

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-05-17

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Rio, A. & Brito e Abreu, F. (2019). Code smells survival analysis in web apps. In Piattini, M., Cunha,
P. R. da., Rodríguez de Guzmán, I. G., and Pérez-Castillo, R. (Ed.), Quality of Information and
Communications Technology. Communications in Computer and Information Science. (pp. 263-271).
Ciudad Real: Springer.

Further information on publisher's website:
10.1007/978-3-030-29238-6_19

Publisher's copyright statement:
This is the peer reviewed version of the following article: Rio, A. & Brito e Abreu, F. (2019). Code
smells survival analysis in web apps. In Piattini, M., Cunha, P. R. da., Rodríguez de Guzmán, I. G.,
and Pérez-Castillo, R. (Ed.), Quality of Information and Communications Technology.
Communications in Computer and Information Science. (pp. 263-271). Ciudad Real: Springer., which
has been published in final form at https://dx.doi.org/10.1007/978-3-030-29238-6_19. This article
may be used for non-commercial purposes in accordance with the Publisher's Terms and Conditions
for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/978-3-030-29238-6_19

Code Smells Survival Analysis in Web Apps

Américo Rio1,2 and Fernando Brito e Abreu1

1 ISTAR-IUL, ISCTE-IUL, Portugal

{jaasr,fba}@iscte-iul.pt
2 NOVAIMS, UNL, Portugal

americo.rio@novaims.unl.pt

Abstract. Web applications are heterogeneous, both in their target platform (split

across client and server sides) and on the formalisms they are built with, usually

a mixture of programming and formatting languages. This heterogeneity is per-

haps an explanation why software evolution of web applications (apps) is a

poorly addressed topic in the literature. In this paper we focus on web apps built

with PHP, the most widely used server-side programming language.

We analyzed the evolution of 6 code smells in 4 web applications, using the

survival analysis technique. Since code smells are symptoms of poor design, it is

relevant to study their survival, that is, how long did it take from their introduc-

tion to their removal. It is obviously desirable to minimize their survival.

In our analysis we split code smells in two categories: scattered smells and lo-

calized smells, since we expect the former to be more harmful than the latter. Our

results provide some evidence that the survival of PHP code smells depends on

their spreadness.

We have also analyzed whether the survival curve varies in the long term, for

the same web application. Due to the increasing awareness on the potential harm-

fulness of code smells, we expected to observe a reduction in the survival rate in

the long term. The results show that there is indeed a change, for all applications

except one, which lead us to consider that other factors should be analyzed in the

future, to explain the phenomenon.

Keywords: code smells, PHP, software evolution, survival analysis, web apps.

1 Motivation

This study is in the crossroads of Software Evolution [1, 2] and Web Engineering [3,

4] and is a follow-up of our preliminary work on the evolution of web systems/applica-

tions, regarding maintainability and reliability problems [5, 6]. Web applications (web

apps, for short) encompass a heterogeneity of target platforms, since they run both on

a browser and a server, and a mix of programming and content formatting languages.

That mix makes web apps a more complex target for software quality studies, either

synchronic or diachronic (longitudinal), because those studies are often based on static

analysis of source code, as is the case with code smells research. Indeed, for each lan-

guage used (e.g. JavaScript, html5, CSS, PHP) a different parser is required, what may

explain why software evolution of web apps is a poorly addressed topic in the literature,

mailto:fba@iscte-iul.pt

2

as we will see later.

Several perspectives can be adopted in longitudinal studies, were the evolution of

software products or processes are analyzed, focusing on aspects such as software met-

rics, teams’ activity, defects identification and correction, or time to release [7, 8]. This

paper addresses the survival of code smells in web apps using PHP, the main server-

side programming language, currently used in 79% of web apps1. Since code smells

occurrences are symptoms of poor design and implementation choices, the Software

Engineering community has been thriving to reduce their survival, i.e., how long does

it take from when they were introduced to when they are removed, by proposing new

detection techniques and tools [9, 10]. Despite this interest, there is a shortage of evo-

lution studies on code smells in web apps, especially with PHP [11, 12].

The research described herein covers two factors: scope and period. Code smells

effect can vary widely in spreadness. In localized ones, the scope is a method or a class

(e.g. Long Method, Long Parameter List, God Class), while the influence of others may

be scattered across large portions of a software system (e.g. Shotgun Surgery, Deep

Inheritance Hierarchies or Coupling Between Classes). Since widespread code smells

can cause more damage than localized ones, we expect their survival rates to be shorter.

The other factor we are concerned with regards a superordinate temporal analysis. Since

the topic of code smells has been addressed by researchers, taught at universities and

discussed by practitioners over the last two decades, we want to investigate whether

this had an impact on their survival. We expect that, in a long term, an increased aware-

ness has caused a more proactive attitude towards code smells detection and removal

(through refactoring actions), thus leading to shorter survival rates. Summing up, we

aim at testing the following two null research hypotheses:

- H0x: Survival does not depend of the code smells scope.

- H0y: Survival of a given code smell does not change over time period.

To test these hypotheses, we performed a longitudinal study encompassing 4 web

apps, and 6 code smells, as surrogates of more scattered or localized scopes.

This paper is structured as follows: section 2 introduces the study design; section 3

describes the results of our data analysis; section 4 overviews the related work and

section 5 outlines the major conclusions and identifies required future work.

2 Study design

2.1 Aim of the study

The aim of this work is to study the evolution/survival of code smells in web apps built

with PHP in the server-side. We selected a set of applications from different domains,

a set of 6 code smells, and collected data across all their stable development versions.

1 https://w3techs.com/technologies/overview/programming_language/all (accessed: June 2019)

https://w3techs.com/technologies/overview/programming_language/all

3

2.2 Applications sampling

Inclusion criteria: (i) fully blown web apps taken from the GitHub top listings, (ii) pro-

grammed with object-oriented style2, (iii) covering a diversity of application areas.

Exclusion criteria: (i) libraries, (ii) frameworks, (iii) web apps built using a framework.

Table 1. Characterization of the target web apps

Web app Purpose Versions Period LOC Classes

phpmyadmin Database manager 158 Aug 2010 - Jun 2018 89788 374

dukuwiki Wiki solution 40 July 2005 - Jan 2019 271514 402

opencart Shopping cart solution 28 April 2013 - April 2019 99052 760

phpbb Forum/bulletin board

solution

50 April 2012 - Jan 2018 101556 846

2.3 Code smells sampling

We used PHPMD [13], the only open source tool, we are aware of, that is capable of

detecting scattered and localized code smells in PHP. It supports 3 scattered code

smells, so we chose the same number of localized ones, although more were available.

Table 2. Characterization of the target code smells

Code Smell Characterization Type

ExcessiveMethodLength The method does too much Localized

ExcessiveClassLength The class does too much Localized

ExcessiveParameterList The method has too many parameters Localized

DepthOfInheritance The class is too deep in the inheritance tree Scattered

CouplingBetweenObjects The class has too many dependencies Scattered

NumberOfChildren The class has too many descendants Scattered

2.4 Design of the study

The workflow of our study (see Fig. 1) was fully automated by means of batch and PHP

scripts. First, all versions of the selected web apps were downloaded from GitHub, ex-

cept the alpha, beta, release candidates and corrections for old versions. Then, using the

PHPMD tool, we extracted the location of the code smells from all versions and stored

it in XML file format. After some format manipulation, the information on those XML

files was stored in a database, to make it amenable for survival analysis. That includes

the date when each code smell was first detected and, if that was the case, when it

disappeared, either due to refactoring, or because the code where it was detected was

(at least apparently) removed. Survival analysis took the input data from the database

2 Note: PHP can be used in a pure procedural way.

4

and stored the results in it too. Finally, a data completion step was performed, where

results were exported to csv format, for interoperability with visualization tools.

Fig. 1. Workflow of the study

2.5 Survival analysis

Survival analysis encompasses a set of statistical approaches that investigate the time

of interest for an event to occur [14]. The questions of interest can be the average sur-

vival time, and the probability of survival at a certain point in time. Also, we can cal-

culate the Hazard function, the probability of the event to occur.

The Kaplan-Meier estimator is a non-parametric statistic that allows us to estimate

the survival function and it gives the probability that a given code smell will subsist/ex-

ist past a time t. The log-rank test is used to compare survival curves of two groups, in

our case two types of code smells. It tests the null hypothesis that survival curves of

two populations do not differ by computing a p-value (statistical significance). In our

analysis we will consider a confidence interval of 95%, corresponding to an observed

significance level (known as p-value) of 0.05 for the test hypotheses.

Data extraction and processing, and format for survival analysis.

To apply survival data analysis, we transformed the collection of detected code smells

instances for each version of each web app, to a table with the “life” of each instance,

including the date of its first appearance, removal date (if occurred) and a censoring

value, with the following meaning:

Censoring=1  the smell disappeared, usually due to a refactoring event;

Censoring=0  the code smell is still present at the end of the observation period.

For replication purposes, the collected dataset is made available for other researchers3.

3 Results and Data analysis

To test the hypotheses, we used the R tool and the log-rank test [15]. We performed

two kinds of studies, using the log-rank test and 2 different co-variables.

3 https://github.com/americorio/articledata/

Code re-

pository

app1v1
app1v2
…
app1vn

app2v1
app2v2
…
app2vn database

Code

smells ex-

traction

Code smells

survival

analysis

Data com-

pletion

csv XML

Format ma-

nipulation

5

3.1 Comparing the survival curves for different types of code smells

For this study we divided the smells in “Localized Smells” and “Scattered Smells”. We

then fitted the Kaplan-Meier curves and performed the log-rank to compute the p-value.

Table 3. Code smells found, removed and survival in days (median and mean), by type.

Web app Type Found Removed Median(d) Mean(d)

phpmyadmin
Localized Smells 1067 846 707 744

Scattered Smells 34 23 324 424

dokuwiki
Localized Smells 159 112 1381 2169

Scattered Smells 6 2 620 2779

opencart
Localized Smells 798 393 1189 1281

Scattered Smells 12 0 NA 2172

phpbb
Localized Smells 747 393 2512 2255

Scattered Smells 20 2 NA 2537

Fig. 2. Survival curves of localized and scattered code smells, by application.

For phpMyAdmin and opencart, the survival curves of scattered smells differ sig-

nificantly from those of localized smells (see Fig. 2). For phpbb, the curves differ, but

not with statistical significance (given the considered confidence interval). For

dokuwiki, the study is inconclusive, since only 2 scattered code smells are removed.

It is worth noticing that localized code smells are much more frequent targets for change

than scattered code smells. This may be due to the lack of refactoring tools that support

the automated removal of scattered code smells in PHP.

6

3.2 Comparing code smells survival curves for different time frames

Here we used the log-rank test, and created a co-variate "timeframe", with two values

1 and 2, 1 being the first half of historic data, and 2 the second half. For the first half,

we truncated the variables of the study as if it was a sub-study ending in this period. In

other words, we considered two independent observation periods.

Table 4. Code smells found, removed and survival in days (median and mean) by timeframe.

Web app Timeframe Found Removed Median(d) Mean(d)

phpmyadmin
1 (< 2014-07-01) 498 393 946 787

2 (>=2014-07-01) 603 371 451 473

dokuwiki
1 (< 2012-04-03) 94 53 2139 1582

2 (>=2012-04-03) 71 52 1381 1352

opencart
1 (< 2016-03-31) 496 276 1016 794

2 (>=2016-03-31) 314 35 NA 966

phpbb
1 (< 2015-02-15) 685 79 NA 986

2 (>=2015-02-15) 82 1 NA 952

Fig. 3. Code smells survival curves in two consecutive timeframes (1st and 2nd half)

For all projects except phpbb, the survival curves of the 1st timeframe differ signif-

icantly from the 2nd one (see Fig. 3). In phpMyAdmin and dokuwiki the area under

the code smells survival curves is smaller in the 2nd timeframe, what seems to corrobo-

rates our expectation that, due to the increasing awareness on the potential harmfulness

of code smells, we would observe a reduction in the code smells survival rate in the

long term. However, for opencart and phpbb, we cannot draw the same conclusion,

probably because the number of detected and removed code smells is much smaller.

7

4 Related work

In [11], the authors study five web apps in PHP, the aspects of their history, unused

code, the removal of functions, the use of libraries, the stability of interfaces, migration

to object-orientation and the evolution of complexity. They found these systems un-

dergo systematic maintenance.

In [12], the authors analyze 30 PHP projects for their metrics, to examine if the Leh-

man's laws of evolution are maintained in an web app, and found that not all of them

stand true for this kind of projects.

In [16], the authors analyze two Java open source systems and four code smells, in

a longitudinal study with versions. They study the evolution of code smells, including

their persistence, and do survival analysis to find the average time of persistence.

In [17], after a survey to developers, the authors analyze when test smells occur in

source code, what their survivability is, and whether their presence is associated with

the presence of design problems in production code (code smells). They found, among

other conclusions, relationships between test and code smells. They extracted data from

a Git repository from 3 ecosystems making a total of 152 projects. They employ, among

other techniques, survival analysis to study the longevity of test smells.

In [18] the authors address the faults in the releases of five JavaScript projects (1

framework, 2 libraries and 2 command line programs) and try to relate them to 12 types

of code smells. They employ survival analysis for the faults.

The techniques used to extract the code for further analysis are divided in mining

software repositories and getting full versions or mining Git repositories for the

changes. However, to compute scattered code smells, we had to deal with the full code.

For smells based only on metrics for the file, the Git extraction is simpler to automate.

5 Conclusions

As far as we know, this is the first study analyzing code smells in PHP web apps. We

studied the evolution of 6 groups of code smells, in 4 web applications built with PHP.

For the first hypothesis we found that the code smells survival curves indeed vary with

the type of code smell, localized or scattered. We also found that the insertion and

removal events are much lower for the scattered code smells. Nevertheless, for PHP

web apps developed with object-oriented paradigm, it is not enough to study localized

smells in the file scope, but we also must address the smells that are scattered across

the system, since the latter are potentially more harmful.

For the second hypothesis results, in 3 of the applications the survival curve varies

between timeframes, but for one (phpbb) we do not observe this variance. This can be

explained by the low relative removal of code smells compared to the other applica-

tions. We cannot fully sustain that the long-term reduction in survival rate of code

smells in PHP web apps is due to the awareness on potential code smells harmfulness.

Other factors should be analyzed in the future, to explain the phenomenon.

The biggest validity threats are: there should be a bigger number of apps and smells

studied; perceive if applications that implemented OOP gradually, impact the study.

8

In Memoriam Acknowledgment

We are grateful to the late Professor Rui Menezes (deceased 14 May 2019), whose contribution

to this work was of great significance. He encouraged and supported us on the usage of survival

analysis techniques and inspired us with his enthusiasm.

References

1. Mens, T., Demeyer, S. eds: Software Evolution. Springer (2006)

2. Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Web engineering: modelling and

implementing web applications. Springer Science & Business Media (2007)

3. Mendes, E., Mosley, N.: Web engineering. Springer Science & Business Media (2006)

4. Rio, A., E Abreu, F.B.: Analyzing web applications quality evolution. In: Iberian Conference

on Information Systems and Technologies, CISTI. pp. 1–4. IEEE (2017)

5. Rio, A., Brito e Abreu, F.: Web Systems Quality Evolution. In: QUATIC. pp. 248–253. IEEE

(2016)

6. Herraiz, I., Rodriguez, D., Robles, G., Gonzalez-Barahona, J.M.: The evolution of the laws

of software evolution: A discussion based on a systematic literature review. ACM Comput.

Surv. 46, 28 (2013)

7. Radjenović, D., Heričko, M., Torkar, R., Živkovič, A.: Software fault prediction metrics: A

systematic literature review. Inf. Softw. Technol. 55, 1397–1418 (2013)

8. w3techs: Usage Statistics and Market Share of Server-side Programming Languages for

Websites, May 2019,

https://w3techs.com/technologies/overview/programming_language/all

9. Zhang, M., Hall, T., Baddoo, N.: Code bad smells: a review of current knowledge. J. Softw.

Maint. Evol. Res. Pract. 23, 179–202 (2011)

10. Fernandes, E., Oliveira, J., Vale, G., Paiva, T., Figueiredo, E.: A review-based comparative

study of bad smell detection tools. In: Proceedings of the 20th International Conference on

Evaluation and Assessment in Software Engineering. p. 18. ACM (2016)

11. Kyriakakis, P., Chatzigeorgiou, A.: Maintenance Patterns of Large-Scale PHP Web

Applications. 2014 IEEE Int. Conf. Softw. Maint. Evol. 381–390 (2014).

doi:10.1109/ICSME.2014.60

12. Amanatidis, T., Chatzigeorgiou, A.: Studying the evolution of {PHP} web applications . Inf.

Softw. Technol. . 72, 48–67 (2016). doi:http://dx.doi.org/10.1016/j.infsof.2015.11.009

13. Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Penta, M. Di, Lucia, A. De, Poshyvanyk,

D.: When and Why Your Code Starts to Smell Bad.

14. Clark, T.G., Bradburn, M.J., Love, S.B., Altman, D.G.: Survival analysis part I: basic

concepts and first analyses. Br. J. Cancer. 89, 232 (2003)

15. Daniel Schuette: Survival Analysis in R Tutorial (article) - DataCamp,

https://www.datacamp.com/community/tutorials/survival-analysis-R

16. Chatzigeorgiou, A., Manakos, A.: Investigating the evolution of bad smells in object-oriented

code. In: Quality of Information and Communications Technology (QUATIC), 2010 Seventh

International Conference on the. pp. 106–115. IEEE (2010)

17. Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshyvanyk,

D.: An empirical investigation into the nature of test smells. In: 2016 31st IEEE/ACM

International Conference on Automated Software Engineering (ASE). pp. 4–15 (2016)

18. Saboury, A., Musavi, P., Khomh, F., Antoniol, G.: An empirical study of code smells in

JavaScript projects. In: 2017 IEEE 24th International Conference on Software Analysis,

Evolution and Reengineering (SANER). pp. 294–305 (2017)

