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ABSTRACT
Cooperative coevolution is an approach for evolving solu-
tions composed of coadapted components. Previous research
has shown, however, that cooperative coevolutionary algo-
rithms are biased towards stability: they tend to converge
prematurely to equilibrium states, instead of converging to
optimal or near-optimal solutions. In single-population evo-
lutionary algorithms, novelty search has been shown capa-
ble of avoiding premature convergence to local optima —
a pathology similar to convergence to equilibrium states.
In this study, we demonstrate how novelty search can be
applied to cooperative coevolution by proposing two new
algorithms. The first algorithm promotes behavioural nov-
elty at the team level (NS-T ), while the second promotes
novelty at the individual agent level (NS-I ). The proposed
algorithms are evaluated in two popular multiagent tasks:
predator-prey pursuit and keepaway soccer. An analysis
of the explored collaboration space shows that (i) fitness-
based evolution tends to quickly converge to poor equilib-
rium states, (ii) NS-I almost never reaches any equilibrium
state due to constant change in the individual populations,
while (iii) NS-T explores a variety of equilibrium states in
each evolutionary run and thus significantly outperforms
both fitness-based evolution and NS-I.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms
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1. INTRODUCTION
Cooperative coevolution algorithms (CCEAs) are capable

of evolving solutions that consist of interacting coadapted
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components [19]. Such approaches are promising because
they potentially allow for very large problem spaces to be de-
composed into smaller and more manageable sub-problems.
In a typical CCEA, each component of the solution is evolved
in a separate population. Components are evaluated as part
of a complete solution that consists of one component from
each population. The individual components are thus scored
based on the performance of the complete solution as a whole
rather than their individual contribution.

A common application of CCEAs is the evolution of mul-
tiagent behaviours [20]. The natural decomposition of the
problem into sub-components makes it a good fit for co-
operative coevolution: each agent can be represented as a
component of the solution, and the coevolutionary algorithm
evolves a set of agent behaviours that solve the given task.
In this way, coevolution allows for the evolution of heteroge-
neous multiagent systems, where each individual agent can
evolve a specialised behaviour [20, 27, 12].

CCEAs are, however, plagued by a number of issues,
among which premature convergence to equilibrium states
stands out [25, 15]. CCEAs have been shown to gravitate to-
wards equilibrium states, regardless of whether or not such
states correspond to a (near-)optimal solution for a given
problem. Relative over-generalisation is one of the main
causes for this behaviour [18]. Relative over-generalisation
occurs when coevolving populations are attracted to areas
of the search space in which there are many strategies that
perform well when combined with individuals from the other
populations. This tends to generate individuals that are jack
of all trades, master of none [26], which in turn can hinder
the evolution of optimal or near-optimal solutions.

Relative over-generalisation is not the same as conver-
gence to local optima found in single-population evolution-
ary algorithms [17]. The relative over-generalisation pathol-
ogy means that even under favourable conditions, CCEAs
are not necessarily attracted to the global optimum [18].
The consequence of relative over-generalisation and conver-
gence to local optima [24] are, however, similar: the evolu-
tionary process converges to sub-optimal regions of the solu-
tion space. The two pathologies are caused by a form of de-
ception: in single-population evolutionary algorithms, evo-
lution might be deceived by the fitness function [24], while
in CCEAs, each population might be deceived by the other
coevolving populations.

Lehman and Stanley [6] recently proposed an evolutionary
approach aimed at avoiding deception in single-population
evolutionary algorithms, called novelty search. In novelty



search, candidate solutions are scored based on the novelty
of their behaviour with respect to the behaviours of previ-
ously evaluated individuals, and not based on a traditional,
static fitness objective. Given the dynamic nature of the
objective, novelty search has the potential to avoid decep-
tion and premature convergence. The approach has attained
considerable success in many different domains, such as evo-
lutionary robotics [9, 3], genetic programming [5] and rein-
forcement learning tasks [1, 8].

In this paper, we show how novelty search can be applied
to cooperative coevolution. We propose two new algorithms:
novelty search at the team level (NS-T ) and at the individ-
ual level (NS-I ). In NS-T, the novelty score assigned to an
individual is based on the behaviour displayed by the team in
which it is evaluated — regardless of its individual contribu-
tion. In NS-I, the novelty assigned to an individual is solely
based on the behaviour of that individual agent when a team
is evaluated. We apply the proposed algorithms in the evo-
lution of controllers for embodied agents in two classic tasks
that require a high degree of cooperation: predator-prey [11,
27, 21] and keep-away soccer [22, 23]. We show that by hav-
ing a dynamic novelty objective, the populations avoid get-
ting trapped in poor equilibrium states. Consequently, a co-
evolutionary process based on novelty search can find good
solutions faster and more often than a traditional fitness-
based cooperative coevolution algorithm.

2. RELATED WORK

2.1 Cooperative Coevolution
Our work is based on the original cooperative coevolution

architecture (CCEA) proposed by Potter and De Jong [19].
This architecture models an ecosystem consisting of two or
more species, with each species represented in a separate
population. This means that individuals only reproduce
with members of their species. Each species is evaluated
in turn. To evaluate an individual from one species, teams
are formed with representatives of the other species. The
teams are then evaluated by a fitness function in the prob-
lem domain, and only the individual that is being evalu-
ated receives the fitness score obtained by the team as a
whole. Therefore, the fitness differential is strictly a func-
tion of the individual’s contribution to the problem-solving
effort within the context of the other team members.

Popular extensions of the CCEA architecture include:
Multiagent Enforced SubPopulations (MESP) [27], where
neural networks are coevolved using the ESP neuroevolution
algorithm; and COllective NeuroEvolution (CONE) [10],
which extends MESP by allowing regulated reproduction be-
tween individuals of different populations.

The cooperative coevolution architecture has been used
in several multiagent tasks to evolve cooperative agent be-
haviours. The most notable example is the predator-prey
task [11, 27], where a number of agents (predators) need
to cooperate in order to capture a preprogrammed fleeing
prey. Other applications of cooperative coevolution include
a herding task [20], where a group of robots have to co-
operate to force another robot into a corral; collective con-
struction tasks [13], which require that robots place building
blocks in a specific sequence to build a predefined structure;
and collective foraging [12], where a team of simulated au-
tonomous vehicles need to find objects of interest with a
maximal total value over the course of the team’s lifetime.

2.2 Convergence to Equilibrium States
In a cooperative coevolution algorithm, the search space

of each population is defined and limited by the behaviour
of the team members. The search space is thus constantly
changing, as the individuals from the other populations are
evolving. It is consequently easy for a population to get mis-
lead because of particular selections of representatives from
the other populations. CCEAs therefore tend to evolve in-
dividuals that perform well with many different individuals
in the other populations, regardless of whether or not these
teams are globally optimal [26]. This pathological evolution-
ary dynamic is known as relative over-generalisation [18].

A number of strategies have been proposed to overcome
the relative over-generalisation issue. The intent is to
bias coevolution towards optimal solutions and escape sub-
optimal Nash equilibria. In [17], it is shown that an opti-
mistic reward scheme — the maximum of N collaborations
— can be used to mitigate the problem of relative over-
generalisation. The idea is to evaluate an individual not
with one collaborator, but with N randomly chosen collab-
orators and use the maximum reward obtained. However,
the results show that this scheme alone only avoids relative
over-generalisation when the number of collaborators N is
relatively high [14], which has a significant impact on com-
putational complexity.

The maximum of N collaborations scheme was augmented
by Panait et al. [17]: the fitness is based partly on the max-
imum of N collaborations with randomly chosen partners
and partly on the reward obtained when partnering with
the optimal collaborator. The results show that the aug-
mented strategy using small values of N is superior to the
maximum of N collaborations scheme using larger values
for N . The assumption that the optimal collaborator is
known is, however, unrealistic, and as such heuristic meth-
ods are necessary for estimating the optimal collaborator.
To overcome this necessity, Panait et al. [16] proposed an
archive-based algorithm called iCCEA, which attempts to
reduce the number of evaluations by maintaining an archive
of good collaborations for each of the populations. The idea
is to identify which members of the collaborating population
are likely to be good collaborators and only test individuals
against that small set. The results show that iCCEA often
performs better than the classical CCEA algorithm in which
collaborators are chosen randomly.

The existing studies on over-generalisation and conver-
gence to equilibrium states are, however, mostly focused
on the function optimisation domain. Although the issue
of convergence is not directly addressed in previous studies
in the multiagent domain, the principles of the pathology
also apply to other domains. Actually, in many studies that
apply CCEAs to embodied multiagent systems, problem de-
composition techniques [15] (in particular incremental evolu-
tion [4]) are used to achieve successful solutions in reasonable
time (see for examples [10, 13, 27]). The described necessity
of using problem decomposition supports that CCEAs tend
to converge to sub-optimal equilibria.

It is not clear whether the aforementioned techniques for
overcoming over-generalisation can be applied in the embod-
ied multiagent domain. In particular, these techniques rely
on using a relatively large number of collaborators to assess
the fitness of each individual. This is typically not feasi-
ble in the multiagent domain, since evaluations tend to be
computationally expensive.



2.3 Novelty Search
Novelty search [6] is a new approach that drives evolution

towards behavioural novelty instead of a pre-defined goal.
The distinctive aspect of novelty search is how the individ-
uals of the population are scored. Instead of being scored
according to how well they perform a given task, which is
typically measured by a fitness function, the individuals are
scored based on their behavioural novelty according to a
novelty metric, which quantifies how different an individual
is from other, previously evaluated individuals.

To measure how far an individual is from other individuals
in behaviour space, the novelty metric relies on the average
behaviour distance of that individual to the k-nearest neigh-
bours. Potential neighbours include the other individuals of
the current population and a sample of individuals from pre-
vious generations (stored in an archive). Candidates from
sparse regions of the behaviour space therefore receive higher
novelty scores, and in novelty search there is thus a constant
evolutionary pressure towards behavioural innovation.

The behaviour distance between each two individuals is
given by a function that should be provided by the experi-
menter. The behaviour of each individual is commonly char-
acterised by a real-valued vector. The experimenter should
design the characterisation vector so that it captures be-
haviour features that are considered relevant to the problem
or task. The behaviour distance between two individuals is
then given as the Euclidean distance between their charac-
terisation vectors. The discussion of how to define behaviour
characterisations is largely dependent on the application do-
main, and goes beyond the scope of this paper. In the past,
behaviour characterisations have been specified for a num-
ber of different tasks in various domains, including single-
robot systems [9, 6], multirobot systems [3, 2], reinforcement
learning tasks [1, 8], among others.

Combining Novelty and Fitness
As novelty search is guided by behavioural innovation alone,
its performance can be greatly affected by the size and shape
of the behaviour space. In particular, behaviour spaces that
are vast or contain dimensions not related with the task can
cause novelty search to perform poorly [1], because most of
the effort may be spent exploring behaviours that are ir-
relevant for the goal task. To address this issue, we use a
linear scalarisation of novelty and fitness objectives [1]. This
technique directs the exploration towards regions of the be-
haviour space associated with high fitness scores. An indi-
vidual i is evaluated to measure both fitness, fi, and novelty,
nsi, which after being normalised are combined according to
the following equation:

scorei = (1 − ρ) · fi + ρ · nsi , (1)

where ρ is a parameter set by the experimenter that controls
the relative weight of fitness and novelty.

3. NOVELTY-DRIVEN COOPERATIVE
COEVOLUTION

We propose two distinct approaches based on the novelty
search algorithm to overcome convergence in cooperative co-
evolution. In the first approach, we use novelty search to
promote diversity of team behaviours. In the second ap-
proach, novelty search is used to promote novel behaviours
of the individual agents.

Team-level novelty
Following the classic cooperative coevolution architec-
ture [19], each agent is evolved in a separate population.
To evaluate each individual of each population, teams are
formed with representatives from the other populations.
The collective performance of the team is then obtained by
testing it in the problem task. A straightforward way of
introducing novelty search in this architecture is to charac-
terise the behaviour of each team as a whole, and use this
characterisation to compute the novelty score of the individ-
ual that is being evaluated. The team behaviour is measured
using the behaviour characterisation design principles used
in [3]: the characterisation should capture what the team as
a whole achieves, rather than directly discriminating what
each agent does for the team.

The rationale behind this algorithm is to reward individ-
uals that facilitate novel collective behaviours. Individuals
are not rewarded for being novel themselves — but rather
for the novelty displayed by the team of which they are part.
The evolutionary process is thus lead towards novel equilib-
rium states. As the notion of novelty is dynamic, the at-
tractors keep changing throughout evolution, which in turn
avoids premature convergence to a single point in the so-
lution space. An overview of our team-level approach is
described in Algorithm 1.

Algorithm 1 Novelty-driven cooperative coevolution based
on team-level evaluations
1: Let A be an archive of behaviours.
2: for each generation do
3: Choose the representatives rn of each population pn.
4: for each population pn do
5: for each individual i in pn do
6: Form teams with individual i and representatives

r from the other populations.
7: Evaluate every team t, obtaining for each one a

fitness score ft and a characterisation bt.
8: fi ← ft∗ , bi ← bt∗ , where t∗ is the team with the

highest fitness score ft.

9: for each individual i in pn do
10: Compute the novelty score nsi, using the charac-

terisation bi, and comparing to the other individu-
als in pn and behaviours in A.

11: scorei ← combine fi and nsi.

12: Update A, adding the behaviours bi of R randomly
picked individuals of pn.

13: for each population pn do
14: Run the selection, mutation, and crossover operators,

based on the final scores scorei.

Individual-level novelty
It is typically not possible to assess the contribution of each
agent to the success of the team (known as the credit as-
signment problem [15]). Nonetheless, it is possible to de-
scribe the behaviour of each individual agent, regardless of
what the team achieved. We therefore study a novelty-
based coevolutionary algorithm that uses individual agent
characterisations, instead of the team-level behaviour char-
acterisation. Individuals are rewarded for displaying novel
agent behaviours, regardless of the team-level behaviour of
the teams in which the individuals were evaluated. The goal
is to maintain diversity inside each population, thus prevent-
ing convergence to any equilibrium state. The algorithm is
similar to Algorithm 1, with the following modifications:



• There are N archives, one for each population.

• In the evaluation of a team, N behaviour characteri-
sations are obtained, one for each representative of a
population.

• To calculate the novelty score, the individual is com-
pared only to the individuals of its own population,
and the archive of that population.

• Archives only contain behaviours from the population
to which they belong.

4. EXPERIMENTAL SETUP
Cooperative coevolution algorithms are used to evolve a

group of heterogeneous agent controllers to solve the given
task. The proposed methods are evaluated in two popular
multiagent tasks: predator-prey and keepaway soccer. In
both tasks, each agent of the group is controlled by a neural
network. The neural networks are evolved with simple ge-
netic algorithms that operate inside each of the coevolving
populations. MASON [7] is the simulation platform used for
the multiagent simulations in which the neural networks are
evaluated. Each controller is evaluated in 10 independent
simulations, and the final fitness score and behaviour char-
acterisations are the average of the scores obtained in those
simulations.

4.1 Predator-prey
The predator-prey pursuit is one of the most common

tasks in multiagent coevolution (both cooperative and com-
petitive) [11, 27, 21]. Pursuit games consist of a number
of agents (predators) cooperatively chasing a prey. Individ-
ual predators are usually not faster than the prey, and the
predators therefore need to cooperate in order to success-
fully capture the prey. In cooperative coevolution studies,
typically only the team of predators is evolved, and the prey
has a pre-specified fixed behaviour. The task is especially
interesting because heterogeneity in the predator team is
required to effectively catch the prey [27].

The predators are placed evenly spaced at one end of the
100x100 unit square arena. A single prey is randomly placed
within a radius of 20 units around the centre. The arena is
not bounded by walls. However, if the prey escapes the
chase zone, the simulation ends. The initial conditions of
the simulations are depicted in Figure 1 (left).

Predators starting position

Prey

Prey
placement

zone

Chase zone

Keepers
Taker

Play zone

Taker
placement

zone

Ball

Predator-prey Keepaway soccer

Figure 1: Initial simulation conditions, in the
predator-prey task (left), and the keepaway soccer
task (right).

We use a version of the task where the predators cannot
communicate nor sense one another [27, 21]. Each predator
receives only two inputs: (i) the distance to the prey, and
(ii) the relative orientation of the agent with respect to the
prey. These inputs are fed to the neural network, and two
outputs control the speed and the rotation of the agent.
The predators move at a maximum speed of 1 unit/step, and
can only rotate a maximum of 90◦/step. The feed-forward
neural network that governs each predator has 2 inputs, 5
hidden neurons, and 2 outputs, and is fully connected.

The behaviour of the prey consists of escaping from nearby
predators. If there are no predators in a radius less than or
equal to V , the prey does not move. Otherwise, the prey
moves at a constant speed of 1 unit/step, with a direction
opposite to the centre of mass of the nearby predators. Two
variations of the task are used: (i) 3 predators, with a prey
vision range V of 5 units, and (ii) 5 predators, with V =
7. The prey is captured if a predator collides with it. A
simulation ends if the prey is captured, escapes the chase
zone, or if 300 simulations steps elapse.

The fitness function Fpp is based on previous works [11,
27], and given by:

Fpp =

{
2 − τ/T if prey captured

(di − df )/size otherwise
, (2)

where τ is the simulation length, T is the maximum sim-
ulation length, di is the average initial distance from the
predators to the prey, df is the average final distance, and
size is the side length of the chase zone.

The team-level behaviour characterisation Bpp(G) is a
vector of length 4, with all elements normalised to [0,1]:
(i) whether the prey was captured or not; (ii) the simulation
length; (iii) the average final distance of the predators to
the prey; and (iv) the average distance of the predators to
their centre of mass (dispersion) throughout the simulation.
The agent-level characterisation Bpp(a) of agent a is also
a vector of length 4, with the elements normalised to [0,1]:
(i) whether agent a captured the prey; (ii) the average dis-
tance of a to the prey; (iii) the average speed of a; (iv) the
average distance of a to the other predators.

4.2 Keepaway soccer
Keepaway soccer is a simplified version of robot soccer

in which there are usually three keepers and one or two
takers. The keepers must learn to keep possession of the
ball against a taker that actively tries to snatch it from the
keepers. Keepaway soccer is a popular and challenging task
in multiagent learning [22, 23]. Typically, the keepers are
homogeneous and only one controller is evolved, which is
cloned to each keeper. In our study, we use a heterogeneous
version of the task: the keepers move at different speeds, and
the controllers for the keepers are cooperatively coevolved.

The initial conditions of the simulation are depicted in
Figure 1 (right). The arena is not bounded, but the ball
must remain inside a 100x100 unit square. At the beginning
of each simulation, three keepers are always placed in the
same locations, and the single taker is randomly placed in-
side a circle of radius 15 units around the centre. The ball is
placed in front of the bottom keeper. Each simulation runs
for a maximum of 500 steps and ends if the ball leaves the
play zone or is captured by the taker.

We use an abstraction of the task where the keepers do
not actually have to learn in detail how to pass the ball.



Instead, the keepers only have to touch the ball, and two
outputs of the controller dictate the power and direction
of the pass. Each keeper is equipped with nine sensors: the
distance and angle to each of the other keepers, to the taker,
and to the ball; and the distance of the ball to the centre of
the arena. The controller has four outputs: (i) the speed of
the keeper, (ii) the rotation, (iii) the power of the pass, and
(iv) the angle of the pass (relative to the agent’s orientation).
The last two outputs are only used when the agent touches
the ball. The controllers are fully connected feed-forward
networks with 9 inputs, 7 hidden neurons, and 4 outputs.

The three keepers are heterogeneous and can move at
maximum speeds of 0.5, 0.75, and 1 unit/step, respectively.
The keepers can pass the ball in any direction. After being
shot, the maximum speed of the ball is 4 units/step, and it
decelerates at a rate of 0.05 units/step2. The taker is always
chasing the ball at maximum speed S. Two variations of the
task are used, with S = 0.50 and S = 0.75.

The fitness function Fks is based on the number of suc-
cessful passes accomplished throughout the simulation (as
advocated in [23]). A pass occurs whenever the ball moves
from one keeper to other, travelling a distance greater than
10 units. The distance criterion was included to prevent so-
lutions were the agents achieve a very high number of passes
while almost touching one another.

The team-level behaviour characterisation Bks(G) is a
vector of four elements, each normalised to [0,1]: (i) the
number of passes; (ii) length of the simulation; (iii) aver-
age dispersion of the keepers (average distance to centre
of mass); and (iv) average pass distance. The individual-
level characterisation Bks(a) of a keeper a is also a vector
of length 4: (i) the number of passes made by agent a; (ii)
average pass distance of these passes; (iii) average distance
to the other keepers; and (iv) average movement of a.

4.3 Evolutionary Setup
Our experiments use the classical CCEA architecture,

where evolutionary algorithms operate to evolve the neural
networks that control the agents. The weights of the net-
works are directly encoded in the chromosomes. To evaluate
each individual, two teams are formed: one with the highest
scoring individual of each other population; and one with
a randomly picked individual from each other population.
Novelty search is implemented as described in Section 3.
The archive size is bounded: after reaching the size limit,
random individuals are removed to allow space for new ones.
All the evolutionary techniques are implemented over ECJ.1

The parameters of the algorithm were tuned in preliminary
experiments using the predator-prey task. For each parame-
ter, a set of values was tested, and the value that yielded the
highest fitness scores was chosen. The resulting parameter
values are listed in Table 1.

Table 1: Parameters of the evolutionary algorithm.

Parameter Value Parameter Value

Novelty nearest-k 15 Tournament size 5
Add archive prob. 0.01 Mutation prob. 0.05
Max archive size 1000 Crossover none
Linear scal. ρ 0.50 Best collaborators 1
Population size 150 Random collabor. 1

1http://cs.gmu.edu/~eclab/projects/ecj/

5. RESULTS
As detailed in the previous section, we defined four task

setups, summarised below:

P3 Predator-prey with three predators. The prey senses
predators at a distance of V = 5.

P5 Predator-prey with five predators and V = 7.

KS Keepaway soccer with slow taker (S = 0.50).

KF Keepaway soccer with fast taker (S = 0.75).

Each task setup was tested with three evolutionary meth-
ods (see Section 3): Traditional fitness-based cooperative
coevolution (Fit); novelty search with team-level evaluation
(NS-T ); and novelty search with individual-level evaluation
(NS-I ). Each experimental condition was repeated in 20 in-
dependent evolutionary runs.

5.1 Escaping equilibrium states
Figure 2 shows the performance of each method in each

task, with respect to the highest fitness scores achieved at
each generation. The first conclusion that can be drawn
from the plots is that NS-T is clearly superior to fitness-
based coevolution (Fit). NS-T achieves significantly higher
fitness scores than Fit (p-value < 0.01, Mann-Whitney U
test), at almost all stages of the evolutionary process in all
task setups. The boxplots highlight that the evolutionary
runs of Fit often fail to achieve solutions for the given task,
reaching only low fitness scores. For instance, Fit was never
able to find a solution for the predator-prey task.

We analysed the exploration of the collaboration space
with each method, using the team-level behaviour charac-
terisations defined for each task (see Section 4), to deter-
mine the cause of the poor performance of fitness-based co-
evolution. The four dimensions of the behaviour charac-
terisations were reduced to two dimensions using Kohonen
self-organising maps in order to obtain a visual representa-
tion of the collaboration space exploration. The Kohonen
maps were trained with a sample of the behaviours found in
each task, and the behaviours evolved in each evolutionary
run were then mapped. The resulting plots can be seen in
Figure 3.

Fitness-based coevolution tends to only explore narrow
regions of the collaboration space, which suggests that evo-
lution is strongly attracted to certain equilibrium states.
However, these states do not necessarily correspond to op-
timal solutions — fitness-based coevolution often converged
to sub-optimal equilibria, and appears to lack the ability to
escape those equilibrium states. On the contrary, NS-T does
not seem to be affected by premature convergence to sub-
optimal equilibria. NS-T explores a much wider range of
collaborations (i.e., solutions), and can reach collaboration
regions associated with higher fitness scores. NS-T explored
the behaviour regions that were explored by Fit, however,
it did not get trapped in those regions. It is also possible
to observe that NS-T is able to unveil a large diversity of
solutions for a given task in a single evolutionary run.

To make a statistical analysis of the behaviour space ex-
ploration, we devised measures of behaviour space cover-
age. The space was first divided in regions of equal size:
each behaviour dimension was discretised into 5 levels, and
each region corresponded to a unique combination of lev-
els. We then calculated how many times each region was

http://cs.gmu.edu/~eclab/projects/ecj/
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Figure 2: Top: best fitness score found at each generation with each method, averaged over 20 evolutionary
runs. Bottom: boxplots of the highest fitness scores found in each evolutionary run.
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Figure 3: Exploration of the collaboration space in
typical evolutionary runs of fitness-based coevolu-
tion and NS-T. The diameter of each circle is pro-
portional to the number of teams found belonging to
that behaviour region. The behaviour regions asso-
ciated with the highest fitness scores are highlighted
in the maps.

visited throughout the evolutionary process. To determine
behaviour space coverage for an evolutionary run, we com-
puted the behaviour distribution over the whole evolution-
ary run. The distribution was then compared with the uni-
form distribution using the Jensen-Shannon divergence. The
complementary value of the divergence is the measure of be-
haviour space coverage. The non-visited regions of the be-
haviour space (the regions not reached by any method) were
not used in the computation of the divergence. The results
can be seen in Table 2 (top).

The results in Table 2 (top) confirm that NS-T covers the
collaboration space significantly better than fitness-based
coevolution. This result is consistent across all task setups.
So, how does novelty search manages to evolve such a greater
collaboration diversity? To shed some light on this question,
we performed a distinct analysis of the coverage of the col-
laboration space, considering the composition of individual
generations, instead of the whole evolutionary run. The re-
sults are shown in Table 2 (bottom).

In fitness-based coevolution, the average coverage in each
generation is only slightly lower than the total coverage that
occurs over the whole evolutionary run (see Table 2). Again,
this supports the conclusion that fitness-based coevolution
tends to quickly converge to certain regions of the collabora-
tion space. The difference between the generation coverage
and the total coverage is much more pronounced in novelty
search. This result suggests that novelty search is able to
shift the focus of convergence over the course of the evolu-
tionary run — it manages to escape the strong attraction
to stable states that plagues Fit. Furthermore, when com-
pared to Fit, NS-T can maintain a much higher diversity of
collaborations in the population at all times.



Table 2: Average coverage of the collaboration space
in a whole evolutionary run (top), and in each gen-
eration (bottom). Standard deviations are in paren-
thesis.

Average coverage per evolutionary run

P3 P5 KS KF

Fit 0.20 (0.01) 0.20 (0.03) 0.22 (0.06) 0.22 (0.02)

NS-T 0.62 (0.06) 0.52 (0.03) 0.45 (0.05) 0.43 (0.10)

NS-I 0.44 (0.06) 0.32 (0.01) 0.24 (0.01) 0.28 (0.01)

Average coverage per generation

P3 P5 KS KF

Fit 0.15 (0.03) 0.15 (0.03) 0.16 (0.05) 0.16 (0.02)

NS-T 0.37 (0.05) 0.32 (0.07) 0.25 (0.06) 0.26 (0.08)

NS-I 0.24 (0.08) 0.20 (0.04) 0.16 (0.03) 0.19 (0.04)

Table 3: Average coverage of the agent behaviour
space with each method. Standard deviations are in
parenthesis.

P3 P5 KS KF

Fit 0.28 (0.01) 0.35 (0.03) 0.27 (0.04) 0.23 (0.04)

NS-T 0.42 (0.02) 0.44 (0.01) 0.32 (0.02) 0.34 (0.02)

NS-I 0.66 (0.03) 0.63 (0.01) 0.34 (0.01) 0.32 (0.01)

5.2 Team novelty / Individual novelty
The performance of individual-level novelty search (NS-I )

was significantly inferior to NS-T (see Figure 2). The main
issue is that cooperation is not directly encouraged in NS-I.
As Table 3 shows, NS-I is effective in discovering a greater
diversity of agent behaviours, when compared to NS-T and
Fit. However, this does not translate in the discovery of
novel collaborations (see Table 2).

Figure 4 shows the exploration patterns that occur inside
each population with NS-T and NS-I, in typical evolutionary
runs. This figure highlights that NS-I evolves a relatively
high diversity of agent behaviours inside each population.
However, the low fitness scores achieved by NS-I suggest
that this high diversity can actually be counterproductive:
since all populations are constantly changing, it is hard to
form effective collaborations, as the individuals of a popu-
lation do not have enough time and incentive to adapt to
the individuals of the other popuations. This evolutionary
dynamic is contrary to what occurs in NS-T, where each
population tends to specialise in one area of the behaviour
space at a time, thus allowing a better adaptation of the
populations to each other.

Overall, our results showed that for the purpose of achiev-
ing effective solutions, novelty search with team-level char-
acterisations is largely superior to novelty search with
individual-level characterisations.

6. CONCLUSIONS
We proposed two methods for overcoming convergence to

equilibrium states in cooperative coevolution, based on nov-
elty search. The first method relies on team-level character-
isations and encourages novel collaborations (NS-T ), while
the second method tries to promote diversity at an agent-

NS-Team (P3)

NS-Individual (P3)

Population 1 Population 2 Population 3

Population 1 Population 2 Population 3

Figure 4: Exploration of the agent behaviour space
inside each population, in typical evolutionary runs
of NS-T and NS-I with the P3 task setup.

level (NS-I ). Both methods were compared to traditional
fitness-based coevolution (Fit) in two popular multiagent
tasks: predator-prey pursuit and keepaway soccer.

Our results confirmed that Fit often converges to equilib-
rium states that correspond to narrow regions of the solution
space. These regions often do not contain high quality so-
lutions to the task, which results in a poor effectiveness of
the evolutionary process. On the contrary, NS-T was able
to overcome premature convergence to equilibrium states.
By rewarding individuals that generate novel collaborations,
an evolutionary pressure towards novel equilibrium states is
created. The populations still converge, but the focus of
convergence shifts throughout the evolutionary process.

As there is a more effective exploration of the solution
space, NS-T can reach collaborations associated with higher
fitness scores more often. The fitness scores achieved by NS-
T were significantly superior to fitness-based coevolution in
all tasks and at almost all stages of evolution. NS-T could
also evolve a diverse set of solutions for a given task in a
single evolutionary run.

Our results demonstrated that novelty search is signifi-
cantly more effective when working at the team level, in-
stead of at the individual level. NS-I could effectively main-
tain a higher behavioural diversity inside each population
and prevented convergence. However, the outcome was not
promising in terms of the performance of the resulting com-
plete solutions. Since all populations are very diverse and
are constantly changing, it is relatively hard to form effective
collaborations, as individuals of a population do not adapt
to the other constantly changing populations.

Although the performance of novelty search with agent-
level characterisations was low, we contend that this type of
characterisations has considerable potential. For instance,
they can be used to promote heterogeneity in the collabora-
tions, by rewarding individuals that are different from the
individuals of the other populations. They can also be used
to identify populations that are evolving similar agents, and
potentially merge such populations, similar to emergent be-
haviour specialisation [12]. In ongoing work, we are study-
ing if and how agent-level characterisations can be used to
achieve these objectives.



One limitation of using novelty search is the necessity of
providing behaviour characterisations and a behaviour dis-
tance function, which are typically domain and task specific.
Previous works have shown that novelty-based approaches
can be used in a multitude of domains, and that it is often
relatively easy to define behaviour distance functions. There
are also some efforts regarding the definition of generic be-
haviour characterisations [2]. As such, we believe that our
results will generalise to other domains – even outside the
multiagent systems domain. The issues of relative over-
generalisation and premature convergence are transversal
to a wide range of coevolution problems, and the proposed
novelty-based approach can potentially offer a solution to
mitigate those issues.

Acknowledgements This research has been supported
by Fundação para a Ciência e a Tecnologia (FCT) grants
PEst-OE/EEI/LA0008/2013, PEst-OE/EEI/UI0434/2011,
SFRH/BD/89095/2012 and EXPL/EEI-AUT/0329/2013.

7. REFERENCES
[1] G. Cuccu and F. J. Gomez. When Novelty Is Not

Enough. In European Conference on the Applications
of Evolutionary Computation (EvoApplications),
volume 6624 of LNCS, pages 234–243.
Springer-Verlag, 2011.

[2] J. Gomes and A. L. Christensen. Generic behaviour
similarity measures for evolutionary swarm robotics.
In Genetic and Evolutionary Computation Conference
(GECCO), pages 199–206. ACM Press, 2013.

[3] J. Gomes, P. Urbano, and A. Christensen. Evolution
of swarm robotics systems with novelty search. Swarm
Intelligence, 7(2–3):115–144, 2013.

[4] F. Gomez and R. Miikkulainen. Incremental evolution
of complex general behavior. Adaptive Behavior,
5(3–4):317–342, 1997.

[5] J. Lehman and K. O. Stanley. Efficiently evolving
programs through the search for novelty. In Genetic
and Evolutionary Computation Conference (GECCO),
pages 837–844. ACM Press, 2010.

[6] J. Lehman and K. O. Stanley. Abandoning objectives:
Evolution through the search for novelty alone.
Evolutionary Computation, 19(2):189–223, 2011.

[7] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and
G. Balan. Mason: A multiagent simulation
environment. Simulation, 81(7):517–527, 2005.

[8] H. Moriguchi and S. Honiden. Sustaining behavioral
diversity in neat. In Genetic and Evolutionary
Computation Conference (GECCO), pages 611–618.
ACM Press, 2010.

[9] J.-B. Mouret and S. Doncieux. Encouraging behavioral
diversity in evolutionary robotics: An empirical study.
Evolutionary Computation, 20(1):91–133, 2012.

[10] G. S. Nitschke. Neuro-evolution for emergent
specialization in collective behavior systems. PhD
thesis, Vrije Universiteit Amsterdam, 2008.

[11] G. S. Nitschke, A. E. Eiben, and M. C. Schut.
Evolving team behaviors with specialization. Genetic
Programming and Evolvable Machines, 13(4):493–536,
2012.

[12] G. S. Nitschke, M. C. Schut, and A. E. Eiben.
Collective neuro-evolution for evolving specialized

sensor resolutions in a multi-rover task. Evolutionary
Intelligence, 3(1):13–29, 2009.

[13] G. S. Nitschke, M. C. Schut, and A. E. Eiben.
Evolving behavioral specialization in robot teams to
solve a collective construction task. Swarm and
Evolutionary Computation, 2:25–38, 2012.

[14] L. Panait. Theoretical convergence guarantees for
cooperative coevolutionary algorithms. Evolutionary
Computation, 18(4):581–615, 2010.

[15] L. Panait and S. Luke. Cooperative multi-agent
learning: The state of the art. Autonomous Agents &
Multi-Agent Systems, 11(3):387–434, 2005.

[16] L. Panait, S. Luke, and J. F. Harrison. Archive-based
cooperative coevolutionary algorithms. In Genetic and
Evolutionary Computation Conference (GECCO),
pages 345–352. ACM Press, 2006.

[17] L. Panait, S. Luke, and R. P. Wiegand. Biasing
coevolutionary search for optimal multiagent
behaviors. IEEE Transactions on Evolutionary
Computation, 10(6):629–645, 2006.

[18] L. Panait, R. P. Wiegand, and S. Luke. A visual
demonstration of convergence properties of
cooperative coevolution. In Parallel Problem Solving
from Nature (PPSN), volume 3242 of LNCS, pages
892–901. Springer-Verlag, 2004.

[19] M. A. Potter and K. A. D. Jong. Cooperative
coevolution: An architecture for evolving coadapted
subcomponents. Evolutionary Computation, 8(1):1–29,
2000.

[20] M. A. Potter, L. A. Meeden, and A. C. Schultz.
Heterogeneity in the coevolved behaviors of mobile
robots: The emergence of specialists. In International
Joint Conference on Artificial Intelligence (IJCAI),
pages 1337–1343. Morgan Kaufmann, 2001.

[21] A. Rawal, P. Rajagopalan, and R. Miikkulainen.
Constructing competitive and cooperative agent
behavior using coevolution. In IEEE Conference on
Computational Intelligence and Games (CIG), pages
107–114. IEEE Press, 2010.

[22] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu.
Keepaway soccer: From machine learning testbed to
benchmark. In Robot Soccer World Cup IX, volume
4020 of LNCS, pages 93–105. Springer-Verlag, 2005.

[23] A. Subramoney. Evaluating modular neuroevolution in
robotic keepaway soccer. MSc thesis, University of
Texas at Austin, 2012.

[24] L. D. Whitley. Fundamental principles of deception in
genetic search. In Foundations of Genetic Algorithms,
pages 221–241. Morgan Kaufmann, 1991.

[25] R. P. Wiegand. An Analysis of Cooperative
Coevolutionary Algorithms. PhD thesis, George Mason
University, 2003.

[26] R. P. Wiegand and M. A. Potter. Robustness in
cooperative coevolution. In Genetic and Evolutionary
Computation Conference (GECCO), pages 369–376.
ACM Press, 2006.

[27] C. H. Yong and R. Miikkulainen. Coevolution of
role-based cooperation in multiagent systems. IEEE
Transactions on Autonomous Mental Development,
1(3):170–186, 2009.


	Introduction
	Related Work
	Cooperative Coevolution
	Convergence to Equilibrium States
	Novelty Search

	Novelty-driven CooperativeCoevolution
	Experimental Setup
	Predator-prey
	Keepaway soccer
	Evolutionary Setup

	Results
	Escaping equilibrium states
	Team novelty / Individual novelty

	Conclusions
	References

