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Abstract—A low complexity receiver which was devised in 

previous papers proved there to be quasioptimum over additive 

gaussian noise and also showed low power penalty with flat 

Rayleigh fading, i.e., with random phase, and despite the fact that 

one of three reduced complexity blocks of that receiver relies on 

symmetries on signal’s phase transitions. This letter analyzes the 

origin of that error resilience during the derivation of the 

metrics. 

 
Index Terms—Continuous phase modulation (CPM), phase 

rotation error, symmetry-based metrics derivation. 

I. INTRODUCTION 

ONTINUOUS phase modulation (CPM) signals are 

insensitive to non-linear radio frequency (RF) amplitude 

amplification. Phase continuity allows good spectral 

performance and comprises a code gain. These properties 

motivated the widespread use of both MSK (minimum shift 

keying) and gaussian MSK. The use of other CPM schemes 

having both higher spectral and power efficiencies was 

restrained over time due to excessive detection complexity [1]. 

However, complexity reduction techniques made possible to 

employ CPM over digital radio relay links and it is also being 

considered for digital audio broadcasting [2]. 

CPM detection raises two problems: the optimum detector 

usually requires a very large bank of matched filters to obtain 

all phase transition metrics; afterwards, the number of phase 

states to track by a Viterbi algorithm may also be huge [1]. 

A quasi-optimum low complexity CPM receiver was 

achieved by introducing three complexity reduction 

techniques on the optimal receiver: i) replacement of the bank 

of matched filters by projections on a Walsh space [3]; ii) 

sequence detection with the M-algorithm [4]; and iii) a 

symmetry-based algorithm for the derivation of metrics from 

just 1/4 of them, which is to be further analyzed on this letter. 

This receiver has not only proved to be quasi-optimum when 
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assessed only with additive gaussian noise (AWGN) [5] but 

also demonstrated just about 3 dB power loss when assessed 

over Rayleigh fading with both amplitude and phase 

additional impairments [6]. Hence, the geometric algorithm 

used to derive metrics proved robustness to phase rotations. 

This letter explains why and how that symmetry-dependent 

algorithm is resilient to phase rotations. 

II. CPM SIGNALS AND TESTING SCHEMES 

CPM signals are expressed by: 
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The carrier frequency is fc, where c=2fc, 0 is the 

arbitrary initial phase, and Es is the energy per symbol, related 

with the bit energy by Es=log2(M)Eb. Channel symbols are 

i{1, 3, , (M-1)}, forming the M-ary sequence . Each 

symbol i carries log2(M) bits as a result of a natural mapping 

of the information bits. The information carried by NS channel 

symbols is keyed into signal’s phase by 
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A constant modulation index, h=p/q, is considered, where p 

and q are integers with no common factors, so that the number 

of phase states S=2q is a finite one. Phase pulse shape, q(t), 

affects phase transitions throughout L symbols, however, its 

effect remains until the end of the sequence. q(t) is given by 

the frequency pulse g(t):  −
=

t

dgtq  )()( . Making 


0
)(  dg  

= 1/2 assures that the maximum phase transition is h (M−1) 

during a symbol time, Ts. The most common pulses are LREC 

and GMSK [1]. LREC is given by g(t)=rect[t/(LTs)]/2, where 

rect(t)=1 for −1/2<|t|<1/2 and zero elsewhere. 

The effect of phase rotations is initially studied for 

catastrophic M-ary CPM schemes (h=1/2, M=2, i.e. MSK, and 

for M=4, 8, and 16), taking advantage of their small number of 

states (S=4). Afterwards, the schemes 1REC h=9/20 with M=4 

and 8 are tested. These schemes are the best 4 and 8-ary 1REC 

schemes in joint power and spectral efficiencies whilst 

preserving a low number of states (S=40). Moreover, both 

schemes have minimum normalized squared Euclidean 

distances (MNSED) equal to their upper bound [1, 3]. 
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III. METRICS DERIVATION  

For schemes with S=0 mod 4 only transitions metrics of 

transitions departing from states on the first quadrant must be 

calculated, and only for the in-phase branch; all the others can 

be derived from them. The phase states of those schemes can 

be distributed throughout the four quadrants in a symmetric 

manner, placing q/2 states on each quadrant. Fig. 1 depicts a 

transition b
(i) on the first quadrant and the relations of its both 

I and Q components with others on the remaining quadrants. 

The principles underlying this derivation of metrics could 

be used to simplify the analog bank of matched filters, 

however with a baseband front-end like the one on [3] (just 

two integrators followed by sampling and simple algebra) that 

is needless. The derivation algorithm is of great convenience 

when used as the following block though. The technique is 

implemented using copy procedures among positions of a 

vector i (which holds the =S×M metrics for the ith time 

interval) according to given rules. In detail, i stores each 

metric in a given fixed position. The positions are defined this 

way: the first position is reserved for the transition emerging 

from the first state (the one closer to 0ºon the first quadrant) 

and associated to the first possible channel symbol as ordered 

on the vector =[ (1) = −(M−1),  (2)=−(M−3),, −1, +1, 

,  (M)=+(M−1)]). The second position is reserved for the 

metric of the transition departing from the same state but 

defined by  (2).  Therefore, the first M positions contain the 

metrics of all transitions emerging from the first state. Position 

M+1 is associated with the first transition from the second 

state. Thus, this periodic structure of M positions associated to 

each state allows to formulate an algorithm which maps the 

symmetries found on Fig. 1 into relations between positions of 

i, as shown in Fig. 2 for a simple example with MSK. 

For states number n1=1, 2,, S, on quadrants I, II, III, and 

IV, all metrics are obtained from a received symbol yi doing: 

1) Quadrant I: calculate the metrics for each M transition 

departing from each state inside the first quadrant and fill the 

/4 positions of i. Its first /4 positions will be referred by 

b(I) = n1+n2 where states 
)( 1n

S  are associated to n1=1, 2,, S/4 

and transitions emerging from it are linked to n2=1, 2,, M. 

Each metric is always the sum of the corresponding branch 

metrics, and for the first quadrant they are given by 

I(b(I)) = ( )T)I(
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Using sin()=cos( −  /2) and considering mod  

operations, the Q metrics can also be obtained via 
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Metrics for quadrants II, III and IV are to be derived from 

those /4 metrics using the following relations: 

2) Quadrant II: metrics of transitions initiating in states 
)( 1nq

S
−

 are copied from positions b(I) to positions b(II) for the 

symmetric symbol of  (due to the inverse rotations plotted in 

Fig. 1) respecting I(b(II)) = −I(b(I)) and Q(b(II)) = Q(b(I)), 

for b(II)= (q+1−n1)M+(M+1−n2). 

3) Quadrant III: For states 
))(( 1 qnq

S
+−

, metrics should be 

copied from b(I) to positions b(III) following I(b(III)) = −I(b(I)) 

and Q(b(III)) = −Q(b(I)), for b(III)
 = b(I)+q = n1+n2+qM. 

4) Quadrant IV: For the states 
))(( 1 qnq

S
+−

, metrics should be 

copied from b(I) to positions b(IV) respecting I(b(IV)) = I(b(I)), 

and Q(b(IV)) = −Q(b(I)), for b(IV)
 = b(II)+q = (q+1−n1)M + 

(M+1−n2)+qM. 

IV. METRICS DERIVATION UNDER PHASE ROTATIONS 

The signal’s reference phase 0 changes over time either 

owing to the channel or as a result of faulty receiver 

synchronism, both corresponding to a  phase rotation,  on 

the complex signal space. Figs. 3 and 4 illustrate the effect on 

bit error rate (BER) of different fixed rotations for the 

schemes described in section II. Furthermore, the research 

revealed that for h=0.5 schemes one gets BER=0.5 at =45º 

and also at periodic multiples of this angle. The same 
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Fig. 1.  Metric relations and coping procedures (example for h=1/6, S=12). 
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Fig. 2.  Example for MSK. (a) Array with the =8 metrics. (b) Associations 

between array positions, phase states and phase transitions. 



 

 

 

 

 

maximum BER occurs for h=9/20 schemes at =40.5º plus 

at periodic multiples of that angle, revealing a periodic pattern 

in terms of power loss (measured for BER=10-4) as a function 

of . Fig. 5 illustrates, with a simple example, the impact of 

nonzero  on in-phase transition components. It can be seen 

that projections of image-states appear on both I and Q 

branches. These consequences are further described by Fig. 6. 

V. CONCLUSION 

The correlation of the phase transition functions on each 

branch exhibits periodic values over . Initially, at = 

perfect symmetries exist (Fig.1). Despite symmetries are 

broken for incremental errors (Fig. 5(a)), some correlation 

remains (Fig. 5(b)). However orthogonality appears when 

=nh/2, for n integer, and therefore error peaks arise for 

rotations multiple of h/2. One should notice that for h=1/2 

this value is /4 and that for h=9/20=0.45 the value becomes 

40.5º, precisely the values found by simulation. The sequence 

detection block [4] is the only block dealing with signal’s 

memory. Moreover, metric derivation is itself a memoryless 

process depending upon differential phase evolutions rather 

than absolute ones. In brief, the method adjusts itself to phase 

rotations and performance decays gradually over periodic 

phase error windows, which explains the resilience of the 

receiver with uniformly distributed random phase under fading 

[6]. Additionally, phase error compensation could be done 

with I/Q calibration [7], albeit not mandatory. 
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Fig. 6.  Mismatch of original and derived transitions with phase rotation. 
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Fig. 4.  Comparison of BER for 1REC, h=9/20. (a) M=8. (b) M=4. 
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Fig. 5.  In-phase transitions due to rotations for h=1/2, M=4. (a) 1º. (b) 10º. 
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Fig. 3.  Comparison of BER for 1REC, h=1/2. (a) M=16. (b) M=8. (c) M=4. 

(d) M=2. 


