

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-05-17

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Serrão, C. & Garrido, N. (2018). A low-cost smart parking solution for smart cities based on open
software and hardware. In Monteiro, V., Ferreira, J. C., and Martins, A. L. (Ed.), Intelligent Transport
Systems, From Research and Development to the Market Uptake. Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering. (pp. 15-25).
Guimarães: Springer.

Further information on publisher's website:
10.1007/978-3-030-14757-0_2

Publisher's copyright statement:
This is the peer reviewed version of the following article: Serrão, C. & Garrido, N. (2018). A low-cost
smart parking solution for smart cities based on open software and hardware. In Monteiro, V.,
Ferreira, J. C., and Martins, A. L. (Ed.), Intelligent Transport Systems, From Research and
Development to the Market Uptake. Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering. (pp. 15-25). Guimarães: Springer., which has been
published in final form at https://dx.doi.org/10.1007/978-3-030-14757-0_2. This article may be used
for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-
archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/978-3-030-14757-0_2

A Low-Cost Smart Parking solution for Smart Cities
based on open software and hardware

Carlos Serrão1 and Nuno Garrido2

ISCTE – Instituto Universitário de Lisboa
1Information Sciences, Technologies and Architecture Research Center (ISTAR-IUL)

2Instituto de Telecomunicações (IT-IUL)
Ed. ISCTE, Av. das Forças Armadas, 1649-026, Lisboa, Portugal
{carlos.serrao, nuno.garrido}@iscte-iul.pt

Abstract. Traffic management and car parking on modern cities continues to be
a problem both for citizens and for city officials. The increasing number of vehi-
cles flowing into the city drain the existing scarce parking resources, and the in-
crease in time spent looking for a parking spot leads to more congestions, para-
sitic traffic, whilst augmenting fuel consumption and air pollution. In this paper
we present an integrated flexible solution developed to help address this issue,
using open hardware and software components to develop a low-cost smart park-
ing system suitable for contemporary metropolitan cities. The smart parking so-
lution is based on Arduino boards for the sensors network and on Raspberry Pi
single-board computers for the gateway devices, integrated through specific de-
veloped software components and a mobile application for the end-users.

Keywords: Smart parking; Smart cities; Prototype; Parking; Arduino; Rasp-
berry Pi; Android, iOS.

1 Introduction

Modern cities must deal with different problems and challenges. One of the most im-
portant challenges of modern cities is the number of vehicles that cross the city borders
every day creating major problems that citizens and city authorities have to face on a
daily basis. It is important to find appropriate solutions capable of improving the quality
of the city’s life and therefore IT has helped the creation of a new type of smart cities.
This has been regarded as the answer to some of the major city problems and is slowly
changing the citizens way of interacting with their cities. “A city that monitors and
integrates conditions of all of its critical infrastructures, including roads, bridges, tun-
nels, railways, subways, airports, seaports, communications, water, power, even major
buildings, and that can better optimize its resources, plan its preventive maintenance
activities, and monitor security aspects while maximizing services to its citizens” can
be described as a smart city (Chourabi et al., 2012).

Parking and parking management systems have always been amongst some of the
major cities concerns. City officials have conducted long term studies on the smart

2

parking concept and of which might be the social, economic, political and environmen-
tal impact such systems may cause. Nevertheless, the large investment that is required
on this type of systems has created political problems in the cities for their widespread
adoption.

The purpose of this paper is to present a prototype of an integrated low-cost system
based on open hardware and software components and designed to address the needs
of the cities that require monitoring and measurement, not only of the parking areas,
but also of other environment data such as mobility, pollution, temperature and humid-
ity.

As part of the research conducted to address the problem of creating a hardware and
software solution for this problem a prototype was developed and will be succinctly
described on this paper. This prototype integrates hardware components to operate as
parking sensors, and gateways that integrate the different parking sensors in a parking
area, it also includes all the necessary software for the components to operate and com-
municate with the backend, and finally a mobile application that is used by end-users
to find and give driving directions to existing free parking spots.

The first part of this paper introduces the smart parking topics and determines its
importance in the context of smart cities and how they can contribute to solve some of
the parking problems cities and city officials have to face. The second part makes a
small overview over some already existing intelligent parking solutions that were de-
veloped and are being used on the context of smart cities. On the third section of the
paper the proposed system is presented as well as the different components and how
they are integrated. The tests and results from the developed solution are discussed on
the following section, and on the final section of the paper we present some conclusions
and point out some future work that needs to be accomplished.

2 Smart cities intelligent parking solutions

As previously referred, many cities around the world are already implementing or con-
sidering future implementation of smart parking solutions to solve some of the existing
problems with parking pressure over their existing parking equipment.

Many different studies have been conducted around the world about this theme that
refer the importance of improving the existing parking systems and the way they are
used and managed in order to provide benefits to smart cities (Thanh Nam Pham et al.,
2015) (Giuffrè, Siniscalchi & Tesoriere, 2012) (Idris et al., 2009). The pressure of the
number of vehicles either existing on the cities or crossing its borders everyday needs
to be tackled. This has contributed to the development of innovative parking technolo-
gies (Fraifer & Fernström, 2016).

There are already some examples of smart cities using intelligent parking solutions
that try to address the parking problems cities have to deal with. In (Thanh Nam Pham
et al., 2015) the authors make a proposal to create a system based on a IoT network that
can help drivers to find free parking spaces at the lowest possible cost based on different
metrics, considering the geolocation of the vehicle, the distance between the parking
areas and the total number of free slots in the parking area. If the car park is full, the

3

driver is redirected to another location until he can park the vehicle. Each car park uses
WSN (Wireless Sensor Network) (Hancke & Hancke Jr, 2012) technology which mon-
itors the parking lots through RFID (Akyildiz & Kasimoglu, 2004). The system works
in real-time and gives the user the choice of the most suitable parking place, sending
directions to the destination. Whenever a vehicle enters or exits the park, the data is
updated by communicating with the parking lot WSN.

SmartParking Systems has presented another solution that consists of an advanced
navigation system that signals the availability of a parking spot and directs the user
towards it (Smart Parking Systems, 2017). This system is based on the LoRaWAN
technology (Adelantado et al., 2017) making it capable of connecting sensors over long
distances, requiring minimal structure while delivering optimal battery life. This offers
advantages such as mobility, security and optimized location/positioning, as well as
cost savings. This system provides also a smartphone and a tablet application that per-
mits the user to see real-time parking spaces and helps drivers to choose the best loca-
tion without having to move around to check available parking spots. Time wasted in
finding available spots is eliminated; the user saves time and the traffic in residential
areas is relieved. The user can pay for parking easily using the application that is asso-
ciated with a credit card.

There exist other systems that can be used to implement intelligent parking solutions
and help the management of the existing parking areas in the city, however the referred
ones are amongst some of the most relevant ones. In the following section, the devel-
oped low-cost intelligent parking solution based on open hardware and software is pre-
sented.

3 Low-cost intelligent parking system

The objective of this paper is to describe the implementation of a low-cost intelligent
parking solution based on open hardware and software. The developed prototype also
regarded scalability and upgradability issues that can allow some of the components
currently on the system to be replaced by others in the future, to better adequate to the
specific city parking solution requirements.

The architecture of the system depicted on Fig. 1 is composed of a set of components
that work in an integrated manner to provide the necessary functionalities required by
the intelligent smart parking solution.

4

Fig. 1. Integrated Smart Parking solution architecture

The major components of the system are:
• Parking sensors: the hardware and software cells required to implement the

detection of vehicles on the different parking spots;
• Parking gateways: the hardware and software hubs that manage and inte-

grate a set of parking sensors on a parking area and connect the collected
data with the system backend, through an Internet connection;

• Backend system: web-based system that is responsible for collecting infor-
mation from the different gateways, process that information and provide
the required information to the mobile application;

• Mobile application: the end-user mobile application that supplies infor-
mation to the end-user about the availability and location of parking spaces.

In the following sections the different components of the system will be presented
and described in detail, specifying their major functionalities.

3.1 Parking sensors

One of the major components on any smart parking solution is the component capable
of detecting the presence of a vehicle on the parking spot, thus allowing the signaling
of the availability of the parking place to the system. For this specific prototype, the
implementation of the parking sensor is based on an Arduino board integrated with an
infrared proximity sensor used to detect the presence of a car over the parking spot.
This sensor can detect the presence of obstacles based on the reflection of infrared ra-
diation emitted by a transparent LED and collected by a photoelectric device. This is a
basic and low-cost solution used only for prototyping purposes and may not be adequate
for use in a final smart parking system, since different things may incorrectly trigger
the device and emulate a parked car. The developed sensor is only used to simulate one
of the many parking sensors that can be applied for this smart parking solution, it is not
a real issue for the smart parking system because one of the objectives is to provide the

Parking Sensors Parking Gateways Backend System Mobile Application

ZigBee

ZigBee

ZigBee

ZigBee

ZigBee

API over
HTTP/HTTPS

API over
HTTP/HTTPS

Android and iOS
application

Backend hosted
by Firebase

Raspberry Pi 3

Arduino

ZigBee

5

ability to support any kind of sensor (or groups of sensors) capable of accurately de-
tecting a parked car. The proximity sensor is integrated within an Arduino board to
implement the necessary logic switch for the parking sensor.

To implement a wireless communication meshed network between the different
parking sensors, XBee was the selected data transceiver used to enable the communi-
cation between the different sensors and the gateways using the ZigBee protocol. For
the prototype sake all devices were configured as Router (Silicon Laboratories, 2018),
due to the existence of only three sensors in the sensor network and thus increasing the
radius of communication between the sensors and the gateway. Although this configu-
ration is not the most efficient in terms of energy consumption, the sensors energy con-
sumption is extremely low and increasing the range of the sensor relative to the gateway
is an important implementation aspect of the system that justifies the followed ap-
proach.

The Arduino board integrates the different components of the sensor and enables the
communication obtaining the sensor status and sending the data to the gateway. To
achieve this, specific software was developed for the Arduino UART controller that
allows the initialization of the variables inherent to the proximity sensor and the XBee
transceiver. The sensor software starts by initializing the different elements that are part
of parking sensor. Firstly, the proximity sensor is initialized by receiving as arguments
the identifier of where the sensor is connected, and the type of the connected element
(in this case, 'INPUT', because the intention here is to obtain the state of the sensor as
data input for the Arduino board). After this process, the baud rate (bit per second) of
the data transmission is also defined. After this initial process the sensor enters in a loop

mode that enables its execution until some shutdown will need to be
conducted. The diagram Fig. 2 displays the different states that might occur during the looping on the Arduino

software.

Fig. 2. State machine and pseudocode diagram of the Arduino loop function.

6

 It is in the looping part of the Arduino software that the collection, processing and
communication of data will take place. The first state of this loop is called ‘Start’ and
is responsible for gathering the status of the proximity sensor by calling function 'digi-
talRead()' and saving it to a 'status' variable. State ‘Send’ contains the function
'Xbee.write()' which is responsible for sending the data through the XBee to the park-
ing gateway. The variables 'counter' and 'numReads' respectively specify a counter
for each iteration of the cycle, and the number of readings in which the previous state
of the sensor represented by 'dgRead' is different from the current state indicated by
the variable 'status'. The goal is to ensure that there are no false detections. The variable
‘numReads' must be greater than or equal to 2 (corresponding to the ‘S4’ state), assur-
ing the first change of status was confirmed by a second iteration of the cycle, thus
guaranteeing a true detection. This allows the sensor to respond immediately when
sensing a consistent status change while avoiding constantly sending redundant infor-
mation and thus save important energy. The counter can be set to send data every 10
iterations even if there are no state changes, informing the gateway that the sensor is
active on the network thus providing fast battery failure detection. The last function of
the software implements a delay of two seconds before returning to the first instruction
of the cycle, therefore setting the sampling rate of the sensor cell cycle. After connect-
ing all elements, the result of the parking sensor is displayed in Fig. 3.

Fig. 3. Prototype proximity sensor and IR sensor connection to the Arduino (Vxlabs, 2018).

3.2 Parking Gateway

The parking gateway is one of the most important components on the system and it will
be responsible for allowing the communication of the parking sensors network with the
management backend system, through the Internet (using a REST API, through
HTTP/HTTPS). The gateway component is also composed by hardware and specifi-
cally designed software to implement its functionality. The hardware component that
was selected to implement this gateway prototype was the Raspberry Pi 3, running on
the Raspbian Linux operating system. The following image (Fig. 4) represents the gate-
way prototype and depicts the connection of the XBee transceiver to the GPIO ports of

7

the Raspberry Pi (Electronics For You, 2016). This will enable the gateway to commu-
nication with the neighboring sensor network.

The GPIO ports of the Raspberry Pi are set to use a baud rate of 115200 to connected
to the XBee, coherently with the settings of the sensors XBee devices. Since for the
backend part of the system, Firebase will be used, on the gateway software the Firebase
API needs to be initialized and will be used to send the collected data. The software
developed for this gateway also implements a loop that enables the gateway to run for-
ever until it is shutdown. Within this loop the information from the sensors will be
collected from the XBee device. This data will then be transferred to a vector which
separates a string from a defined character. After this, the correct reception of the data
is verified and then the information regarding each specific sensor is sent to the backend
database.

Fig. 4. Gateway prototype and connecting of the XBee transceiver to the Raspberry Pi

(Electronics For You, 2016).

3.3 Backend System

For the system to work, the backend of the prototype is based on the online Firebase
platform. This platform was selected because it provides the essential services needed
for a faster prototype development, however it may be replaced by any other backend
platform if the basic necessary backend services are guaranteed.

In the gateway component, authentication is initially performed on Firebase fol-
lowed by the API initialization, which later allows the use of functions for collecting
and sending data to the database.

In the configuration of a Firebase project, chunks of code are provided for introduc-
tion into the Android, iOS, and Web application projects that allow Firebase API ini-
tialization.

Access to the Firebase backend database is performed through a REST API served
through the HTTP/HTTPS protocols.

8

3.4 Mobile application

The final objective of a smart parking solution integrated on a smart city is to provide
the necessary intelligent and intuitive tools for citizens to easily and quickly find ways
to improve their lives through the usage of affordable technologies.

In this specific case, the objective is to provide the end users with a simple tool to
access the most convenient parking slot available at a given time and give the means to
find their way to the available parking spot. Due to the growing usage of mobile tech-
nologies, the best solution was the development of a mobile smart parking application.
To produce a multiplatform mobile application (available on Android and iOS), an hy-
brid mobile development framework - Ionic Framework (Ionic Framework, 2018) was
selected. After finalizing the design and export of the created project through the Ionic
Creator website (Ionic Creator, 2018), the Google Maps library was added to the project
scope so that the user could navigate the map in search of parking zones represented by
custom markers.

Using the mobile application, it is possible to check the number of available spots in
a given period represented by a number inserted in the markers of each zone, as shown
in Fig. 5. This number will be updated depending on the state changing of the sensors
for a given zone. Whenever the user presses a marker, he will be taken to another screen
that displays in more detail the information about the selected zone, i.e. the list of park-
ing spots and their current state, and information about the parking zone. If the user
selects a spot, the screen with the previous map will appear again, but, in this case, the
map shows the route from the driver’s location to the destination, and this operation
can be confirmed or cancelled. There is another way to search for parking zones and it
is in the second tab located at the bottom of the screen. The side menu offers complete-
ness to the application, showing the most relevant sections of the application and each
one was implemented separately.

All data generated and modified by the user is subsequently updated in the database,
where each registered user has a reserved section. This is possible by calling methods
implemented in the Firebase API library. During the application execution, information
about the parking status in each zone can be updated in real-time, because of the listener
implemented that can detect if the database has changed.

9

Fig. 5. Application prototype layout.

4 Functional prototype

As proof of concept for this work, a fully functional prototype was implemented and
tested. The proposed prototype consists of two gateways as depicted in Fig. 6, one on
the right side and another on the left side, simulating two separate hubs managing two
different parking zones, with a total of three parking sensors (two on the right and one
the left), and a mobile application for the end-user running on an Android phone (on
the bottom).

For testing purpose, one of the gateways is powered by a photovoltaic cell driving a
lithium polymer rechargeable power bank, the other gateway runs on a common 5V
USB charger and the parking sensor cells are supplied by 9V batteries.

For the parking sensor cells, we used infrared sensors as a simple solution for the
prototype, that can be easily replaced by a magnetic sensor, specific for the detection
of vehicles.

The system was first tested on the software console of the Arduino, and also checked
in real-time through the Firebase console. The system is coherent and robust, and the
components interconnect correctly as expected demonstrating full functionality and
showing status changes on the end-user application in real-time with the sensor stimu-
lation.

10

Fig.6. Complete smart parking prototype test setup.

5 Conclusions

This paper presents a fully scalable low-cost open hardware and software smart parking
system for parking management in smart cities alternative to existing studies with less
flexible and more costly solutions.

The system consists of sensor cells, parking gateways, a web-based backend data-
base, and an end-user mobile application. This is a complete and integrated system de-
signed for flexibility and allowing diverse component implementation alternative to
those selected for the functional prototype, such as other types of sensors, data commu-
nication methods, front-end software or backend solutions.

We propose the use of low-cost general-purpose Arduino and Raspberry Pi boards
for the implementation of parking sensors and gateways, respectively. The prototype
demonstrates the use of ZigBee technology for the communication between the physi-
cal elements of the system as a suitable scalable solution and efficient in terms of energy
savings and cost.

The parking sensor network responds to changes in real-time using the communica-
tion between the physical components and allowing the mobile application to show the
availability of parking spaces available for the user, even in areas with the highest oc-
cupancy and daily demand.

This smart parking system can improve the existing approaches or unveil new solu-
tions that can satisfy the citizens and change the paradigm of traffic and parking as one
of the biggest problems in the context of smart cities.

11

6 Acknowledgements

This project was partially funded by FCT | UID/MULTI/4466/2016.

6.1 References

1. Adelantado, Ferran, Xavier Vilajosana, Pere Tuset, Borja Martínez and Joan Melià. “Under-
standing the Limits of LoRaWAN.” IEEE Communications Magazine 55 (2017): 34-40.

2. Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon, K., ... & Scholl,
H. J. (2012, January). Understanding Smart Cities: An integrative framework. In System
Science (HICSS), 2012 45th Hawaii International Conference on (pp. 2289-2297). IEEE.

3. Electronics For You. (2016) XBee interfacing Raspberry Pi Model 2. Available from:
https://electronicsforu.com/electronics-projects/XBee-interfacing-raspberry-pi-model-2/2
[Accessed 15th November 2017].

4. Fraifer, Muftah & Fernström, Mikael. (2016). Investigation of Smart Parking Systems and
their technologies

5. Giuffrè, T., Siniscalchi, S. M., & Tesoriere, G. (2012). A novel architecture of parking man-
agement for Smart Cities. Procedia-Social and Behavioral Sciences, 53, 16-28.

6. Hancke, G. P., & Hancke Jr, G. P. (2012). The role of advanced sensing in Smart Cities.
Sensors, 13(1), 393-425

7. F. Akyildiz, I. H. Kasimoglu, "Wireless sensor and actor networks: Research chal-
lenges", Ad Hoc Netw., vol. 2, no. 4, pp. 351-367, Oct. 2004.

8. Idris, Mohd & Y.Y, Leng & E.M, Tamil & N.M, Noor & Razak, Zaidi. (2009). Car Park
System: A Review of Smart Parking System and its Technology. Information Technology
Journal. 8. 10.3923/itj.2009.101.113

9. Ionic Creator. (2018) Available from: https://creator.ionic.io/
10. Ionic Framework. (2018) Build amazing apps in one codebase, for any platform, with the

web. Available from: https://ionicframework.com/
11. Silicon Laboratories. (2018) What is the difference between an end device, a router, and a

coordinator? Available from: https://www.silabs.com/community/wireless/zigbee-and-
thread/knowledge-base.entry.html/2012/07/02/what_is_the_differen-IYze [Accessed 4th
November 2017].

12. Smart Parking Systems. (2017) Shape the future of tomorrow’s cities. Available from:
http://www.smartparkingsystems.com/, [Accessed 19th December 2016].

13. Thanh Nam Pham, Ming-Fong Tsai, Duc Binh Nguyen, Chyi-Ren Dow, and Der-Jiunn
Deng. "A Cloud-based Smart-parking System based on Internet-of-Things technologies."
digital object identifier 10.1109/access.2015.2477299 (2015): 1581-1591.

14. Vxlabs. (2018) Which jumper to set on the ITEAD XBee shield v1.1 for use with a 3.3V
Arduino. Available from: https://vxlabs.com/2018/03/23/which-jumper-to-set-on-the-itead-
XBee-shield-v1-1-for-use-with-a-3-3v-arduino/ [Accessed 25th October 2017].

