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Abstract—Students sometimes produce code that works but
that its author does not comprehend. For example, a student
may apply a poorly-understood code template, stumble upon a
working solution through trial and error, or plagiarize. Similarly,
passing an automated functional assessment does not guarantee
that the student understands their code. One way to tackle
these issues is to probe students’ comprehension by asking them
questions about their own programs. We propose an approach to
automatically generate questions about student-written program
code. We moreover propose a use case for such questions in
the context of automatic assessment systems: after a student’s
program passes unit tests, the system poses questions to the
student about the code. We suggest that these questions can
enhance assessment systems, deepen student learning by acting
as self-explanation prompts, and provide a window into students’
program comprehension. This discussion paper sets an agenda
for future technical development and empirical research on the
topic.

Index Terms—Automatic assessment, automatic question gen-
eration, program comprehension, programming education, self-
explanation

I. INTRODUCTION

Students’ solutions to program-writing assignments are typ-
ically checked for correctness and, perhaps, other qualities
such as style, efficiency, or test coverage. The results of this
manual or automatic assessment are often accepted as a partial
assurance that the learner has reached some intended learning
outcomes. Most automatic assessment systems [1] attempt to
provide rapid, constructive feedback on errors, so that students
can fix their programs and learn from their mistakes.

Instructors would like students to design programs and
write code that the students themselves understand. Reality
bites, however. We, like many others, have seen learners
search for and copy poorly understood code from textbooks
and internet forums. Sometimes students fiddle with example
code through trial and error until it happens to work, or are
guided by teaching assistants or automatic assessment to the
correct solution without reaching understanding. (Automatic
assessment may exacerbate bad study habits such as trial-and-
error and starting late. [2])

Learners’ programs may then feature code that they do
not properly comprehend: they cannot trace their program’s
execution and may have a shaky grasp of the principles behind
the code. Plagiarism is another reason for submitting code

without understanding. Similar problems may also stem from
legitimate collaboration with student peers.

Whatever the underlying reasons, successful task perfor-
mance is not the same as successful learning, and a student
with a program that works is not the same as a student who
understands why and how the program works. Program com-
prehension must be acknowledged as an educational objective
and that objective should be addressed in pedagogy.

Our work addresses a dual issue: 1) for deeper learning,
students should reflect on the code that they write and ensure
they understand it; 2) the quality of assessment is limited
by a sole focus on the resultant program at the expense of
understanding.

The second issue is problematic not only for teachers
who wish to ensure that students do not get excessive credit
for code they do not understand, but also for the learners
themselves. For example, automatic assessment that focuses
on the end product alone may lull learners into a false sense of
understanding and lead them to miss out on important learning
outcomes—a sort of unproductive success [3].

In order to explore students’ understanding and stimulate
reflection, teachers can engage students in dialogue about their
code and ask questions about it (see, e.g, [4], [5]). However,
when there are many students and even more programs, it
is unfeasible to maintain such one-on-one human dialogue.
This is the case especially in large introductory courses,
such as those at Aalto University, where the rapid provision
of feedback at scale is only possible because of automated
assessment.

II. ARTICLE GOALS AND STRUCTURE

We propose that useful questions about student-written
programs can be created automatically. These questions about
learners’ code (QLCs) can then be posed to the same student
who wrote the code. The driving question that we investigate
is this:

What opportunities and challenges are there in automatically
generating questions (QLCs) for students to answer about
their own programs?

We explore this question by connecting it to the research
literature and through critical argumentation. This is a “dis-
cussion paper.” That is, our present purpose is to put forward



the idea of QLCs, to discuss its foundations in computing
education research and the learning sciences, and to identify
opportunities and challenges in implementing and adopting
automatically generated QLCs.

As we explore these questions, we also sketch out some
use cases for QLCs. As an example use case, after a learner
submits a program for automatic assessment and it passes all
or most unit tests (or comparable checks of correctness), the
system may ask one or more questions about the program.

The work presented here is theoretical, and does not yet
feature a concrete software system to support QLCs or an em-
pirical evaluation thereof. Instead, we outline future research
on tool development and empirical evaluations of QLCs.

The rest of this article is structured as follows. Section III
introduces the concept of QLCs. Section IV reviews the related
work that forms the theoretical backdrop for QLCs, motivates
this research, and informs QLC design. Section V discusses,
in broad terms, the technical problem of generating QLCs
automatically and outlines a plausible process for approaching
this problem. Section VI identifies use cases for QLCs and
considers some different forms that QLCs may take. Sec-
tion VII notes several limitations of the QLC idea. Section VIII
sets down an agenda for constructive and empirical research
on QLCs, and Section IX briefly concludes the article.

III. QUESTIONS ABOUT LEARNERS’ CODE

A. Definition

We define QLCs as follows.
1) They are questions about program code

that a student has written;
2) they refer to concrete constructs or patterns

in the student’s program; and
3) they are posed to the student themselves

by a computer.
Automatic QLCs have an additional characteristic:

4) They are automatically generated from
an analysis of the student’s code.

An automatic QLC is not a canned, teacher-created question
that is specific to a single programming assignment that
students work on. Instead, we envision that teachers can affect
which types of QLCs are generated for their students and,
if they wish, configure question generation differently for
different assignments. In this article, we focus on automatic
QLCs. Hereafter, when we discuss QLCs, we mean automatic
QLCs unless otherwise specified.

Many kinds of QLCs are possible. As an example, Figure 1
presents a solution to a programming assignment; let us imag-
ine this solution is from a learner. The goal of the assignment
is to provide practice on program writing in general and
recursion in particular. Figure 2 lists a few plausible QLCs
for this code.

Even when QLCs are automatically generated, their as-
sessment may or may not be automatic. Some QLCs have
answers that are relatively simple to assess automatically, such
as multiple-choice or single-value questions. On the other

Task: Write a recursive function to find the smallest
character in a String.

s t a t i c char smallest(String word) {
re turn smallestFrom(word, 0);

}

s t a t i c char smallestFrom(String word, i n t index) {
i f (index == word.length() - 1) {

re turn word.charAt(index);
}
e l s e {

char current = word.charAt(index);
char rest = smallestFrom(word, index + 1);
re turn current < rest ? current : rest;

}
}

Fig. 1. An example task and a solution in Java.

1) You wrote two functions. Which of those are recursive?
2) What are the parameter names of your function

smallestFrom?
3) How deep does the call stack grow when executing

smallest("ABBA")?
4) When executing smallestFrom("ACDC", 0),

which character is assigned to rest during the second
invocation of smallestFrom?

5) Which of the following best describes the role of your
variable rest?1

Fig. 2. Example QLCs for the code in Figure 1.

hand, QLCs may also have open-ended answers that are self-,
teacher-, or peer-assessed. Abstract examples of both kinds of
questions appear in Table II.

B. Motivation

QLCs may engage learners to reflect on their code and
their programming knowledge, thus enhancing learning. They
may prompt additional practice on program comprehension,
set in the (presumably) familiar context of the learner’s own
program.

QLCs extend the assessment of student-created programs
beyond functionality and style to program comprehension. By
looking into the relationship between the learner and their
program, QLCs complement other forms of assessment that
focus on the program alone.

If collected, learners’ answers to QLCs could be valuable
to teachers and researchers who wish to explore students’
programming knowledge. QLCs might also have uses in dis-
couraging or detecting plagiarism. In the sections that follow,
we elaborate on these potential uses and benefits of QLCs.

1Roles of variables are common patterns of variable use [6] that can be
taught to novices and identified automatically through static analysis [7]. For
example, a gatherer variable gradually accumulates a result by combining
multiple inputs, and a most-wanted holder tracks the highest, smallest, or
otherwise most appropriate value among various candidates.



IV. RELATED WORK

The subsections below relate our work on QLCs to four
extant threads of research: student learning of code reading,
knowledge elaboration through self-explanation, automatic
generation of questions for computing education, and auto-
mated tutoring systems, respectively.

A. Learning to Read Programs

1) Student Difficulties: Even after taking a programming
course, learners frequently have fragile program-reading skills,
and many struggle to trace or explain code [8], [9]. Moreover,
learners are sometimes averse to tracing their code even when
it might help [10], [11].

Fuller et al. [12] discuss the learning trajectories of novice
programmers in terms of an adaptation of Bloom’s taxonomy.
They cite evidence for some students getting stuck at an
Apply/Remember stage, where the student relies on trial and
error to imitate the use of a construct without understanding.

Salac and Franklin [13] showed that, in a primary-school
context, students’ use of constructs is not a reliable indicator
of understanding those constructs. Similarly, in a higher-
education context, Kennedy and Kraemer [14] found that there
were students who could produce a program that works but
were unsure about their own code and did not grasp the
underlying concepts.

QLCs target these difficulties by prompting students to
reason about and explain the code they have produced. We
propose that QLCs could prompt students’ progress from
surface-level imitation to deeper understanding, and partially
assess that progress.

2) Types of Programming Knowledge: Schulte’s Block
Model of program comprehension [15], [16] captures how un-
derstanding a program requires different kinds of knowledge—
knowledge about the program text, about its dynamic behavior,
and about the program’s purpose; moreover, knowledge is
required at different scales ranging from individual “atoms”
to combinations of constructs to the full program. Table I
summarises the Block Model.
We suggest that useful QLCs can be generated at various levels
of the Block Model, as illustrated by the examples in Table II.

Understanding how code works is not valuable for its own
sake only; the skill is required when writing, debugging, and
extending programs [16]. Research suggests that ability to
trace code in detail and explain what given code accomplishes
tends to precede ability to write comparable code oneself [17].
In any case, writing code that you can read is, by definition,
predicated on code-reading ability. We hypothesize that QLCs
can support the growth of program-comprehension skills and
strengthen the relationship between them and program-writing
skills.

3) Pedagogies: Recognizing the importance of reading
code, scholars have explored pedagogies where learners prac-
tice reading given code or are explicitly taught strategies
for tracing [18]. For example, researchers have examined
comprehension-before-writing pedagogies [19], invited learn-
ers to predict, investigate, and eventually modify the behavior

of code [20], and asked students to visually simulate given
programs [21].

The present work is loosely related, given that our goal
is also to promote students’ understanding of existing code.
However, our work differs materially in that QLCs do not
involve teacher-provided code and are an extension of code-
writing practice rather than a wholly distinct learning activity.
QLCs are meant to deepen and assess learners’ engagement
with the code that they authored, and to do so automatically.
We see QLCs as complementary—rather than alternative—to
code-reading practice on given code.

Some tracing-based pedagogies emphasize the need for
students to trace their own programs. For example, Hertz and
Jump [22], who taught students to use a diagrammatic notation
for tracing code, noted that their code-writing problems always
require students to trace the code they wrote. QLCs share the
goal of promoting students’ understanding of their own code,
but instead of graphical tracing, we propose to ask students to
answer automatically generated questions of various kinds.

B. Self-Explanation

To self-explain [23] is to generate explanations for
yourself—rather than a teacher or a peer—as you engage in a
learning activity such as problem solving, reading some text,
or studying an example. It is often but not necessarily internal,
i.e., not expressed aloud or in writing. Self-explanations may
explain conceptual content, justify the selection of solution
steps, or otherwise elaborate on the learning activity. (Self-
explanation is thus not a separate learning activity but a
cognitive process that accompanies an activity; it may occur
before, during, and/or after the activity.)

Successful learners tend to generate better, more principled
self-explanations, but many learners fail to do so [24], [25].
Fortunately, teachers and environments can encourage self-
explanation, and there is strong evidence (with caveats) for
improved learning from self-explanation prompts (SEPs) [23],
[26]; moreover, learners can be taught to self-explain bet-
ter [24], [27]. SEPs are typically designed manually, but work
on automatic prompt generation is underway [23].

The correlation between successful self-explanation and task
performance has been replicated in programming contexts, as
has the impact of self-explanation training [25], [27], [28].
Moreover, research suggests that explicit subgoal-labeling
promotes better self-explanations of example programs and
thereby helps learners see structural similarities between ex-
amples and improves transfer [28], [29]. Asking learners to
annotate given code with comments [30] or elaborate on their
attempts to solve code-construction puzzles [31] are promising
programming-specific SEPs.

Our work on QLCs overlaps that on SEPs; by promoting
reflection, QLCs might have some of the same benefits.
Depending on how QLCs are phrased, contextualized, and
assessed, they may be considered as self-explanation prompts,
assessment items, or both.



TABLE I
THE BLOCK MODEL (PARAPHRASED FROM [15])

Text Execution Function
Atom language elements elements’ behavior elements’ purpose
Block syntactically or semantically related elements a “block’s” behavior a “block’s” purpose; program subgoal
Relational connections between “blocks”; e.g., method calls flow between “blocks”; e.g., call sequences integration of subgoals
Macro entire program the program’s behavior the program’s purpose

TABLE II
EXAMPLE QUESTIONS FROM QLC TEMPLATES. (SIMPLIFIED FOR BREVITY.)

Template Question Answer Type Block Model level [16]
Which of the following are variable names in your function? multiple choice atom–text
A loop starts on line [N]. Enter the number of the last line inside this loop. single value block–text
Line [N] uses a variable. Enter the line number where that variable is declared. single value relational–text
What is assigned to variable [V] on line [N] when executing function [F] on expression [E]? single value atom–execution
During the program execution, how many iterations are performed by the loop starting in line [N]? single value block–execution
Which of the following best describes the role of your variable [V]? multiple choice relational–execution
How deep does the call stack grow when executing function [F]? single value relational–execution
Describe the purpose of the condition on line [N]. open-ended atom–function
Justify your choice of name [V] for the variable declared on line [N]—do you have a better suggestion? open-ended block–function
Select the part of your program that is responsible for [X]. (The question could be generated from a
subgoal annotated onto a model solution.)

select in code block–function

Explain, in your own words, the purpose of the loop that begins on line [N], and how that loop helps
method [M] accomplish its task.

open-ended relational–function

Here is a little example program that has some similarities with yours. Select the part of your program
that serves a similar purpose as the highlighted code in the example.

select in code relational–function
(across programs)

C. Automatic Question Generation

There is earlier work on automatically generating ques-
tions for programming education. For example, Zavala and
Mendoza [32] designed exercise templates, each of which
could be automatically instantiated into hundreds of specific
variants of the same exercise, which vary in specific values
and variable names. Thomas et al. [33] automatically generated
small programs accompanied by multiple-choice questions that
prompted students to trace the generated code. This line of
work is primarily motivated by the need to provide many fresh
questions for students to practice on, and/or as a precaution
for plagiarism. Our approach shares the general notion of
automatically generated questions but differs fundamentally in
that we do not aim to generate variants of the same exercise but
to ask questions about existing code produced by the learner.

Outside of computing education, researchers have applied
natural-language processing to text documents with the aim
of automatically generating questions for learners [34], [35].
These questions have the potential to work as SEPs during
independent study of the texts. The questions are open-
ended with no well-defined correct answer; such questions
are difficult to assess automatically or at scale, however. Our
work has a related goal in automatically generating questions
that may prompt self-explanation; we explore this idea in a
programming context, generate the questions from learner-
produced content, and look into automatic assessability.

D. Automated Tutors for Programming

1) Intelligent Tutoring Systems: Intelligent tutoring systems
are designed to provide similar automated support as one-to-
one human tutoring might. Over the years, many intelligent

tutoring systems have been built for programming education.
Some of these systems employ both automatically assessed
programming exercises and questions to guide students to-
wards set learning goals. [36]

As an example, the ITEM/IP tutoring system tests students’
knowledge by asking questions that require the students to
trace given example programs until they arrive to an an-
swer [37]. QLCs expand on that idea by using the code that the
student wrote as an input to generating comparable as well as
other types of questions about the properties of the program.

2) Automatic Assessment Systems: Automated systems for
assessing student programs are popular not only to grade
student work at scale but also to generate detailed, rapid
feedback that aims to improve that work and thereby to tutor
the student. Feedback generation requires detailed static and
dynamic analysis as well as program transformations [1]. We
propose to apply the previously researched program-analysis
techniques in QLCs generation.

By providing feedback on programming exercises, auto-
matic assessment systems generally aim to guide students
while they are working towards fulfilling the functional re-
quirements of a programming assignment. QLCs, on the
other hand, prompt student to explain properties of a pro-
gram artefact that may already have fulfilled some functional
criteria—they are potentially relevant also to students who
have submitted a functionally correct solution on the first
attempt. We see QLCs as a promising extension to automated
assessment systems, as discussed in Section VI below.



Fig. 3. A process for generating QLCs.

V. GENERATING QLCS AUTOMATICALLY

A. A General Process for Creating QLCs

We propose a general process for generating QLCs, con-
sisting of several steps (see Figure 3).

The student’s program goes through a static analyzer to
extract static facts from it, such as which variables there
are and which functions are recursive. Static analysis of
student programs has been successfully applied for purposes
of generating feedback (e.g., [38]) and visualization (e.g., [7]).
For QLCs, the static analysis does not need to be complex in
order to be useful, as it may essentially consist of checking if
certain structural elements are present in the student’s program
in order to decide if a QLC is applicable to it. More ambitious
analyses may be possible, too, of course.

The program also goes through an execution engine that
collects dynamic facts by executing the code; typically, this
execution would be based on teacher-provided test cases.
Dynamic facts involve variable values, control flow, and call
stack history; for instance, the call stack depth at particular
function call is a dynamic fact. (One implementation approach

for the execution engine is to use a debugger interface if one
is available for the programming language; cf. [39].)

A template database stores QLC templates; see Table II
for examples. In addition to the question texts shown in the
table, each QLC template includes a list of requirements that
a program must meet for the question to apply. For example,
a question might only apply if the program features recursion.

The static and dynamic facts—especially the former—are
used to determine which QLC templates are applicable. Many
QLC templates are likely to match any given program; the
selection of templates among the applicable ones can be fur-
ther adjusted through teacher-governed settings. These settings
may be specific to a course or even a particular programming
assignment. They specify which kinds of QLCs are preferred
and how many QLCs should be generated. Randomization
can add further variety to the questions that are presented to
different learners or to the same learner at different times.

The question engine instantiates each chosen QLC tem-
plate using the static and dynamic facts, thus producing a
QLC (and its correct answer, if possible). The templates are
instantiated to match the learner’s concrete program or part
thereof (such as a function). For example, the QLC template
“How deep does the call stack grow from executing function
[F]?” might be instantiated by replacing function [F] with
smallest("ABBA"); similarly, the other templates in Table II
would have the parts in square brackets filled using facts
collected from the student’s program.

B. Other Inputs to QLC Generation

By definition, learners’ code is the key input to QLC
generation. However, there are other sources of information
that might be additionally exploited in order to generate better
QLCs.

For example, the results of passed and failed unit tests
might be used to tailor QLCs. Students could be asked about
differences between their code and a model solution. Teachers
might annotate model solutions, e.g., by attaching subgoal
labels to sections of code; QLCs could then target those
subgoals. (Some low-level, domain-generic subgoals such as
“initialize variables before starting loop” might be detected au-
tomatically, without a teacher’s intervention.) Students might
be asked to compare their program to other programs which
would also need to be provided as input to the QLC generator.

To personalize question topics and difficulty, a QLC gener-
ator would also need data on the learners’ prior coursework,
including which QLCs the learners have previously answered.

VI. USE CASES FOR QLCS

There are a number of scenarios where QLCs might usefully
complement automatic assessment or otherwise integrate into
programming education. We outline some of them below.

A. Use Case: QLCs after Unit Tests

Automatic assessment systems collect students’ program
code and execute it in a safe environment for analysis and
feedback. These platforms could be extended with a QLC



Fig. 4. QLCs integrated with automated assessment. The numbers indicate
the timeline of the interaction between a student and the system.

service that takes student submissions as input, generates
QLCs, presents them to students, collects students’ answers,
and provides feedback on those answers.

In an automatic-assessment context, one option is to ask
QLCs after successful testing—i.e., once the student’s program
passes functional tests. In this scenario, students are expected
to have a good understanding of their own program when the
QLCs are presented and the QLCs might serve as additional
assessments. This is the use case that we are currently focusing
our implementation efforts on.

Figure 4 illustrates the planned workflow between the
learner and the system in this scenario. The learner writes a
solution for a given exercise served by the system, which holds
unit tests for it. After submitting a program for assessment
(1), the learner receives the test results as feedback (2). Upon
passing the tests, the learner is additionally presented with one
or more questions about their solution (3). The learner answers
the questions (4) and immediately receives feedback on the
answers (5). That feedback, like the questions, is phrased in
terms of the student’s own code.

B. Alternative Use Cases

Alternatively or additionally, an automatic assessment sys-
tem could ask QLCs after failed tests. This may prompt
reflection but could also distract the student inconveniently
unless the questions are particularly helpful.

An automatic assessment system might also ask QLCs
before testing, perhaps as a precondition to displaying test
results. That timing might be perceived as intrusive by stu-
dents, however; moreover, the literature suggests that self-
explanation prompts tend to be more useful when the student
already knows whether the work they are explaining is correct
or incorrect [26], and the same may apply to QLCs.

A different setting for QLCs is the learners’ programming
environment, such as an IDE. If the students run unit tests in
this environment, QLCs might be presented before or after
those tests, as described for automatic assessment systems
above. Alternatively, students might be given the opportunity
to ask for QLCs when they wish to answer them. A QLC-
enabled IDE might even notify students when a potentially

interesting QLC is available after a change to the program,
although this option would need an exceptionally successful
implementation so as to be both useful and unintrusive.

Interactive ebooks with embedded programming assign-
ments are increasingly common (e.g., [40]–[42]). They offer
similar integration options for QLCs as automatic assessment
systems and IDEs do.

C. Alternative Forms of QLCs

In this paper, most of our discussion revolves around the no-
tion of generating questions about a single program at a time.
However, asking questions that link multiple programs also
merits consideration. A student could be asked to comment on
the commonalities or differences between their own program
and another, which other program could have been authored
by the teacher, the student themselves, or even another student.
An example of such a cross-programmatic question appears at
the bottom of Table II. To promote transferable learning of
problem-solving schemata, these questions could ask students
to identify recurring patterns such as roles of variables [6] or
labeled subgoals [28], [29].

We have also focused our discussion on programming
assignments that are closed-ended in the sense that they have a
well-defined solutions that can be automatically assessed with
predefined unit tests. QLCs could be generated from open-
ended student code as well. Generating QLCs from open-
ended code is simpler if the questions depend on static facts
only, but QLCs with a dynamic nature may also be realistic
if, for instance, the student has created unit tests.

VII. CHALLENGES AND LIMITATIONS

Assessments and self-explanation prompts direct students’
attention to what is being asked and divert attention from
other content that may be as important or even more so [26].
Whether QLCs are used as assessment items or SEPs, this
presumably applies to them as well. This represents a technical
and pedagogical challenge: we must generate questions that
are relevant to the appropriate learning objectives. Having the
technical ability to ask about a property of a program does not
mean that it is appropriate to pose that question to students;
whether a question is appropriate varies and depends on
context and goals. Moreover, even where a QLC is appropriate
for a particular situation, we must be alert to the possibility
that its presence may de-emphasize other content that is also
important but was not asked about.

Whether a QLC is good also depends on the learner’s prior
knowledge of programming and comprehension of their own
program [43], [44]. In cases where students do understand the
code that they have written, they may find QLCs tiresome. If
QLCs are forced on students during problem solving, they may
annoy the students. QLCs posed after passing unit tests may
be perceived as a nuisance, as students may feel that getting
the program to work is alone a sufficient assessment of their
ability and that they have already done the hard part; “selling”
the idea of QLCs to students appropriately in pedagogy may
be key.



To avoid unsuitable and repeated questions, it may be nec-
essary to track learners’ history of programming assignments
and QLCs. Teacher settings could define policies so that a
particular QLC templates stops being used once a student has
answered such questions correctly a set number of times.

Research suggests that simple multiple-choice questions
are not ideal as self-explanation prompts [23]. Open-ended
QLCs can be more varied and richer in content than multiple-
choice or single-value questions; on the other hand, open-
ended questions are currently difficult or impossible to assess
automatically. Progress is expected in automatic grading of
short-text answers about programming [45].

Having reviewed the literature on self-explanation, Rittle-
Johnson and Loehr [26] note that “the substantial time de-
mands of self-explanation raises the question of when al-
ternative activities would more easily or effectively achieve
the same learning outcomes.” Similarly, the additional time
expenditure from answering QLCs must be evaluated against
the questions’ possible benefits.

VIII. ONGOING AND FUTURE WORK

As the QLC concept is very broad and flexible, there is
a lot of ground to be covered in investigating the technical
challenges of QLC generation, different types of QLCs, and
different pedagogical uses of QLCs.

A. Technical Development and Evaluations

We are currently working on QLC generation in an auto-
matic assessment system that poses questions to students after
unit tests pass, as described in Section VI-A. This software
will largely follow the question-generation process outlined
above in Figure 3, albeit initially it will have limited teacher
configuration and template selection will be based on static
facts only.

Using this implementation, we hope to evaluate:
1) to what extent students are capable of answering QLCs;
2) how students feel about QLCs;
3) if students’ ability to answer QLCs correlates with other

outcome measures; and
4) how all of the above depends on the type of QLCs.

Early work along these lines is underway. Moreover, we
are conducting a preliminary investigation where we pose
manually created QLCs to students after a programming
assignment [46] (loosely similarly to our main scenario for au-
tomatic QLCs). In this pilot study, a system presents students
with self-explanation questions that a researcher has tailored
for the particular programming assignment and that are thus
not chosen automatically or filled in based on facts collected
from the student’s program. The results from this pilot study
have been tentatively promising so far: some students have
reported that QLCs helped them to reflect on their program
comprehension, while others noted that they had already
thought about the QLC topics as they wrote their program.
Furthermore, results confirm that many students indeed do
have difficulties comprehending their own code and that the
ability to explain one’s own code correlates positively with

later success in the course. These early findings highlight the
potential of QLCs to improve program comprehension and its
assessment.

B. Further Opportunities

Beyond our primary QLCs-after-passing-unit-tests scenario,
there are many paths for future research, such as the following.

QLCs could be posed to students after failed unit tests,
before testing, or even during the program-authoring process,
as outlined in Section VI-B above.

Different ways of assessing QLCs could be explored: auto-
matic, peer, self, and teacher assessment.

A possible thread of future work is to correlate students’
ability to answer QLCs with their self-explanation ability. This
could provide insight into the mechanisms by which QLCs
work (or fail to). Research could investigate whether students
can be taught and motivated to use QLCs more effectively as
self-explanation prompts and whether such teaching impacts
on their QLCs responses and learning.

The impact of QLCs on plagiarism could be evaluated. Such
research will need to weigh the possible benefits QLCs on
plagiarism prevention against any negative consequences of
mandatory and frequent QLCs.

Personalization of QLCs through learner modeling is an
interesting and challenging area for future exploration. If
the QLC generator could estimate each student’s knowledge
of different concepts, it could pose questions that suit the
particular student better. For example, the questions might
target possible misconceptions (analogously to [47]). Students’
responses to QLCs could also be a source of data about
misconceptions (analogously to [48]).

Finally, the techniques developed for generating QLCs
might find applications in other contexts, such as generating
practice questions from programs authored by teachers or
peers.

IX. CONCLUSION

We have proposed the idea of automatically generating
questions, QLCs, about students’ program code for the stu-
dents themselves to answer. This proposal opens up opportuni-
ties in deepening students’ program comprehension, comple-
menting automatic assessment, and discouraging plagiarism.
We have suggested several scenarios in which QLCs might be
used and outlined the software support needed for generating
QLCs; work on one such system is underway.

The practical feasibility and effectiveness of QLCs are as
yet untested, but this proposal sets down a research agenda for
future investigations. We have painted a fairly broad landscape
in which computing education researchers may work on QLCs.
In ongoing work, we are exploring a sector of that landscape;
we hope that others might do similarly.
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