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Abstract— This paper presents a method for vision-based
landing of a multirotor unmanned aerial vehicle (UAV) on an
autonomous surface vehicle (ASV) equipped with a helipad. The
method includes a mechanism for helipad behavioural search
when outside the UAV’s field of view, a learning saliency-based
mechanism for visual tracking the helipad, and a cooperative
strategy for the final vision-based landing phase. Learning how
to track the helipad from above occurs during takeoff and
cooperation results from having the ASV tracking the UAV
for assisting its landing. A set of experimental results with
both simulated and physical robots show the feasibility of the
presented method.

I. INTRODUCTION

Due to their wide application range, unmanned aerial
vehicles (UAV) are attracting considerable attention of the
robotics community. This is particularly striking for mul-
tirotor vehicles, which are capable of vertical takeoff and
landing. Despite all the developments on this domain, land-
ing these vehicles outdoors on a dynamic landing platform,
helipad hereafter, is still an open problem.

This paper addresses the particular problem of devising a
end-to-end search and landing strategy for a UAV that needs
to return to its helipad (see Fig. 1), even when the helipad is
not covered by the UAV’s downwards looking camera’s field
of view and its position is highly uncertain to the UAV. To
solve this hard problem, the UAV needs to infer the vantage
point that most probably will bring the helipad into its field
of view and then to visually detect and track the helipad
while descending.

Detecting and tracking a helipad from high altitudes is
rather difficult given its small size. To diminish this problem,
the UAV learns the altitude-dependent appearance of the
helipad during takeoff. To also consider how the helipad
differs from the background, the learning process occurs over
a computational model of visual saliency.

The helipad is assumed to be mounted on a mobile robot,
concretely, an autonomous surface vehicle (ASV) running an
environmental monitoring task. This means that the helipad
can be seen as a mechatronic device capable of perception,
reasoning, and communicating with other devices, such as
the UAV. These assets are herein exploited in order to allow
the helipad to assist the UAV in the search and land task.

The helipad assists the search by providing the UAV
with estimates of their relative pose. This information is as
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Fig. 1. The hexacopter used in the experiments. This UAV is equipped
with a marker to be tracked from the helipad’s upwards looking camera and
a downwards looking camera to track the helipad. Both marker and UAV
camera are mounted on a mechanical gimbal.

inaccurate and seldom as higher is the distance between the
UAV and the helipad. As a result, the UAV needs to exploit
the pose information as a cue in a context-sensitive fusion
process. When the distance is short, as it is a few moments
before landing, the communications become reliable and the
assistance provided by the helipad can be used within the
UAV’s control loop. This is exploited by letting the helipad
to visually track the UAV with an upwards looking camera
and report their relative accurate pose.

This paper is organised as follows. Section II discusses
related work. Then, an overview of the system is given in
Section III. The global search process that allows the UAV
to search the helipad, when it is not visible, is presented in
Section IV. Subsequently, the local search phase, i.e., when
the helipad is visible to the UAV, is presented in Section V.
The system description is finalised with the landing process
in Section VI. A set of experimental results in simulation
and with physical robots is provided in Section VII. Finally,
conclusions and future work avenues are discussed in Sec-
tion VIII.

II. RELATED WORK

The presence of a human operator can facilitate the search
and landing problem. For instance, the landing target can be
defined by a GPS position that is to be tracked by the UAV
[1]. Rather than a GPS position, the human operator may
defined the landing target on an image, which is then used
as a template for visual search of the landing site. This has
been done using for instance infrared imagery [2].

Not relying on a human operator is pivotal when com-
munications are unavailable. In this case, the UAV may
need to engage on an emergency safe landing, which means



picking the portion of the terrain that poses the least risk
to the landing process, given the tridimensional environment
information gathered online [3]. The recent developments
in robust tridimensional reconstruction from aerial platforms
(e.g., [4]) will be key to push safe landing in natural
environments forward and to enable human-directed landing
on known a priori structures in the environment.

Landing on a pre-specified docking station, such as a
helipad, is key to allow UAVs to work together with other
robots. See for instance the case of having UAVs and
ASVs cooperating for the accomplishment of environmental
monitoring tasks [5]. Moreover, the use of a helipad reduces
considerably the computational effort, as compared to solu-
tions that demand tridimensional reconstruction from vision
sensors.

Helipads may exhibit different appearances, each pro-
viding different accuracy-robustness-speed trade-offs. The
presence of a texture in the landing site has been shown
to be sufficient to guide the landing process via optic flow
estimation [6]. However, the presence of a well defined
helipad reduces computation and fosters accuracy.

Most often helipads exhibit black/white visual patterns that
can be easily detected from aerial images, such as chess-
boards [7], white on black squares [8], concentric rings [9],
and H-based patterns [10]. In addition to be able to detect
the helipad, it is also important to be able to track it, which
is commonly done with Kalman filtering [11]. Markers as
those found in augmented reality have been used as well for
controlling a UAV in a multi-camera setup [12].

A limitation of these techniques alone is that they rely
on visual acuity for detailed marker detection, thus limiting
their applicability for higher altitudes. With a saliency-based
approach, our system overcomes this limitation by bringing
to the system the information related to how the helipad’s
appearance relates to the background’s at several scales. This
means learning the relationship between the appearance of
the helipad and supporting mobile robot and between this
assemble and the background environment. This regional
descriptor is robust when the details are lost due to altitude,
image deformation, and noise.

III. SYSTEM OVERVIEW

A. The Robotic System

The robotic system is composed of an hexa-rotor UAV
with vertical takeoff and landing capabilities and a heli-
pad mounted on a mobile robot. Both robots are provided
with a GPS and an IMU for pose estimation in outdoor
environments. Both robots are able to reliably communicate
with each other via a wireless bidirectional communication
channel only in the short range, i.e., below 100m. At greater
distances both robots will eventually lose communications.
The helipad has an upwards looking camera attached to its
centre. This camera will allow the helipad to assist the UAV
in the final landing phase. The UAV is equipped with a
downwards looking camera whose optical axis is aligned
with the gravity vector. This alignment is physically ensured
by having the camera mounted on a gimbal. The helipad

is assumed to be mounted on a mobile robot moving on a
planar surface always perpendicular to the gravity vector. As
a result, the upwards looking camera’s optical axis is parallel
to the gravity vector.

B. Helipad Search

To allow the UAV to search for the helipad beyond its
field of view, a global search is used (Section IV). The global
search is the task of determining what is the next vantage
point in the environment that provides higher chances for the
UAV to detect the helipad. This is done by means of fusing
several heuristically defined criteria.

For each vantage point selected by the global search,
the UAV moves towards it and a local search is engaged
therein (Section V). The local search aims at checking, in a
prioritised way, if any of the objects present in the UAV’s
field of view at the vantage point picked by the global
search is the helipad. If so, a landing behaviour is triggered
(Section VI).

The local search starts by ranking all objects present in
the UAV’s field of view according to their likelihood of
being the helipad (Section V-B). This likelihood is based on
saliency-based knowledge about the relative appearance of
the helipad, underlying mobile robot, and local environment,
which was learned during the preceding takeoff (Section V-
A). Then, each of the ranked objects of interested are
scheduled for a sequential close-in inspection (Section V-
C). This inspection means centring the UAV on the object
of interest and lowering it down to an altitude at which a
definitive decision about the presence of the helipad can be
confidently made. If the helipad is found, then the landing
behaviour is engaged. If the local search fails to detect the
helipad in any of the inspected objects, the global search
is reiterated and the whole subsequent processes repeated
accordingly.

IV. GLOBAL SEARCH

The global search is assumed to occur at a fixed high
altitude, ah. The latitude and longitude of each putative
vantage point are obtained using a multi-criteria optimisation
process. For this purpose, a geo-referenced n×m grid is
assumed to represent the robot’s useful workspace, and
whose origin is the helipad’s position at takeoff time. Let
Gk(i, j, t)∈ [0,1], with 1≤ i≤ n,1≤ j≤m, return the utility,
according to a given criterion k ∈ K, of considering the grid
cell (i, j) as the next vantage point from which the helipad
will be locally searched. Grid cells are assumed to be squared
and with an area that ensures full coverage of the ground
imaged by the UAV’s downwards-looking camera at the fixed
search height, given the camera’s intrinsics obtained from
calibration.

To take into account all criteria in K, these are fused onto
a global utility map:

Ψ(i, j, t) =
1
|K| ∑k∈K

ωkGk(i, j, t), 1≤ i≤ n,1≤ j ≤ m, (1)



where t refers to the current time step, ωk is an empirically
defined weight for criterion k, such that ∑k∈K ωk = 1.

To determine the globally best vantage point taking into
account what is known in the current moment t, the cell in
Ψ(·, ·, t) with highest value, (î, ĵ, t), is found:

(î, ĵ, t) = argmax
(i, j)

{
Ψ(i, j, t)

}
, 1≤ i≤ n,1≤ j ≤ m. (2)

The cartesian coordinates of the obtained grid cell (î, ĵ),
assumed to be coherent with the UTM coordinate system,
are converted to latitude and longitude coordinates before
being sent to the UAV’s control system as next waypoint to
be tracked.

Four criteria are used to determine the best next vantage
point, K = {v, p, l,a}. Criterion v states that all cells close to
the current UAV’s position should attract maximum attention:

Gv(i, j, t) = exp
(
− ||(i, j)−p(t)||2

2σ2
v

)
, (3)

where p(t) represents the current position of the UAV in the
grid coordinate system. This criterion aims at ensuring that
the next visited waypoint is nearby the last (current) visited
one. This is important as there is a high cost associated to
moving the UAV from a position to another.

If known, the current position of the helipad should drive
strongly the UAV to the corresponding grid cell. Even if
the current position is unknown, previous known positions
should attract the UAV, less strongly though. Awareness of
the helipad is feasible in scenarios in which the helipad is
mounted on a mobile robot with a communication channel
to the UAV available. The attractiveness by the grid cells in
which the helipad was present is governed by the following
differential equation approximated by the Euler method:

τ · Ġp(i, j) =−Gp(i, j)+κ · exp
(
− ||(i, j)−d||2

2σ2
v

)
, (4)

where the initial value of Gp(i, j) is 0, and κ = 1 in the
instant the UAV receives positive information regarding the
helipad’s presence in a given cell, d, and κ = 0 in all other
moments. Basically, this formulation raises the utility of cell
(i, j) whenever the position of the helipad is known to be
the one of the cell and lowers the utility as time goes by,
implementing a sort of forgetting mechanism.

To take the UAV to avoid previously visited positions,
without hampering it completely, the following differential
equation is used at each time step with the Euler method:

τ · Ġl(i, j) = (1−Gl(i, j))−φl(i, j), (5)

where the initial value of Gl(i, j) is 1, φl(i, j) = 0 in the
instant the UAV reaches cell (i, j) and φp(i, j) = 1 in all other
moments. Without the forgetting factor, the UAV would not
be able to find a dynamic helipad that has moved to a cell
already visited by the UAV.

To unblock putative deadlock situations caused by cyclic
updates or local minima resulting from the fusion of the
previous criteria, criterion a values all positions randomly:

Ga(i, j, t) = rnd, (6)

where rnd represents a number between 0 and 1 sampled
from an uniform distribution for every tuple (i, j, t).

These criteria induce the UAV to perform a spiral-like
search behaviour around positions that are known to have
been visited by the helipad. The stochastic criterion induces
some variability to this global behaviour, which is key to
cope with potentially dynamic behaviour of the helipad,
sensor noise, and faulty actuation.

V. LOCAL SEARCH

A. Learning Helipad Appearance

The fact that the UAV takes off from the helipad can be
exploited to learn its appearance and how it differs from
the background’s appearance. That is, the system should
learn which are the visual features that turn the helipad both
recognisable and salient with respect to the background. This
section describes the learning process used to capture such
knowledge.

Visual saliency information is commonly obtained by ag-
gregating several maps of bottom-up contrast visual features
(e.g., dark region on a bright background). The classical
bio-inspired model proposed by Itti et al. [13] is herein
considered as backbone for saliency computation. First, one
dyadic Gaussian pyramid with eight levels is computed from
the intensity channel. Two additional pyramids, also with
eight levels, are computed to account for the Red-Green and
Blue-Yellow double-opponency colour feature sub-channels.
Each level corresponds to a given scale. Various scales are
then used to create a set of on-off and off-on centre-surround
maps per pyramid. These have higher intensity on those
pixels whose corresponding feature differs the most from its
surroundings. All centre-surround maps of a given kind, i.e.,
on-off or off-on, built from the intensity pyramid are resized
to a common size, independently scaled in magnitude with
the method recently proposed in [14], and finally averaged
together to produce an aggregate intensity centre-surround
feature map. Then, both on-off and off-on aggregate inten-
sity centre-surround feature maps are scaled and averaged
together to produce an intensity bottom-up conspicuity map.
The same process applies to create Red-Green and Blue-
Yellow conspicuity maps, which are then averaged together
to produce a single colour bottom-up conspicuity map.

The bottom-up conspicuity maps need to be somehow
blended in order to produce a final saliency map. Without
a priori knowledge of the object being sought, this can be
done at the cost of reporting several false positives induced
by distractors distributed in the environment. To reduce this
ambiguity, the relative importance of each aggregate centre-
surround feature map contrast visual feature to the saliency
map, which is computed as an weighted average of the
bottom-up conspicuity maps, can be made a function of



learned knowledge about the object being sought [15], [16].
This knowledge is defined as the set of weights required for
the weighted average of the conspicuity maps. This approach
allows the system to exploit the visual features that turn the
helipad simultaneously salient with respect to the background
and recognisable.

As previously stated, the learning process occurs through-
out the takeoff process. At each time step t, the helipad is
tracked (see below) and its bounding box, b(t), used as a
mask to determine which weights distribution generate a final
saliency map that best correlates with the current position of
the helipad in the visual field. This instantaneous weights
vector, w(t), feeds a temporal smoothing filter to cope with
noisy data (refer to [15], [16] for further details on the
process that estimates w(t) from a learning mask):

w∗(t) = (1−β )w∗(t−1)+βw(t), (7)

where β is the learning rate. As the perceived appearance of
the helipad is likely to change as a function of the UAV’s
current altitude, caused for instance by specular reflections,
the filtered weights vector needs to be used as a function
of altitude. This way, the most appropriate weight vector,
given the current altitude, can be obtained when searching
for the helipad. For this purpose, at each time step, the tuple
(ŵ(t),a(t),b(t)) is appended in a set that is empty at the
time step of takeoff onset, to:

W (t) =W (t−1)∪{(w∗(t),b(t),a(t))}, W (to) = /0. (8)

To track the helipad during the learning process, the
helipad detector used for close-in inspection is used while
in low altitude (see Section V-C). As for high altitudes the
method used for the close-in inspection is no longer reliable
(see Section V-C), a camshift tracker [17] is initialised on the
last observed helipad’s bounding box. Then, the tracker is fed
with the saliency map after being modulated by w∗(t). As a
result, the tracker will follow the saliency peak corresponding
to the helipad’s position, ensuring that learning can proceed
for higher altitudes. As saliency is being modulated by the
weights that are being learnt, the tracker remains fixed to the
helipad as the UAV climbs.

B. Finding Objects of Interest

Let us assume that the learning process ends at time step
te > to. Then, at each time step of subsequent local searches,
t > te, W (te) is used to recall the filtered weight vector, ŵ∗(t),
and helipad bounding box, b̂(t) for the current altitude,
a(t). This is done by simply returning the tuple whose
altitude element best matches the current UAV’s altitude. The
recalled weight vector is then used to modulate the saliency
computation so as to raise the chances that the helipad and its
supporting structure is the most salient in the field of view.

At the local search onset, the saliency map, S(t)∈ [0,1], is
thresholded and segmented into a set of objects, O(t), using
a connected components operation. Some of the segmented
objects are more likely to represent the helipad than others,

thus, they have different values for the search task. This value
of an object is defined as its ability to be simultaneously
salient and with a bounding box similar to the expected one:

v(o) = αs · s̄(t)+(1−αs) ·Φ(b̂(t),b(o)), (9)

where αs is an empirically defined scalar, s̄(t) ∈ [0,1] is the
average saliency of the saliency map S(t) and b(o) is the
bounding box of object o, and

Φ(a,b) =
min(aw,bw)

max(aw,bw)

min(ah,bh)

max(ah,bh)
(10)

returns the similarity between two bounding boxes, where
aw and ah are the width and height of bounding box a,
respectively. The objects are ranked according to their value
to the search task, resulting in the ordered set

R(t) =
{

o1, . . . ,o|O(t)|
}
, (11)

with o j ∈O(t), v(o j)≥ v(o j+1), 1≤ j≤ |O(t)|. These objects
are scheduled according to their order in R(t) for subsequent
close-in inspection.

C. Close-In Inspection

During a close-in inspection, two descending phases are
considered. The first is the one taking the robot from the
highest altitude, ah to an intermediate altitude am. The second
phase is the one that takes the UAV from the intermediate
altitude am < ah to the altitude at which the UAV must decide
whether it will proceed for landing or not, al < am. The
decision altitude, al , can be formally determined as f · (w+
e)/h, where f is the camera’s focal length (obtained from
calibration), w is the width of the mobile robot transporting
the helipad, e is the expected relative pose estimate error, h
is the input image’s height in pixels.

During the first phase, the UAV centres on the object
picked from the saliency map for close-in inspection and
then tracks it while progressively is descending. The tracking
starts by initialising a camshift tracker around the bounding
box of the object under analysis. Then, the tracker is fed
with the saliency map computed with the weight vector ap-
propriate for the altitude at each time step, i.e., by consulting
W (te) given current altitude a(t).

During the second phase of the descent, the low UAV’s
altitude results in the helipad filling a large portion of the
robot’s visual field. This renders visual saliency operators of
little use in this case and, thus, a geometric description of the
helipad is used for its detection and tracking. The helipad is
assumed to be a black surface with a white H inscribed and
surrounded by a white circle. Inspired by [18], a reference
model, hr, is stored offline as a seven-dimensional vector
containing the target’s geometric invariant moments (Hu,
1962). The geometric invariant moments are fast to compute
object descriptors known to be invariant to changes in scale,
rotation, and translation.

Online, the system starts by searching all circles present
in the image using an Hough-based approach. The goal is
to find the circle circumscribing the H in the helipad. To



avoid false positives, the search is limited to circles of radius
covered by the interval [γ−γδ ,γ +γδ ], where γ ≈ f ·r/a(t),
a(t) is the UAV’s current altitude, f is the camera’s focal
length, r is the circumscribing circle’s expected radius, and δ

is an empirically defined scalar. The set of circles respecting
this constraint are stored in a set C(t).

The geometrical moments of the input image constrained
by the bounding box of each circle c∈C(t), hc, are compared
to the reference model in order to get a dissimilarity measure:

dc =

√
7

∑
i=1

(
hi

r−hi
c
)2
, (12)

where hi is the i-th element of the model vector h.
The circle c enclosing the appearance most similar to the

expected one is

q(t) = arg min
c∈C(t)

(dc : dc < ξ ), (13)

where ξ is an empirically defined similarity threshold to
ensure that a circle is accepted only if it is at least somewhat
similar to the model. When accepted, the dissimilarity of the
best circle q(t), dq(t), is appended to a set that is empty at
the time step of descent onset, td > te:

D(t) = D(t−1)∪{dq(t)}, D(td) = /0. (14)

When reached the altitude al , the close-in inspection
behaviour must terminate with a decision about whether the
helipad is actually present in the UAV’s visual field. If so,
then the landing process may proceed, otherwise the higher
level local search behaviour must pick a new location for
close-in inspection. The decision is based on the average
similarity between observations and the amount of successful
matchings:

(1−α)d̄(t)+α|D(t)|/(t− td)> 0.5, (15)

where α is an empirically defined scalar that weighs the
importante of both criteria, t − td accounts for the number
of processed frames since the descent onset, and d̄(t) =
|D(t)|−1

∑d∈D(t) d.
Throughout the descent, a permanent or momentary ab-

sence of the helipad in the visual field results in an in-
stantaneous negative output of the detector based on the
geometric moments and, in these situations, the UAV simply
descends with a fixed latitude and longitude. When altitude
al is reached, the decision is made as explained above.

VI. LANDING BEHAVIOUR

When landing the UAV, the helipad’s structure overly
occupies the entire field of view of the UAV’s vision sensor,
rendering ineffective its detection from the UAV’s onboard
camera. To provide 6-DOF accurate helipad-UAV relative
pose estimates at very low altitude, a complemental strategy
was devised. Namely, the landing platform itself assists the
aerial vehicle in its final meters of the landing procedure.

A monocular camera with a wide field of view is placed at
the helipad’s centre to detect and track an augmented reality
marker attached to the bottom centre of the UAV. The ArUco
library [19], a third-party augmented reality toolkit, is used
for the marker detection task. The pose estimate is sent to the
UAV so that it is able to determine which corrective measures
it must apply in order to centre itself on the helipad. Finally,
when this marker is detected at the safe landing altitude, the
UAV can safely turn off its rotors and land on the helipad.

To enable the use of a small marker, the landing behaviour
just described is preceded by a preparatory move. Concretely,
the UAV drops in altitude so as to be 2m above the helipad,
while maintaining its horizontal position from GPS-IMU
feedback. The typical magnitude of this motion being small,
around 2m, potential horizontal displacements are robustly
compensated by the wide field of view of the upwards
looking camera.

Sudden moves outwards the camera’s field of view re-
sulting from strong winds need to be compensated. This is
done by simply compensating the UAV’s position from an
EKF-based pose estimate and, when this does not suffice, the
UAV is requested to climb in altitude to raise the chances of
getting visible to the camera.

VII. EXPERIMENTS

This section presents a set of experiments carried out to
validate the presented method in both simulated and real
robots. Onboard the UAV, the system runs at 10Hz on a
ODROID-XU (Quad core 1.6 Ghz Cortex-A7). The UAV
tracking done by the helipad runs at 30Hz on a Quad core
3.5 Ghz i7. The system has been developed on top of the
Robotics Operating System (ROS) and OpenCV. The input
images are processed at a resolution of 640× 480. Vertical
and horizontal fields of view of the upwards looking camera
are 120◦ and 71◦, respectively, and the diagonal field of view
of the downwards looking camera is 69◦.

The geo-referenced grid’s dimensions are (n,m) =
(30,30), with an area over ground in each cell of 900m2. The
helipad’s area is 1m2. The remaining parameters have been
empirically defined as: e = 1m, σv = 6, β = 0.5, ah = 30m,
am = 15m, al = 4m, δ = 0.25, ξ = 7, α = 0.3, αs = 0.7,
ωv = 0.1, ωp = 0.47, ωl = 0.4, ωa = 0.03, and τ = 0.2.

A. Helipad detection and tracking

Two experiments were carried out in order test the ability
of the presented helipad detection and tracking techniques.
For the first experiment, the helipad was attached to a
structure and laid down on open terrain. The terrain is
populated with grassy patches, whose appearance is similar
to the one of the helipad when seen from high above.

Fig. 2 depicts the system state in three moments of the
takeoff sequence, one per row. The two top rows of the
figure represent the phase of the takeoff in which learning
is being guided by the detector used for close-in inspection.
The red circles represent the output of the detector based on
geometric moments (Section V-C). The third row refers to a
latter moment during the takeoff, in which the detector based



Fig. 2. Three key moments during takeoff (one per row). Left column:
input image with helipad detection represented by the red circle overlay.
Right column: saliency map of each input image with camshift tracker
output represented by the overlaid rectangle. Saliency is represented by the
brightness level of each pixel.

on geometric moments is no longer operational, as noticeable
by the absence of the red circle overlay. In this case, learning
is being guided by the camshift tracker deployed on the
saliency map (Section V-C). Saliency maps are represented
in the right column, and the overlaid rectangles represent the
tracker’s current state. Saliency being a regional descriptor,
it is insensitive to considerable deformations observed in the
input image (see the deformed H in the last row).

Then, the helipad was removed from its underlying struc-
ture and moved to a new location in the open field. After-
wards, the UAV was moved to this new location and asked to
land on the helipad. The goal was to assess the robustness of
the helipad detection techniques when the helipad’s underly-
ing and environment suffered slight changes. Fig. 3 depicts
four key moments of the descent sequence. First, the UAV
applies the altitude-dependent learned saliency computation
weights and centres itself on the helipad according to the
camshift tracker (first two rows). Once a mid-range altitude
is reached, the detector based on geometric moments kicks
in and controls the remainder of the descent (last row).

For the second experiment, the helipad was mounted on
an ASV [5]. The experimental procedure was the same as for
the first experiment. The UAV learned the helipad appearance
while climbing in altitude (see Fig. 4) and used the result of
the learning process to detect and track the helipad once this
was covered by the UAV’s field of view (see Fig. 5). At
the maximum altitude, the helipad was mostly imperceptible
to the UAV and still it was tracked successfully (first row
of Fig. 5). This owes to the ability of the saliency learning
process to capture the local context of the helipad, that is,

Fig. 3. Three key moments during landing (one per row).

Fig. 4. Two key moments during takeoff (one per row).

the underlying mobile robot. It should be noted that only the
appearance of the helipad was required at design.

Overall, the detector based on geometric moments suc-
cessfully detected the helipad in 93% of the frames it was
applied across both experiments.

B. Assisted Landing

To assess the ability of the system to land the UAV based
on the input images provided by the upwards looking camera
mounted on the helipad, a set of landing trials were carried
out. Fig. 6 depicts four key moments of a typical assisted
landing.

Overall, the proposed method showed to be able to solve
the landing problem. However, the experiments have revealed
the need for an accurate control of the camera’s exposure
time and gain to properly cope with the fact that the marker
is being observed from below.



Fig. 5. Two key moments during descent (one per row).

Fig. 6. Detection and tracking of the augmented reality marker in the last
stage of the landing procedure. The referencial frame overlaid represents
the estimated pose. Time flows from left to right and from top to bottom.

C. Global Search

A final experiment was run to assess the ability of the UAV
to use the global search mechanism to find the helipad when
outside its field of view (Section IV). For practical reasons,
this experiment was run on the Kelpie simulator [20] (see
Fig. 7). The simulated environment is composed of an ASV
with a helipad on its top, another similar ASV but without a
helipad, and a buoying cylindric object working as distractor.

In this experiment, the UAV was asked to perform a fully
autonomous task. The task comprises taking off the helipad,
moving towards a remote site, and then returning to the

Fig. 7. The simulated environment. Left: The ASV is the landing target
and the floating cylinder a distractor. Right: A view of the helipad mounted
on the ASV. The red circle overlay represents the output of the detector
based on geometric moments.

Gv(·, ·, t) Ga(·, ·, t) Gp(·, ·, t) Gl(·, ·, t) Ψ(·, ·, t)

Fig. 8. Three key moments in the global search (one per row). The first four
columns depict the maps generated from the four criteria used to compute
the global utility mal present in the last column. The brightest pixel in the
global utility map represents the location of the next waypoint for the UAV
engage a local search. First row: global search onset, in which the next
waypoint selected is slightly around the last known position of the helipad.
The helipad is not found in this waypoint. Second row: intermediate moment
in the global search, which exhibits a spiral-like diffusion. Third row: global
search moment in which the helipad is found.

Fig. 9. A distractor attracting the UAV’s attention during a local search.
Left: input image captured by the UAV’s downwards looking camera. Right:
Object of interested segmented from the saliency map.

helipad and land on it. While the UAV flies away from
the helipad, the ASV transporting the helipad was asked
to move 70m away from its original position. As the last
communication between helipad and UAV is assumed to have
occurred at takeoff, the ASV’s motion is unknown to the
UAV.

As expected, the UAV returned to the last known position
of the helipad, and locally searched for the helipad in a spiral-
like pattern (see Fig. 8). The helipad being no longer on the
same position, the local search failed to detect the helipad
due to the presence of distractors (e.g., Fig. 9) or absence of
any object of interest altogether. Consequently, the global
search had to be reiterated in all these cases and a new
vantage point selected for the next local search. Finally, the
helipad was found on the ninth visited site. This shows that
the global search procedure is capable of handling dynamic
helipads.

Fig. 10 depicts a particularly interesting local search the
UAV had to handle in the experiment. In this case the
target ASV is nearby a distractor, thus both objects are
labelled as of interest. However, the target exhibiting a higher
average saliency level and bounding box similarity with the



Fig. 10. Local search with target and distractor in the UAV’s visual field.

Fig. 11. Saliency maps during a close-in inspection. The overlaid rectangle
represents the camshift tracker output. Time flows from left to right.

reference, results in gaining priority for the subsequent close-
in inspection. As a result, the UAV centres itself on the ASV
based on the camshift tracker deployed on the saliency map
while simultaneously descending (see top row of Fig. 11). At
the proper altitude the detector based on geometric moments
detects the helipad and, so, it is able to guide the final phase
of the descent. At the critical altitude al the UAV takes the
final decision of landing.

VIII. CONCLUSIONS

A method for vision-based landing of a multirotor un-
manned aerial vehicle on an autonomous surface vehicle
(ASV) equipped with a helipad was presented and validated
on both simulated and physical robots. To allow searching
for the helipad when it is outside the UAV’s field of view, the
method employs a global search procedure. This procedure
fuses several criteria to pick the next best vantage point
for performing a vision-based local search using the UAV’s
downwards looking camera. Robustness to noise and image
low resolution and deformation is attained by exploiting
an saliency-based regional descriptor of the helipad, which
is adapted by learning during the takeoff. Accurate pose
estimation for the final landing phase is obtained by tracking
the UAV from an upwards looking camera available at the
helipad. As future work, we envision to: include the ability
to search for a safe landing site; include local search from
mosaics of aerial images; adapt the global search to consider
the dynamics of the helipad; learn the method’s parameters
from data; and perform extensive field trials.
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