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Abstract— This paper presents RIVERWATCH, an au-
tonomous surface-aerial marsupial robotic team for riverine
environmental monitoring. The robotic system is composed of
an Autonomous Surface Vehicle (ASV) piggybacking a multi-
rotor Unmanned Aerial Vehicle (UAV) with vertical takeoff and
landing capabilities. The ASV provides the team with long-
range transportation in all-weather conditions, whereas the
UAV assures an augmented perception of the environment. The
coordinated aerial, underwater, and surface level perception
allows the team to assess navigation cost from the near field to
the far field, which is key for safe navigation and environmental
monitoring data gathering. The robotic system is validated on
a set of field trials.

I. INTRODUCTION

Environmental monitoring tasks are key for the mainte-
nance of ecosystems. Among these tasks, the monitoring of
riverine environments is one of the most demanding, given
the need to simultaneously assess biodiversity and pollution
levels in both water (river stream) and land (riverbanks).
Moreover, riverine environments are most often extensive
and remote, which posit considerable difficulties for human-
based field work. Environmental sensor networks [1] and
satellite remote sensing techniques [2] have been successful
in mitigating some of these limitations. Despite all the
advances ensured by sensor networks and remote sensing,
these also have their own shortcomings. Sensor networks are
unable to generate fine spatiotemporal data gathering and
require expensive deployment procedures. Remote sensing
generates data often outdated and is unable to execute in-
situ water analysis protocols. Both approaches are unable to
perform sample return for offline laboratorial analysis.

In-situ water analysis, long range operation, and sample
return can be attained with Autonomous Surface Vehicles
(ASV), in particular when these have the ability to perform
energy harvesting (Dunbabin and Marques [3] review key
robotic developments in this context). Nevertheless, the low
vantage point above the surface line offered by surface
vehicles hampers a proper analysis of the far field, namely,
of distant shore-lines, shoals, and riverbanks. This impacts
negatively the safe navigation capabilities of the vehicle and
its ability to generate ecologically relevant products.
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Fig. 1. The ASV-UAV marsupial robotic team. The UAV just took off
the ASV in order to engage on an aerial survey for expanding the robotic
system’s awareness of the environment. As a result of this cooperative
perception, the robotic ensemble is capable of setting navigation plans with
a lookahead that far exceeds the one available from the ASV’s onboard
sensors.

An aerial perspective over the environment is known
to help ASVs safely navigating in the environment [4], a
concept originally applied to ground vehicles [5], [6]. In
these cases, the aerial perspective over the environment is
obtained prior to the mission with satellites or whatever aerial
platform (e.g., airplane). Two limitations of using these data
are the cost of its acquisition and their outdating. Up-to-date
sensory feedback can be obtained by teaming the surface
vehicle with an aerial vehicle [7]. However, attention must
be given to the fact that the limitations of each team member
may weaken the ensemble. For instance, aerial platforms
have considerably lower energetic autonomy and robustness
to demanding weather conditions than surface vehicles.

Energetic sufficiency and all-weather operation can be
fostered by building a marsupial robotic team. For example,
the aerial vehicle can be piggybacked on a surface vehicle
[8]. The same concept has been earlier applied to ground
vehicles [9]. In this configuration, the surface vehicle ensures
energetic autonomy for long-lasting operation and protection
for the aerial vehicle in demanding weather conditions. Con-
versely, the aerial vehicle provides an augmented perception
of the environment, which has been exploited for situation
awareness of remote human operators [8]. However, the
fact that remote environmental monitoring requires fully
autonomous robotic operation makes the dependency on a



human operator too restrictive. This constraint has been
removed in RIVERWATCH, the autonomous surface-aerial
marsupial robotic team presented in this paper. RIVER-
WATCH is based on a 4.5m catamaran-like ASV pig-
gybacking a multi-rotor Unmanned Aerial Vehicle (UAV)
with vertical takeoff and landing capabilities (see Fig. 1).
Leveraging on a small sized ASV [8] would limit the ability
of the system to perform future missions with sample return
requirements. This paper extends significantly the system’s
preliminary overview that can be found elsewhere [10].

Autonomous behaviour in unstructured environments de-
pends heavily on the ability of the system to assess mobility
cost from sensory feedback. This is particularly challenging
in unstructured environments, as, in these, the mapping
between sensory data and mobility cost changes over time
and space. The presence of sensory redundancy and the
ability to learn new perceptual categories are known assets
to deal with this challenge. For instance, cost maps obtained
from underwater sonar range data can be registered on aerial
images for automatic water/non-water labelling of portions
of the aerial image, which, in turn, are used as a training set
for online supervised learning of aerial image classifiers [4].
The resulting classifier is capable of segmenting the aerial
image into water/land regions and, from that, a long-range
surface-level navigation cost map can be produced.

RIVERWATCH employes a scheme similar in spirit to
the one proposed by Heidarsson and Sukhatme [4] and
goes a step further by benefiting from coordinated aerial,
underwater, and surface level sensory feedback, and also
by addressing the aerial image acquisition process from a
piggybacked aerial vehicle. In a nutshell, the system’s main
workflow is as follows: (1) the ASV computes local naviga-
tion cost maps from its onboard sensors; (2) by exploiting
the overlap between both robots’ field of views (FOV), the
UAV takes off and learns an image classifier by associating
its visual input with the ASV’s local navigation cost maps;
(3) the learnt image classifier is applied to generate, from the
UAV’s visual input, long-range ASV’s navigation cost maps;
(4) the UAV docks in the ASV; (5) the ASV proceeds using
its now extended perception from the far field (see Fig. 2).

This paper is organised as follows. The robotic system
is presented in Section II. Then, the aspects related to
safe navigation are described in Section III. Afterwards, the
system’s environment mapping and understanding processes
are presented in Section IV. Finally, the experimental results
are analysed in Section V and some conclusions and future
work directions are drawn in Section VI.

II. THE ROBOTIC SYSTEM

The ASV is based on a 4.5m Nacra catamaran, which has
received special carbon fibre reinforcements for the roll bars
and motor supports. The hulls have been filled with special
PVC closed cells foam, making them virtually unsinkable.
High processing capacity is assured by three i7-3770 Ivy
Bridge systems, which are water cooled to assure the wa-
tertightness of the system. The power distribution, manage-
ment and fail-safe mechanisms are implemented using one

Fig. 2. RIVERWATCH’s cooperative perception principle. The UAV
provides an high vantage point, as can be seen by the area of the UAV’s
FOV, in order to increase the ASV’s perceptual capabilities. The perceptual
maps with different perspectives, from both robots, are then integrated into
a final cost map for the ASV’s safe navigation.

board designed specifically for this application based on
a DSPIC33EP256MU810 microcontroler. Power is assured
by two banks of 100Ah, 8S LifeYpo4 batteries (25.6V)
with a BMS from JSC Elektromotus, which interfaces with
the control board. Differential propulsion is assured by two
fixed Haswing Protuar 2 hp electric motors, one per hull.
This configuration permits a linear velocity of 3ms�1 and a
maximum in-place rotation rate of 0.2 radians per second.

The UAV uses the VR brain from Network Team as
the low level control board (STM32F407 at 192Mhz-ARM
Cortex-M4) and an Odroid-U2 from Harkernell (Quad core
1.7Ghz ARM Cortex-A9) for high level processing. The
communications are assured using wireless radios from the
Ubiquiti Networks airMAX line of products and Xbee Pro
modules for the telemetry.

ASV’s environment perception is ensured by a long
range tilting laser scanner LD-LRS2100, from Sick, a tilted
underwater sonar DeltaT 837B, from Imagenex, a multi-
camera vision system Ladybug3, from Point Grey, and a
Genius WideCam F100 HD upwards looking camera with
120 degrees of field of view fit to the ASVs deck. This
camera is used in the cooperative docking procedure as
described in Section III-C. For localisation purposes, the
ASV is equipped with a 2 cm horizontal accuracy GPS-RTK
Proflex 800 from Ashtec SAS, and an Inertial Measurement
Unit (IMU) PhidgetSpatial from Phidgets while the UAV
possesses an integrated GPS and IMU in its low-level control
board. Both UAV and ASV run their control and navigation
systems on the top of the Robotics Operating System (ROS)
[11]. Low-level image and point clouds processing is handled
by the OpenCV [12] and Point Cloud Library (PCL) [13]
libraries, respectively.

In order to piggyback the UAV, a docking station with a
1.0 m x 1.30 m platform and a lateral safety net was fitted to
the ASV deck as shown in Fig. 1. While docked the UAV is
held in place by the rubberized texture of the docking station.
This may be not enough in more adverse weather conditions
that lead to prominent ripple in water waves. Therefore, the



height and slope of the safety net was designed to prevent
the UAV from slipping from the ASV into the water. The
safety net also helps to center and secure the UAV into its
final docking position, as the nearer the UAV gets to the
ASV’s deck the more chaotic becomes the airflow created
by the UAV’s rotors, leading to a drift in its position.

III. NAVIGATION

This section describes the mechanisms present in both
ASV and UAV that allow them to move safely in the
environment.

A. Motion Control and Pose Estimation
Riverine settings pose a significant challenge to vessel

motion control mainly because of water currents and wind.
To cope with these disturbances, the ASV controls its differ-
ential propulsion with two distinct velocity PID controllers,
one for the linear speed and the other for the angular speed.
These two speeds are summed to generate control signals
for the two motors responsible for the differential thrust.
The PID values where obtained by a series of field trials to
achieve a stable and agile response. Linear and angular speed
sensory feedback are obtained directly from pose estimates
obtained from an Extended Kalman Filter fed by the GPS-
RTK and IMU devices. These pose estimates are also used
by the navigation system described in the next section. The
UAV’s stabilised motion control is provided directly by its
VR brain low-level control system.

B. Motion and Path Planning
The ASV’s navigation system aims at determining the

best way through the environment to reach a set of GPS
waypoints, which can be defined offline by recurring to
satellite imagery or online with any exploration strategy. To
prevent pursuing unreachable waypoints, e.g., over obstacles,
it was empirically established that the current waypoint is
assumed as reached within a 10m radius.

Local motion planning is assured by determining at 10Hz
the best kino-dynamically feasible arc of trajectory and
linear speed given an objective function that accounts for
clearance to obstacles, closeness to an intermediate goal, and
stability in decision making [14]. The intermediate goal is
computed at 1Hz by a path planner that assumes robot linear
trajectories [15] (see Fig. 3).

To cope with narrow environments, the motion and path
planners need to sample more densely and more faithfully
the ASV’s decision space. To take this into account, the
smaller is the distance to the nearest obstacle the higher are
the number of possible trajectories analysed by the motion
planner. Similarly, when this distance becomes too short
the navigation system switches to a path planner capable
of considering both linear and non-linear motion primitives
[16]. This context aware adaptation is an extension of a
solution originally developed for ground vehicles [17]. The
higher computational demands generated by the use of more
faithful motion and path planning are compensated with a
proportional reduction in navigation speed.

Fig. 3. The safe navigation system planning a path (blue line) that takes
the ASV around an unexpected obstacle through a narrow passage so as to
reach the waypoint represented by the X. The red squares represent the high
navigation cost cells, i.e., the obstacles. The cost map is inflated according
to the robot’s footprint.

The UAV navigation system is limited to simple GPS
waypoint following. The absence of airborne obstacles above
the river stream renders unneeded sensory-driven obstacle
avoidance strategies. Given that the aerial images are ac-
quired with the purpose of extending the ASV’s perception
to the far field of interest, the UAV flies over the next GPS
waypoints that have been set to the ASV. The actual travelled
distance depends on the desired ASV’s path planning looka-
head. Advanced sensor planning strategies can be applied to
adapt this behaviour.

C. Cooperative Takeoff and Landing
Safe takeoff from the ASV’s docking platform is attained

by simply climbing rapidly up to a safe altitude. Conversely,
docking is a somewhat more difficult task, which is usually
solved by detecting the docking platform from a downwards
looking camera on board the UAV (e.g., [18]). However, de-
manding lighting conditions may render this solution brittle.
Moreover, it requires the UAV to be equipped with enough
computational power for the purpose. To circumvent these
challenges, RIVERWATCH approaches the problem from
a multi-robot cooperative perspective. Namely, the ASV is
equipped with an upwards looking camera located at the
centre of the docking platform whose purpose is to detect and
track the UAV throughout its descend. As the background
in the images taken by this camera, i.e., the sky, is rather
stable, the detection and tracking procedure is fast and robust.
The detection and tracking process is only initiated after
the UAV roughly aligns with the ASV according to both
pose estimates, which are shared via the communications
framework.

To detect the UAV in the camera’s field of view, the
background pixels are labelled using an adaptive Gaussian
mixture model [19]. Next, a bounding box is fit to the
remaining foreground pixels (see Fig. 4). Then, a Kalman
filtered estimation of the UAV’s tridimensional position
with respect to the camera is obtained from the bounding
box’s position and dimensions, given the camera’s intrinsics,
learned from an offline calibration procedure. The estimated
tridimensional position of the UAV and the ASV’s heading
are sent to the UAV so that it is able to determine which
corrective measures it must apply in order to centre itself on
the upwards facing camera’s view. These corrective measures
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Fig. 4. Cooperative docking procedure. The UAV is detected and tracked
in different weather conditions and docking stages. First column depicts the
upwards looking camera input images depicting the UAV during its descent
in two different configurations. The quadcopter configuration can be seen at
(a) and (b), as well as the foreground mask in (c) and (d), respectively. Here,
the white and purple rectangle mark the instantaneous and filtered UAV’s
bounding box position, respectively. The blue circle epics the estimated
centre of the UAV. The red circles depicts the UAV’s path since it was
tracked. (c) High altitude approach detection, where despite the background
subtraction noise caused by heavy winds and rapidly moving clouds the
centre of the UAV is successfully detected. (d) The UAV in the intermediate
stage of the descent in a low wind situation as can be perceived by the low
dispersion of the UAV’s path.

are the output of simple PID controllers linked directly to the
UAV’s motion control system at 100Hz.

These corrective measures are managed by a set of decou-
pled PID controllers, one per controlled degree of freedom
- height, latitude, longitude, and heading. These controllers
feed the low-level motion control system, i.e., VR Brain, at
100Hz.

IV. ENVIRONMENT MAPPING AND UNDERSTANDING

This section describes the process by which all sensory
data is accumulated and processed by the ASV in order to
build a bidimensional robot-centric navigation cost map to
be used by the navigation system (see Section III). The cost
map represents how difficult it is for the ASV to traverse each
cell of the environment through the probabilistic integration
of a set of partial bidimensional cost maps obtained from
different sensory modalities: (1) the ASV’s onboard tilting
laser scanner; (2) the ASV’s onboard tilted underwater sonar;
(3) monocular cues present in the ASV’s onboard multi-
view camera (see [20]); and (4) monocular cues from the
UAV’s downwards looking camera. The superposition of the
several cost maps is possible given the rigid transformation
between all sensors and between ASV and UAV. The former
is estimated via calibration and the latter by sharing the
robots’ GPS positions. Details on these maps is provided
in the following sections.

A. Navigation Cost From Range Data
Range data from laser and sonar are accumulated on two

allocentric on-growing octree-like tridimensional structures
[21], which allow probabilistic occupancy upkeep of their
volumetric elements’ states, i.e., unknown, occupied, and
free. These structures are gravity-aligned and their occupancy
is attained through ray casting every range measurement’s
beam both the laser and the sonar produce, determining
which of the structure’s voxels belong to the beam’s path and
which refer to it’s hit point, hence, free and occupied space,
respectively. The probabilistic octrees’ leaf sizes, given the
vehicle’s size and the distance covered, were empirically set
to 0.3m. Moreover, different (free, occupied) insertion log
odd tuples were assigned to the octree for the laser scanner,
(0.2,�0.44), and to the octree for the sonar, (0.85,�0.41),
abstracting a stronger confidence credited to laser readings
comparatively to sonar’s.

Given the a priori knowledge that deep water rarely reflects
in the laser wavelength [22], columns of fully unknown space
in the laser’s probabilistic octree are assumed to be represen-
tative of the water surface. These columns are said to have
zero cost when projected to the laser-based bidimensional
cost map. Conversely, partially or fully occupied columns are
representative of non-water surfaces and are, consequently,
said to have unit cost, i.e., impossible to traverse by the
ASV. Spurious reflections are naturally filtered out by the
probabilistic structure of the octrees. Columns in the sonar’s
probabilistic octree showing occupied voxels close enough
to the water’s surface are said to have unit cost in the sonar-
based cost map and, otherwise, a decreasing finite cost as
the distance to the water surface grows.

B. On-Land Obstacle Detection
The ability to find a docking area for the ASV may be

vital in severe weather conditions or considerably low-power
availability. It is also important that the ASV is capable of
delivering any collected samples to a human or a robotic
agent on the shore. Such an area is defined as a set of
contiguous cells with unit cost in the laser-based cost map
(i.e., non-water regions) that are not occupied with obstacles
that would hamper the ASV from docking. To detect these
obstacles, in a column-wise manner, the lowest occupied cell
is taken as the surface bearing in the respective column.
Then, all occupied cells from the bearing on, up to the ASV’s
height, are said to be obstacles. The search is limited to the
ASV’s height in order to reject overhanging objects, such
as tree canopy. Then, the maximum slope between every
obstacle cell’s centroid in a given column and the surface
bearing cell’s centroid of every adjacent column is computed.
The slopes of all columns are normalised to cover the interval
[0, 1] and projected to the surface plane in order to generate
a cost map that can be used to plan docking motor plans.
That is, the higher the slope the higher the cost.

C. Cooperative Perception
This section describes the mechanisms required for the

UAV to generate a navigation cost map to support ASV’s



path planning from the near to the far field based on the
principles depicted in Fig. 2. Here it is assumed that the
UAV performs a meaningful flight in order to maximise the
gathering of sensory information bearing the task in mind
(see Section III). Aerial images are gathered and sent back to
the ASV, which executes a water region segmentation process
on them (see below). The resulting segmented images are
registered on a common binary bidimensional navigation
cost map, given the UAV pose estimates. This cost map
signals which cells of the environment are navigable, i.e.,
are occupied by water, or otherwise. As a result, we get
a bidimensional navigation cost map that goes beyond the
ASV’s field of view and, as a result, pushes farther the
planning lookahead.

The water region segmentation of the aerial images starts
with an image-wise unsupervised segmentation procedure
in order to find super pixels in the images in which the
ASV is present. The portion of path taken by the ASV
not nearby high cost navigation regions (as determined by
the ASV’s onboard sensors) is registered in these images,
given both ASV’s and UAV’s pose estimates. The image
segments overlapped by the registered path are labelled as
water segments, whereas the others are labelled as non-water.
The water and non-water segments are then used to create a
training set for the supervised learning of a water/non-water
image classifier. This classifier is then applied to all images,
including those in which the ASV is not present, i.e., which
image the far field. The following details these steps.

1) Unsupervised Water Segmentation: The unsupervised
water segmentation procedure proceeds as follows. First,
feature descriptors are built for all image pixels. These
features encompass texture information encoded in 3 ⇥ 3
Law’s masks, BGR values acquired from the image’s color
channels and intensity entropy information. The descrip-
tors are then grouped into 16 feature clusters using K-
means. Then, each pixel in the input image is assigned
to the representative feature cluster. Subsequently, a set of
histograms accounting for the feature cluster assignment
frequencies is computed over a sliding window of 7⇥7 pixels
[23]. These histograms are then clustered into 8 histogram
clusters using K-means. Again, each pixel in the input image
is re-assigned to the representative histogram cluster. This
way, local contextual information is used to bring together
similar regions. In order to further merge similar segments,
a connected components operation is carried out on the
re-classified image. Small sized components are removed.
Similar components are merged together, according to a
threshold of 0.5 in the Bhattacharyya distance between their
representative histogram clusters. The product of this process
is an over-segmentation of the input image (see Fig. 5(b)).

2) Supervised Water Segmentation: The ASV’s trajectory
is known to overlap water regions, and, consequently, to
overlap segments in the over-segmented input image that
represent water. These segments are merged together into
a single segment, which is then labelled as the original
water segment. The next step is to determine which other
segments from the over-segmented input image are similar to

(a) (b)

(c) (d)

Fig. 5. Water segmentation pipeline. (a) Input image (satellite imagery)
with ASV’s trajectory overlaid (green connected dots). (b) Intermediate
result from the unsupervised segmentation. (c) Result from the unsupervised
segmentation step, in which the green segment corresponds to the original
water segment. (d) Intermediate result from the supervised segmentation
result, in which the green and red overlays represent the expanded water
segment and land, respectively. This segmentation is used to train a SVM,
which is then used to classify the input images that the UAV will capture
from the far field.

the original water segment. This matching is done using the
Bhattacharyya distance on the segments’ descriptors. Then,
the matched segments are merged together with the original
water segment, resulting in an expanded water segment.
This process is basically propagating the water label from
the segments overlapping the ASV’s trajectory to remote
unexplored segments (see Fig. 5(d)). As the UAV moves
in the environment in order to classify the far field, the
supervising signal provided by the ASV’s trajectory becomes
unavailable. That is, the current ASV’s trajectory does not
overlap the UAV’s visual field. To classify these new images,
the system recurs to water/land image classifier learned from
images capturing the ASV’s executed path. The classifier is
implemented as a Support Vector Machine (SVM) with a
RBF kernel. The SVM learns the mapping between the image
descriptors used in the over-segmentation process and the
obtained water/land segmentation. Then, the trained SVM-
based classifier is used to classify the input images that the
UAV will capture from the far field.

V. EXPERIMENTAL RESULTS

This section presents the experimental results obtained on
a set of field trials. Videos with these and other results
can be viewed on the RIVERWATCH project’s website1.
The field trials were carried out in a private lake nearby
Sesimbra in Portugal, with an area of roughly 1.5 km2. This
site offered, in a single place, most of the environmental traits
that can be found in riverine environments, such as narrow

1
http://riverwatchws.cloudapp.net



passages, open space areas, deep and shallow waters, shores
with disparate kinds of vegetation ranging from sander dunes
to large trees passing by zones of extreme vegetation density.

A. Autonomous Navigation

In a first set of experiments, the ASV’s navigation system
was tested on a windy day. The goal was to verify whether
the system is capable of taking the ASV across a set of
predefined waypoints in three different runs using the cost
map generated online from laser and sonar range data. The
missions were defined using a web-based tool developed
for the purpose. Here the remote operator establishes the
robotic system’s waypoints aided by satellite imagery. Al-
though satellite imagery outdating is sufficient reason to
force the ASV to avoid unexpected obstacles, this behaviour
was purposely exaggerated by selecting waypoints whose
connecting line segments cross the centre of the obstacles
present in the environment, such as small islands. Fig. 6
depicts the test site’s satellite imagery, selected waypoints,
the non-traversable labelled regions of the environment by
the perceptual mechanisms, and the path taken by the robot
in autonomous mode. These paths crossed open waters,
near shoals and most shores, which allowed the ASV to
build online a thorough and quite accurate range-based
representation of the lake (see Fig. 7), essential to safe
autonomous navigation. Minor mis-registrations between this
environment’s representation and the satellite imagery can be
explained by vegetation growth, terrain erosion, water level
variations, and range data registration errors. Furthermore,
overhead imagery suffers from perspective distortion. From
Fig. 6, it becomes clear the ASV’s ability to properly segment
water from land, as well as to produce safe optimised paths.
Overall, the ASV travelled 2.1 km at an average speed over
ground of 0.8ms�1, without any collisions, reaching a top
speed of 1.4ms�1. The system was able to robustly track
the planned paths, even facing considerable environmental
disturbances, like wind.

B. Cooperative Perception

To assess the effectiveness of the cooperative perception
principle, a final mission was handed to the robotic system.
In this mission, the UAV took off the ASV and performed
a flight over the desired ASV’s path so as to gather enough
sensory information to build a navigation cost map including
the far field (see Fig. 8). To this end, an obstacle-free (ac-
cording to the ASV’s onboard range sensors) small portion
of the ASV’s path immediately before the UAV taking off
is used to supervise the water/land segmentation process in
the first aerial image acquired (see Section IV-C.2). In turn,
this segmentation is used by the system to learn an image
classifier (see Section IV-C.2) that is applied to a set of
7 subsequently acquired images, evenly spaced across the
flight. All these classified images are then composed on a
single cost map used by the ASV to plan a path whose
lookahead far exceeds its onboard sensors’ field of view.

(a)

Fig. 6. Three autonomous navigation runs. Obstacles are represented by
the red overlay. The initial and final points of the ASV’s path (represented
by each line) in each run are represented by an unfilled and a filled circle,
respectively. The waypoints followed in each run are represented by the
depicted numbers.

(a) (b)

(c) (d)

Fig. 7. Environment range-based representation of environment built
throughout one autonomous run. (a) Raw sonar range data (611230 hit
points). Depth represented with an yellowish scale. (b) Raw laser range data
(867811 hit points). Depth represented with a blue-to-red colour scale. (c)
Superposed laser-based (red) and sonar-based (blue) probabilistic octrees.
(d) Final bidimensional cost map built from the octrees depicted in (c). Note
that the cost map is limited in range given its robot-centric local nature. Blue
and orange represent low-cost and high-cost navigation cells, respectively.

TABLE I
THE DOCKING PROCEDURE CHARACTERISTICS OF FIVE RUNS DIVIDED

IN SLICES OF 0.5 METERS. WHERE THE MEAN ERROR AND STANDARD

DEVIATION OF THE DISTANCE OF THE UAV IN RELATION TO THE

CENTRE OF THE DOCKING STATION LANDING PAD IS DEPICTED.

Altitude [m] Mean Error[m] Standard Deviation [m]
2 to 1.5 0.4545 0.0319
1.5 to 1.0 0.3114 0.1209
1.0 to 0.5 0.2626 0.1403
0.5 to 0.0 0.0849 0.1101



(a)

(b) (c)

(d) (e)

Fig. 8. Cooperative perception results. (a) Composed water/land segmen-
tation (binary navigation cost map) overlaid on satellite imagery. The ASV
and UAV navigation paths are represented by solid-orange and dashed-
yellow lines, respectively. The arrows indicate the travelling direction. The
red overlay denotes land regions whreas the green overlay labels the water
regions. (b)-(e) Some of the water/land segmented aerial images acquired by
the UAV that have been used to build the composed segmentation depicted
in (a).

Fig. 9. The UAV’s trajectory in relation to the centre of the docking station
on the ASV’s deck during the different runs, each depicted by a different
colour.

Fig. 10. Field test results position error, altitude and attitude profile
observed during a docking procedure.

C. Cooperative Landing

The field experiments designed to assess the robustness
of the cooperative landing consisted of four independent
runs (see Fig. 9), where the UAV was initially left hovering
outside the upwards looking camera field of view. In each ex-
periment the barometer was calibrated to serve as a guideline
to assert the accuracy of the estimated height calculated using
the bounding box and the focal length. The first step was to
autonomously initiate a climb until entering the field of view
of the ASV’s camera. Subsequently, when the ASV spots
the UAV it begins guiding it into the helipad. A statistical
analysis of the distance of the UAV to the centre of the
helipad during its descent is depicted in Table I. The analysis
of the docking procedure was done in 0.5 meters slices
starting from 2 meters above the docking station. The mean
error displays an expected trend by lowering in proportion to
the UAV’s altitude. However, the lowest standard deviation is
at the highest altitude analysed. This is explained because at
that height the movements of the UAV are smaller in relation
to the image size. Conversely, the chaotic airflow created by
the proximity of the docking station at lower altitudes leads
to large displacements in the image.

Fig. 10 shows the last stage of one of the runs. In
particular, it shows that landing is successful. However, when
in the final stage the closeness to the landing pad entails
that the camera’s field of view does not encompass the
entire UAV. Consequently, the estimated UAV’s pose loses
reliability. Nonetheless, the information obtained is sufficient
for keeping the UAV controlled in this last stage of the
landing procedure.

Despite the good results, the proposed system for the
cooperative landing alone is insufficient for a robust oper-
ation in harsh weather conditions (see Section III-C). Winds
and the chaotic airflow nearby the ASV may hamper a
precisely centred arrival and departure at the docking station.
As a result, the UAV frequently comes close to the safety
net, which, due to the limited free space, hampers a safe
subsequent takeoff. This is a limitation that can hardly be
fully solved with additional control. We envision that the



solution for this final step may come from the use of smart
mechanics for capturing and centring the UAV in the docking
station, as those reported by Mullens et al. [9].

VI. CONCLUSIONS

An autonomous surface-aerial marsupial robotic team for
riverine environments, RIVERWATCH, was presented. The
innovative marsupial solution exploits the high endurance
of surface robotic platforms to attain long-lasting operation
and the wide field of view of aerial robotic platforms to
foster surface-level safe navigation with far field lookahead
capabilities. A set of field trials have shown promising results
of the proposed system. We are currently working together
with experts on environmental monitoring to design a pro-
tocol capable of exploiting the developed robotic system on
real environmental monitoring missions. Although developed
for environmental monitoring, the presented robotic solution
can also be useful for other domains, such as infrastructure
inspection, search & rescue, and surveillance. As future work
we also intend to adapt our previous work on attention-based
perception [24], [25] to the RIVERWATCH platform in order
to reduce the computational load and, as a result, expand the
robotic team’s energetic autonomy. Finally, we are working
on a smart fixture mechanism for safe docking and takeoff
of the aerial platform.
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