4_src =
ip_header.dst), parser.OFPActionOutput(in_port)]

40: add_flow(datapath, match, actions)
41: generate_modified_packet()
42: end if
43: end function

find the shortest path between the current switch and destina-
tion server, including the output switch port of the forwarding
path. Then, the SDN controller specifies to the current switch
a list of two actions (step 36): i) change the destination IP
address to the one being used by the selected Server network
interface; ii) specify the output previously found in step 34.
Step 37 sends to the switch a flow rule to be applied to the
future packets of the same flow. Steps 38-40 are necessary
to create the correct flow rule for the reverse path (i.e. traffic
from the server to the client) and send that rule to the switch
to be applied to the future packets of the same flow but in
the reverse direction. Finally, step 41 is needed for the SDN
controller to make a copy of the first received packet of the
flow being processed but making the necessary adjustment
in the IP address and sending back that changed packet to

Algorithm 3 Avoid Any Found Loop at the Data Message
Forwarding

1: for each Packet-In Event with pkt do
2: datapath = Event.msg.datapath
3: dpid = datapath.id
4: in_port = msg.match[‘in_port’]
5: eth = pkt.get_protocol(ethernet)
6: src_mac = eth.src
7: dst_mac = eth.dst
8: if src_mac not in self.learned_macs[dpid]:
9: self.learned_macs[dpid][src_mac] = in_port
10: else:
11: if in_port != self.learned_macs[dpid][src_mac] and dst_mac

== ‘ff:ff:ff:ff:ff:ff’:
12: return
13: endif
14: endif
15: end for

Algorithm 4 The Controller Retrieves Periodically Statistics
From the Data Forwarding Level (Once Each T Second)

1: def __init__(self, ∗args, ∗∗kwargs):
2: self.monitor_thread = hub.spawn(self._monitor)
3: end function
4: def _monitor(self):
5: while True do
6: for each id in self.switches do
7: datapath = self.datapath_list[id]
8: self._request_stats(datapath)
9: end for
10: hub.sleep(T)
11: end while
12: end function
13: def _request_stats(self, datapath):
14: ofproto = datapath.ofproto
15: parser = datapath.ofproto_parser
16: req = parser.OFPFlowStatsRequest(datapath)
17: datapath.send_msg(req)
18: req = parser.OFPPortStatsRequest(datapath, 0,

ofproto.OFPP_ANY)
19: datapath.send_msg(req)
20: end function

the switch. The SDN controller has also the capability of
detecting the need to automatically activate some part of the
network edge topology before sending a packet destined to
any node within that topology part.

C. OVERCOME LINK CONGESTION AND PROTECT TCP
QUALITY AGAINST UDP RESOURCE USAGE UNFAIRNESS
This sub-section deals with the deployment at the topological
switches of several Select groups (i.e. one for each server
of a server farm). The usage of these Select groups offer
two pertinent system functional advantages: balancing the
traffic load andmitigating the negative impact of any eventual
loop in the traffic forwarding through the network topology.
Despite the usage of the Select groups, we have implemented
a specific mechanism at the SDN controller to eliminate any
eventual loop at the data message forwarding. This mecha-
nism is presented below as Algorithm 3.

In steps 8-9, the SDN controller learns a first seen frame
received at the switch identified by dpid, with a specific
MAC source address and received in_port of that switch.
In the case of a future event associated to a frame from the

VOLUME 10, 2022 45197



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

Algorithm 5 The Controller Gets Port Statistics Sent by
Switches and Updates Link Costs Using Some Selected Sta-
tistical Data

1: @set_ev_cls(ofp_event. EventOFPPortStatsReply,
MAIN_DISPATCHER)

2: def _port_stats_reply_handler(self, ev):
3: body = ev.msg.body
4: dpid = ev.msg.datapath.id
5: for each stat in body do
6: port = stat.port_no
7: self.rate[dpid][port] = alfa ∗ self.rate[dpid][port] + (1-alfa)

∗ (stat.tx_bytes - self.tx_bytes[dpid][port])
8: self.tx_bytes[dpid][port] = stat.tx_bytes
9: self.bandwidths[dpid][port] = alfa ∗

self.bandwidths[dpid][port]
+ (1-alfa) ∗ self.rate[dpid][port]

10: end for
11: for each port_sw in range (6) do
12: c = 1 - (self.DEFAULT_BW1/(k ∗

self.bandwidths[dpid][port_sw]))
13: if c <= 0:
14: cost = 1000
15: else:
16: cost = 10 / c
17: end if
18: self.costs[dpid][port_sw] = cost
19: end for
20: end function

Algorithm 6 The Controller Updates the LinkWeights of the
NetworkX Algebraic Topology With the Costs Evaluated @
Algorithm 5

1: for each Packet-In Event with pkt do
2: for each node ni in topology do
3: for each direct neighbor of node ni in topology do
5: self.net.add_weighted_edges_from([(ni, direct

neighbor of node ni, self.costs[ni]
[output port from ni to direct neighbor of node ni]),])

6: end for
7: end for
8: end for

same switch with repeated physical source and destination
addresses but with a distinct received switch port from the
previously learned port (step 11), the SDN controller clas-
sifies this more recent event as induced by a topology loop.
Then, the controller stops the processing of Packet-In handler
function (step 12). In this way, there is no Packet-Out being
sent to the switch and the loop situation is cancelled.

In the text below, we will explain the diverse algorithms
to deploy a set of relevant controller functionalities for sup-
porting routing decisions based on the shortest path to each
destination. These controller functionalities are summarized
in Fig. 9 and are as follows: i) periodic retrieval of operational
statistics from switches; ii) update of link costs and Select
buckets weights; iii) send back updated Select groups to
switches.

1) CONTROLLER PERIODICALLY RETRIEVES DATA
FORWARDING STATISTICS
The major processing events of the SDN controller to retrieve
periodically port and flow rule statistics from all the topologi-
cal switches are summarized below asAlgorithm 4. To run the

Algorithm 7 Controller Updates Bucket Weights of Select
Groups

1: for each Packet-In Event with pkt do
2: datapath = Event.msg.datapath
3: dpid = datapath.id
4: in_port = msg.match[‘in_port’]
5: eth = pkt.get_protocol(ethernet)
6: src_mac = eth.src
7: dst_mac = eth.dst
8: if dst_mac in self.mac_to_port[dpid]:
9: out_port = self.mac_to_port[dpid][dst_mac]
10: else:
11: out_port = ofproto.OFPP_FLOOD
12: end if
13: if out_port != ofproto.OFPP_FLOOD:
14: self.install_paths(datapath, in_port, src_mac, dst_mac)
15: end if
16: end for
17: def install_paths(self, dp, in_port, src, dst):
18: obtain from network algebraic topology all possible paths

between current switch (dp.id) and the destination (dst)
19: if more than one path to dst:
20: create and install (or update) a Select group with a bucket for

each possible path; each bucket has a weight
equal to the cost of the associated path

21: else:
22: create and install (or update) flow rules for the single

next-hop for the destination
23: end if
24: end function

FIGURE 9. Control loop that retrieves statistical information from
switches, enables the controller to update link costs and the weights of
Select buckets, which follow the parallel cost paths to each specific
destination, and then ends with the controller sending renewed Select
groups to the switches. These groups allow load balancing at the data
forwarding level. The loop reruns periodically (once every T seconds).

statistics collection, we use a thread that is launched in step 2.
As already said, this thread runs once every T second, which
is possible due to steps 5, 10 and 11. The statistics collection
from all the switches is initiated in steps 6-8. Further details
about the start of this data forwarding status collection are
available in steps 13-20.

2) CONTROLLER UPDATES LINK COSTS
The more relevant processing steps of the SDN controller to
obtain switch port statistics and after updating the links costs
using some of those statistics are summarized below as Algo-
rithm 5. We use here a Python decorator (step 1) specialized
in a very specific event type, which is generated within the
environment of the SDN controller, after the controller has
received an OpenFlow message from the switch transporting
the statistical data from all the available ports of that switch.

45198 VOLUME 10, 2022



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

Algorithm 8 The Multi-Thread Cluster Manager Scalably
Manages Any Number of Controllers Belonging to the Same
Control Cluster

1: class ThreadedClusterServer(object):
2: def __init__(self, host, port):
3: self.host = host
4: self.port = port
5: self.sock = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)
6: self.sock.setsockopt(socket.SOL_SOCKET,

socket.SO_REUSEADDR, 1)
7: self.sock.bind((self.host, self.port))
8: self.mydict = {}
9: self.EQUAL = False
10: end function
11: def listen(self):
12: self.sock.listen(5)
13: while True do
14: client, address = self.sock.accept()
15: client.settimeout(60)
16: threading.Thread(target = self.listenToClient, args =

(client, address)).start()
17: end while
18: end function
19: def listenToClient(self, client, address):
20: size = 1024
21: while True do
22: try:
23: data = client.recv(size)
24: if data:
25: self.mydict[data] = 1
26: max = 0
27: count = []
28: for key in self.mydict do
29: count.append(key)
30: if max < key:
31: max = key
32: end if
33: end for
34: order = count.index(data)
35: if not self.EQUAL:
36: if data == max:
37: client.sendall(‘‘MASTER’’ + ‘‘:’’ +

str(len(count)) + ‘‘:’’ + str(order))
38: else:
39: client.sendall(‘‘SLAVE’’ + ‘‘:’’ +

str(len(count)) + ‘‘:’’ + str(order))
40: end if
41: else:
42: client.sendall(‘‘EQUAL’’ + ‘‘:’’ +

str(len(count)) + ‘‘:’’ + str(order))
43: end if
44: else:
45: raise error(‘Client disconnected’)
46: end if
47: except:
48: self.mydict = {}
49: client.close()
50: return False
51: end while
52: end function
53: if __name__ == ‘‘__main__’’:
54: while True do
55: port_num = input(‘‘Port?’’)
56: try:
57: port_num = int(port_num)
58: break
59: except ValueError:
60: pass
61: end while
62: ThreadedClusterServer(‘‘, port_num).listen()

Algorithm 9 Each Controller Communicates Periodically
With the Top Level Cluster Manager (Once Each T Second)

1: def __init__(self, ∗args, ∗∗kwargs):
2: self.monitor_thread = hub.spawn(self._monitor)
3: end function
4: def _monitor(self):
5: while True do
6: resp = self.check_role()
7: list = resp.split(‘‘:’’)
8: if len(list) > 1:
9: self.mode = list[0]
10: self.num_serv = list[1]
11: self.order = list[2]
12: end if
13: if self.num_serv == ‘1’:
14: self.mode = ‘MASTER’
15: end if
16: if self.mode != self.mode_prev:
17: self.send_role_request(for all switches)
18: self.load_default_rules(for all switches under the

control of this controller)
19: end if
20: self.mode_prev = self.mode
21: hub.sleep(T)
22: end while
23: end function

Algorithm 10 Each Controller Assumes the Role EQUAL
Avoiding Any Conflict With Other Controllers

1: for each Packet-In Event with pkt do
2: datapath = Event.msg.datapath
3: dpid = datapath.id
4: if self.mode == ‘EQUAL’:
5: if not (dpid % int(self.num_serv) == int(self.order)):
6: return
7: else:
8: Analyse, process and control the current message
9: endif
10: endif
11: end for

In step 2 we declare the function which is called each time
the SDN controller receives a port statistics message from
any switch. The processing of the received statistical data
and consequent update of each link cost are respectively
in steps 5-17 and step 18. In the last processing, we have
used exponential moving average with alfa (steps 7 and 9)
assuming the value of 0.2. This value has been experimentally
selected from the range [0, 1].

In Algorithm 6, we briefly present the major processing
steps of SDN controller to update link weights of the Net-
workX algebraic topology with the costs evaluated as already
explained in Algorithm 5. The cost links enable the controller
to take routing decisions based on the shortest path to each
destination. We have opted to deploy this processing in an
event-triggered way instead of using periodical processing,
because the former option consumes less resources from the
controller than the latter alternative.

3) CONTROLLER UPDATES THE BUCKET WEIGHTS OF
SELECT GROUPS
Algorithm 7 describes how the SDN controller updates the
bucket weights of the Select groups enabled within the

VOLUME 10, 2022 45199



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

SDN-based system. The bucket weights directly reflect the
cost paths. Each cost path is the sum of the diverse link costs
forming that path. The SDN controller only updates in an
event-triggered way the bucket weights of a Select group,
after receiving a Packet-In message (step 1) that controller is
responsible to control. We again opt for this, despite perform-
ing it periodically, to save controller processing resources.
In steps 17-24 the switches Select groups are installed or
updated.

D. ORCHESTRATING A CLUSTER OF SDN CONTROLLERS
AND THE CONTROL CHANNEL LOAD
We aim to develop a new cluster server, like Apache
ZooKeeper, but using a new lightweight management pro-
tocol for the resilient operation of a programmable system
supported by multiple controllers. Algorithm 8 describes the
processing steps of a multi-thread cluster server that manages
any number of SDN controllers sharing the same cluster.
The multi-thread implementation for the cluster server offers
some performance and scalability gains. Thus, each SDN
controller only needs to establish an initial and single TCP
connection with the cluster manager and keep it active dur-
ing the time the SDN controller is running. Consequently,
we diminish the network overload in relation to the simpler
implementation of a common thread to deploy the cluster
manager for all the SDN controllers. System gains in terms
of scalability and performance of the multi-thread cluster
manager become more relevant as there are many more SDN
controllers. In steps 28-33, the cluster server finds out the
SDN controller with the highest communicated identifier.
This SDN controller is selected by the cluster server as the
MASTER of the cluster and all other SDN controllers are
selected as SLAVEs. The relevant decisions are made when
the parameter self.EQUAL (step 9; steps 35-40) is False. Oth-
erwise (step 41), all the SDN controllers assume the EQUAL
role. In this situation, we need to deploy a correct orchestra-
tion mechanism among all controllers to avoid two or more of
them simultaneously controlling either a switch or Packet-In
message from the data forwarding system level. To support
this distributed orchestration mechanism, the server cluster
(step 42) sends to each SDN controller the EQUAL role and,
the order and count parameters. The count parameter is the
total number of SDN controllers; order enables distributed
orchestration (see III.D) between any number of controllers.

Algorithm 9 presents the SDN controller operation when
it checks with the cluster manager which role that SDN
controller should assume (steps 6-15). If the SDN controller
is alone in the control cluster, then that SDN controller
should assume the MASTER role (steps 13-15). Otherwise
(steps 8-11), the SDN controller should assume the role
reported by the cluster manager, the number of SDN con-
trollers and the order number assigned by the same cluster
manager to each SDN controller. In addition, as the SDN
controller detects a role change (step 16), then it needs to
inform all the switches about that change (step 17) and,
if necessary, the SDN controller should delete all the old flow

TABLE 2. Algorithms summarization and their goals.

rules from the switcheswhich are now under its control before
installing new flow rules (step 18). The update of flow rules
is important to ensure a coherent and reliable control of the
data forwarding system level.

Algorithm 10 shows one possible way to support the coor-
dinated control among all the SDN controllers sharing the
same role EQUAL, avoiding potential conflicts among them
(steps 5-6). Our solution is easily modified to support other
options to coordinate the SDN controllers, including a dis-
tinct scenario such as MASTER-SLAVEs. We have already
discussed some alternative orchestration methods for the sce-
nario where all the SDN controllers assume the EQUAL role
in sub-section III.D.

Table 2 summarizes the ten algorithms discussed in
Section IV, indicating for each algorithm its specific goal and
broader proposal aim. These algorithms can be divided into
three groups. The first group is composed by algorithms 1-2,
which aim to avoid congestion at the dataplane servers. These
edge servers are made accessible to clients via IP virtual
address, and the number of active servers depends on the
number of flows requiring the common service offered by
those virtualized servers. The second group is formed by
algorithms 3-7 with the intent of avoiding congestion at
data forwarding links by using load balancing techniques.
The TCP quality protection against UDP unfair resource
competition is also achieved. The third, last, group contains
algorithms 8-10 that target to orchestrate with low network
overhead a set of redundant SDN controllers at the switching
logic level.

V. EVALUATION
Now we discuss the evaluation of RECS, our proposal
for increasing the SDN-based system resilience against
real-life network issues that could penalize its performance.
Fig. 10 visualizes the RECS SDN-based system under
evaluation.

45200 VOLUME 10, 2022



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

FIGURE 10. RECS - a SDN-Based system under evaluation. This system
aims to beneficially manage the runtime adaptation of computational
resources from edge cloud systems to mitigate against disruptive events
on these systems.

There are only two SDN controllers, but our proposal is
capable of scaling for the number of supported SDN con-
trollers. We are using a distributed and flat programmable
switching logic, which is orchestrated by a cluster man-
ager. Some data forwarding entities are initially powered
off, as visualized in Fig. 10 as ‘‘Powered Off’’; the elastic
resource activation is omitted. Thus, the initial minimalist
network topology assumes a strong objective, to minimize
energy consumption by switching off network sectors that
are not required for normal network operation. Then, the
network domain can evolve to an operational state where an
increasing number of new data flows need to be controlled
in terms of their destination-based routing. As follows, the
network devices that receive the new flows use OpenFlow
messages to inform the control plane about the need for
more (virtualized) computational and networking resources
to fulfill the requisites of those flows; these extra resources
are promptly activated by the control plane before forwarding
actions are sent back to data plane switching devices.

To enable the reproducibility of the results of this work,
Table 3 summarizes the hardware and software used during
our tests. The tests made to evaluate RECS system are sum-
marized in Table 4. Also, the main objective of each test is
identified.

A. ENHANCING SYSTEM RESILIENCE AGAINST CONTROL
CHANNEL COMMUNICATION FAILURE
We have tested the standalone mode (see III.A) of a software-
based switch such as the case of OpenvSwitch. It was studied
the scenario of how the system behaves after the switches
become disconnected from the SDN controllers. In our
testbed, we have tried to ping between hosts in two distinct
scenarios. In the first scenario, the switch can communicate
with the SDN controller. The ping results of this test are
available in Fig. 11.

Analyzing and comparing the RTT of the first ping ten-
tative against the RTTs of the next tries of the same ping
command, we can notice a significantly higher RTT value
(i.e. 18.5ms in Fig. 11) for the first tentative when com-
pared with the following tentatives (i.e. within the range

TABLE 3. Hardware and software tools used during the evaluation tests.

TABLE 4. Evaluation tests.

FIGURE 11. Ping test before the communication failure between SDN
controllers and the switches.

[0.155, 0.218]ms). This RTT difference is due to the fact
the first ping try is controlled in a reactive way, involving
the SDN controller in the final decision about how to route the
ICMP messages through the network topology.2 In addition,
the ping tries following the first one are already proactively
controlled. This means that at the time the messages of those
ping attempts arrive at each switch on the path to the desti-
nation of each ICMP message, that switch has already local
flow rules for commuting directly the ICMP traffic without
involving anymore the SDN controllers.

In the second scenario, we have stopped all the SDN
controllers and then executed again the ping command of
the first scenario. The ping results of the second scenario are
presented below in Fig. 12. Analyzing these results, we can
conclude that the diverse ping tentatives have similar and
low values in their RTTs. In addition, we have not detected
any failure. In this way, we can conclude the switches after

2The largest RTT for the initial ping is also due to the extra delay imposed
by the ARP protocol.

VOLUME 10, 2022 45201



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

FIGURE 12. Ping test after the communication failure between SDN
controllers and the switches.

FIGURE 13. RTT trend of ICMP traffic towards a destination virtualized
node which in the beginning is not running and it should be automatically
powered on before receiving and processing the traffic data.

becoming disconnected from the SDN controllers continue
their expected operation as Link Layer Learning switches.

B. AVOIDING SERVER CONGESTION
This sub-section evaluates the proposed mechanism to bal-
ance the load of a high number of clients among a dynamic
pool of servers of a server farm (or serverless edge computing
cluster). It presents and discusses the performance results of
two tests. In the first test, we aim to measure the activation
time of a set of devices of the network topology, includ-
ing the virtualized services, before transferring some traffic
through that activated topology part towards the virtualized
edge services. The performance results of five ping tries sent
from h1 client towards the server farm IP Virtual Address are
presented in Fig. 13.

In the current test, the activated devices were two Open-
vSwitch devices, three server nodes, and five necessary links
to interconnect all those virtualized devices (see Fig. 10).
Analyzing the RTT of the diverse ping tries, one can conclude
that the first ping tentative has suffered the highest RTT
(i.e. 2.65s). This highest value is due to several reasons: i)
the ARP protocol and the associated processing of server
MAC address (see sub-sections III.B and IV.B for further
information on this); ii) the reactive control of both the ICMP
request and ICMP reply of the first ping tentative; and last and
not least, iii) the time to power on the virtualized network
infrastructure and edge servers. Considering a time interval
of 1s between two consecutive ping attempts for the same
destination, the additional delay imposed by all the three
previous referred aspects is gradually being reduced as one
can notice in the RTT of pings #2 and #3. The RTT of ping
#4 indicates the associated ICMP messages were already
autonomously controlled in each switch on the path to the
selected destination of the server farm.

The second and last test of the current sub-section stud-
ies the system performance when a server farm delivers a
common service to many clients. This common service is
transported over TCP. To produce and consume the TCP
flows we have used some iperf3 commands as shown in
Table 5.

TABLE 5. Iperf3 commands.

FIGURE 14. Performance comparison between the single server scenario
and the server farm instance.

The results of the test are shown in Fig. 14. They have
been obtained from five trials for each number of concurrent
TCP flows. From these results, one can conclude that the
usage of a server farm by itself does not offer a significant
quality improvement on the service provided to the clients,
because all the TCP flows destined to a single server follow
the same network path, which offers constrained connec-
tivity resources (i.e. all the topology links are rate limited
to 10 Mbps by the Linux traffic control - tc tool) to the
aggregated traffic load. For the current testing scenario, the
usage of a server farm is not enough by itself to ensure
the aimed quality of service for each TCP flow. The next
sub-section evaluates a possible solution to ameliorate the
benefits on the service quality provided by the server farm.

C. OVERCOME LINK CONGESTION AND PROTECT TCP
QUALITY AGAINST UDP RESOURCE USAGE UNFAIRNESS
From the results of sub-section V.B, we have concluded that
the Quality of Service provided by a server farm should be
enhanced. Aligned with this goal, we have planned to enable
in our SDN-based system a routing load balancing mecha-
nism supported by Select groups at the network switches.
In this way, we have repeated the test presented at the end
of last sub-section but now with the usage of Select groups
at the data message forwarding. The results of this test are
visualized in Fig. 15.

The results of Fig. 15 have been obtained from five trials
for each number of concurrent TCP flows. Comparing the

45202 VOLUME 10, 2022



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

FIGURE 15. TCP performance comparison at the server side between
scenarios single server vs. server farm with Select groups being only used
for the last scenario.

FIGURE 16. TCP performance comparison at the server side between
scenarios with and without Select groups, when there are always three
concurrent UDP flows with an individual constant source bit rate of
2.16Mbps (note: the vertical axis is presented in a logarithmic scale).

results of the two scenarios under test, one can conclude that
for the case the server farm and load balancing of Select
groups are both enabled, the associated TCP aggregated
throughput is roughly 178% (i.e. (125 - 45) ∗ 100/45) higher
than the throughput verified in the scenario where the Select
groups are not active. In the current scenario, the server
farm can offer an enhanced service to their clients when the
corresponding TCP traffic is conveniently balanced among
the multiple access links of the server farm by using Select
groups in the switches belonging to the data forwarding level.

Another important advantage to be obtained from using
Select groups is to deter network link congestion when mes-
sages using distinct transport protocols are competing for the
same network resources. From Fig. 16, when Select groups
are not used, the TCP traffic performance is penalized by 73%
(i.e. (131-36)/131 ∗ 100) due to the unfairness competition
of UDP traffic (i.e. 3 × 2.2 Mbps) and the absence of any
load balancing mechanism to countermeasure the network
congestion strongly induced by UDP flows.

These results suggest Select groups are also relevant to
protect the performance of TCP traffic in case there are
competitive flows that monopolize the network resources.

FIGURE 17. Channel control load sharing among controllers for the two
distributed coordination mechanisms under comparison.

FIGURE 18. Channel control load of the two distributed coordination
mechanisms during the same simulated avalanche of traffic at the data
forwarding level.

D. ORCHESTRATING A CLUSTER OF SDN CONTROLLERS
AND THE CONTROL CHANNEL LOAD
This sub-section evaluates the two methods discussed
in III.D for enabling the coordination among SDN con-
trollers. Comparing thesemethods (Fig. 17), the orchestration
method identified as III-D:Exp. (2) is the fairest one in terms
of balancing the workload among the SDN controllers. This
fairness enhancement occurs because III-D:Exp. (2) applies
round robin scheduling to Packet In (PI) control channel event
counter and all the controllers count the same PIs.

Nevertheless, as shown in Fig. 18, the orchestrationmethod
III-D:Exp. (2) shows a slightly higher channel control load
when compared with the orchestration option III-D:Exp. (1).
This difference on the channel control load between the two
methods is due to the fairest method forcing each switch to
be controlled by either one of the two SDN controllers, which
implies more control messages in the control channel for
example to indicate to each switch the new SDN controller.
Alternatively, the method which is more unfair in terms of
balancing the workload of SDN controllers allows each SDN
controller to control the same set of switches during the entire
working session.

Thus, it seems there is a trade-off between increasing the
fairness level in how the workload of the SDN controllers is
balanced and the additional load on the control channel to
support that increase on the fairness level.

VOLUME 10, 2022 45203



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

FIGURE 19. The decomposition of the fairest orchestration method
channel control load among the diverse types of control/management
messages.

TABLE 6. Decomposition of peak value from Figure 19.

Considering the scenario when the fairest coordination
mechanism was used, we have also investigated the principal
causes for the channel control (and cluster management as
well because both share the same loopback interface for
exchanging messages) peak load value. The results of this
analysis are visualized in Fig. 19.

For the peak value time of Fig. 19, we show in Table 6 how
that value can be decomposed in the diverse types of con-
trol/management messages. Comparing the network overload
induced by both control and management messages, we can
make two main observations. First, the control messages
(i.e. Packet-In, Packet-Out, Flow-Mod) exchanged between
the SDN controllers and the data forwarding switches are
responsible for 90% of the peak value of Fig. 19. The second
observation is that the messages related to the management
of the cluster of SDN controllers are only marginally respon-
sible, with 0.1% for the same peak.

Then, we have compared the performance of two different
implementations for the cluster manager. The first implemen-
tation can attend each time a single SDN controller, implying
the cluster manager to disconnect the TCP connection with
the last SDN controller before connecting to the next SDN
controller. The second deployment of the cluster manager has
a multi-thread design. Therefore, each SDN controller can
keep active the TCP connection with the cluster manager,
in parallel with other SDN controllers, during the entire work-
ing session. Analyzing the results visualized in Fig. 20, the
scenario using a multi-thread design in the cluster manager
significantly diminishes the load increase induced by the
signaling traffic exchanged between the cluster manager and
the diverse SDN controllers sharing the same control cluster
in relation to the other option based on a single-thread design.
Here, we have a trade-off between the complexity level of
the cluster server implementation and the overload level on

FIGURE 20. The network overload induced by the exchange of signaling
traffic between the SDN controllers and the cluster manager for the two
distinct implementations of that manager under comparison.

FIGURE 21. The processing and memory system resources obtained from
htop -p 〈process_id〉 for the two distinct implementations of the cluster
manager under comparison.

the management channel. In addition, Fig. 21 illustrates that
the higher level of complexity associated to the multi-thread
implementation of the cluster manager implies the allocation
of a higher amount of processing and memory resources to
run that implementation than the single-thread alternative.

After the master SDN controller fails, the new controller
does not immediately control the system. To evaluate the
efficiency of RECS controller failover mechanism, we have
measured the failover time. In this experiment, a software
switch connects two hosts that continuously exchange ICMP
packets with a time interval of 1ms between two consecu-
tive tries. We bring down the master, wait for the slave to
become the newmaster, and activate again the previous failed
controller, which could assume the role of slave or master,
depending on its own novel id number. The obtained results
have evidenced no ping failure during the state changes at
control level. Consequently, the system failover time is lower
than 1ms.

E. LIMITATIONS OF CURRENT WORK
Analyzing current work contribution, the runtime adaptation
of resources at edge cloud systems seems a powerful strategy
to mitigate against system disruptive events. Nevertheless,
we can detect two important limitations on our research:
i) proposal applicability to operation scenarios with high
complexity, and ii) the centralized design of the cluster server.
We aim in the future to investigate further enhancements
on the current proposal to address the previous referred
shortcomings.

VI. DISCUSSION
We have subjected RECS to a carefully chosen set of tests,
presented in Section V. From the results obtained, we can
make the following observations.

45204 VOLUME 10, 2022



J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

We have shown that despite switches becoming discon-
nected from the SDN controllers, they can continue their
normal switching operation because they operate as legacy
Link Layer learning switches after the disconnection from the
upper-level programmable switching logic entities.

We have identified the positive effects of a server farm
but managed by SDN controllers in terms of the service
quality provided to a high number of clients. We have also
demonstrated that the servers inside the server farm can be
activated in an elastic way according to the load variation.
This could imply huge savings of energy by disconnecting
unnecessary network equipment at off-peak hours. We have
evidenced that Select groups at the data message forwarding
level further enhance the quality of service provided by a
server farm to its clients. The Select groups are also relevant
to protect the performance of TCP traffic in cases there are
competitive flows that monopolize the usage of available
network resources.

The scheduling scheme that uses the Packet-In order num-
ber to orchestrate among the SDN controllers and decide
which controller should process that Packet-In is fairer in
terms of balancing the control load among the diverse SDN
controllers than the alternative scheduling scheme; the other
scheme uses the id of the switch where the Packet-In message
was sent. However, the first scheduling scheme overloads the
control channel more than the second one.

From our results, we can conclude that a multi-thread
design for the cluster server is better than a single-thread
alternative because the former implies less signaling traffic at
the management channel. Nevertheless, the former consumes
more processing resources than the latter. In addition, after an
SDN controller failure, the measured system failover time is
lower than 1ms.

Now we discuss the applicability of our proposal to
real-life scenarios in two next steps. First, Internet Service
Providers aiming tominimize the deployment and operational
costs of their network infrastructure can benefit from using
energy-aware solutions based on our proposal, which adjusts
running infrastructure resources to the network demand evo-
lution. Second, we believe our results represent a step forward
in managing emerging edge applications that can benefit
from low latency and high throughput. The typical upcom-
ing edge applications are as follows: digital-valuable cases
such as 360◦ video with virtual/augmented reality; critical
control platforms; AI-enriched data and knowledge discov-
ery systems; real-time e-commerce product recommendation;
location-based multimedia; and heterogeneous information
sharing among self-driving vehicles. These edge applications
could be managed by a serverless service management plat-
form [13], which would support service deployment, service
discovery, or service life cycle management among other
possible relevant features.

VII. CONCLUSION AND FUTURE WORK
This paper introduces the design, deployment, and testing of
RECS, a cross-level serverless edge-programmable solution

to accomplish the goals of: i) detecting and remediating
disconnections between SDN controllers and switches; ii)
easing the burden of a congested server suffering from an
over-demand of simultaneous client requests for its service;
iii) mitigating the negative performance effects caused by
congested network links; and iv) addressing failures and
orchestrating multiple SDN controllers at the programmable
switching logic using a control cluster manager together with
a novel management protocol.

For future work, we aim to explore the usage of learning
techniques at the cluster manager to decide how the SDN con-
trollers should be orchestrated based on previously retrieved
statistical information from both the control channel of each
SDN controller and the controlled system. Another important
direction is to investigate a set of cluster managers for greater
resilience in a federated domain environment.

REFERENCES
[1] W. Kellerer, P. Kalmbach, A. Blenk, A. Basta, M. Reisslein, and S. Schmid,

‘‘Adaptable and data-driven softwarized networks: Review, opportunities,
and challenges,’’ Proc. IEEE, vol. 107, no. 4, pp. 711–731, Apr. 2019, doi:
10.1109/JPROC.2019.2895553.

[2] J. Li, J. Cai, F. Khan, A. U. Rehman, V. Balasubramaniam, J. Sun, and
P. Ven, ‘‘A secured framework for SDN-based edge computing in IoT-
enabled healthcare system,’’ IEEE Access, vol. 8, pp. 135479–135490,
2020, doi: 10.1109/ACCESS.2020.3011503.

[3] R. Chaudhary, A. Jindal, G. S. Aujla, S. Aggarwal, N. Kumar, and
K. K. R. Choo, ‘‘BEST: Blockchain-based secure energy trading in SDN-
enabled intelligent transportation system,’’ Comput. Secur., vol. 85,
pp. 288–299, Aug. 2019, doi: 10.1016/j.cose.2019.05.006.

[4] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, ‘‘Resilience and survivability in com-
munication networks: Strategies, principles, and survey of disci-
plines,’’ Comput. Netw., vol. 54, pp. 1245–1265, Jun. 2010, doi:
10.1016/j.comnet.2010.03.005.

[5] V. Prokhorenko and M. A. Babar, ‘‘Architectural resilience in cloud, fog
and edge systems: A survey,’’ IEEEAccess, vol. 8, pp. 28078–28095, 2020,
doi: 10.1109/ACCESS.2020.2971007.

[6] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, ‘‘Fault-tolerance in
the scope of software-defined networking (SDN),’’ IEEE Access, vol. 7,
pp. 124474–124490, 2019, doi: 10.1109/ACCESS.2019.2939115.

[7] M. Hamdan, E. Hassan, A. Abdelaziz, A. Elhigazi, B. Mohammed,
S. Khan, A. V. Vasilakos, and M. N. Marsono, ‘‘A comprehensive survey
of load balancing techniques in software-defined network,’’ J. Netw.
Comput. Appl., vol. 174, Art. no. 102856. Accessed: Jun. 18, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1084804520303222

[8] P.Manso, J. Moura, and C. Serrão, ‘‘SDN-based intrusion detection system
for early detection and mitigation of DDoS attacks,’’ Information, vol. 10,
no. 3, p. 106, Mar. 2019, doi: 10.3390/info10030106.

[9] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, ‘‘Edge
computing: A survey,’’ Future Gener. Comput. Syst., vol. 97, pp. 219–235,
Aug. 2019, 2019, doi: 10.1016/J.FUTURE.2019.02.050.

[10] S. Shukla, M. F. Hassan, D. C. Tran, R. Akbar, I. V. Paputungan, and
M. K. Khan, ‘‘Improving latency in Internet-of-Things and cloud comput-
ing for real-time data transmission: A systematic literature review (SLR),’’
Cluster Comput., pp. 1–24, Apr. 2021, doi: 10.1007/s10586-021-03279-3.

[11] P. Ranaweera, A. D. Jurcut, and M. Liyanage, ‘‘Survey on multi-
access edge computing security and privacy,’’ IEEE Commun. Sur-
veys Tuts., vol. 23, no. 2, pp. 1078–1124, 2nd Quart., 2021, doi:
10.1109/COMST.2021.3062546.

[12] J. Chen and X. Ran, ‘‘Deep learning with edge computing: A review,’’
in Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, Jul. 2019, doi:
10.1109/JPROC.2019.2921977.

[13] R. Xie, Q. Tang, S. Qiao, H. Zhu, F. Richard Yu, and T. Huang, ‘‘When
serverless computing meets edge computing: Architecture, challenges,
and open issues,’’ IEEE Wireless Commun., vol. 28, no. 5, pp. 126–133,
Oct. 2021, doi: 10.1109/MWC.001.2000466.

VOLUME 10, 2022 45205

http://dx.doi.org/10.1109/JPROC.2019.2895553
http://dx.doi.org/10.1109/ACCESS.2020.3011503
http://dx.doi.org/10.1016/j.cose.2019.05.006
http://dx.doi.org/10.1016/j.comnet.2010.03.005
http://dx.doi.org/10.1109/ACCESS.2020.2971007
http://dx.doi.org/10.1109/ACCESS.2019.2939115
http://dx.doi.org/10.3390/info10030106
http://dx.doi.org/10.1016/J.FUTURE.2019.02.050
http://dx.doi.org/10.1007/s10586-021-03279-3
http://dx.doi.org/10.1109/COMST.2021.3062546
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1109/MWC.001.2000466


J. Moura, D. Hutchison: Resilience Enhancement at Edge Cloud Systems

[14] J. Moura and D. Hutchison, ‘‘Modeling cooperative behavior for resilience
in cyber-physical systems using SDN and NFV,’’ Social Netw. Appl. Sci.,
vol. 2, no. 9, pp. 1–13, Sep. 2020, doi: 10.1007/s42452-020-03335-4.

[15] N.-U.-H. Shirazi, S. Simpson, A. K. Marnerides, M. Watson, A. Mauthe,
and D. Hutchison, ‘‘Assessing the impact of intra-cloud live migration on
anomaly detection,’’ in Proc. IEEE 3rd Int. Conf. Cloud Netw. (CloudNet),
Oct. 2014, pp. 52–57, doi: 10.1109/CloudNet.2014.6968968.

[16] A. C. Baktir, A. Ozgovde, and C. Ersoy, ‘‘How can edge computing
benefit from software-defined networking: A survey, use cases, and future
directions,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2359–2391,
4th Quart., 2017, doi: 10.1109/COMST.2017.2717482.

[17] R. K. Das, F. H. Pohrmen, A. K. Maji, and G. Saha, ‘‘FT-SDN: A
fault-tolerant distributed architecture for software defined network,’’Wire-
less Pers. Commun., vol. 114, no. 2, pp. 1045–1066, Sep. 2020, doi:
10.1007/s11277-020-07407-x.

[18] K. B. Kiadehi, A. M. Rahmani, and A. S. Molahosseini, ‘‘A fault-tolerant
architecture for internet-of-things based on software-defined networks,’’
Telecommun. Syst., vol. 77, no. 1, pp. 155–169, 2021, doi: 10.1007/s11235-
020-00750-1.

[19] P. Sun, J. Lan, Z. Guo, Y. Xu, and Y. Hu, ‘‘Improving the scalability of
deep reinforcement learning-based routing with control on partial nodes,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2020, pp. 3557–3561, doi: 10.1109/ICASSP40776.2020.9054483.

[20] V. Srivastava and R. S. Pandey, ‘‘A dominance of the channel capacity in
load balancing of software defined network,’’ Wireless Pers. Commun.,
vol. 112, no. 3, pp. 1859–1873, Jun. 2020, doi: 10.1007/s11277-020-
07130-7.

[21] A. Nayyer, A. K. Sharma, and L. K. Awasthi, ‘‘Laman: A super-
visor controller based scalable framework for software defined net-
works,’’ Comput. Netw., vol. 159, pp. 125–134, Aug. 2019, doi: 10.1016/j.
comnet.2019.05.003.

[22] H. Zhong, Y. Fang, and J. Cui, ‘‘Reprint of ‘LBBSRT: An effi-
cient SDN load balancing scheme based on server response time,’’’
Future Gener. Comput. Syst., vol. 80, pp. 409–416, Mar. 2018, doi:
10.1016/j.future.2017.11.012.

[23] A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh, and A. Rezaee,
‘‘Load balancing mechanisms in the software defined networks: A sys-
tematic and comprehensive review of the literature,’’ IEEE Access, vol. 6,
pp. 14159–14178, 2018, doi: 10.1109/ACCESS.2018.2805842.

[24] N. Katta, H. Zhang, M. Freedman, and J. Rexford, ‘‘Ravana: Con-
troller fault-tolerance in software-defined networking,’’ in Proc. 1st ACM
SIGCOMM Symp. Softw. Defined Netw. Res., Jun. 2015, pp. 1–12, doi:
10.1145/2774993.2774996.

[25] P. Song, Y. Liu, T. Liu, and D. Qian, ‘‘Flow stealer: Lightweight load
balancing by stealing flows in distributed SDN controllers,’’ Sci. China Inf.
Sci., vol. 60, no. 3, p. 32202, Mar. 2017, doi: 10.1007/s11432-016-0333-0.

[26] A. A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
‘‘ElastiCon; an elastic distributed SDN controller,’’ in Proc. 10th
ACM/IEEE Symp. Architectures Netw. Commun. Syst. (ANCS), Oct.2014,
pp. 17–27.

JOSE MOURA received the B.Sc. degree in elec-
tronics and telecommunications from the Univer-
sidade de Aveiro, Portugal, the M.Sc. degree in
computer networks from the Faculdade de Engen-
haria, Universidade do Porto, Portugal, and the
Ph.D. degree in computer science from Lancaster
University, U.K. From 1989 to 2000, he worked
as an Engineer in supervisory control and data
acquisition (SCADA) systems at EFACEC Sis-
temas Electronica, Portugal. From 2000 to 2001,

he worked as a Researcher at INESC, Porto, Portugal. Since 2001, he has
been teaching in computer networks with the ISCTE—Instituto Universi-
tario Lisboa, Portugal, and he has been a Researcher with the Instituto de
Telecomunicacoes, Portugal. He is an active reviewer for several Quartile
1 journals. His current research interests include network management, edge
computing, optimization, virtualization, software-defined networking, and
resilience on networked systems.

DAVID HUTCHISON is currently a Distinguished
Professor in computing with Lancaster Univer-
sity and the Founding Director of the InfoLab21.
He has served on the TPC for top conferences,
such as ACM SIGCOMM, IEEE Infocom, and
served on editorial boards of the Lecture Notes in
Computer Science (Springer),Computer Networks
journal, and IEEE TRANSACTIONS ON NETWORK AND

SERVICE MANAGEMENT, and Computer Networks
and Distributed Systems (Wiley). He has helped

build a strong research group in computer networks, which is well known
internationally for contributions in a range of areas, including quality of
service architecture and mechanisms, multimedia caching and filtering, mul-
ticast engineering, active and programmable networking, content distribution
networks, mobile IPv6 systems and applications, communications infrastruc-
tures for grid-based systems, testbed activities, and internet science. He now
focuses largely on resilient and secure networking, with interests in future
internet and the protection of critical infrastructures including industrial
control systems.

45206 VOLUME 10, 2022

http://dx.doi.org/10.1007/s42452-020-03335-4
http://dx.doi.org/10.1109/CloudNet.2014.6968968
http://dx.doi.org/10.1109/COMST.2017.2717482
http://dx.doi.org/10.1007/s11277-020-07407-x
http://dx.doi.org/10.1007/s11235-020-00750-1
http://dx.doi.org/10.1007/s11235-020-00750-1
http://dx.doi.org/10.1109/ICASSP40776.2020.9054483
http://dx.doi.org/10.1007/s11277-020-07130-7
http://dx.doi.org/10.1007/s11277-020-07130-7
http://dx.doi.org/10.1016/j.comnet.2019.05.003
http://dx.doi.org/10.1016/j.comnet.2019.05.003
http://dx.doi.org/10.1016/j.future.2017.11.012
http://dx.doi.org/10.1109/ACCESS.2018.2805842
http://dx.doi.org/10.1145/2774993.2774996
http://dx.doi.org/10.1007/s11432-016-0333-0

